1 /* 2 * Memory merging support. 3 * 4 * This code enables dynamic sharing of identical pages found in different 5 * memory areas, even if they are not shared by fork() 6 * 7 * Copyright (C) 2008-2009 Red Hat, Inc. 8 * Authors: 9 * Izik Eidus 10 * Andrea Arcangeli 11 * Chris Wright 12 * Hugh Dickins 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/rwsem.h> 23 #include <linux/pagemap.h> 24 #include <linux/rmap.h> 25 #include <linux/spinlock.h> 26 #include <linux/jhash.h> 27 #include <linux/delay.h> 28 #include <linux/kthread.h> 29 #include <linux/wait.h> 30 #include <linux/slab.h> 31 #include <linux/rbtree.h> 32 #include <linux/memory.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/swap.h> 35 #include <linux/ksm.h> 36 #include <linux/hash.h> 37 #include <linux/freezer.h> 38 39 #include <asm/tlbflush.h> 40 #include "internal.h" 41 42 /* 43 * A few notes about the KSM scanning process, 44 * to make it easier to understand the data structures below: 45 * 46 * In order to reduce excessive scanning, KSM sorts the memory pages by their 47 * contents into a data structure that holds pointers to the pages' locations. 48 * 49 * Since the contents of the pages may change at any moment, KSM cannot just 50 * insert the pages into a normal sorted tree and expect it to find anything. 51 * Therefore KSM uses two data structures - the stable and the unstable tree. 52 * 53 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 54 * by their contents. Because each such page is write-protected, searching on 55 * this tree is fully assured to be working (except when pages are unmapped), 56 * and therefore this tree is called the stable tree. 57 * 58 * In addition to the stable tree, KSM uses a second data structure called the 59 * unstable tree: this tree holds pointers to pages which have been found to 60 * be "unchanged for a period of time". The unstable tree sorts these pages 61 * by their contents, but since they are not write-protected, KSM cannot rely 62 * upon the unstable tree to work correctly - the unstable tree is liable to 63 * be corrupted as its contents are modified, and so it is called unstable. 64 * 65 * KSM solves this problem by several techniques: 66 * 67 * 1) The unstable tree is flushed every time KSM completes scanning all 68 * memory areas, and then the tree is rebuilt again from the beginning. 69 * 2) KSM will only insert into the unstable tree, pages whose hash value 70 * has not changed since the previous scan of all memory areas. 71 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 72 * colors of the nodes and not on their contents, assuring that even when 73 * the tree gets "corrupted" it won't get out of balance, so scanning time 74 * remains the same (also, searching and inserting nodes in an rbtree uses 75 * the same algorithm, so we have no overhead when we flush and rebuild). 76 * 4) KSM never flushes the stable tree, which means that even if it were to 77 * take 10 attempts to find a page in the unstable tree, once it is found, 78 * it is secured in the stable tree. (When we scan a new page, we first 79 * compare it against the stable tree, and then against the unstable tree.) 80 */ 81 82 /** 83 * struct mm_slot - ksm information per mm that is being scanned 84 * @link: link to the mm_slots hash list 85 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 86 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 87 * @mm: the mm that this information is valid for 88 */ 89 struct mm_slot { 90 struct hlist_node link; 91 struct list_head mm_list; 92 struct rmap_item *rmap_list; 93 struct mm_struct *mm; 94 }; 95 96 /** 97 * struct ksm_scan - cursor for scanning 98 * @mm_slot: the current mm_slot we are scanning 99 * @address: the next address inside that to be scanned 100 * @rmap_list: link to the next rmap to be scanned in the rmap_list 101 * @seqnr: count of completed full scans (needed when removing unstable node) 102 * 103 * There is only the one ksm_scan instance of this cursor structure. 104 */ 105 struct ksm_scan { 106 struct mm_slot *mm_slot; 107 unsigned long address; 108 struct rmap_item **rmap_list; 109 unsigned long seqnr; 110 }; 111 112 /** 113 * struct stable_node - node of the stable rbtree 114 * @node: rb node of this ksm page in the stable tree 115 * @hlist: hlist head of rmap_items using this ksm page 116 * @kpfn: page frame number of this ksm page 117 */ 118 struct stable_node { 119 struct rb_node node; 120 struct hlist_head hlist; 121 unsigned long kpfn; 122 }; 123 124 /** 125 * struct rmap_item - reverse mapping item for virtual addresses 126 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 127 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 128 * @mm: the memory structure this rmap_item is pointing into 129 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 130 * @oldchecksum: previous checksum of the page at that virtual address 131 * @node: rb node of this rmap_item in the unstable tree 132 * @head: pointer to stable_node heading this list in the stable tree 133 * @hlist: link into hlist of rmap_items hanging off that stable_node 134 */ 135 struct rmap_item { 136 struct rmap_item *rmap_list; 137 struct anon_vma *anon_vma; /* when stable */ 138 struct mm_struct *mm; 139 unsigned long address; /* + low bits used for flags below */ 140 unsigned int oldchecksum; /* when unstable */ 141 union { 142 struct rb_node node; /* when node of unstable tree */ 143 struct { /* when listed from stable tree */ 144 struct stable_node *head; 145 struct hlist_node hlist; 146 }; 147 }; 148 }; 149 150 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 151 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 152 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 153 154 /* The stable and unstable tree heads */ 155 static struct rb_root root_stable_tree = RB_ROOT; 156 static struct rb_root root_unstable_tree = RB_ROOT; 157 158 #define MM_SLOTS_HASH_SHIFT 10 159 #define MM_SLOTS_HASH_HEADS (1 << MM_SLOTS_HASH_SHIFT) 160 static struct hlist_head mm_slots_hash[MM_SLOTS_HASH_HEADS]; 161 162 static struct mm_slot ksm_mm_head = { 163 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 164 }; 165 static struct ksm_scan ksm_scan = { 166 .mm_slot = &ksm_mm_head, 167 }; 168 169 static struct kmem_cache *rmap_item_cache; 170 static struct kmem_cache *stable_node_cache; 171 static struct kmem_cache *mm_slot_cache; 172 173 /* The number of nodes in the stable tree */ 174 static unsigned long ksm_pages_shared; 175 176 /* The number of page slots additionally sharing those nodes */ 177 static unsigned long ksm_pages_sharing; 178 179 /* The number of nodes in the unstable tree */ 180 static unsigned long ksm_pages_unshared; 181 182 /* The number of rmap_items in use: to calculate pages_volatile */ 183 static unsigned long ksm_rmap_items; 184 185 /* Number of pages ksmd should scan in one batch */ 186 static unsigned int ksm_thread_pages_to_scan = 100; 187 188 /* Milliseconds ksmd should sleep between batches */ 189 static unsigned int ksm_thread_sleep_millisecs = 20; 190 191 #define KSM_RUN_STOP 0 192 #define KSM_RUN_MERGE 1 193 #define KSM_RUN_UNMERGE 2 194 static unsigned int ksm_run = KSM_RUN_STOP; 195 196 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 197 static DEFINE_MUTEX(ksm_thread_mutex); 198 static DEFINE_SPINLOCK(ksm_mmlist_lock); 199 200 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 201 sizeof(struct __struct), __alignof__(struct __struct),\ 202 (__flags), NULL) 203 204 static int __init ksm_slab_init(void) 205 { 206 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 207 if (!rmap_item_cache) 208 goto out; 209 210 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 211 if (!stable_node_cache) 212 goto out_free1; 213 214 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 215 if (!mm_slot_cache) 216 goto out_free2; 217 218 return 0; 219 220 out_free2: 221 kmem_cache_destroy(stable_node_cache); 222 out_free1: 223 kmem_cache_destroy(rmap_item_cache); 224 out: 225 return -ENOMEM; 226 } 227 228 static void __init ksm_slab_free(void) 229 { 230 kmem_cache_destroy(mm_slot_cache); 231 kmem_cache_destroy(stable_node_cache); 232 kmem_cache_destroy(rmap_item_cache); 233 mm_slot_cache = NULL; 234 } 235 236 static inline struct rmap_item *alloc_rmap_item(void) 237 { 238 struct rmap_item *rmap_item; 239 240 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL); 241 if (rmap_item) 242 ksm_rmap_items++; 243 return rmap_item; 244 } 245 246 static inline void free_rmap_item(struct rmap_item *rmap_item) 247 { 248 ksm_rmap_items--; 249 rmap_item->mm = NULL; /* debug safety */ 250 kmem_cache_free(rmap_item_cache, rmap_item); 251 } 252 253 static inline struct stable_node *alloc_stable_node(void) 254 { 255 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL); 256 } 257 258 static inline void free_stable_node(struct stable_node *stable_node) 259 { 260 kmem_cache_free(stable_node_cache, stable_node); 261 } 262 263 static inline struct mm_slot *alloc_mm_slot(void) 264 { 265 if (!mm_slot_cache) /* initialization failed */ 266 return NULL; 267 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 268 } 269 270 static inline void free_mm_slot(struct mm_slot *mm_slot) 271 { 272 kmem_cache_free(mm_slot_cache, mm_slot); 273 } 274 275 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 276 { 277 struct mm_slot *mm_slot; 278 struct hlist_head *bucket; 279 struct hlist_node *node; 280 281 bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)]; 282 hlist_for_each_entry(mm_slot, node, bucket, link) { 283 if (mm == mm_slot->mm) 284 return mm_slot; 285 } 286 return NULL; 287 } 288 289 static void insert_to_mm_slots_hash(struct mm_struct *mm, 290 struct mm_slot *mm_slot) 291 { 292 struct hlist_head *bucket; 293 294 bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)]; 295 mm_slot->mm = mm; 296 hlist_add_head(&mm_slot->link, bucket); 297 } 298 299 static inline int in_stable_tree(struct rmap_item *rmap_item) 300 { 301 return rmap_item->address & STABLE_FLAG; 302 } 303 304 /* 305 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 306 * page tables after it has passed through ksm_exit() - which, if necessary, 307 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set 308 * a special flag: they can just back out as soon as mm_users goes to zero. 309 * ksm_test_exit() is used throughout to make this test for exit: in some 310 * places for correctness, in some places just to avoid unnecessary work. 311 */ 312 static inline bool ksm_test_exit(struct mm_struct *mm) 313 { 314 return atomic_read(&mm->mm_users) == 0; 315 } 316 317 /* 318 * We use break_ksm to break COW on a ksm page: it's a stripped down 319 * 320 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1) 321 * put_page(page); 322 * 323 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 324 * in case the application has unmapped and remapped mm,addr meanwhile. 325 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 326 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. 327 */ 328 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 329 { 330 struct page *page; 331 int ret = 0; 332 333 do { 334 cond_resched(); 335 page = follow_page(vma, addr, FOLL_GET); 336 if (IS_ERR_OR_NULL(page)) 337 break; 338 if (PageKsm(page)) 339 ret = handle_mm_fault(vma->vm_mm, vma, addr, 340 FAULT_FLAG_WRITE); 341 else 342 ret = VM_FAULT_WRITE; 343 put_page(page); 344 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM))); 345 /* 346 * We must loop because handle_mm_fault() may back out if there's 347 * any difficulty e.g. if pte accessed bit gets updated concurrently. 348 * 349 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 350 * COW has been broken, even if the vma does not permit VM_WRITE; 351 * but note that a concurrent fault might break PageKsm for us. 352 * 353 * VM_FAULT_SIGBUS could occur if we race with truncation of the 354 * backing file, which also invalidates anonymous pages: that's 355 * okay, that truncation will have unmapped the PageKsm for us. 356 * 357 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 358 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 359 * current task has TIF_MEMDIE set, and will be OOM killed on return 360 * to user; and ksmd, having no mm, would never be chosen for that. 361 * 362 * But if the mm is in a limited mem_cgroup, then the fault may fail 363 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 364 * even ksmd can fail in this way - though it's usually breaking ksm 365 * just to undo a merge it made a moment before, so unlikely to oom. 366 * 367 * That's a pity: we might therefore have more kernel pages allocated 368 * than we're counting as nodes in the stable tree; but ksm_do_scan 369 * will retry to break_cow on each pass, so should recover the page 370 * in due course. The important thing is to not let VM_MERGEABLE 371 * be cleared while any such pages might remain in the area. 372 */ 373 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 374 } 375 376 static void break_cow(struct rmap_item *rmap_item) 377 { 378 struct mm_struct *mm = rmap_item->mm; 379 unsigned long addr = rmap_item->address; 380 struct vm_area_struct *vma; 381 382 /* 383 * It is not an accident that whenever we want to break COW 384 * to undo, we also need to drop a reference to the anon_vma. 385 */ 386 put_anon_vma(rmap_item->anon_vma); 387 388 down_read(&mm->mmap_sem); 389 if (ksm_test_exit(mm)) 390 goto out; 391 vma = find_vma(mm, addr); 392 if (!vma || vma->vm_start > addr) 393 goto out; 394 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 395 goto out; 396 break_ksm(vma, addr); 397 out: 398 up_read(&mm->mmap_sem); 399 } 400 401 static struct page *page_trans_compound_anon(struct page *page) 402 { 403 if (PageTransCompound(page)) { 404 struct page *head = compound_trans_head(page); 405 /* 406 * head may actually be splitted and freed from under 407 * us but it's ok here. 408 */ 409 if (PageAnon(head)) 410 return head; 411 } 412 return NULL; 413 } 414 415 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 416 { 417 struct mm_struct *mm = rmap_item->mm; 418 unsigned long addr = rmap_item->address; 419 struct vm_area_struct *vma; 420 struct page *page; 421 422 down_read(&mm->mmap_sem); 423 if (ksm_test_exit(mm)) 424 goto out; 425 vma = find_vma(mm, addr); 426 if (!vma || vma->vm_start > addr) 427 goto out; 428 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 429 goto out; 430 431 page = follow_page(vma, addr, FOLL_GET); 432 if (IS_ERR_OR_NULL(page)) 433 goto out; 434 if (PageAnon(page) || page_trans_compound_anon(page)) { 435 flush_anon_page(vma, page, addr); 436 flush_dcache_page(page); 437 } else { 438 put_page(page); 439 out: page = NULL; 440 } 441 up_read(&mm->mmap_sem); 442 return page; 443 } 444 445 static void remove_node_from_stable_tree(struct stable_node *stable_node) 446 { 447 struct rmap_item *rmap_item; 448 struct hlist_node *hlist; 449 450 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) { 451 if (rmap_item->hlist.next) 452 ksm_pages_sharing--; 453 else 454 ksm_pages_shared--; 455 put_anon_vma(rmap_item->anon_vma); 456 rmap_item->address &= PAGE_MASK; 457 cond_resched(); 458 } 459 460 rb_erase(&stable_node->node, &root_stable_tree); 461 free_stable_node(stable_node); 462 } 463 464 /* 465 * get_ksm_page: checks if the page indicated by the stable node 466 * is still its ksm page, despite having held no reference to it. 467 * In which case we can trust the content of the page, and it 468 * returns the gotten page; but if the page has now been zapped, 469 * remove the stale node from the stable tree and return NULL. 470 * 471 * You would expect the stable_node to hold a reference to the ksm page. 472 * But if it increments the page's count, swapping out has to wait for 473 * ksmd to come around again before it can free the page, which may take 474 * seconds or even minutes: much too unresponsive. So instead we use a 475 * "keyhole reference": access to the ksm page from the stable node peeps 476 * out through its keyhole to see if that page still holds the right key, 477 * pointing back to this stable node. This relies on freeing a PageAnon 478 * page to reset its page->mapping to NULL, and relies on no other use of 479 * a page to put something that might look like our key in page->mapping. 480 * 481 * include/linux/pagemap.h page_cache_get_speculative() is a good reference, 482 * but this is different - made simpler by ksm_thread_mutex being held, but 483 * interesting for assuming that no other use of the struct page could ever 484 * put our expected_mapping into page->mapping (or a field of the union which 485 * coincides with page->mapping). The RCU calls are not for KSM at all, but 486 * to keep the page_count protocol described with page_cache_get_speculative. 487 * 488 * Note: it is possible that get_ksm_page() will return NULL one moment, 489 * then page the next, if the page is in between page_freeze_refs() and 490 * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page 491 * is on its way to being freed; but it is an anomaly to bear in mind. 492 */ 493 static struct page *get_ksm_page(struct stable_node *stable_node) 494 { 495 struct page *page; 496 void *expected_mapping; 497 498 page = pfn_to_page(stable_node->kpfn); 499 expected_mapping = (void *)stable_node + 500 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM); 501 rcu_read_lock(); 502 if (page->mapping != expected_mapping) 503 goto stale; 504 if (!get_page_unless_zero(page)) 505 goto stale; 506 if (page->mapping != expected_mapping) { 507 put_page(page); 508 goto stale; 509 } 510 rcu_read_unlock(); 511 return page; 512 stale: 513 rcu_read_unlock(); 514 remove_node_from_stable_tree(stable_node); 515 return NULL; 516 } 517 518 /* 519 * Removing rmap_item from stable or unstable tree. 520 * This function will clean the information from the stable/unstable tree. 521 */ 522 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 523 { 524 if (rmap_item->address & STABLE_FLAG) { 525 struct stable_node *stable_node; 526 struct page *page; 527 528 stable_node = rmap_item->head; 529 page = get_ksm_page(stable_node); 530 if (!page) 531 goto out; 532 533 lock_page(page); 534 hlist_del(&rmap_item->hlist); 535 unlock_page(page); 536 put_page(page); 537 538 if (stable_node->hlist.first) 539 ksm_pages_sharing--; 540 else 541 ksm_pages_shared--; 542 543 put_anon_vma(rmap_item->anon_vma); 544 rmap_item->address &= PAGE_MASK; 545 546 } else if (rmap_item->address & UNSTABLE_FLAG) { 547 unsigned char age; 548 /* 549 * Usually ksmd can and must skip the rb_erase, because 550 * root_unstable_tree was already reset to RB_ROOT. 551 * But be careful when an mm is exiting: do the rb_erase 552 * if this rmap_item was inserted by this scan, rather 553 * than left over from before. 554 */ 555 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 556 BUG_ON(age > 1); 557 if (!age) 558 rb_erase(&rmap_item->node, &root_unstable_tree); 559 560 ksm_pages_unshared--; 561 rmap_item->address &= PAGE_MASK; 562 } 563 out: 564 cond_resched(); /* we're called from many long loops */ 565 } 566 567 static void remove_trailing_rmap_items(struct mm_slot *mm_slot, 568 struct rmap_item **rmap_list) 569 { 570 while (*rmap_list) { 571 struct rmap_item *rmap_item = *rmap_list; 572 *rmap_list = rmap_item->rmap_list; 573 remove_rmap_item_from_tree(rmap_item); 574 free_rmap_item(rmap_item); 575 } 576 } 577 578 /* 579 * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather 580 * than check every pte of a given vma, the locking doesn't quite work for 581 * that - an rmap_item is assigned to the stable tree after inserting ksm 582 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing 583 * rmap_items from parent to child at fork time (so as not to waste time 584 * if exit comes before the next scan reaches it). 585 * 586 * Similarly, although we'd like to remove rmap_items (so updating counts 587 * and freeing memory) when unmerging an area, it's easier to leave that 588 * to the next pass of ksmd - consider, for example, how ksmd might be 589 * in cmp_and_merge_page on one of the rmap_items we would be removing. 590 */ 591 static int unmerge_ksm_pages(struct vm_area_struct *vma, 592 unsigned long start, unsigned long end) 593 { 594 unsigned long addr; 595 int err = 0; 596 597 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 598 if (ksm_test_exit(vma->vm_mm)) 599 break; 600 if (signal_pending(current)) 601 err = -ERESTARTSYS; 602 else 603 err = break_ksm(vma, addr); 604 } 605 return err; 606 } 607 608 #ifdef CONFIG_SYSFS 609 /* 610 * Only called through the sysfs control interface: 611 */ 612 static int unmerge_and_remove_all_rmap_items(void) 613 { 614 struct mm_slot *mm_slot; 615 struct mm_struct *mm; 616 struct vm_area_struct *vma; 617 int err = 0; 618 619 spin_lock(&ksm_mmlist_lock); 620 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 621 struct mm_slot, mm_list); 622 spin_unlock(&ksm_mmlist_lock); 623 624 for (mm_slot = ksm_scan.mm_slot; 625 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 626 mm = mm_slot->mm; 627 down_read(&mm->mmap_sem); 628 for (vma = mm->mmap; vma; vma = vma->vm_next) { 629 if (ksm_test_exit(mm)) 630 break; 631 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 632 continue; 633 err = unmerge_ksm_pages(vma, 634 vma->vm_start, vma->vm_end); 635 if (err) 636 goto error; 637 } 638 639 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); 640 641 spin_lock(&ksm_mmlist_lock); 642 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 643 struct mm_slot, mm_list); 644 if (ksm_test_exit(mm)) { 645 hlist_del(&mm_slot->link); 646 list_del(&mm_slot->mm_list); 647 spin_unlock(&ksm_mmlist_lock); 648 649 free_mm_slot(mm_slot); 650 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 651 up_read(&mm->mmap_sem); 652 mmdrop(mm); 653 } else { 654 spin_unlock(&ksm_mmlist_lock); 655 up_read(&mm->mmap_sem); 656 } 657 } 658 659 ksm_scan.seqnr = 0; 660 return 0; 661 662 error: 663 up_read(&mm->mmap_sem); 664 spin_lock(&ksm_mmlist_lock); 665 ksm_scan.mm_slot = &ksm_mm_head; 666 spin_unlock(&ksm_mmlist_lock); 667 return err; 668 } 669 #endif /* CONFIG_SYSFS */ 670 671 static u32 calc_checksum(struct page *page) 672 { 673 u32 checksum; 674 void *addr = kmap_atomic(page, KM_USER0); 675 checksum = jhash2(addr, PAGE_SIZE / 4, 17); 676 kunmap_atomic(addr, KM_USER0); 677 return checksum; 678 } 679 680 static int memcmp_pages(struct page *page1, struct page *page2) 681 { 682 char *addr1, *addr2; 683 int ret; 684 685 addr1 = kmap_atomic(page1, KM_USER0); 686 addr2 = kmap_atomic(page2, KM_USER1); 687 ret = memcmp(addr1, addr2, PAGE_SIZE); 688 kunmap_atomic(addr2, KM_USER1); 689 kunmap_atomic(addr1, KM_USER0); 690 return ret; 691 } 692 693 static inline int pages_identical(struct page *page1, struct page *page2) 694 { 695 return !memcmp_pages(page1, page2); 696 } 697 698 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 699 pte_t *orig_pte) 700 { 701 struct mm_struct *mm = vma->vm_mm; 702 unsigned long addr; 703 pte_t *ptep; 704 spinlock_t *ptl; 705 int swapped; 706 int err = -EFAULT; 707 708 addr = page_address_in_vma(page, vma); 709 if (addr == -EFAULT) 710 goto out; 711 712 BUG_ON(PageTransCompound(page)); 713 ptep = page_check_address(page, mm, addr, &ptl, 0); 714 if (!ptep) 715 goto out; 716 717 if (pte_write(*ptep) || pte_dirty(*ptep)) { 718 pte_t entry; 719 720 swapped = PageSwapCache(page); 721 flush_cache_page(vma, addr, page_to_pfn(page)); 722 /* 723 * Ok this is tricky, when get_user_pages_fast() run it doesnt 724 * take any lock, therefore the check that we are going to make 725 * with the pagecount against the mapcount is racey and 726 * O_DIRECT can happen right after the check. 727 * So we clear the pte and flush the tlb before the check 728 * this assure us that no O_DIRECT can happen after the check 729 * or in the middle of the check. 730 */ 731 entry = ptep_clear_flush(vma, addr, ptep); 732 /* 733 * Check that no O_DIRECT or similar I/O is in progress on the 734 * page 735 */ 736 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 737 set_pte_at(mm, addr, ptep, entry); 738 goto out_unlock; 739 } 740 if (pte_dirty(entry)) 741 set_page_dirty(page); 742 entry = pte_mkclean(pte_wrprotect(entry)); 743 set_pte_at_notify(mm, addr, ptep, entry); 744 } 745 *orig_pte = *ptep; 746 err = 0; 747 748 out_unlock: 749 pte_unmap_unlock(ptep, ptl); 750 out: 751 return err; 752 } 753 754 /** 755 * replace_page - replace page in vma by new ksm page 756 * @vma: vma that holds the pte pointing to page 757 * @page: the page we are replacing by kpage 758 * @kpage: the ksm page we replace page by 759 * @orig_pte: the original value of the pte 760 * 761 * Returns 0 on success, -EFAULT on failure. 762 */ 763 static int replace_page(struct vm_area_struct *vma, struct page *page, 764 struct page *kpage, pte_t orig_pte) 765 { 766 struct mm_struct *mm = vma->vm_mm; 767 pgd_t *pgd; 768 pud_t *pud; 769 pmd_t *pmd; 770 pte_t *ptep; 771 spinlock_t *ptl; 772 unsigned long addr; 773 int err = -EFAULT; 774 775 addr = page_address_in_vma(page, vma); 776 if (addr == -EFAULT) 777 goto out; 778 779 pgd = pgd_offset(mm, addr); 780 if (!pgd_present(*pgd)) 781 goto out; 782 783 pud = pud_offset(pgd, addr); 784 if (!pud_present(*pud)) 785 goto out; 786 787 pmd = pmd_offset(pud, addr); 788 BUG_ON(pmd_trans_huge(*pmd)); 789 if (!pmd_present(*pmd)) 790 goto out; 791 792 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 793 if (!pte_same(*ptep, orig_pte)) { 794 pte_unmap_unlock(ptep, ptl); 795 goto out; 796 } 797 798 get_page(kpage); 799 page_add_anon_rmap(kpage, vma, addr); 800 801 flush_cache_page(vma, addr, pte_pfn(*ptep)); 802 ptep_clear_flush(vma, addr, ptep); 803 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot)); 804 805 page_remove_rmap(page); 806 if (!page_mapped(page)) 807 try_to_free_swap(page); 808 put_page(page); 809 810 pte_unmap_unlock(ptep, ptl); 811 err = 0; 812 out: 813 return err; 814 } 815 816 static int page_trans_compound_anon_split(struct page *page) 817 { 818 int ret = 0; 819 struct page *transhuge_head = page_trans_compound_anon(page); 820 if (transhuge_head) { 821 /* Get the reference on the head to split it. */ 822 if (get_page_unless_zero(transhuge_head)) { 823 /* 824 * Recheck we got the reference while the head 825 * was still anonymous. 826 */ 827 if (PageAnon(transhuge_head)) 828 ret = split_huge_page(transhuge_head); 829 else 830 /* 831 * Retry later if split_huge_page run 832 * from under us. 833 */ 834 ret = 1; 835 put_page(transhuge_head); 836 } else 837 /* Retry later if split_huge_page run from under us. */ 838 ret = 1; 839 } 840 return ret; 841 } 842 843 /* 844 * try_to_merge_one_page - take two pages and merge them into one 845 * @vma: the vma that holds the pte pointing to page 846 * @page: the PageAnon page that we want to replace with kpage 847 * @kpage: the PageKsm page that we want to map instead of page, 848 * or NULL the first time when we want to use page as kpage. 849 * 850 * This function returns 0 if the pages were merged, -EFAULT otherwise. 851 */ 852 static int try_to_merge_one_page(struct vm_area_struct *vma, 853 struct page *page, struct page *kpage) 854 { 855 pte_t orig_pte = __pte(0); 856 int err = -EFAULT; 857 858 if (page == kpage) /* ksm page forked */ 859 return 0; 860 861 if (!(vma->vm_flags & VM_MERGEABLE)) 862 goto out; 863 if (PageTransCompound(page) && page_trans_compound_anon_split(page)) 864 goto out; 865 BUG_ON(PageTransCompound(page)); 866 if (!PageAnon(page)) 867 goto out; 868 869 /* 870 * We need the page lock to read a stable PageSwapCache in 871 * write_protect_page(). We use trylock_page() instead of 872 * lock_page() because we don't want to wait here - we 873 * prefer to continue scanning and merging different pages, 874 * then come back to this page when it is unlocked. 875 */ 876 if (!trylock_page(page)) 877 goto out; 878 /* 879 * If this anonymous page is mapped only here, its pte may need 880 * to be write-protected. If it's mapped elsewhere, all of its 881 * ptes are necessarily already write-protected. But in either 882 * case, we need to lock and check page_count is not raised. 883 */ 884 if (write_protect_page(vma, page, &orig_pte) == 0) { 885 if (!kpage) { 886 /* 887 * While we hold page lock, upgrade page from 888 * PageAnon+anon_vma to PageKsm+NULL stable_node: 889 * stable_tree_insert() will update stable_node. 890 */ 891 set_page_stable_node(page, NULL); 892 mark_page_accessed(page); 893 err = 0; 894 } else if (pages_identical(page, kpage)) 895 err = replace_page(vma, page, kpage, orig_pte); 896 } 897 898 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 899 munlock_vma_page(page); 900 if (!PageMlocked(kpage)) { 901 unlock_page(page); 902 lock_page(kpage); 903 mlock_vma_page(kpage); 904 page = kpage; /* for final unlock */ 905 } 906 } 907 908 unlock_page(page); 909 out: 910 return err; 911 } 912 913 /* 914 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 915 * but no new kernel page is allocated: kpage must already be a ksm page. 916 * 917 * This function returns 0 if the pages were merged, -EFAULT otherwise. 918 */ 919 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 920 struct page *page, struct page *kpage) 921 { 922 struct mm_struct *mm = rmap_item->mm; 923 struct vm_area_struct *vma; 924 int err = -EFAULT; 925 926 down_read(&mm->mmap_sem); 927 if (ksm_test_exit(mm)) 928 goto out; 929 vma = find_vma(mm, rmap_item->address); 930 if (!vma || vma->vm_start > rmap_item->address) 931 goto out; 932 933 err = try_to_merge_one_page(vma, page, kpage); 934 if (err) 935 goto out; 936 937 /* Must get reference to anon_vma while still holding mmap_sem */ 938 rmap_item->anon_vma = vma->anon_vma; 939 get_anon_vma(vma->anon_vma); 940 out: 941 up_read(&mm->mmap_sem); 942 return err; 943 } 944 945 /* 946 * try_to_merge_two_pages - take two identical pages and prepare them 947 * to be merged into one page. 948 * 949 * This function returns the kpage if we successfully merged two identical 950 * pages into one ksm page, NULL otherwise. 951 * 952 * Note that this function upgrades page to ksm page: if one of the pages 953 * is already a ksm page, try_to_merge_with_ksm_page should be used. 954 */ 955 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 956 struct page *page, 957 struct rmap_item *tree_rmap_item, 958 struct page *tree_page) 959 { 960 int err; 961 962 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 963 if (!err) { 964 err = try_to_merge_with_ksm_page(tree_rmap_item, 965 tree_page, page); 966 /* 967 * If that fails, we have a ksm page with only one pte 968 * pointing to it: so break it. 969 */ 970 if (err) 971 break_cow(rmap_item); 972 } 973 return err ? NULL : page; 974 } 975 976 /* 977 * stable_tree_search - search for page inside the stable tree 978 * 979 * This function checks if there is a page inside the stable tree 980 * with identical content to the page that we are scanning right now. 981 * 982 * This function returns the stable tree node of identical content if found, 983 * NULL otherwise. 984 */ 985 static struct page *stable_tree_search(struct page *page) 986 { 987 struct rb_node *node = root_stable_tree.rb_node; 988 struct stable_node *stable_node; 989 990 stable_node = page_stable_node(page); 991 if (stable_node) { /* ksm page forked */ 992 get_page(page); 993 return page; 994 } 995 996 while (node) { 997 struct page *tree_page; 998 int ret; 999 1000 cond_resched(); 1001 stable_node = rb_entry(node, struct stable_node, node); 1002 tree_page = get_ksm_page(stable_node); 1003 if (!tree_page) 1004 return NULL; 1005 1006 ret = memcmp_pages(page, tree_page); 1007 1008 if (ret < 0) { 1009 put_page(tree_page); 1010 node = node->rb_left; 1011 } else if (ret > 0) { 1012 put_page(tree_page); 1013 node = node->rb_right; 1014 } else 1015 return tree_page; 1016 } 1017 1018 return NULL; 1019 } 1020 1021 /* 1022 * stable_tree_insert - insert rmap_item pointing to new ksm page 1023 * into the stable tree. 1024 * 1025 * This function returns the stable tree node just allocated on success, 1026 * NULL otherwise. 1027 */ 1028 static struct stable_node *stable_tree_insert(struct page *kpage) 1029 { 1030 struct rb_node **new = &root_stable_tree.rb_node; 1031 struct rb_node *parent = NULL; 1032 struct stable_node *stable_node; 1033 1034 while (*new) { 1035 struct page *tree_page; 1036 int ret; 1037 1038 cond_resched(); 1039 stable_node = rb_entry(*new, struct stable_node, node); 1040 tree_page = get_ksm_page(stable_node); 1041 if (!tree_page) 1042 return NULL; 1043 1044 ret = memcmp_pages(kpage, tree_page); 1045 put_page(tree_page); 1046 1047 parent = *new; 1048 if (ret < 0) 1049 new = &parent->rb_left; 1050 else if (ret > 0) 1051 new = &parent->rb_right; 1052 else { 1053 /* 1054 * It is not a bug that stable_tree_search() didn't 1055 * find this node: because at that time our page was 1056 * not yet write-protected, so may have changed since. 1057 */ 1058 return NULL; 1059 } 1060 } 1061 1062 stable_node = alloc_stable_node(); 1063 if (!stable_node) 1064 return NULL; 1065 1066 rb_link_node(&stable_node->node, parent, new); 1067 rb_insert_color(&stable_node->node, &root_stable_tree); 1068 1069 INIT_HLIST_HEAD(&stable_node->hlist); 1070 1071 stable_node->kpfn = page_to_pfn(kpage); 1072 set_page_stable_node(kpage, stable_node); 1073 1074 return stable_node; 1075 } 1076 1077 /* 1078 * unstable_tree_search_insert - search for identical page, 1079 * else insert rmap_item into the unstable tree. 1080 * 1081 * This function searches for a page in the unstable tree identical to the 1082 * page currently being scanned; and if no identical page is found in the 1083 * tree, we insert rmap_item as a new object into the unstable tree. 1084 * 1085 * This function returns pointer to rmap_item found to be identical 1086 * to the currently scanned page, NULL otherwise. 1087 * 1088 * This function does both searching and inserting, because they share 1089 * the same walking algorithm in an rbtree. 1090 */ 1091 static 1092 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1093 struct page *page, 1094 struct page **tree_pagep) 1095 1096 { 1097 struct rb_node **new = &root_unstable_tree.rb_node; 1098 struct rb_node *parent = NULL; 1099 1100 while (*new) { 1101 struct rmap_item *tree_rmap_item; 1102 struct page *tree_page; 1103 int ret; 1104 1105 cond_resched(); 1106 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1107 tree_page = get_mergeable_page(tree_rmap_item); 1108 if (IS_ERR_OR_NULL(tree_page)) 1109 return NULL; 1110 1111 /* 1112 * Don't substitute a ksm page for a forked page. 1113 */ 1114 if (page == tree_page) { 1115 put_page(tree_page); 1116 return NULL; 1117 } 1118 1119 ret = memcmp_pages(page, tree_page); 1120 1121 parent = *new; 1122 if (ret < 0) { 1123 put_page(tree_page); 1124 new = &parent->rb_left; 1125 } else if (ret > 0) { 1126 put_page(tree_page); 1127 new = &parent->rb_right; 1128 } else { 1129 *tree_pagep = tree_page; 1130 return tree_rmap_item; 1131 } 1132 } 1133 1134 rmap_item->address |= UNSTABLE_FLAG; 1135 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1136 rb_link_node(&rmap_item->node, parent, new); 1137 rb_insert_color(&rmap_item->node, &root_unstable_tree); 1138 1139 ksm_pages_unshared++; 1140 return NULL; 1141 } 1142 1143 /* 1144 * stable_tree_append - add another rmap_item to the linked list of 1145 * rmap_items hanging off a given node of the stable tree, all sharing 1146 * the same ksm page. 1147 */ 1148 static void stable_tree_append(struct rmap_item *rmap_item, 1149 struct stable_node *stable_node) 1150 { 1151 rmap_item->head = stable_node; 1152 rmap_item->address |= STABLE_FLAG; 1153 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 1154 1155 if (rmap_item->hlist.next) 1156 ksm_pages_sharing++; 1157 else 1158 ksm_pages_shared++; 1159 } 1160 1161 /* 1162 * cmp_and_merge_page - first see if page can be merged into the stable tree; 1163 * if not, compare checksum to previous and if it's the same, see if page can 1164 * be inserted into the unstable tree, or merged with a page already there and 1165 * both transferred to the stable tree. 1166 * 1167 * @page: the page that we are searching identical page to. 1168 * @rmap_item: the reverse mapping into the virtual address of this page 1169 */ 1170 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 1171 { 1172 struct rmap_item *tree_rmap_item; 1173 struct page *tree_page = NULL; 1174 struct stable_node *stable_node; 1175 struct page *kpage; 1176 unsigned int checksum; 1177 int err; 1178 1179 remove_rmap_item_from_tree(rmap_item); 1180 1181 /* We first start with searching the page inside the stable tree */ 1182 kpage = stable_tree_search(page); 1183 if (kpage) { 1184 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 1185 if (!err) { 1186 /* 1187 * The page was successfully merged: 1188 * add its rmap_item to the stable tree. 1189 */ 1190 lock_page(kpage); 1191 stable_tree_append(rmap_item, page_stable_node(kpage)); 1192 unlock_page(kpage); 1193 } 1194 put_page(kpage); 1195 return; 1196 } 1197 1198 /* 1199 * If the hash value of the page has changed from the last time 1200 * we calculated it, this page is changing frequently: therefore we 1201 * don't want to insert it in the unstable tree, and we don't want 1202 * to waste our time searching for something identical to it there. 1203 */ 1204 checksum = calc_checksum(page); 1205 if (rmap_item->oldchecksum != checksum) { 1206 rmap_item->oldchecksum = checksum; 1207 return; 1208 } 1209 1210 tree_rmap_item = 1211 unstable_tree_search_insert(rmap_item, page, &tree_page); 1212 if (tree_rmap_item) { 1213 kpage = try_to_merge_two_pages(rmap_item, page, 1214 tree_rmap_item, tree_page); 1215 put_page(tree_page); 1216 /* 1217 * As soon as we merge this page, we want to remove the 1218 * rmap_item of the page we have merged with from the unstable 1219 * tree, and insert it instead as new node in the stable tree. 1220 */ 1221 if (kpage) { 1222 remove_rmap_item_from_tree(tree_rmap_item); 1223 1224 lock_page(kpage); 1225 stable_node = stable_tree_insert(kpage); 1226 if (stable_node) { 1227 stable_tree_append(tree_rmap_item, stable_node); 1228 stable_tree_append(rmap_item, stable_node); 1229 } 1230 unlock_page(kpage); 1231 1232 /* 1233 * If we fail to insert the page into the stable tree, 1234 * we will have 2 virtual addresses that are pointing 1235 * to a ksm page left outside the stable tree, 1236 * in which case we need to break_cow on both. 1237 */ 1238 if (!stable_node) { 1239 break_cow(tree_rmap_item); 1240 break_cow(rmap_item); 1241 } 1242 } 1243 } 1244 } 1245 1246 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 1247 struct rmap_item **rmap_list, 1248 unsigned long addr) 1249 { 1250 struct rmap_item *rmap_item; 1251 1252 while (*rmap_list) { 1253 rmap_item = *rmap_list; 1254 if ((rmap_item->address & PAGE_MASK) == addr) 1255 return rmap_item; 1256 if (rmap_item->address > addr) 1257 break; 1258 *rmap_list = rmap_item->rmap_list; 1259 remove_rmap_item_from_tree(rmap_item); 1260 free_rmap_item(rmap_item); 1261 } 1262 1263 rmap_item = alloc_rmap_item(); 1264 if (rmap_item) { 1265 /* It has already been zeroed */ 1266 rmap_item->mm = mm_slot->mm; 1267 rmap_item->address = addr; 1268 rmap_item->rmap_list = *rmap_list; 1269 *rmap_list = rmap_item; 1270 } 1271 return rmap_item; 1272 } 1273 1274 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 1275 { 1276 struct mm_struct *mm; 1277 struct mm_slot *slot; 1278 struct vm_area_struct *vma; 1279 struct rmap_item *rmap_item; 1280 1281 if (list_empty(&ksm_mm_head.mm_list)) 1282 return NULL; 1283 1284 slot = ksm_scan.mm_slot; 1285 if (slot == &ksm_mm_head) { 1286 /* 1287 * A number of pages can hang around indefinitely on per-cpu 1288 * pagevecs, raised page count preventing write_protect_page 1289 * from merging them. Though it doesn't really matter much, 1290 * it is puzzling to see some stuck in pages_volatile until 1291 * other activity jostles them out, and they also prevented 1292 * LTP's KSM test from succeeding deterministically; so drain 1293 * them here (here rather than on entry to ksm_do_scan(), 1294 * so we don't IPI too often when pages_to_scan is set low). 1295 */ 1296 lru_add_drain_all(); 1297 1298 root_unstable_tree = RB_ROOT; 1299 1300 spin_lock(&ksm_mmlist_lock); 1301 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 1302 ksm_scan.mm_slot = slot; 1303 spin_unlock(&ksm_mmlist_lock); 1304 next_mm: 1305 ksm_scan.address = 0; 1306 ksm_scan.rmap_list = &slot->rmap_list; 1307 } 1308 1309 mm = slot->mm; 1310 down_read(&mm->mmap_sem); 1311 if (ksm_test_exit(mm)) 1312 vma = NULL; 1313 else 1314 vma = find_vma(mm, ksm_scan.address); 1315 1316 for (; vma; vma = vma->vm_next) { 1317 if (!(vma->vm_flags & VM_MERGEABLE)) 1318 continue; 1319 if (ksm_scan.address < vma->vm_start) 1320 ksm_scan.address = vma->vm_start; 1321 if (!vma->anon_vma) 1322 ksm_scan.address = vma->vm_end; 1323 1324 while (ksm_scan.address < vma->vm_end) { 1325 if (ksm_test_exit(mm)) 1326 break; 1327 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 1328 if (IS_ERR_OR_NULL(*page)) { 1329 ksm_scan.address += PAGE_SIZE; 1330 cond_resched(); 1331 continue; 1332 } 1333 if (PageAnon(*page) || 1334 page_trans_compound_anon(*page)) { 1335 flush_anon_page(vma, *page, ksm_scan.address); 1336 flush_dcache_page(*page); 1337 rmap_item = get_next_rmap_item(slot, 1338 ksm_scan.rmap_list, ksm_scan.address); 1339 if (rmap_item) { 1340 ksm_scan.rmap_list = 1341 &rmap_item->rmap_list; 1342 ksm_scan.address += PAGE_SIZE; 1343 } else 1344 put_page(*page); 1345 up_read(&mm->mmap_sem); 1346 return rmap_item; 1347 } 1348 put_page(*page); 1349 ksm_scan.address += PAGE_SIZE; 1350 cond_resched(); 1351 } 1352 } 1353 1354 if (ksm_test_exit(mm)) { 1355 ksm_scan.address = 0; 1356 ksm_scan.rmap_list = &slot->rmap_list; 1357 } 1358 /* 1359 * Nuke all the rmap_items that are above this current rmap: 1360 * because there were no VM_MERGEABLE vmas with such addresses. 1361 */ 1362 remove_trailing_rmap_items(slot, ksm_scan.rmap_list); 1363 1364 spin_lock(&ksm_mmlist_lock); 1365 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 1366 struct mm_slot, mm_list); 1367 if (ksm_scan.address == 0) { 1368 /* 1369 * We've completed a full scan of all vmas, holding mmap_sem 1370 * throughout, and found no VM_MERGEABLE: so do the same as 1371 * __ksm_exit does to remove this mm from all our lists now. 1372 * This applies either when cleaning up after __ksm_exit 1373 * (but beware: we can reach here even before __ksm_exit), 1374 * or when all VM_MERGEABLE areas have been unmapped (and 1375 * mmap_sem then protects against race with MADV_MERGEABLE). 1376 */ 1377 hlist_del(&slot->link); 1378 list_del(&slot->mm_list); 1379 spin_unlock(&ksm_mmlist_lock); 1380 1381 free_mm_slot(slot); 1382 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1383 up_read(&mm->mmap_sem); 1384 mmdrop(mm); 1385 } else { 1386 spin_unlock(&ksm_mmlist_lock); 1387 up_read(&mm->mmap_sem); 1388 } 1389 1390 /* Repeat until we've completed scanning the whole list */ 1391 slot = ksm_scan.mm_slot; 1392 if (slot != &ksm_mm_head) 1393 goto next_mm; 1394 1395 ksm_scan.seqnr++; 1396 return NULL; 1397 } 1398 1399 /** 1400 * ksm_do_scan - the ksm scanner main worker function. 1401 * @scan_npages - number of pages we want to scan before we return. 1402 */ 1403 static void ksm_do_scan(unsigned int scan_npages) 1404 { 1405 struct rmap_item *rmap_item; 1406 struct page *uninitialized_var(page); 1407 1408 while (scan_npages-- && likely(!freezing(current))) { 1409 cond_resched(); 1410 rmap_item = scan_get_next_rmap_item(&page); 1411 if (!rmap_item) 1412 return; 1413 if (!PageKsm(page) || !in_stable_tree(rmap_item)) 1414 cmp_and_merge_page(page, rmap_item); 1415 put_page(page); 1416 } 1417 } 1418 1419 static int ksmd_should_run(void) 1420 { 1421 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 1422 } 1423 1424 static int ksm_scan_thread(void *nothing) 1425 { 1426 set_freezable(); 1427 set_user_nice(current, 5); 1428 1429 while (!kthread_should_stop()) { 1430 mutex_lock(&ksm_thread_mutex); 1431 if (ksmd_should_run()) 1432 ksm_do_scan(ksm_thread_pages_to_scan); 1433 mutex_unlock(&ksm_thread_mutex); 1434 1435 try_to_freeze(); 1436 1437 if (ksmd_should_run()) { 1438 schedule_timeout_interruptible( 1439 msecs_to_jiffies(ksm_thread_sleep_millisecs)); 1440 } else { 1441 wait_event_freezable(ksm_thread_wait, 1442 ksmd_should_run() || kthread_should_stop()); 1443 } 1444 } 1445 return 0; 1446 } 1447 1448 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 1449 unsigned long end, int advice, unsigned long *vm_flags) 1450 { 1451 struct mm_struct *mm = vma->vm_mm; 1452 int err; 1453 1454 switch (advice) { 1455 case MADV_MERGEABLE: 1456 /* 1457 * Be somewhat over-protective for now! 1458 */ 1459 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 1460 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 1461 VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE | 1462 VM_NONLINEAR | VM_MIXEDMAP | VM_SAO)) 1463 return 0; /* just ignore the advice */ 1464 1465 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 1466 err = __ksm_enter(mm); 1467 if (err) 1468 return err; 1469 } 1470 1471 *vm_flags |= VM_MERGEABLE; 1472 break; 1473 1474 case MADV_UNMERGEABLE: 1475 if (!(*vm_flags & VM_MERGEABLE)) 1476 return 0; /* just ignore the advice */ 1477 1478 if (vma->anon_vma) { 1479 err = unmerge_ksm_pages(vma, start, end); 1480 if (err) 1481 return err; 1482 } 1483 1484 *vm_flags &= ~VM_MERGEABLE; 1485 break; 1486 } 1487 1488 return 0; 1489 } 1490 1491 int __ksm_enter(struct mm_struct *mm) 1492 { 1493 struct mm_slot *mm_slot; 1494 int needs_wakeup; 1495 1496 mm_slot = alloc_mm_slot(); 1497 if (!mm_slot) 1498 return -ENOMEM; 1499 1500 /* Check ksm_run too? Would need tighter locking */ 1501 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 1502 1503 spin_lock(&ksm_mmlist_lock); 1504 insert_to_mm_slots_hash(mm, mm_slot); 1505 /* 1506 * Insert just behind the scanning cursor, to let the area settle 1507 * down a little; when fork is followed by immediate exec, we don't 1508 * want ksmd to waste time setting up and tearing down an rmap_list. 1509 */ 1510 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 1511 spin_unlock(&ksm_mmlist_lock); 1512 1513 set_bit(MMF_VM_MERGEABLE, &mm->flags); 1514 atomic_inc(&mm->mm_count); 1515 1516 if (needs_wakeup) 1517 wake_up_interruptible(&ksm_thread_wait); 1518 1519 return 0; 1520 } 1521 1522 void __ksm_exit(struct mm_struct *mm) 1523 { 1524 struct mm_slot *mm_slot; 1525 int easy_to_free = 0; 1526 1527 /* 1528 * This process is exiting: if it's straightforward (as is the 1529 * case when ksmd was never running), free mm_slot immediately. 1530 * But if it's at the cursor or has rmap_items linked to it, use 1531 * mmap_sem to synchronize with any break_cows before pagetables 1532 * are freed, and leave the mm_slot on the list for ksmd to free. 1533 * Beware: ksm may already have noticed it exiting and freed the slot. 1534 */ 1535 1536 spin_lock(&ksm_mmlist_lock); 1537 mm_slot = get_mm_slot(mm); 1538 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 1539 if (!mm_slot->rmap_list) { 1540 hlist_del(&mm_slot->link); 1541 list_del(&mm_slot->mm_list); 1542 easy_to_free = 1; 1543 } else { 1544 list_move(&mm_slot->mm_list, 1545 &ksm_scan.mm_slot->mm_list); 1546 } 1547 } 1548 spin_unlock(&ksm_mmlist_lock); 1549 1550 if (easy_to_free) { 1551 free_mm_slot(mm_slot); 1552 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1553 mmdrop(mm); 1554 } else if (mm_slot) { 1555 down_write(&mm->mmap_sem); 1556 up_write(&mm->mmap_sem); 1557 } 1558 } 1559 1560 struct page *ksm_does_need_to_copy(struct page *page, 1561 struct vm_area_struct *vma, unsigned long address) 1562 { 1563 struct page *new_page; 1564 1565 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1566 if (new_page) { 1567 copy_user_highpage(new_page, page, address, vma); 1568 1569 SetPageDirty(new_page); 1570 __SetPageUptodate(new_page); 1571 SetPageSwapBacked(new_page); 1572 __set_page_locked(new_page); 1573 1574 if (page_evictable(new_page, vma)) 1575 lru_cache_add_lru(new_page, LRU_ACTIVE_ANON); 1576 else 1577 add_page_to_unevictable_list(new_page); 1578 } 1579 1580 return new_page; 1581 } 1582 1583 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg, 1584 unsigned long *vm_flags) 1585 { 1586 struct stable_node *stable_node; 1587 struct rmap_item *rmap_item; 1588 struct hlist_node *hlist; 1589 unsigned int mapcount = page_mapcount(page); 1590 int referenced = 0; 1591 int search_new_forks = 0; 1592 1593 VM_BUG_ON(!PageKsm(page)); 1594 VM_BUG_ON(!PageLocked(page)); 1595 1596 stable_node = page_stable_node(page); 1597 if (!stable_node) 1598 return 0; 1599 again: 1600 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) { 1601 struct anon_vma *anon_vma = rmap_item->anon_vma; 1602 struct anon_vma_chain *vmac; 1603 struct vm_area_struct *vma; 1604 1605 anon_vma_lock(anon_vma); 1606 list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) { 1607 vma = vmac->vma; 1608 if (rmap_item->address < vma->vm_start || 1609 rmap_item->address >= vma->vm_end) 1610 continue; 1611 /* 1612 * Initially we examine only the vma which covers this 1613 * rmap_item; but later, if there is still work to do, 1614 * we examine covering vmas in other mms: in case they 1615 * were forked from the original since ksmd passed. 1616 */ 1617 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 1618 continue; 1619 1620 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 1621 continue; 1622 1623 referenced += page_referenced_one(page, vma, 1624 rmap_item->address, &mapcount, vm_flags); 1625 if (!search_new_forks || !mapcount) 1626 break; 1627 } 1628 anon_vma_unlock(anon_vma); 1629 if (!mapcount) 1630 goto out; 1631 } 1632 if (!search_new_forks++) 1633 goto again; 1634 out: 1635 return referenced; 1636 } 1637 1638 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags) 1639 { 1640 struct stable_node *stable_node; 1641 struct hlist_node *hlist; 1642 struct rmap_item *rmap_item; 1643 int ret = SWAP_AGAIN; 1644 int search_new_forks = 0; 1645 1646 VM_BUG_ON(!PageKsm(page)); 1647 VM_BUG_ON(!PageLocked(page)); 1648 1649 stable_node = page_stable_node(page); 1650 if (!stable_node) 1651 return SWAP_FAIL; 1652 again: 1653 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) { 1654 struct anon_vma *anon_vma = rmap_item->anon_vma; 1655 struct anon_vma_chain *vmac; 1656 struct vm_area_struct *vma; 1657 1658 anon_vma_lock(anon_vma); 1659 list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) { 1660 vma = vmac->vma; 1661 if (rmap_item->address < vma->vm_start || 1662 rmap_item->address >= vma->vm_end) 1663 continue; 1664 /* 1665 * Initially we examine only the vma which covers this 1666 * rmap_item; but later, if there is still work to do, 1667 * we examine covering vmas in other mms: in case they 1668 * were forked from the original since ksmd passed. 1669 */ 1670 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 1671 continue; 1672 1673 ret = try_to_unmap_one(page, vma, 1674 rmap_item->address, flags); 1675 if (ret != SWAP_AGAIN || !page_mapped(page)) { 1676 anon_vma_unlock(anon_vma); 1677 goto out; 1678 } 1679 } 1680 anon_vma_unlock(anon_vma); 1681 } 1682 if (!search_new_forks++) 1683 goto again; 1684 out: 1685 return ret; 1686 } 1687 1688 #ifdef CONFIG_MIGRATION 1689 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *, 1690 struct vm_area_struct *, unsigned long, void *), void *arg) 1691 { 1692 struct stable_node *stable_node; 1693 struct hlist_node *hlist; 1694 struct rmap_item *rmap_item; 1695 int ret = SWAP_AGAIN; 1696 int search_new_forks = 0; 1697 1698 VM_BUG_ON(!PageKsm(page)); 1699 VM_BUG_ON(!PageLocked(page)); 1700 1701 stable_node = page_stable_node(page); 1702 if (!stable_node) 1703 return ret; 1704 again: 1705 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) { 1706 struct anon_vma *anon_vma = rmap_item->anon_vma; 1707 struct anon_vma_chain *vmac; 1708 struct vm_area_struct *vma; 1709 1710 anon_vma_lock(anon_vma); 1711 list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) { 1712 vma = vmac->vma; 1713 if (rmap_item->address < vma->vm_start || 1714 rmap_item->address >= vma->vm_end) 1715 continue; 1716 /* 1717 * Initially we examine only the vma which covers this 1718 * rmap_item; but later, if there is still work to do, 1719 * we examine covering vmas in other mms: in case they 1720 * were forked from the original since ksmd passed. 1721 */ 1722 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 1723 continue; 1724 1725 ret = rmap_one(page, vma, rmap_item->address, arg); 1726 if (ret != SWAP_AGAIN) { 1727 anon_vma_unlock(anon_vma); 1728 goto out; 1729 } 1730 } 1731 anon_vma_unlock(anon_vma); 1732 } 1733 if (!search_new_forks++) 1734 goto again; 1735 out: 1736 return ret; 1737 } 1738 1739 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 1740 { 1741 struct stable_node *stable_node; 1742 1743 VM_BUG_ON(!PageLocked(oldpage)); 1744 VM_BUG_ON(!PageLocked(newpage)); 1745 VM_BUG_ON(newpage->mapping != oldpage->mapping); 1746 1747 stable_node = page_stable_node(newpage); 1748 if (stable_node) { 1749 VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage)); 1750 stable_node->kpfn = page_to_pfn(newpage); 1751 } 1752 } 1753 #endif /* CONFIG_MIGRATION */ 1754 1755 #ifdef CONFIG_MEMORY_HOTREMOVE 1756 static struct stable_node *ksm_check_stable_tree(unsigned long start_pfn, 1757 unsigned long end_pfn) 1758 { 1759 struct rb_node *node; 1760 1761 for (node = rb_first(&root_stable_tree); node; node = rb_next(node)) { 1762 struct stable_node *stable_node; 1763 1764 stable_node = rb_entry(node, struct stable_node, node); 1765 if (stable_node->kpfn >= start_pfn && 1766 stable_node->kpfn < end_pfn) 1767 return stable_node; 1768 } 1769 return NULL; 1770 } 1771 1772 static int ksm_memory_callback(struct notifier_block *self, 1773 unsigned long action, void *arg) 1774 { 1775 struct memory_notify *mn = arg; 1776 struct stable_node *stable_node; 1777 1778 switch (action) { 1779 case MEM_GOING_OFFLINE: 1780 /* 1781 * Keep it very simple for now: just lock out ksmd and 1782 * MADV_UNMERGEABLE while any memory is going offline. 1783 * mutex_lock_nested() is necessary because lockdep was alarmed 1784 * that here we take ksm_thread_mutex inside notifier chain 1785 * mutex, and later take notifier chain mutex inside 1786 * ksm_thread_mutex to unlock it. But that's safe because both 1787 * are inside mem_hotplug_mutex. 1788 */ 1789 mutex_lock_nested(&ksm_thread_mutex, SINGLE_DEPTH_NESTING); 1790 break; 1791 1792 case MEM_OFFLINE: 1793 /* 1794 * Most of the work is done by page migration; but there might 1795 * be a few stable_nodes left over, still pointing to struct 1796 * pages which have been offlined: prune those from the tree. 1797 */ 1798 while ((stable_node = ksm_check_stable_tree(mn->start_pfn, 1799 mn->start_pfn + mn->nr_pages)) != NULL) 1800 remove_node_from_stable_tree(stable_node); 1801 /* fallthrough */ 1802 1803 case MEM_CANCEL_OFFLINE: 1804 mutex_unlock(&ksm_thread_mutex); 1805 break; 1806 } 1807 return NOTIFY_OK; 1808 } 1809 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1810 1811 #ifdef CONFIG_SYSFS 1812 /* 1813 * This all compiles without CONFIG_SYSFS, but is a waste of space. 1814 */ 1815 1816 #define KSM_ATTR_RO(_name) \ 1817 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 1818 #define KSM_ATTR(_name) \ 1819 static struct kobj_attribute _name##_attr = \ 1820 __ATTR(_name, 0644, _name##_show, _name##_store) 1821 1822 static ssize_t sleep_millisecs_show(struct kobject *kobj, 1823 struct kobj_attribute *attr, char *buf) 1824 { 1825 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); 1826 } 1827 1828 static ssize_t sleep_millisecs_store(struct kobject *kobj, 1829 struct kobj_attribute *attr, 1830 const char *buf, size_t count) 1831 { 1832 unsigned long msecs; 1833 int err; 1834 1835 err = strict_strtoul(buf, 10, &msecs); 1836 if (err || msecs > UINT_MAX) 1837 return -EINVAL; 1838 1839 ksm_thread_sleep_millisecs = msecs; 1840 1841 return count; 1842 } 1843 KSM_ATTR(sleep_millisecs); 1844 1845 static ssize_t pages_to_scan_show(struct kobject *kobj, 1846 struct kobj_attribute *attr, char *buf) 1847 { 1848 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); 1849 } 1850 1851 static ssize_t pages_to_scan_store(struct kobject *kobj, 1852 struct kobj_attribute *attr, 1853 const char *buf, size_t count) 1854 { 1855 int err; 1856 unsigned long nr_pages; 1857 1858 err = strict_strtoul(buf, 10, &nr_pages); 1859 if (err || nr_pages > UINT_MAX) 1860 return -EINVAL; 1861 1862 ksm_thread_pages_to_scan = nr_pages; 1863 1864 return count; 1865 } 1866 KSM_ATTR(pages_to_scan); 1867 1868 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 1869 char *buf) 1870 { 1871 return sprintf(buf, "%u\n", ksm_run); 1872 } 1873 1874 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 1875 const char *buf, size_t count) 1876 { 1877 int err; 1878 unsigned long flags; 1879 1880 err = strict_strtoul(buf, 10, &flags); 1881 if (err || flags > UINT_MAX) 1882 return -EINVAL; 1883 if (flags > KSM_RUN_UNMERGE) 1884 return -EINVAL; 1885 1886 /* 1887 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 1888 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 1889 * breaking COW to free the pages_shared (but leaves mm_slots 1890 * on the list for when ksmd may be set running again). 1891 */ 1892 1893 mutex_lock(&ksm_thread_mutex); 1894 if (ksm_run != flags) { 1895 ksm_run = flags; 1896 if (flags & KSM_RUN_UNMERGE) { 1897 current->flags |= PF_OOM_ORIGIN; 1898 err = unmerge_and_remove_all_rmap_items(); 1899 current->flags &= ~PF_OOM_ORIGIN; 1900 if (err) { 1901 ksm_run = KSM_RUN_STOP; 1902 count = err; 1903 } 1904 } 1905 } 1906 mutex_unlock(&ksm_thread_mutex); 1907 1908 if (flags & KSM_RUN_MERGE) 1909 wake_up_interruptible(&ksm_thread_wait); 1910 1911 return count; 1912 } 1913 KSM_ATTR(run); 1914 1915 static ssize_t pages_shared_show(struct kobject *kobj, 1916 struct kobj_attribute *attr, char *buf) 1917 { 1918 return sprintf(buf, "%lu\n", ksm_pages_shared); 1919 } 1920 KSM_ATTR_RO(pages_shared); 1921 1922 static ssize_t pages_sharing_show(struct kobject *kobj, 1923 struct kobj_attribute *attr, char *buf) 1924 { 1925 return sprintf(buf, "%lu\n", ksm_pages_sharing); 1926 } 1927 KSM_ATTR_RO(pages_sharing); 1928 1929 static ssize_t pages_unshared_show(struct kobject *kobj, 1930 struct kobj_attribute *attr, char *buf) 1931 { 1932 return sprintf(buf, "%lu\n", ksm_pages_unshared); 1933 } 1934 KSM_ATTR_RO(pages_unshared); 1935 1936 static ssize_t pages_volatile_show(struct kobject *kobj, 1937 struct kobj_attribute *attr, char *buf) 1938 { 1939 long ksm_pages_volatile; 1940 1941 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 1942 - ksm_pages_sharing - ksm_pages_unshared; 1943 /* 1944 * It was not worth any locking to calculate that statistic, 1945 * but it might therefore sometimes be negative: conceal that. 1946 */ 1947 if (ksm_pages_volatile < 0) 1948 ksm_pages_volatile = 0; 1949 return sprintf(buf, "%ld\n", ksm_pages_volatile); 1950 } 1951 KSM_ATTR_RO(pages_volatile); 1952 1953 static ssize_t full_scans_show(struct kobject *kobj, 1954 struct kobj_attribute *attr, char *buf) 1955 { 1956 return sprintf(buf, "%lu\n", ksm_scan.seqnr); 1957 } 1958 KSM_ATTR_RO(full_scans); 1959 1960 static struct attribute *ksm_attrs[] = { 1961 &sleep_millisecs_attr.attr, 1962 &pages_to_scan_attr.attr, 1963 &run_attr.attr, 1964 &pages_shared_attr.attr, 1965 &pages_sharing_attr.attr, 1966 &pages_unshared_attr.attr, 1967 &pages_volatile_attr.attr, 1968 &full_scans_attr.attr, 1969 NULL, 1970 }; 1971 1972 static struct attribute_group ksm_attr_group = { 1973 .attrs = ksm_attrs, 1974 .name = "ksm", 1975 }; 1976 #endif /* CONFIG_SYSFS */ 1977 1978 static int __init ksm_init(void) 1979 { 1980 struct task_struct *ksm_thread; 1981 int err; 1982 1983 err = ksm_slab_init(); 1984 if (err) 1985 goto out; 1986 1987 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 1988 if (IS_ERR(ksm_thread)) { 1989 printk(KERN_ERR "ksm: creating kthread failed\n"); 1990 err = PTR_ERR(ksm_thread); 1991 goto out_free; 1992 } 1993 1994 #ifdef CONFIG_SYSFS 1995 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 1996 if (err) { 1997 printk(KERN_ERR "ksm: register sysfs failed\n"); 1998 kthread_stop(ksm_thread); 1999 goto out_free; 2000 } 2001 #else 2002 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 2003 2004 #endif /* CONFIG_SYSFS */ 2005 2006 #ifdef CONFIG_MEMORY_HOTREMOVE 2007 /* 2008 * Choose a high priority since the callback takes ksm_thread_mutex: 2009 * later callbacks could only be taking locks which nest within that. 2010 */ 2011 hotplug_memory_notifier(ksm_memory_callback, 100); 2012 #endif 2013 return 0; 2014 2015 out_free: 2016 ksm_slab_free(); 2017 out: 2018 return err; 2019 } 2020 module_init(ksm_init) 2021