xref: /openbmc/linux/mm/ksm.c (revision 54a611b6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *	Izik Eidus
11  *	Andrea Arcangeli
12  *	Chris Wright
13  *	Hugh Dickins
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45 
46 #ifdef CONFIG_NUMA
47 #define NUMA(x)		(x)
48 #define DO_NUMA(x)	do { (x); } while (0)
49 #else
50 #define NUMA(x)		(0)
51 #define DO_NUMA(x)	do { } while (0)
52 #endif
53 
54 /**
55  * DOC: Overview
56  *
57  * A few notes about the KSM scanning process,
58  * to make it easier to understand the data structures below:
59  *
60  * In order to reduce excessive scanning, KSM sorts the memory pages by their
61  * contents into a data structure that holds pointers to the pages' locations.
62  *
63  * Since the contents of the pages may change at any moment, KSM cannot just
64  * insert the pages into a normal sorted tree and expect it to find anything.
65  * Therefore KSM uses two data structures - the stable and the unstable tree.
66  *
67  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68  * by their contents.  Because each such page is write-protected, searching on
69  * this tree is fully assured to be working (except when pages are unmapped),
70  * and therefore this tree is called the stable tree.
71  *
72  * The stable tree node includes information required for reverse
73  * mapping from a KSM page to virtual addresses that map this page.
74  *
75  * In order to avoid large latencies of the rmap walks on KSM pages,
76  * KSM maintains two types of nodes in the stable tree:
77  *
78  * * the regular nodes that keep the reverse mapping structures in a
79  *   linked list
80  * * the "chains" that link nodes ("dups") that represent the same
81  *   write protected memory content, but each "dup" corresponds to a
82  *   different KSM page copy of that content
83  *
84  * Internally, the regular nodes, "dups" and "chains" are represented
85  * using the same struct stable_node structure.
86  *
87  * In addition to the stable tree, KSM uses a second data structure called the
88  * unstable tree: this tree holds pointers to pages which have been found to
89  * be "unchanged for a period of time".  The unstable tree sorts these pages
90  * by their contents, but since they are not write-protected, KSM cannot rely
91  * upon the unstable tree to work correctly - the unstable tree is liable to
92  * be corrupted as its contents are modified, and so it is called unstable.
93  *
94  * KSM solves this problem by several techniques:
95  *
96  * 1) The unstable tree is flushed every time KSM completes scanning all
97  *    memory areas, and then the tree is rebuilt again from the beginning.
98  * 2) KSM will only insert into the unstable tree, pages whose hash value
99  *    has not changed since the previous scan of all memory areas.
100  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101  *    colors of the nodes and not on their contents, assuring that even when
102  *    the tree gets "corrupted" it won't get out of balance, so scanning time
103  *    remains the same (also, searching and inserting nodes in an rbtree uses
104  *    the same algorithm, so we have no overhead when we flush and rebuild).
105  * 4) KSM never flushes the stable tree, which means that even if it were to
106  *    take 10 attempts to find a page in the unstable tree, once it is found,
107  *    it is secured in the stable tree.  (When we scan a new page, we first
108  *    compare it against the stable tree, and then against the unstable tree.)
109  *
110  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111  * stable trees and multiple unstable trees: one of each for each NUMA node.
112  */
113 
114 /**
115  * struct mm_slot - ksm information per mm that is being scanned
116  * @link: link to the mm_slots hash list
117  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
118  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
119  * @mm: the mm that this information is valid for
120  */
121 struct mm_slot {
122 	struct hlist_node link;
123 	struct list_head mm_list;
124 	struct rmap_item *rmap_list;
125 	struct mm_struct *mm;
126 };
127 
128 /**
129  * struct ksm_scan - cursor for scanning
130  * @mm_slot: the current mm_slot we are scanning
131  * @address: the next address inside that to be scanned
132  * @rmap_list: link to the next rmap to be scanned in the rmap_list
133  * @seqnr: count of completed full scans (needed when removing unstable node)
134  *
135  * There is only the one ksm_scan instance of this cursor structure.
136  */
137 struct ksm_scan {
138 	struct mm_slot *mm_slot;
139 	unsigned long address;
140 	struct rmap_item **rmap_list;
141 	unsigned long seqnr;
142 };
143 
144 /**
145  * struct stable_node - node of the stable rbtree
146  * @node: rb node of this ksm page in the stable tree
147  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
148  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
149  * @list: linked into migrate_nodes, pending placement in the proper node tree
150  * @hlist: hlist head of rmap_items using this ksm page
151  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
152  * @chain_prune_time: time of the last full garbage collection
153  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
154  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
155  */
156 struct stable_node {
157 	union {
158 		struct rb_node node;	/* when node of stable tree */
159 		struct {		/* when listed for migration */
160 			struct list_head *head;
161 			struct {
162 				struct hlist_node hlist_dup;
163 				struct list_head list;
164 			};
165 		};
166 	};
167 	struct hlist_head hlist;
168 	union {
169 		unsigned long kpfn;
170 		unsigned long chain_prune_time;
171 	};
172 	/*
173 	 * STABLE_NODE_CHAIN can be any negative number in
174 	 * rmap_hlist_len negative range, but better not -1 to be able
175 	 * to reliably detect underflows.
176 	 */
177 #define STABLE_NODE_CHAIN -1024
178 	int rmap_hlist_len;
179 #ifdef CONFIG_NUMA
180 	int nid;
181 #endif
182 };
183 
184 /**
185  * struct rmap_item - reverse mapping item for virtual addresses
186  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
187  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
188  * @nid: NUMA node id of unstable tree in which linked (may not match page)
189  * @mm: the memory structure this rmap_item is pointing into
190  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191  * @oldchecksum: previous checksum of the page at that virtual address
192  * @node: rb node of this rmap_item in the unstable tree
193  * @head: pointer to stable_node heading this list in the stable tree
194  * @hlist: link into hlist of rmap_items hanging off that stable_node
195  */
196 struct rmap_item {
197 	struct rmap_item *rmap_list;
198 	union {
199 		struct anon_vma *anon_vma;	/* when stable */
200 #ifdef CONFIG_NUMA
201 		int nid;		/* when node of unstable tree */
202 #endif
203 	};
204 	struct mm_struct *mm;
205 	unsigned long address;		/* + low bits used for flags below */
206 	unsigned int oldchecksum;	/* when unstable */
207 	union {
208 		struct rb_node node;	/* when node of unstable tree */
209 		struct {		/* when listed from stable tree */
210 			struct stable_node *head;
211 			struct hlist_node hlist;
212 		};
213 	};
214 };
215 
216 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
217 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
218 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
219 
220 /* The stable and unstable tree heads */
221 static struct rb_root one_stable_tree[1] = { RB_ROOT };
222 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
223 static struct rb_root *root_stable_tree = one_stable_tree;
224 static struct rb_root *root_unstable_tree = one_unstable_tree;
225 
226 /* Recently migrated nodes of stable tree, pending proper placement */
227 static LIST_HEAD(migrate_nodes);
228 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
229 
230 #define MM_SLOTS_HASH_BITS 10
231 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
232 
233 static struct mm_slot ksm_mm_head = {
234 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
235 };
236 static struct ksm_scan ksm_scan = {
237 	.mm_slot = &ksm_mm_head,
238 };
239 
240 static struct kmem_cache *rmap_item_cache;
241 static struct kmem_cache *stable_node_cache;
242 static struct kmem_cache *mm_slot_cache;
243 
244 /* The number of nodes in the stable tree */
245 static unsigned long ksm_pages_shared;
246 
247 /* The number of page slots additionally sharing those nodes */
248 static unsigned long ksm_pages_sharing;
249 
250 /* The number of nodes in the unstable tree */
251 static unsigned long ksm_pages_unshared;
252 
253 /* The number of rmap_items in use: to calculate pages_volatile */
254 static unsigned long ksm_rmap_items;
255 
256 /* The number of stable_node chains */
257 static unsigned long ksm_stable_node_chains;
258 
259 /* The number of stable_node dups linked to the stable_node chains */
260 static unsigned long ksm_stable_node_dups;
261 
262 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
263 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
264 
265 /* Maximum number of page slots sharing a stable node */
266 static int ksm_max_page_sharing = 256;
267 
268 /* Number of pages ksmd should scan in one batch */
269 static unsigned int ksm_thread_pages_to_scan = 100;
270 
271 /* Milliseconds ksmd should sleep between batches */
272 static unsigned int ksm_thread_sleep_millisecs = 20;
273 
274 /* Checksum of an empty (zeroed) page */
275 static unsigned int zero_checksum __read_mostly;
276 
277 /* Whether to merge empty (zeroed) pages with actual zero pages */
278 static bool ksm_use_zero_pages __read_mostly;
279 
280 #ifdef CONFIG_NUMA
281 /* Zeroed when merging across nodes is not allowed */
282 static unsigned int ksm_merge_across_nodes = 1;
283 static int ksm_nr_node_ids = 1;
284 #else
285 #define ksm_merge_across_nodes	1U
286 #define ksm_nr_node_ids		1
287 #endif
288 
289 #define KSM_RUN_STOP	0
290 #define KSM_RUN_MERGE	1
291 #define KSM_RUN_UNMERGE	2
292 #define KSM_RUN_OFFLINE	4
293 static unsigned long ksm_run = KSM_RUN_STOP;
294 static void wait_while_offlining(void);
295 
296 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
297 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
298 static DEFINE_MUTEX(ksm_thread_mutex);
299 static DEFINE_SPINLOCK(ksm_mmlist_lock);
300 
301 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
302 		sizeof(struct __struct), __alignof__(struct __struct),\
303 		(__flags), NULL)
304 
305 static int __init ksm_slab_init(void)
306 {
307 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
308 	if (!rmap_item_cache)
309 		goto out;
310 
311 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
312 	if (!stable_node_cache)
313 		goto out_free1;
314 
315 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
316 	if (!mm_slot_cache)
317 		goto out_free2;
318 
319 	return 0;
320 
321 out_free2:
322 	kmem_cache_destroy(stable_node_cache);
323 out_free1:
324 	kmem_cache_destroy(rmap_item_cache);
325 out:
326 	return -ENOMEM;
327 }
328 
329 static void __init ksm_slab_free(void)
330 {
331 	kmem_cache_destroy(mm_slot_cache);
332 	kmem_cache_destroy(stable_node_cache);
333 	kmem_cache_destroy(rmap_item_cache);
334 	mm_slot_cache = NULL;
335 }
336 
337 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
338 {
339 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
340 }
341 
342 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
343 {
344 	return dup->head == STABLE_NODE_DUP_HEAD;
345 }
346 
347 static inline void stable_node_chain_add_dup(struct stable_node *dup,
348 					     struct stable_node *chain)
349 {
350 	VM_BUG_ON(is_stable_node_dup(dup));
351 	dup->head = STABLE_NODE_DUP_HEAD;
352 	VM_BUG_ON(!is_stable_node_chain(chain));
353 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
354 	ksm_stable_node_dups++;
355 }
356 
357 static inline void __stable_node_dup_del(struct stable_node *dup)
358 {
359 	VM_BUG_ON(!is_stable_node_dup(dup));
360 	hlist_del(&dup->hlist_dup);
361 	ksm_stable_node_dups--;
362 }
363 
364 static inline void stable_node_dup_del(struct stable_node *dup)
365 {
366 	VM_BUG_ON(is_stable_node_chain(dup));
367 	if (is_stable_node_dup(dup))
368 		__stable_node_dup_del(dup);
369 	else
370 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
371 #ifdef CONFIG_DEBUG_VM
372 	dup->head = NULL;
373 #endif
374 }
375 
376 static inline struct rmap_item *alloc_rmap_item(void)
377 {
378 	struct rmap_item *rmap_item;
379 
380 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
381 						__GFP_NORETRY | __GFP_NOWARN);
382 	if (rmap_item)
383 		ksm_rmap_items++;
384 	return rmap_item;
385 }
386 
387 static inline void free_rmap_item(struct rmap_item *rmap_item)
388 {
389 	ksm_rmap_items--;
390 	rmap_item->mm = NULL;	/* debug safety */
391 	kmem_cache_free(rmap_item_cache, rmap_item);
392 }
393 
394 static inline struct stable_node *alloc_stable_node(void)
395 {
396 	/*
397 	 * The allocation can take too long with GFP_KERNEL when memory is under
398 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
399 	 * grants access to memory reserves, helping to avoid this problem.
400 	 */
401 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
402 }
403 
404 static inline void free_stable_node(struct stable_node *stable_node)
405 {
406 	VM_BUG_ON(stable_node->rmap_hlist_len &&
407 		  !is_stable_node_chain(stable_node));
408 	kmem_cache_free(stable_node_cache, stable_node);
409 }
410 
411 static inline struct mm_slot *alloc_mm_slot(void)
412 {
413 	if (!mm_slot_cache)	/* initialization failed */
414 		return NULL;
415 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
416 }
417 
418 static inline void free_mm_slot(struct mm_slot *mm_slot)
419 {
420 	kmem_cache_free(mm_slot_cache, mm_slot);
421 }
422 
423 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
424 {
425 	struct mm_slot *slot;
426 
427 	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
428 		if (slot->mm == mm)
429 			return slot;
430 
431 	return NULL;
432 }
433 
434 static void insert_to_mm_slots_hash(struct mm_struct *mm,
435 				    struct mm_slot *mm_slot)
436 {
437 	mm_slot->mm = mm;
438 	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
439 }
440 
441 /*
442  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
443  * page tables after it has passed through ksm_exit() - which, if necessary,
444  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
445  * a special flag: they can just back out as soon as mm_users goes to zero.
446  * ksm_test_exit() is used throughout to make this test for exit: in some
447  * places for correctness, in some places just to avoid unnecessary work.
448  */
449 static inline bool ksm_test_exit(struct mm_struct *mm)
450 {
451 	return atomic_read(&mm->mm_users) == 0;
452 }
453 
454 /*
455  * We use break_ksm to break COW on a ksm page: it's a stripped down
456  *
457  *	if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
458  *		put_page(page);
459  *
460  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
461  * in case the application has unmapped and remapped mm,addr meanwhile.
462  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
463  * mmap of /dev/mem, where we would not want to touch it.
464  *
465  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
466  * of the process that owns 'vma'.  We also do not want to enforce
467  * protection keys here anyway.
468  */
469 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
470 {
471 	struct page *page;
472 	vm_fault_t ret = 0;
473 
474 	do {
475 		cond_resched();
476 		page = follow_page(vma, addr,
477 				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
478 		if (IS_ERR_OR_NULL(page) || is_zone_device_page(page))
479 			break;
480 		if (PageKsm(page))
481 			ret = handle_mm_fault(vma, addr,
482 					      FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
483 					      NULL);
484 		else
485 			ret = VM_FAULT_WRITE;
486 		put_page(page);
487 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
488 	/*
489 	 * We must loop because handle_mm_fault() may back out if there's
490 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
491 	 *
492 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
493 	 * COW has been broken, even if the vma does not permit VM_WRITE;
494 	 * but note that a concurrent fault might break PageKsm for us.
495 	 *
496 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
497 	 * backing file, which also invalidates anonymous pages: that's
498 	 * okay, that truncation will have unmapped the PageKsm for us.
499 	 *
500 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
501 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
502 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
503 	 * to user; and ksmd, having no mm, would never be chosen for that.
504 	 *
505 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
506 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
507 	 * even ksmd can fail in this way - though it's usually breaking ksm
508 	 * just to undo a merge it made a moment before, so unlikely to oom.
509 	 *
510 	 * That's a pity: we might therefore have more kernel pages allocated
511 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
512 	 * will retry to break_cow on each pass, so should recover the page
513 	 * in due course.  The important thing is to not let VM_MERGEABLE
514 	 * be cleared while any such pages might remain in the area.
515 	 */
516 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
517 }
518 
519 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
520 		unsigned long addr)
521 {
522 	struct vm_area_struct *vma;
523 	if (ksm_test_exit(mm))
524 		return NULL;
525 	vma = vma_lookup(mm, addr);
526 	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
527 		return NULL;
528 	return vma;
529 }
530 
531 static void break_cow(struct rmap_item *rmap_item)
532 {
533 	struct mm_struct *mm = rmap_item->mm;
534 	unsigned long addr = rmap_item->address;
535 	struct vm_area_struct *vma;
536 
537 	/*
538 	 * It is not an accident that whenever we want to break COW
539 	 * to undo, we also need to drop a reference to the anon_vma.
540 	 */
541 	put_anon_vma(rmap_item->anon_vma);
542 
543 	mmap_read_lock(mm);
544 	vma = find_mergeable_vma(mm, addr);
545 	if (vma)
546 		break_ksm(vma, addr);
547 	mmap_read_unlock(mm);
548 }
549 
550 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
551 {
552 	struct mm_struct *mm = rmap_item->mm;
553 	unsigned long addr = rmap_item->address;
554 	struct vm_area_struct *vma;
555 	struct page *page;
556 
557 	mmap_read_lock(mm);
558 	vma = find_mergeable_vma(mm, addr);
559 	if (!vma)
560 		goto out;
561 
562 	page = follow_page(vma, addr, FOLL_GET);
563 	if (IS_ERR_OR_NULL(page) || is_zone_device_page(page))
564 		goto out;
565 	if (PageAnon(page)) {
566 		flush_anon_page(vma, page, addr);
567 		flush_dcache_page(page);
568 	} else {
569 		put_page(page);
570 out:
571 		page = NULL;
572 	}
573 	mmap_read_unlock(mm);
574 	return page;
575 }
576 
577 /*
578  * This helper is used for getting right index into array of tree roots.
579  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
580  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
581  * every node has its own stable and unstable tree.
582  */
583 static inline int get_kpfn_nid(unsigned long kpfn)
584 {
585 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
586 }
587 
588 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
589 						   struct rb_root *root)
590 {
591 	struct stable_node *chain = alloc_stable_node();
592 	VM_BUG_ON(is_stable_node_chain(dup));
593 	if (likely(chain)) {
594 		INIT_HLIST_HEAD(&chain->hlist);
595 		chain->chain_prune_time = jiffies;
596 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
597 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
598 		chain->nid = NUMA_NO_NODE; /* debug */
599 #endif
600 		ksm_stable_node_chains++;
601 
602 		/*
603 		 * Put the stable node chain in the first dimension of
604 		 * the stable tree and at the same time remove the old
605 		 * stable node.
606 		 */
607 		rb_replace_node(&dup->node, &chain->node, root);
608 
609 		/*
610 		 * Move the old stable node to the second dimension
611 		 * queued in the hlist_dup. The invariant is that all
612 		 * dup stable_nodes in the chain->hlist point to pages
613 		 * that are write protected and have the exact same
614 		 * content.
615 		 */
616 		stable_node_chain_add_dup(dup, chain);
617 	}
618 	return chain;
619 }
620 
621 static inline void free_stable_node_chain(struct stable_node *chain,
622 					  struct rb_root *root)
623 {
624 	rb_erase(&chain->node, root);
625 	free_stable_node(chain);
626 	ksm_stable_node_chains--;
627 }
628 
629 static void remove_node_from_stable_tree(struct stable_node *stable_node)
630 {
631 	struct rmap_item *rmap_item;
632 
633 	/* check it's not STABLE_NODE_CHAIN or negative */
634 	BUG_ON(stable_node->rmap_hlist_len < 0);
635 
636 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
637 		if (rmap_item->hlist.next)
638 			ksm_pages_sharing--;
639 		else
640 			ksm_pages_shared--;
641 
642 		rmap_item->mm->ksm_merging_pages--;
643 
644 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
645 		stable_node->rmap_hlist_len--;
646 		put_anon_vma(rmap_item->anon_vma);
647 		rmap_item->address &= PAGE_MASK;
648 		cond_resched();
649 	}
650 
651 	/*
652 	 * We need the second aligned pointer of the migrate_nodes
653 	 * list_head to stay clear from the rb_parent_color union
654 	 * (aligned and different than any node) and also different
655 	 * from &migrate_nodes. This will verify that future list.h changes
656 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
657 	 */
658 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
659 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
660 
661 	if (stable_node->head == &migrate_nodes)
662 		list_del(&stable_node->list);
663 	else
664 		stable_node_dup_del(stable_node);
665 	free_stable_node(stable_node);
666 }
667 
668 enum get_ksm_page_flags {
669 	GET_KSM_PAGE_NOLOCK,
670 	GET_KSM_PAGE_LOCK,
671 	GET_KSM_PAGE_TRYLOCK
672 };
673 
674 /*
675  * get_ksm_page: checks if the page indicated by the stable node
676  * is still its ksm page, despite having held no reference to it.
677  * In which case we can trust the content of the page, and it
678  * returns the gotten page; but if the page has now been zapped,
679  * remove the stale node from the stable tree and return NULL.
680  * But beware, the stable node's page might be being migrated.
681  *
682  * You would expect the stable_node to hold a reference to the ksm page.
683  * But if it increments the page's count, swapping out has to wait for
684  * ksmd to come around again before it can free the page, which may take
685  * seconds or even minutes: much too unresponsive.  So instead we use a
686  * "keyhole reference": access to the ksm page from the stable node peeps
687  * out through its keyhole to see if that page still holds the right key,
688  * pointing back to this stable node.  This relies on freeing a PageAnon
689  * page to reset its page->mapping to NULL, and relies on no other use of
690  * a page to put something that might look like our key in page->mapping.
691  * is on its way to being freed; but it is an anomaly to bear in mind.
692  */
693 static struct page *get_ksm_page(struct stable_node *stable_node,
694 				 enum get_ksm_page_flags flags)
695 {
696 	struct page *page;
697 	void *expected_mapping;
698 	unsigned long kpfn;
699 
700 	expected_mapping = (void *)((unsigned long)stable_node |
701 					PAGE_MAPPING_KSM);
702 again:
703 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
704 	page = pfn_to_page(kpfn);
705 	if (READ_ONCE(page->mapping) != expected_mapping)
706 		goto stale;
707 
708 	/*
709 	 * We cannot do anything with the page while its refcount is 0.
710 	 * Usually 0 means free, or tail of a higher-order page: in which
711 	 * case this node is no longer referenced, and should be freed;
712 	 * however, it might mean that the page is under page_ref_freeze().
713 	 * The __remove_mapping() case is easy, again the node is now stale;
714 	 * the same is in reuse_ksm_page() case; but if page is swapcache
715 	 * in folio_migrate_mapping(), it might still be our page,
716 	 * in which case it's essential to keep the node.
717 	 */
718 	while (!get_page_unless_zero(page)) {
719 		/*
720 		 * Another check for page->mapping != expected_mapping would
721 		 * work here too.  We have chosen the !PageSwapCache test to
722 		 * optimize the common case, when the page is or is about to
723 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
724 		 * in the ref_freeze section of __remove_mapping(); but Anon
725 		 * page->mapping reset to NULL later, in free_pages_prepare().
726 		 */
727 		if (!PageSwapCache(page))
728 			goto stale;
729 		cpu_relax();
730 	}
731 
732 	if (READ_ONCE(page->mapping) != expected_mapping) {
733 		put_page(page);
734 		goto stale;
735 	}
736 
737 	if (flags == GET_KSM_PAGE_TRYLOCK) {
738 		if (!trylock_page(page)) {
739 			put_page(page);
740 			return ERR_PTR(-EBUSY);
741 		}
742 	} else if (flags == GET_KSM_PAGE_LOCK)
743 		lock_page(page);
744 
745 	if (flags != GET_KSM_PAGE_NOLOCK) {
746 		if (READ_ONCE(page->mapping) != expected_mapping) {
747 			unlock_page(page);
748 			put_page(page);
749 			goto stale;
750 		}
751 	}
752 	return page;
753 
754 stale:
755 	/*
756 	 * We come here from above when page->mapping or !PageSwapCache
757 	 * suggests that the node is stale; but it might be under migration.
758 	 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
759 	 * before checking whether node->kpfn has been changed.
760 	 */
761 	smp_rmb();
762 	if (READ_ONCE(stable_node->kpfn) != kpfn)
763 		goto again;
764 	remove_node_from_stable_tree(stable_node);
765 	return NULL;
766 }
767 
768 /*
769  * Removing rmap_item from stable or unstable tree.
770  * This function will clean the information from the stable/unstable tree.
771  */
772 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
773 {
774 	if (rmap_item->address & STABLE_FLAG) {
775 		struct stable_node *stable_node;
776 		struct page *page;
777 
778 		stable_node = rmap_item->head;
779 		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
780 		if (!page)
781 			goto out;
782 
783 		hlist_del(&rmap_item->hlist);
784 		unlock_page(page);
785 		put_page(page);
786 
787 		if (!hlist_empty(&stable_node->hlist))
788 			ksm_pages_sharing--;
789 		else
790 			ksm_pages_shared--;
791 
792 		rmap_item->mm->ksm_merging_pages--;
793 
794 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
795 		stable_node->rmap_hlist_len--;
796 
797 		put_anon_vma(rmap_item->anon_vma);
798 		rmap_item->head = NULL;
799 		rmap_item->address &= PAGE_MASK;
800 
801 	} else if (rmap_item->address & UNSTABLE_FLAG) {
802 		unsigned char age;
803 		/*
804 		 * Usually ksmd can and must skip the rb_erase, because
805 		 * root_unstable_tree was already reset to RB_ROOT.
806 		 * But be careful when an mm is exiting: do the rb_erase
807 		 * if this rmap_item was inserted by this scan, rather
808 		 * than left over from before.
809 		 */
810 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
811 		BUG_ON(age > 1);
812 		if (!age)
813 			rb_erase(&rmap_item->node,
814 				 root_unstable_tree + NUMA(rmap_item->nid));
815 		ksm_pages_unshared--;
816 		rmap_item->address &= PAGE_MASK;
817 	}
818 out:
819 	cond_resched();		/* we're called from many long loops */
820 }
821 
822 static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
823 {
824 	while (*rmap_list) {
825 		struct rmap_item *rmap_item = *rmap_list;
826 		*rmap_list = rmap_item->rmap_list;
827 		remove_rmap_item_from_tree(rmap_item);
828 		free_rmap_item(rmap_item);
829 	}
830 }
831 
832 /*
833  * Though it's very tempting to unmerge rmap_items from stable tree rather
834  * than check every pte of a given vma, the locking doesn't quite work for
835  * that - an rmap_item is assigned to the stable tree after inserting ksm
836  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
837  * rmap_items from parent to child at fork time (so as not to waste time
838  * if exit comes before the next scan reaches it).
839  *
840  * Similarly, although we'd like to remove rmap_items (so updating counts
841  * and freeing memory) when unmerging an area, it's easier to leave that
842  * to the next pass of ksmd - consider, for example, how ksmd might be
843  * in cmp_and_merge_page on one of the rmap_items we would be removing.
844  */
845 static int unmerge_ksm_pages(struct vm_area_struct *vma,
846 			     unsigned long start, unsigned long end)
847 {
848 	unsigned long addr;
849 	int err = 0;
850 
851 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
852 		if (ksm_test_exit(vma->vm_mm))
853 			break;
854 		if (signal_pending(current))
855 			err = -ERESTARTSYS;
856 		else
857 			err = break_ksm(vma, addr);
858 	}
859 	return err;
860 }
861 
862 static inline struct stable_node *folio_stable_node(struct folio *folio)
863 {
864 	return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
865 }
866 
867 static inline struct stable_node *page_stable_node(struct page *page)
868 {
869 	return folio_stable_node(page_folio(page));
870 }
871 
872 static inline void set_page_stable_node(struct page *page,
873 					struct stable_node *stable_node)
874 {
875 	VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
876 	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
877 }
878 
879 #ifdef CONFIG_SYSFS
880 /*
881  * Only called through the sysfs control interface:
882  */
883 static int remove_stable_node(struct stable_node *stable_node)
884 {
885 	struct page *page;
886 	int err;
887 
888 	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
889 	if (!page) {
890 		/*
891 		 * get_ksm_page did remove_node_from_stable_tree itself.
892 		 */
893 		return 0;
894 	}
895 
896 	/*
897 	 * Page could be still mapped if this races with __mmput() running in
898 	 * between ksm_exit() and exit_mmap(). Just refuse to let
899 	 * merge_across_nodes/max_page_sharing be switched.
900 	 */
901 	err = -EBUSY;
902 	if (!page_mapped(page)) {
903 		/*
904 		 * The stable node did not yet appear stale to get_ksm_page(),
905 		 * since that allows for an unmapped ksm page to be recognized
906 		 * right up until it is freed; but the node is safe to remove.
907 		 * This page might be in a pagevec waiting to be freed,
908 		 * or it might be PageSwapCache (perhaps under writeback),
909 		 * or it might have been removed from swapcache a moment ago.
910 		 */
911 		set_page_stable_node(page, NULL);
912 		remove_node_from_stable_tree(stable_node);
913 		err = 0;
914 	}
915 
916 	unlock_page(page);
917 	put_page(page);
918 	return err;
919 }
920 
921 static int remove_stable_node_chain(struct stable_node *stable_node,
922 				    struct rb_root *root)
923 {
924 	struct stable_node *dup;
925 	struct hlist_node *hlist_safe;
926 
927 	if (!is_stable_node_chain(stable_node)) {
928 		VM_BUG_ON(is_stable_node_dup(stable_node));
929 		if (remove_stable_node(stable_node))
930 			return true;
931 		else
932 			return false;
933 	}
934 
935 	hlist_for_each_entry_safe(dup, hlist_safe,
936 				  &stable_node->hlist, hlist_dup) {
937 		VM_BUG_ON(!is_stable_node_dup(dup));
938 		if (remove_stable_node(dup))
939 			return true;
940 	}
941 	BUG_ON(!hlist_empty(&stable_node->hlist));
942 	free_stable_node_chain(stable_node, root);
943 	return false;
944 }
945 
946 static int remove_all_stable_nodes(void)
947 {
948 	struct stable_node *stable_node, *next;
949 	int nid;
950 	int err = 0;
951 
952 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
953 		while (root_stable_tree[nid].rb_node) {
954 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
955 						struct stable_node, node);
956 			if (remove_stable_node_chain(stable_node,
957 						     root_stable_tree + nid)) {
958 				err = -EBUSY;
959 				break;	/* proceed to next nid */
960 			}
961 			cond_resched();
962 		}
963 	}
964 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
965 		if (remove_stable_node(stable_node))
966 			err = -EBUSY;
967 		cond_resched();
968 	}
969 	return err;
970 }
971 
972 static int unmerge_and_remove_all_rmap_items(void)
973 {
974 	struct mm_slot *mm_slot;
975 	struct mm_struct *mm;
976 	struct vm_area_struct *vma;
977 	int err = 0;
978 
979 	spin_lock(&ksm_mmlist_lock);
980 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
981 						struct mm_slot, mm_list);
982 	spin_unlock(&ksm_mmlist_lock);
983 
984 	for (mm_slot = ksm_scan.mm_slot;
985 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
986 		mm = mm_slot->mm;
987 		mmap_read_lock(mm);
988 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
989 			if (ksm_test_exit(mm))
990 				break;
991 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
992 				continue;
993 			err = unmerge_ksm_pages(vma,
994 						vma->vm_start, vma->vm_end);
995 			if (err)
996 				goto error;
997 		}
998 
999 		remove_trailing_rmap_items(&mm_slot->rmap_list);
1000 		mmap_read_unlock(mm);
1001 
1002 		spin_lock(&ksm_mmlist_lock);
1003 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
1004 						struct mm_slot, mm_list);
1005 		if (ksm_test_exit(mm)) {
1006 			hash_del(&mm_slot->link);
1007 			list_del(&mm_slot->mm_list);
1008 			spin_unlock(&ksm_mmlist_lock);
1009 
1010 			free_mm_slot(mm_slot);
1011 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1012 			mmdrop(mm);
1013 		} else
1014 			spin_unlock(&ksm_mmlist_lock);
1015 	}
1016 
1017 	/* Clean up stable nodes, but don't worry if some are still busy */
1018 	remove_all_stable_nodes();
1019 	ksm_scan.seqnr = 0;
1020 	return 0;
1021 
1022 error:
1023 	mmap_read_unlock(mm);
1024 	spin_lock(&ksm_mmlist_lock);
1025 	ksm_scan.mm_slot = &ksm_mm_head;
1026 	spin_unlock(&ksm_mmlist_lock);
1027 	return err;
1028 }
1029 #endif /* CONFIG_SYSFS */
1030 
1031 static u32 calc_checksum(struct page *page)
1032 {
1033 	u32 checksum;
1034 	void *addr = kmap_atomic(page);
1035 	checksum = xxhash(addr, PAGE_SIZE, 0);
1036 	kunmap_atomic(addr);
1037 	return checksum;
1038 }
1039 
1040 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1041 			      pte_t *orig_pte)
1042 {
1043 	struct mm_struct *mm = vma->vm_mm;
1044 	DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1045 	int swapped;
1046 	int err = -EFAULT;
1047 	struct mmu_notifier_range range;
1048 	bool anon_exclusive;
1049 
1050 	pvmw.address = page_address_in_vma(page, vma);
1051 	if (pvmw.address == -EFAULT)
1052 		goto out;
1053 
1054 	BUG_ON(PageTransCompound(page));
1055 
1056 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1057 				pvmw.address,
1058 				pvmw.address + PAGE_SIZE);
1059 	mmu_notifier_invalidate_range_start(&range);
1060 
1061 	if (!page_vma_mapped_walk(&pvmw))
1062 		goto out_mn;
1063 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1064 		goto out_unlock;
1065 
1066 	anon_exclusive = PageAnonExclusive(page);
1067 	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1068 	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1069 	    anon_exclusive || mm_tlb_flush_pending(mm)) {
1070 		pte_t entry;
1071 
1072 		swapped = PageSwapCache(page);
1073 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1074 		/*
1075 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1076 		 * take any lock, therefore the check that we are going to make
1077 		 * with the pagecount against the mapcount is racy and
1078 		 * O_DIRECT can happen right after the check.
1079 		 * So we clear the pte and flush the tlb before the check
1080 		 * this assure us that no O_DIRECT can happen after the check
1081 		 * or in the middle of the check.
1082 		 *
1083 		 * No need to notify as we are downgrading page table to read
1084 		 * only not changing it to point to a new page.
1085 		 *
1086 		 * See Documentation/mm/mmu_notifier.rst
1087 		 */
1088 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1089 		/*
1090 		 * Check that no O_DIRECT or similar I/O is in progress on the
1091 		 * page
1092 		 */
1093 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1094 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1095 			goto out_unlock;
1096 		}
1097 
1098 		/* See page_try_share_anon_rmap(): clear PTE first. */
1099 		if (anon_exclusive && page_try_share_anon_rmap(page)) {
1100 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1101 			goto out_unlock;
1102 		}
1103 
1104 		if (pte_dirty(entry))
1105 			set_page_dirty(page);
1106 
1107 		if (pte_protnone(entry))
1108 			entry = pte_mkclean(pte_clear_savedwrite(entry));
1109 		else
1110 			entry = pte_mkclean(pte_wrprotect(entry));
1111 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1112 	}
1113 	*orig_pte = *pvmw.pte;
1114 	err = 0;
1115 
1116 out_unlock:
1117 	page_vma_mapped_walk_done(&pvmw);
1118 out_mn:
1119 	mmu_notifier_invalidate_range_end(&range);
1120 out:
1121 	return err;
1122 }
1123 
1124 /**
1125  * replace_page - replace page in vma by new ksm page
1126  * @vma:      vma that holds the pte pointing to page
1127  * @page:     the page we are replacing by kpage
1128  * @kpage:    the ksm page we replace page by
1129  * @orig_pte: the original value of the pte
1130  *
1131  * Returns 0 on success, -EFAULT on failure.
1132  */
1133 static int replace_page(struct vm_area_struct *vma, struct page *page,
1134 			struct page *kpage, pte_t orig_pte)
1135 {
1136 	struct mm_struct *mm = vma->vm_mm;
1137 	pmd_t *pmd;
1138 	pmd_t pmde;
1139 	pte_t *ptep;
1140 	pte_t newpte;
1141 	spinlock_t *ptl;
1142 	unsigned long addr;
1143 	int err = -EFAULT;
1144 	struct mmu_notifier_range range;
1145 
1146 	addr = page_address_in_vma(page, vma);
1147 	if (addr == -EFAULT)
1148 		goto out;
1149 
1150 	pmd = mm_find_pmd(mm, addr);
1151 	if (!pmd)
1152 		goto out;
1153 	/*
1154 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1155 	 * without holding anon_vma lock for write.  So when looking for a
1156 	 * genuine pmde (in which to find pte), test present and !THP together.
1157 	 */
1158 	pmde = *pmd;
1159 	barrier();
1160 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1161 		goto out;
1162 
1163 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1164 				addr + PAGE_SIZE);
1165 	mmu_notifier_invalidate_range_start(&range);
1166 
1167 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1168 	if (!pte_same(*ptep, orig_pte)) {
1169 		pte_unmap_unlock(ptep, ptl);
1170 		goto out_mn;
1171 	}
1172 	VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1173 	VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1174 
1175 	/*
1176 	 * No need to check ksm_use_zero_pages here: we can only have a
1177 	 * zero_page here if ksm_use_zero_pages was enabled already.
1178 	 */
1179 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1180 		get_page(kpage);
1181 		page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1182 		newpte = mk_pte(kpage, vma->vm_page_prot);
1183 	} else {
1184 		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1185 					       vma->vm_page_prot));
1186 		/*
1187 		 * We're replacing an anonymous page with a zero page, which is
1188 		 * not anonymous. We need to do proper accounting otherwise we
1189 		 * will get wrong values in /proc, and a BUG message in dmesg
1190 		 * when tearing down the mm.
1191 		 */
1192 		dec_mm_counter(mm, MM_ANONPAGES);
1193 	}
1194 
1195 	flush_cache_page(vma, addr, pte_pfn(*ptep));
1196 	/*
1197 	 * No need to notify as we are replacing a read only page with another
1198 	 * read only page with the same content.
1199 	 *
1200 	 * See Documentation/mm/mmu_notifier.rst
1201 	 */
1202 	ptep_clear_flush(vma, addr, ptep);
1203 	set_pte_at_notify(mm, addr, ptep, newpte);
1204 
1205 	page_remove_rmap(page, vma, false);
1206 	if (!page_mapped(page))
1207 		try_to_free_swap(page);
1208 	put_page(page);
1209 
1210 	pte_unmap_unlock(ptep, ptl);
1211 	err = 0;
1212 out_mn:
1213 	mmu_notifier_invalidate_range_end(&range);
1214 out:
1215 	return err;
1216 }
1217 
1218 /*
1219  * try_to_merge_one_page - take two pages and merge them into one
1220  * @vma: the vma that holds the pte pointing to page
1221  * @page: the PageAnon page that we want to replace with kpage
1222  * @kpage: the PageKsm page that we want to map instead of page,
1223  *         or NULL the first time when we want to use page as kpage.
1224  *
1225  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1226  */
1227 static int try_to_merge_one_page(struct vm_area_struct *vma,
1228 				 struct page *page, struct page *kpage)
1229 {
1230 	pte_t orig_pte = __pte(0);
1231 	int err = -EFAULT;
1232 
1233 	if (page == kpage)			/* ksm page forked */
1234 		return 0;
1235 
1236 	if (!PageAnon(page))
1237 		goto out;
1238 
1239 	/*
1240 	 * We need the page lock to read a stable PageSwapCache in
1241 	 * write_protect_page().  We use trylock_page() instead of
1242 	 * lock_page() because we don't want to wait here - we
1243 	 * prefer to continue scanning and merging different pages,
1244 	 * then come back to this page when it is unlocked.
1245 	 */
1246 	if (!trylock_page(page))
1247 		goto out;
1248 
1249 	if (PageTransCompound(page)) {
1250 		if (split_huge_page(page))
1251 			goto out_unlock;
1252 	}
1253 
1254 	/*
1255 	 * If this anonymous page is mapped only here, its pte may need
1256 	 * to be write-protected.  If it's mapped elsewhere, all of its
1257 	 * ptes are necessarily already write-protected.  But in either
1258 	 * case, we need to lock and check page_count is not raised.
1259 	 */
1260 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1261 		if (!kpage) {
1262 			/*
1263 			 * While we hold page lock, upgrade page from
1264 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1265 			 * stable_tree_insert() will update stable_node.
1266 			 */
1267 			set_page_stable_node(page, NULL);
1268 			mark_page_accessed(page);
1269 			/*
1270 			 * Page reclaim just frees a clean page with no dirty
1271 			 * ptes: make sure that the ksm page would be swapped.
1272 			 */
1273 			if (!PageDirty(page))
1274 				SetPageDirty(page);
1275 			err = 0;
1276 		} else if (pages_identical(page, kpage))
1277 			err = replace_page(vma, page, kpage, orig_pte);
1278 	}
1279 
1280 out_unlock:
1281 	unlock_page(page);
1282 out:
1283 	return err;
1284 }
1285 
1286 /*
1287  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1288  * but no new kernel page is allocated: kpage must already be a ksm page.
1289  *
1290  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1291  */
1292 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1293 				      struct page *page, struct page *kpage)
1294 {
1295 	struct mm_struct *mm = rmap_item->mm;
1296 	struct vm_area_struct *vma;
1297 	int err = -EFAULT;
1298 
1299 	mmap_read_lock(mm);
1300 	vma = find_mergeable_vma(mm, rmap_item->address);
1301 	if (!vma)
1302 		goto out;
1303 
1304 	err = try_to_merge_one_page(vma, page, kpage);
1305 	if (err)
1306 		goto out;
1307 
1308 	/* Unstable nid is in union with stable anon_vma: remove first */
1309 	remove_rmap_item_from_tree(rmap_item);
1310 
1311 	/* Must get reference to anon_vma while still holding mmap_lock */
1312 	rmap_item->anon_vma = vma->anon_vma;
1313 	get_anon_vma(vma->anon_vma);
1314 out:
1315 	mmap_read_unlock(mm);
1316 	return err;
1317 }
1318 
1319 /*
1320  * try_to_merge_two_pages - take two identical pages and prepare them
1321  * to be merged into one page.
1322  *
1323  * This function returns the kpage if we successfully merged two identical
1324  * pages into one ksm page, NULL otherwise.
1325  *
1326  * Note that this function upgrades page to ksm page: if one of the pages
1327  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1328  */
1329 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1330 					   struct page *page,
1331 					   struct rmap_item *tree_rmap_item,
1332 					   struct page *tree_page)
1333 {
1334 	int err;
1335 
1336 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1337 	if (!err) {
1338 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1339 							tree_page, page);
1340 		/*
1341 		 * If that fails, we have a ksm page with only one pte
1342 		 * pointing to it: so break it.
1343 		 */
1344 		if (err)
1345 			break_cow(rmap_item);
1346 	}
1347 	return err ? NULL : page;
1348 }
1349 
1350 static __always_inline
1351 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1352 {
1353 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1354 	/*
1355 	 * Check that at least one mapping still exists, otherwise
1356 	 * there's no much point to merge and share with this
1357 	 * stable_node, as the underlying tree_page of the other
1358 	 * sharer is going to be freed soon.
1359 	 */
1360 	return stable_node->rmap_hlist_len &&
1361 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1362 }
1363 
1364 static __always_inline
1365 bool is_page_sharing_candidate(struct stable_node *stable_node)
1366 {
1367 	return __is_page_sharing_candidate(stable_node, 0);
1368 }
1369 
1370 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1371 				    struct stable_node **_stable_node,
1372 				    struct rb_root *root,
1373 				    bool prune_stale_stable_nodes)
1374 {
1375 	struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1376 	struct hlist_node *hlist_safe;
1377 	struct page *_tree_page, *tree_page = NULL;
1378 	int nr = 0;
1379 	int found_rmap_hlist_len;
1380 
1381 	if (!prune_stale_stable_nodes ||
1382 	    time_before(jiffies, stable_node->chain_prune_time +
1383 			msecs_to_jiffies(
1384 				ksm_stable_node_chains_prune_millisecs)))
1385 		prune_stale_stable_nodes = false;
1386 	else
1387 		stable_node->chain_prune_time = jiffies;
1388 
1389 	hlist_for_each_entry_safe(dup, hlist_safe,
1390 				  &stable_node->hlist, hlist_dup) {
1391 		cond_resched();
1392 		/*
1393 		 * We must walk all stable_node_dup to prune the stale
1394 		 * stable nodes during lookup.
1395 		 *
1396 		 * get_ksm_page can drop the nodes from the
1397 		 * stable_node->hlist if they point to freed pages
1398 		 * (that's why we do a _safe walk). The "dup"
1399 		 * stable_node parameter itself will be freed from
1400 		 * under us if it returns NULL.
1401 		 */
1402 		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1403 		if (!_tree_page)
1404 			continue;
1405 		nr += 1;
1406 		if (is_page_sharing_candidate(dup)) {
1407 			if (!found ||
1408 			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1409 				if (found)
1410 					put_page(tree_page);
1411 				found = dup;
1412 				found_rmap_hlist_len = found->rmap_hlist_len;
1413 				tree_page = _tree_page;
1414 
1415 				/* skip put_page for found dup */
1416 				if (!prune_stale_stable_nodes)
1417 					break;
1418 				continue;
1419 			}
1420 		}
1421 		put_page(_tree_page);
1422 	}
1423 
1424 	if (found) {
1425 		/*
1426 		 * nr is counting all dups in the chain only if
1427 		 * prune_stale_stable_nodes is true, otherwise we may
1428 		 * break the loop at nr == 1 even if there are
1429 		 * multiple entries.
1430 		 */
1431 		if (prune_stale_stable_nodes && nr == 1) {
1432 			/*
1433 			 * If there's not just one entry it would
1434 			 * corrupt memory, better BUG_ON. In KSM
1435 			 * context with no lock held it's not even
1436 			 * fatal.
1437 			 */
1438 			BUG_ON(stable_node->hlist.first->next);
1439 
1440 			/*
1441 			 * There's just one entry and it is below the
1442 			 * deduplication limit so drop the chain.
1443 			 */
1444 			rb_replace_node(&stable_node->node, &found->node,
1445 					root);
1446 			free_stable_node(stable_node);
1447 			ksm_stable_node_chains--;
1448 			ksm_stable_node_dups--;
1449 			/*
1450 			 * NOTE: the caller depends on the stable_node
1451 			 * to be equal to stable_node_dup if the chain
1452 			 * was collapsed.
1453 			 */
1454 			*_stable_node = found;
1455 			/*
1456 			 * Just for robustness, as stable_node is
1457 			 * otherwise left as a stable pointer, the
1458 			 * compiler shall optimize it away at build
1459 			 * time.
1460 			 */
1461 			stable_node = NULL;
1462 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1463 			   __is_page_sharing_candidate(found, 1)) {
1464 			/*
1465 			 * If the found stable_node dup can accept one
1466 			 * more future merge (in addition to the one
1467 			 * that is underway) and is not at the head of
1468 			 * the chain, put it there so next search will
1469 			 * be quicker in the !prune_stale_stable_nodes
1470 			 * case.
1471 			 *
1472 			 * NOTE: it would be inaccurate to use nr > 1
1473 			 * instead of checking the hlist.first pointer
1474 			 * directly, because in the
1475 			 * prune_stale_stable_nodes case "nr" isn't
1476 			 * the position of the found dup in the chain,
1477 			 * but the total number of dups in the chain.
1478 			 */
1479 			hlist_del(&found->hlist_dup);
1480 			hlist_add_head(&found->hlist_dup,
1481 				       &stable_node->hlist);
1482 		}
1483 	}
1484 
1485 	*_stable_node_dup = found;
1486 	return tree_page;
1487 }
1488 
1489 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1490 					       struct rb_root *root)
1491 {
1492 	if (!is_stable_node_chain(stable_node))
1493 		return stable_node;
1494 	if (hlist_empty(&stable_node->hlist)) {
1495 		free_stable_node_chain(stable_node, root);
1496 		return NULL;
1497 	}
1498 	return hlist_entry(stable_node->hlist.first,
1499 			   typeof(*stable_node), hlist_dup);
1500 }
1501 
1502 /*
1503  * Like for get_ksm_page, this function can free the *_stable_node and
1504  * *_stable_node_dup if the returned tree_page is NULL.
1505  *
1506  * It can also free and overwrite *_stable_node with the found
1507  * stable_node_dup if the chain is collapsed (in which case
1508  * *_stable_node will be equal to *_stable_node_dup like if the chain
1509  * never existed). It's up to the caller to verify tree_page is not
1510  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1511  *
1512  * *_stable_node_dup is really a second output parameter of this
1513  * function and will be overwritten in all cases, the caller doesn't
1514  * need to initialize it.
1515  */
1516 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1517 					struct stable_node **_stable_node,
1518 					struct rb_root *root,
1519 					bool prune_stale_stable_nodes)
1520 {
1521 	struct stable_node *stable_node = *_stable_node;
1522 	if (!is_stable_node_chain(stable_node)) {
1523 		if (is_page_sharing_candidate(stable_node)) {
1524 			*_stable_node_dup = stable_node;
1525 			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1526 		}
1527 		/*
1528 		 * _stable_node_dup set to NULL means the stable_node
1529 		 * reached the ksm_max_page_sharing limit.
1530 		 */
1531 		*_stable_node_dup = NULL;
1532 		return NULL;
1533 	}
1534 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1535 			       prune_stale_stable_nodes);
1536 }
1537 
1538 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1539 						struct stable_node **s_n,
1540 						struct rb_root *root)
1541 {
1542 	return __stable_node_chain(s_n_d, s_n, root, true);
1543 }
1544 
1545 static __always_inline struct page *chain(struct stable_node **s_n_d,
1546 					  struct stable_node *s_n,
1547 					  struct rb_root *root)
1548 {
1549 	struct stable_node *old_stable_node = s_n;
1550 	struct page *tree_page;
1551 
1552 	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1553 	/* not pruning dups so s_n cannot have changed */
1554 	VM_BUG_ON(s_n != old_stable_node);
1555 	return tree_page;
1556 }
1557 
1558 /*
1559  * stable_tree_search - search for page inside the stable tree
1560  *
1561  * This function checks if there is a page inside the stable tree
1562  * with identical content to the page that we are scanning right now.
1563  *
1564  * This function returns the stable tree node of identical content if found,
1565  * NULL otherwise.
1566  */
1567 static struct page *stable_tree_search(struct page *page)
1568 {
1569 	int nid;
1570 	struct rb_root *root;
1571 	struct rb_node **new;
1572 	struct rb_node *parent;
1573 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1574 	struct stable_node *page_node;
1575 
1576 	page_node = page_stable_node(page);
1577 	if (page_node && page_node->head != &migrate_nodes) {
1578 		/* ksm page forked */
1579 		get_page(page);
1580 		return page;
1581 	}
1582 
1583 	nid = get_kpfn_nid(page_to_pfn(page));
1584 	root = root_stable_tree + nid;
1585 again:
1586 	new = &root->rb_node;
1587 	parent = NULL;
1588 
1589 	while (*new) {
1590 		struct page *tree_page;
1591 		int ret;
1592 
1593 		cond_resched();
1594 		stable_node = rb_entry(*new, struct stable_node, node);
1595 		stable_node_any = NULL;
1596 		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1597 		/*
1598 		 * NOTE: stable_node may have been freed by
1599 		 * chain_prune() if the returned stable_node_dup is
1600 		 * not NULL. stable_node_dup may have been inserted in
1601 		 * the rbtree instead as a regular stable_node (in
1602 		 * order to collapse the stable_node chain if a single
1603 		 * stable_node dup was found in it). In such case the
1604 		 * stable_node is overwritten by the callee to point
1605 		 * to the stable_node_dup that was collapsed in the
1606 		 * stable rbtree and stable_node will be equal to
1607 		 * stable_node_dup like if the chain never existed.
1608 		 */
1609 		if (!stable_node_dup) {
1610 			/*
1611 			 * Either all stable_node dups were full in
1612 			 * this stable_node chain, or this chain was
1613 			 * empty and should be rb_erased.
1614 			 */
1615 			stable_node_any = stable_node_dup_any(stable_node,
1616 							      root);
1617 			if (!stable_node_any) {
1618 				/* rb_erase just run */
1619 				goto again;
1620 			}
1621 			/*
1622 			 * Take any of the stable_node dups page of
1623 			 * this stable_node chain to let the tree walk
1624 			 * continue. All KSM pages belonging to the
1625 			 * stable_node dups in a stable_node chain
1626 			 * have the same content and they're
1627 			 * write protected at all times. Any will work
1628 			 * fine to continue the walk.
1629 			 */
1630 			tree_page = get_ksm_page(stable_node_any,
1631 						 GET_KSM_PAGE_NOLOCK);
1632 		}
1633 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1634 		if (!tree_page) {
1635 			/*
1636 			 * If we walked over a stale stable_node,
1637 			 * get_ksm_page() will call rb_erase() and it
1638 			 * may rebalance the tree from under us. So
1639 			 * restart the search from scratch. Returning
1640 			 * NULL would be safe too, but we'd generate
1641 			 * false negative insertions just because some
1642 			 * stable_node was stale.
1643 			 */
1644 			goto again;
1645 		}
1646 
1647 		ret = memcmp_pages(page, tree_page);
1648 		put_page(tree_page);
1649 
1650 		parent = *new;
1651 		if (ret < 0)
1652 			new = &parent->rb_left;
1653 		else if (ret > 0)
1654 			new = &parent->rb_right;
1655 		else {
1656 			if (page_node) {
1657 				VM_BUG_ON(page_node->head != &migrate_nodes);
1658 				/*
1659 				 * Test if the migrated page should be merged
1660 				 * into a stable node dup. If the mapcount is
1661 				 * 1 we can migrate it with another KSM page
1662 				 * without adding it to the chain.
1663 				 */
1664 				if (page_mapcount(page) > 1)
1665 					goto chain_append;
1666 			}
1667 
1668 			if (!stable_node_dup) {
1669 				/*
1670 				 * If the stable_node is a chain and
1671 				 * we got a payload match in memcmp
1672 				 * but we cannot merge the scanned
1673 				 * page in any of the existing
1674 				 * stable_node dups because they're
1675 				 * all full, we need to wait the
1676 				 * scanned page to find itself a match
1677 				 * in the unstable tree to create a
1678 				 * brand new KSM page to add later to
1679 				 * the dups of this stable_node.
1680 				 */
1681 				return NULL;
1682 			}
1683 
1684 			/*
1685 			 * Lock and unlock the stable_node's page (which
1686 			 * might already have been migrated) so that page
1687 			 * migration is sure to notice its raised count.
1688 			 * It would be more elegant to return stable_node
1689 			 * than kpage, but that involves more changes.
1690 			 */
1691 			tree_page = get_ksm_page(stable_node_dup,
1692 						 GET_KSM_PAGE_TRYLOCK);
1693 
1694 			if (PTR_ERR(tree_page) == -EBUSY)
1695 				return ERR_PTR(-EBUSY);
1696 
1697 			if (unlikely(!tree_page))
1698 				/*
1699 				 * The tree may have been rebalanced,
1700 				 * so re-evaluate parent and new.
1701 				 */
1702 				goto again;
1703 			unlock_page(tree_page);
1704 
1705 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1706 			    NUMA(stable_node_dup->nid)) {
1707 				put_page(tree_page);
1708 				goto replace;
1709 			}
1710 			return tree_page;
1711 		}
1712 	}
1713 
1714 	if (!page_node)
1715 		return NULL;
1716 
1717 	list_del(&page_node->list);
1718 	DO_NUMA(page_node->nid = nid);
1719 	rb_link_node(&page_node->node, parent, new);
1720 	rb_insert_color(&page_node->node, root);
1721 out:
1722 	if (is_page_sharing_candidate(page_node)) {
1723 		get_page(page);
1724 		return page;
1725 	} else
1726 		return NULL;
1727 
1728 replace:
1729 	/*
1730 	 * If stable_node was a chain and chain_prune collapsed it,
1731 	 * stable_node has been updated to be the new regular
1732 	 * stable_node. A collapse of the chain is indistinguishable
1733 	 * from the case there was no chain in the stable
1734 	 * rbtree. Otherwise stable_node is the chain and
1735 	 * stable_node_dup is the dup to replace.
1736 	 */
1737 	if (stable_node_dup == stable_node) {
1738 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1739 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1740 		/* there is no chain */
1741 		if (page_node) {
1742 			VM_BUG_ON(page_node->head != &migrate_nodes);
1743 			list_del(&page_node->list);
1744 			DO_NUMA(page_node->nid = nid);
1745 			rb_replace_node(&stable_node_dup->node,
1746 					&page_node->node,
1747 					root);
1748 			if (is_page_sharing_candidate(page_node))
1749 				get_page(page);
1750 			else
1751 				page = NULL;
1752 		} else {
1753 			rb_erase(&stable_node_dup->node, root);
1754 			page = NULL;
1755 		}
1756 	} else {
1757 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1758 		__stable_node_dup_del(stable_node_dup);
1759 		if (page_node) {
1760 			VM_BUG_ON(page_node->head != &migrate_nodes);
1761 			list_del(&page_node->list);
1762 			DO_NUMA(page_node->nid = nid);
1763 			stable_node_chain_add_dup(page_node, stable_node);
1764 			if (is_page_sharing_candidate(page_node))
1765 				get_page(page);
1766 			else
1767 				page = NULL;
1768 		} else {
1769 			page = NULL;
1770 		}
1771 	}
1772 	stable_node_dup->head = &migrate_nodes;
1773 	list_add(&stable_node_dup->list, stable_node_dup->head);
1774 	return page;
1775 
1776 chain_append:
1777 	/* stable_node_dup could be null if it reached the limit */
1778 	if (!stable_node_dup)
1779 		stable_node_dup = stable_node_any;
1780 	/*
1781 	 * If stable_node was a chain and chain_prune collapsed it,
1782 	 * stable_node has been updated to be the new regular
1783 	 * stable_node. A collapse of the chain is indistinguishable
1784 	 * from the case there was no chain in the stable
1785 	 * rbtree. Otherwise stable_node is the chain and
1786 	 * stable_node_dup is the dup to replace.
1787 	 */
1788 	if (stable_node_dup == stable_node) {
1789 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1790 		/* chain is missing so create it */
1791 		stable_node = alloc_stable_node_chain(stable_node_dup,
1792 						      root);
1793 		if (!stable_node)
1794 			return NULL;
1795 	}
1796 	/*
1797 	 * Add this stable_node dup that was
1798 	 * migrated to the stable_node chain
1799 	 * of the current nid for this page
1800 	 * content.
1801 	 */
1802 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1803 	VM_BUG_ON(page_node->head != &migrate_nodes);
1804 	list_del(&page_node->list);
1805 	DO_NUMA(page_node->nid = nid);
1806 	stable_node_chain_add_dup(page_node, stable_node);
1807 	goto out;
1808 }
1809 
1810 /*
1811  * stable_tree_insert - insert stable tree node pointing to new ksm page
1812  * into the stable tree.
1813  *
1814  * This function returns the stable tree node just allocated on success,
1815  * NULL otherwise.
1816  */
1817 static struct stable_node *stable_tree_insert(struct page *kpage)
1818 {
1819 	int nid;
1820 	unsigned long kpfn;
1821 	struct rb_root *root;
1822 	struct rb_node **new;
1823 	struct rb_node *parent;
1824 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1825 	bool need_chain = false;
1826 
1827 	kpfn = page_to_pfn(kpage);
1828 	nid = get_kpfn_nid(kpfn);
1829 	root = root_stable_tree + nid;
1830 again:
1831 	parent = NULL;
1832 	new = &root->rb_node;
1833 
1834 	while (*new) {
1835 		struct page *tree_page;
1836 		int ret;
1837 
1838 		cond_resched();
1839 		stable_node = rb_entry(*new, struct stable_node, node);
1840 		stable_node_any = NULL;
1841 		tree_page = chain(&stable_node_dup, stable_node, root);
1842 		if (!stable_node_dup) {
1843 			/*
1844 			 * Either all stable_node dups were full in
1845 			 * this stable_node chain, or this chain was
1846 			 * empty and should be rb_erased.
1847 			 */
1848 			stable_node_any = stable_node_dup_any(stable_node,
1849 							      root);
1850 			if (!stable_node_any) {
1851 				/* rb_erase just run */
1852 				goto again;
1853 			}
1854 			/*
1855 			 * Take any of the stable_node dups page of
1856 			 * this stable_node chain to let the tree walk
1857 			 * continue. All KSM pages belonging to the
1858 			 * stable_node dups in a stable_node chain
1859 			 * have the same content and they're
1860 			 * write protected at all times. Any will work
1861 			 * fine to continue the walk.
1862 			 */
1863 			tree_page = get_ksm_page(stable_node_any,
1864 						 GET_KSM_PAGE_NOLOCK);
1865 		}
1866 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1867 		if (!tree_page) {
1868 			/*
1869 			 * If we walked over a stale stable_node,
1870 			 * get_ksm_page() will call rb_erase() and it
1871 			 * may rebalance the tree from under us. So
1872 			 * restart the search from scratch. Returning
1873 			 * NULL would be safe too, but we'd generate
1874 			 * false negative insertions just because some
1875 			 * stable_node was stale.
1876 			 */
1877 			goto again;
1878 		}
1879 
1880 		ret = memcmp_pages(kpage, tree_page);
1881 		put_page(tree_page);
1882 
1883 		parent = *new;
1884 		if (ret < 0)
1885 			new = &parent->rb_left;
1886 		else if (ret > 0)
1887 			new = &parent->rb_right;
1888 		else {
1889 			need_chain = true;
1890 			break;
1891 		}
1892 	}
1893 
1894 	stable_node_dup = alloc_stable_node();
1895 	if (!stable_node_dup)
1896 		return NULL;
1897 
1898 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1899 	stable_node_dup->kpfn = kpfn;
1900 	set_page_stable_node(kpage, stable_node_dup);
1901 	stable_node_dup->rmap_hlist_len = 0;
1902 	DO_NUMA(stable_node_dup->nid = nid);
1903 	if (!need_chain) {
1904 		rb_link_node(&stable_node_dup->node, parent, new);
1905 		rb_insert_color(&stable_node_dup->node, root);
1906 	} else {
1907 		if (!is_stable_node_chain(stable_node)) {
1908 			struct stable_node *orig = stable_node;
1909 			/* chain is missing so create it */
1910 			stable_node = alloc_stable_node_chain(orig, root);
1911 			if (!stable_node) {
1912 				free_stable_node(stable_node_dup);
1913 				return NULL;
1914 			}
1915 		}
1916 		stable_node_chain_add_dup(stable_node_dup, stable_node);
1917 	}
1918 
1919 	return stable_node_dup;
1920 }
1921 
1922 /*
1923  * unstable_tree_search_insert - search for identical page,
1924  * else insert rmap_item into the unstable tree.
1925  *
1926  * This function searches for a page in the unstable tree identical to the
1927  * page currently being scanned; and if no identical page is found in the
1928  * tree, we insert rmap_item as a new object into the unstable tree.
1929  *
1930  * This function returns pointer to rmap_item found to be identical
1931  * to the currently scanned page, NULL otherwise.
1932  *
1933  * This function does both searching and inserting, because they share
1934  * the same walking algorithm in an rbtree.
1935  */
1936 static
1937 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1938 					      struct page *page,
1939 					      struct page **tree_pagep)
1940 {
1941 	struct rb_node **new;
1942 	struct rb_root *root;
1943 	struct rb_node *parent = NULL;
1944 	int nid;
1945 
1946 	nid = get_kpfn_nid(page_to_pfn(page));
1947 	root = root_unstable_tree + nid;
1948 	new = &root->rb_node;
1949 
1950 	while (*new) {
1951 		struct rmap_item *tree_rmap_item;
1952 		struct page *tree_page;
1953 		int ret;
1954 
1955 		cond_resched();
1956 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1957 		tree_page = get_mergeable_page(tree_rmap_item);
1958 		if (!tree_page)
1959 			return NULL;
1960 
1961 		/*
1962 		 * Don't substitute a ksm page for a forked page.
1963 		 */
1964 		if (page == tree_page) {
1965 			put_page(tree_page);
1966 			return NULL;
1967 		}
1968 
1969 		ret = memcmp_pages(page, tree_page);
1970 
1971 		parent = *new;
1972 		if (ret < 0) {
1973 			put_page(tree_page);
1974 			new = &parent->rb_left;
1975 		} else if (ret > 0) {
1976 			put_page(tree_page);
1977 			new = &parent->rb_right;
1978 		} else if (!ksm_merge_across_nodes &&
1979 			   page_to_nid(tree_page) != nid) {
1980 			/*
1981 			 * If tree_page has been migrated to another NUMA node,
1982 			 * it will be flushed out and put in the right unstable
1983 			 * tree next time: only merge with it when across_nodes.
1984 			 */
1985 			put_page(tree_page);
1986 			return NULL;
1987 		} else {
1988 			*tree_pagep = tree_page;
1989 			return tree_rmap_item;
1990 		}
1991 	}
1992 
1993 	rmap_item->address |= UNSTABLE_FLAG;
1994 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1995 	DO_NUMA(rmap_item->nid = nid);
1996 	rb_link_node(&rmap_item->node, parent, new);
1997 	rb_insert_color(&rmap_item->node, root);
1998 
1999 	ksm_pages_unshared++;
2000 	return NULL;
2001 }
2002 
2003 /*
2004  * stable_tree_append - add another rmap_item to the linked list of
2005  * rmap_items hanging off a given node of the stable tree, all sharing
2006  * the same ksm page.
2007  */
2008 static void stable_tree_append(struct rmap_item *rmap_item,
2009 			       struct stable_node *stable_node,
2010 			       bool max_page_sharing_bypass)
2011 {
2012 	/*
2013 	 * rmap won't find this mapping if we don't insert the
2014 	 * rmap_item in the right stable_node
2015 	 * duplicate. page_migration could break later if rmap breaks,
2016 	 * so we can as well crash here. We really need to check for
2017 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2018 	 * for other negative values as an underflow if detected here
2019 	 * for the first time (and not when decreasing rmap_hlist_len)
2020 	 * would be sign of memory corruption in the stable_node.
2021 	 */
2022 	BUG_ON(stable_node->rmap_hlist_len < 0);
2023 
2024 	stable_node->rmap_hlist_len++;
2025 	if (!max_page_sharing_bypass)
2026 		/* possibly non fatal but unexpected overflow, only warn */
2027 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2028 			     ksm_max_page_sharing);
2029 
2030 	rmap_item->head = stable_node;
2031 	rmap_item->address |= STABLE_FLAG;
2032 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2033 
2034 	if (rmap_item->hlist.next)
2035 		ksm_pages_sharing++;
2036 	else
2037 		ksm_pages_shared++;
2038 
2039 	rmap_item->mm->ksm_merging_pages++;
2040 }
2041 
2042 /*
2043  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2044  * if not, compare checksum to previous and if it's the same, see if page can
2045  * be inserted into the unstable tree, or merged with a page already there and
2046  * both transferred to the stable tree.
2047  *
2048  * @page: the page that we are searching identical page to.
2049  * @rmap_item: the reverse mapping into the virtual address of this page
2050  */
2051 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2052 {
2053 	struct mm_struct *mm = rmap_item->mm;
2054 	struct rmap_item *tree_rmap_item;
2055 	struct page *tree_page = NULL;
2056 	struct stable_node *stable_node;
2057 	struct page *kpage;
2058 	unsigned int checksum;
2059 	int err;
2060 	bool max_page_sharing_bypass = false;
2061 
2062 	stable_node = page_stable_node(page);
2063 	if (stable_node) {
2064 		if (stable_node->head != &migrate_nodes &&
2065 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2066 		    NUMA(stable_node->nid)) {
2067 			stable_node_dup_del(stable_node);
2068 			stable_node->head = &migrate_nodes;
2069 			list_add(&stable_node->list, stable_node->head);
2070 		}
2071 		if (stable_node->head != &migrate_nodes &&
2072 		    rmap_item->head == stable_node)
2073 			return;
2074 		/*
2075 		 * If it's a KSM fork, allow it to go over the sharing limit
2076 		 * without warnings.
2077 		 */
2078 		if (!is_page_sharing_candidate(stable_node))
2079 			max_page_sharing_bypass = true;
2080 	}
2081 
2082 	/* We first start with searching the page inside the stable tree */
2083 	kpage = stable_tree_search(page);
2084 	if (kpage == page && rmap_item->head == stable_node) {
2085 		put_page(kpage);
2086 		return;
2087 	}
2088 
2089 	remove_rmap_item_from_tree(rmap_item);
2090 
2091 	if (kpage) {
2092 		if (PTR_ERR(kpage) == -EBUSY)
2093 			return;
2094 
2095 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2096 		if (!err) {
2097 			/*
2098 			 * The page was successfully merged:
2099 			 * add its rmap_item to the stable tree.
2100 			 */
2101 			lock_page(kpage);
2102 			stable_tree_append(rmap_item, page_stable_node(kpage),
2103 					   max_page_sharing_bypass);
2104 			unlock_page(kpage);
2105 		}
2106 		put_page(kpage);
2107 		return;
2108 	}
2109 
2110 	/*
2111 	 * If the hash value of the page has changed from the last time
2112 	 * we calculated it, this page is changing frequently: therefore we
2113 	 * don't want to insert it in the unstable tree, and we don't want
2114 	 * to waste our time searching for something identical to it there.
2115 	 */
2116 	checksum = calc_checksum(page);
2117 	if (rmap_item->oldchecksum != checksum) {
2118 		rmap_item->oldchecksum = checksum;
2119 		return;
2120 	}
2121 
2122 	/*
2123 	 * Same checksum as an empty page. We attempt to merge it with the
2124 	 * appropriate zero page if the user enabled this via sysfs.
2125 	 */
2126 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2127 		struct vm_area_struct *vma;
2128 
2129 		mmap_read_lock(mm);
2130 		vma = find_mergeable_vma(mm, rmap_item->address);
2131 		if (vma) {
2132 			err = try_to_merge_one_page(vma, page,
2133 					ZERO_PAGE(rmap_item->address));
2134 		} else {
2135 			/*
2136 			 * If the vma is out of date, we do not need to
2137 			 * continue.
2138 			 */
2139 			err = 0;
2140 		}
2141 		mmap_read_unlock(mm);
2142 		/*
2143 		 * In case of failure, the page was not really empty, so we
2144 		 * need to continue. Otherwise we're done.
2145 		 */
2146 		if (!err)
2147 			return;
2148 	}
2149 	tree_rmap_item =
2150 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2151 	if (tree_rmap_item) {
2152 		bool split;
2153 
2154 		kpage = try_to_merge_two_pages(rmap_item, page,
2155 						tree_rmap_item, tree_page);
2156 		/*
2157 		 * If both pages we tried to merge belong to the same compound
2158 		 * page, then we actually ended up increasing the reference
2159 		 * count of the same compound page twice, and split_huge_page
2160 		 * failed.
2161 		 * Here we set a flag if that happened, and we use it later to
2162 		 * try split_huge_page again. Since we call put_page right
2163 		 * afterwards, the reference count will be correct and
2164 		 * split_huge_page should succeed.
2165 		 */
2166 		split = PageTransCompound(page)
2167 			&& compound_head(page) == compound_head(tree_page);
2168 		put_page(tree_page);
2169 		if (kpage) {
2170 			/*
2171 			 * The pages were successfully merged: insert new
2172 			 * node in the stable tree and add both rmap_items.
2173 			 */
2174 			lock_page(kpage);
2175 			stable_node = stable_tree_insert(kpage);
2176 			if (stable_node) {
2177 				stable_tree_append(tree_rmap_item, stable_node,
2178 						   false);
2179 				stable_tree_append(rmap_item, stable_node,
2180 						   false);
2181 			}
2182 			unlock_page(kpage);
2183 
2184 			/*
2185 			 * If we fail to insert the page into the stable tree,
2186 			 * we will have 2 virtual addresses that are pointing
2187 			 * to a ksm page left outside the stable tree,
2188 			 * in which case we need to break_cow on both.
2189 			 */
2190 			if (!stable_node) {
2191 				break_cow(tree_rmap_item);
2192 				break_cow(rmap_item);
2193 			}
2194 		} else if (split) {
2195 			/*
2196 			 * We are here if we tried to merge two pages and
2197 			 * failed because they both belonged to the same
2198 			 * compound page. We will split the page now, but no
2199 			 * merging will take place.
2200 			 * We do not want to add the cost of a full lock; if
2201 			 * the page is locked, it is better to skip it and
2202 			 * perhaps try again later.
2203 			 */
2204 			if (!trylock_page(page))
2205 				return;
2206 			split_huge_page(page);
2207 			unlock_page(page);
2208 		}
2209 	}
2210 }
2211 
2212 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2213 					    struct rmap_item **rmap_list,
2214 					    unsigned long addr)
2215 {
2216 	struct rmap_item *rmap_item;
2217 
2218 	while (*rmap_list) {
2219 		rmap_item = *rmap_list;
2220 		if ((rmap_item->address & PAGE_MASK) == addr)
2221 			return rmap_item;
2222 		if (rmap_item->address > addr)
2223 			break;
2224 		*rmap_list = rmap_item->rmap_list;
2225 		remove_rmap_item_from_tree(rmap_item);
2226 		free_rmap_item(rmap_item);
2227 	}
2228 
2229 	rmap_item = alloc_rmap_item();
2230 	if (rmap_item) {
2231 		/* It has already been zeroed */
2232 		rmap_item->mm = mm_slot->mm;
2233 		rmap_item->address = addr;
2234 		rmap_item->rmap_list = *rmap_list;
2235 		*rmap_list = rmap_item;
2236 	}
2237 	return rmap_item;
2238 }
2239 
2240 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2241 {
2242 	struct mm_struct *mm;
2243 	struct mm_slot *slot;
2244 	struct vm_area_struct *vma;
2245 	struct rmap_item *rmap_item;
2246 	int nid;
2247 
2248 	if (list_empty(&ksm_mm_head.mm_list))
2249 		return NULL;
2250 
2251 	slot = ksm_scan.mm_slot;
2252 	if (slot == &ksm_mm_head) {
2253 		/*
2254 		 * A number of pages can hang around indefinitely on per-cpu
2255 		 * pagevecs, raised page count preventing write_protect_page
2256 		 * from merging them.  Though it doesn't really matter much,
2257 		 * it is puzzling to see some stuck in pages_volatile until
2258 		 * other activity jostles them out, and they also prevented
2259 		 * LTP's KSM test from succeeding deterministically; so drain
2260 		 * them here (here rather than on entry to ksm_do_scan(),
2261 		 * so we don't IPI too often when pages_to_scan is set low).
2262 		 */
2263 		lru_add_drain_all();
2264 
2265 		/*
2266 		 * Whereas stale stable_nodes on the stable_tree itself
2267 		 * get pruned in the regular course of stable_tree_search(),
2268 		 * those moved out to the migrate_nodes list can accumulate:
2269 		 * so prune them once before each full scan.
2270 		 */
2271 		if (!ksm_merge_across_nodes) {
2272 			struct stable_node *stable_node, *next;
2273 			struct page *page;
2274 
2275 			list_for_each_entry_safe(stable_node, next,
2276 						 &migrate_nodes, list) {
2277 				page = get_ksm_page(stable_node,
2278 						    GET_KSM_PAGE_NOLOCK);
2279 				if (page)
2280 					put_page(page);
2281 				cond_resched();
2282 			}
2283 		}
2284 
2285 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2286 			root_unstable_tree[nid] = RB_ROOT;
2287 
2288 		spin_lock(&ksm_mmlist_lock);
2289 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2290 		ksm_scan.mm_slot = slot;
2291 		spin_unlock(&ksm_mmlist_lock);
2292 		/*
2293 		 * Although we tested list_empty() above, a racing __ksm_exit
2294 		 * of the last mm on the list may have removed it since then.
2295 		 */
2296 		if (slot == &ksm_mm_head)
2297 			return NULL;
2298 next_mm:
2299 		ksm_scan.address = 0;
2300 		ksm_scan.rmap_list = &slot->rmap_list;
2301 	}
2302 
2303 	mm = slot->mm;
2304 	mmap_read_lock(mm);
2305 	if (ksm_test_exit(mm))
2306 		vma = NULL;
2307 	else
2308 		vma = find_vma(mm, ksm_scan.address);
2309 
2310 	for (; vma; vma = vma->vm_next) {
2311 		if (!(vma->vm_flags & VM_MERGEABLE))
2312 			continue;
2313 		if (ksm_scan.address < vma->vm_start)
2314 			ksm_scan.address = vma->vm_start;
2315 		if (!vma->anon_vma)
2316 			ksm_scan.address = vma->vm_end;
2317 
2318 		while (ksm_scan.address < vma->vm_end) {
2319 			if (ksm_test_exit(mm))
2320 				break;
2321 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2322 			if (IS_ERR_OR_NULL(*page) || is_zone_device_page(*page)) {
2323 				ksm_scan.address += PAGE_SIZE;
2324 				cond_resched();
2325 				continue;
2326 			}
2327 			if (PageAnon(*page)) {
2328 				flush_anon_page(vma, *page, ksm_scan.address);
2329 				flush_dcache_page(*page);
2330 				rmap_item = get_next_rmap_item(slot,
2331 					ksm_scan.rmap_list, ksm_scan.address);
2332 				if (rmap_item) {
2333 					ksm_scan.rmap_list =
2334 							&rmap_item->rmap_list;
2335 					ksm_scan.address += PAGE_SIZE;
2336 				} else
2337 					put_page(*page);
2338 				mmap_read_unlock(mm);
2339 				return rmap_item;
2340 			}
2341 			put_page(*page);
2342 			ksm_scan.address += PAGE_SIZE;
2343 			cond_resched();
2344 		}
2345 	}
2346 
2347 	if (ksm_test_exit(mm)) {
2348 		ksm_scan.address = 0;
2349 		ksm_scan.rmap_list = &slot->rmap_list;
2350 	}
2351 	/*
2352 	 * Nuke all the rmap_items that are above this current rmap:
2353 	 * because there were no VM_MERGEABLE vmas with such addresses.
2354 	 */
2355 	remove_trailing_rmap_items(ksm_scan.rmap_list);
2356 
2357 	spin_lock(&ksm_mmlist_lock);
2358 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2359 						struct mm_slot, mm_list);
2360 	if (ksm_scan.address == 0) {
2361 		/*
2362 		 * We've completed a full scan of all vmas, holding mmap_lock
2363 		 * throughout, and found no VM_MERGEABLE: so do the same as
2364 		 * __ksm_exit does to remove this mm from all our lists now.
2365 		 * This applies either when cleaning up after __ksm_exit
2366 		 * (but beware: we can reach here even before __ksm_exit),
2367 		 * or when all VM_MERGEABLE areas have been unmapped (and
2368 		 * mmap_lock then protects against race with MADV_MERGEABLE).
2369 		 */
2370 		hash_del(&slot->link);
2371 		list_del(&slot->mm_list);
2372 		spin_unlock(&ksm_mmlist_lock);
2373 
2374 		free_mm_slot(slot);
2375 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2376 		mmap_read_unlock(mm);
2377 		mmdrop(mm);
2378 	} else {
2379 		mmap_read_unlock(mm);
2380 		/*
2381 		 * mmap_read_unlock(mm) first because after
2382 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2383 		 * already have been freed under us by __ksm_exit()
2384 		 * because the "mm_slot" is still hashed and
2385 		 * ksm_scan.mm_slot doesn't point to it anymore.
2386 		 */
2387 		spin_unlock(&ksm_mmlist_lock);
2388 	}
2389 
2390 	/* Repeat until we've completed scanning the whole list */
2391 	slot = ksm_scan.mm_slot;
2392 	if (slot != &ksm_mm_head)
2393 		goto next_mm;
2394 
2395 	ksm_scan.seqnr++;
2396 	return NULL;
2397 }
2398 
2399 /**
2400  * ksm_do_scan  - the ksm scanner main worker function.
2401  * @scan_npages:  number of pages we want to scan before we return.
2402  */
2403 static void ksm_do_scan(unsigned int scan_npages)
2404 {
2405 	struct rmap_item *rmap_item;
2406 	struct page *page;
2407 
2408 	while (scan_npages-- && likely(!freezing(current))) {
2409 		cond_resched();
2410 		rmap_item = scan_get_next_rmap_item(&page);
2411 		if (!rmap_item)
2412 			return;
2413 		cmp_and_merge_page(page, rmap_item);
2414 		put_page(page);
2415 	}
2416 }
2417 
2418 static int ksmd_should_run(void)
2419 {
2420 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2421 }
2422 
2423 static int ksm_scan_thread(void *nothing)
2424 {
2425 	unsigned int sleep_ms;
2426 
2427 	set_freezable();
2428 	set_user_nice(current, 5);
2429 
2430 	while (!kthread_should_stop()) {
2431 		mutex_lock(&ksm_thread_mutex);
2432 		wait_while_offlining();
2433 		if (ksmd_should_run())
2434 			ksm_do_scan(ksm_thread_pages_to_scan);
2435 		mutex_unlock(&ksm_thread_mutex);
2436 
2437 		try_to_freeze();
2438 
2439 		if (ksmd_should_run()) {
2440 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2441 			wait_event_interruptible_timeout(ksm_iter_wait,
2442 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2443 				msecs_to_jiffies(sleep_ms));
2444 		} else {
2445 			wait_event_freezable(ksm_thread_wait,
2446 				ksmd_should_run() || kthread_should_stop());
2447 		}
2448 	}
2449 	return 0;
2450 }
2451 
2452 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2453 		unsigned long end, int advice, unsigned long *vm_flags)
2454 {
2455 	struct mm_struct *mm = vma->vm_mm;
2456 	int err;
2457 
2458 	switch (advice) {
2459 	case MADV_MERGEABLE:
2460 		/*
2461 		 * Be somewhat over-protective for now!
2462 		 */
2463 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2464 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2465 				 VM_HUGETLB | VM_MIXEDMAP))
2466 			return 0;		/* just ignore the advice */
2467 
2468 		if (vma_is_dax(vma))
2469 			return 0;
2470 
2471 #ifdef VM_SAO
2472 		if (*vm_flags & VM_SAO)
2473 			return 0;
2474 #endif
2475 #ifdef VM_SPARC_ADI
2476 		if (*vm_flags & VM_SPARC_ADI)
2477 			return 0;
2478 #endif
2479 
2480 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2481 			err = __ksm_enter(mm);
2482 			if (err)
2483 				return err;
2484 		}
2485 
2486 		*vm_flags |= VM_MERGEABLE;
2487 		break;
2488 
2489 	case MADV_UNMERGEABLE:
2490 		if (!(*vm_flags & VM_MERGEABLE))
2491 			return 0;		/* just ignore the advice */
2492 
2493 		if (vma->anon_vma) {
2494 			err = unmerge_ksm_pages(vma, start, end);
2495 			if (err)
2496 				return err;
2497 		}
2498 
2499 		*vm_flags &= ~VM_MERGEABLE;
2500 		break;
2501 	}
2502 
2503 	return 0;
2504 }
2505 EXPORT_SYMBOL_GPL(ksm_madvise);
2506 
2507 int __ksm_enter(struct mm_struct *mm)
2508 {
2509 	struct mm_slot *mm_slot;
2510 	int needs_wakeup;
2511 
2512 	mm_slot = alloc_mm_slot();
2513 	if (!mm_slot)
2514 		return -ENOMEM;
2515 
2516 	/* Check ksm_run too?  Would need tighter locking */
2517 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2518 
2519 	spin_lock(&ksm_mmlist_lock);
2520 	insert_to_mm_slots_hash(mm, mm_slot);
2521 	/*
2522 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2523 	 * insert just behind the scanning cursor, to let the area settle
2524 	 * down a little; when fork is followed by immediate exec, we don't
2525 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2526 	 *
2527 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2528 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2529 	 * missed: then we might as well insert at the end of the list.
2530 	 */
2531 	if (ksm_run & KSM_RUN_UNMERGE)
2532 		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2533 	else
2534 		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2535 	spin_unlock(&ksm_mmlist_lock);
2536 
2537 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2538 	mmgrab(mm);
2539 
2540 	if (needs_wakeup)
2541 		wake_up_interruptible(&ksm_thread_wait);
2542 
2543 	return 0;
2544 }
2545 
2546 void __ksm_exit(struct mm_struct *mm)
2547 {
2548 	struct mm_slot *mm_slot;
2549 	int easy_to_free = 0;
2550 
2551 	/*
2552 	 * This process is exiting: if it's straightforward (as is the
2553 	 * case when ksmd was never running), free mm_slot immediately.
2554 	 * But if it's at the cursor or has rmap_items linked to it, use
2555 	 * mmap_lock to synchronize with any break_cows before pagetables
2556 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2557 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2558 	 */
2559 
2560 	spin_lock(&ksm_mmlist_lock);
2561 	mm_slot = get_mm_slot(mm);
2562 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2563 		if (!mm_slot->rmap_list) {
2564 			hash_del(&mm_slot->link);
2565 			list_del(&mm_slot->mm_list);
2566 			easy_to_free = 1;
2567 		} else {
2568 			list_move(&mm_slot->mm_list,
2569 				  &ksm_scan.mm_slot->mm_list);
2570 		}
2571 	}
2572 	spin_unlock(&ksm_mmlist_lock);
2573 
2574 	if (easy_to_free) {
2575 		free_mm_slot(mm_slot);
2576 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2577 		mmdrop(mm);
2578 	} else if (mm_slot) {
2579 		mmap_write_lock(mm);
2580 		mmap_write_unlock(mm);
2581 	}
2582 }
2583 
2584 struct page *ksm_might_need_to_copy(struct page *page,
2585 			struct vm_area_struct *vma, unsigned long address)
2586 {
2587 	struct folio *folio = page_folio(page);
2588 	struct anon_vma *anon_vma = folio_anon_vma(folio);
2589 	struct page *new_page;
2590 
2591 	if (PageKsm(page)) {
2592 		if (page_stable_node(page) &&
2593 		    !(ksm_run & KSM_RUN_UNMERGE))
2594 			return page;	/* no need to copy it */
2595 	} else if (!anon_vma) {
2596 		return page;		/* no need to copy it */
2597 	} else if (page->index == linear_page_index(vma, address) &&
2598 			anon_vma->root == vma->anon_vma->root) {
2599 		return page;		/* still no need to copy it */
2600 	}
2601 	if (!PageUptodate(page))
2602 		return page;		/* let do_swap_page report the error */
2603 
2604 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2605 	if (new_page &&
2606 	    mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2607 		put_page(new_page);
2608 		new_page = NULL;
2609 	}
2610 	if (new_page) {
2611 		copy_user_highpage(new_page, page, address, vma);
2612 
2613 		SetPageDirty(new_page);
2614 		__SetPageUptodate(new_page);
2615 		__SetPageLocked(new_page);
2616 #ifdef CONFIG_SWAP
2617 		count_vm_event(KSM_SWPIN_COPY);
2618 #endif
2619 	}
2620 
2621 	return new_page;
2622 }
2623 
2624 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2625 {
2626 	struct stable_node *stable_node;
2627 	struct rmap_item *rmap_item;
2628 	int search_new_forks = 0;
2629 
2630 	VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2631 
2632 	/*
2633 	 * Rely on the page lock to protect against concurrent modifications
2634 	 * to that page's node of the stable tree.
2635 	 */
2636 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2637 
2638 	stable_node = folio_stable_node(folio);
2639 	if (!stable_node)
2640 		return;
2641 again:
2642 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2643 		struct anon_vma *anon_vma = rmap_item->anon_vma;
2644 		struct anon_vma_chain *vmac;
2645 		struct vm_area_struct *vma;
2646 
2647 		cond_resched();
2648 		if (!anon_vma_trylock_read(anon_vma)) {
2649 			if (rwc->try_lock) {
2650 				rwc->contended = true;
2651 				return;
2652 			}
2653 			anon_vma_lock_read(anon_vma);
2654 		}
2655 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2656 					       0, ULONG_MAX) {
2657 			unsigned long addr;
2658 
2659 			cond_resched();
2660 			vma = vmac->vma;
2661 
2662 			/* Ignore the stable/unstable/sqnr flags */
2663 			addr = rmap_item->address & PAGE_MASK;
2664 
2665 			if (addr < vma->vm_start || addr >= vma->vm_end)
2666 				continue;
2667 			/*
2668 			 * Initially we examine only the vma which covers this
2669 			 * rmap_item; but later, if there is still work to do,
2670 			 * we examine covering vmas in other mms: in case they
2671 			 * were forked from the original since ksmd passed.
2672 			 */
2673 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2674 				continue;
2675 
2676 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2677 				continue;
2678 
2679 			if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2680 				anon_vma_unlock_read(anon_vma);
2681 				return;
2682 			}
2683 			if (rwc->done && rwc->done(folio)) {
2684 				anon_vma_unlock_read(anon_vma);
2685 				return;
2686 			}
2687 		}
2688 		anon_vma_unlock_read(anon_vma);
2689 	}
2690 	if (!search_new_forks++)
2691 		goto again;
2692 }
2693 
2694 #ifdef CONFIG_MIGRATION
2695 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2696 {
2697 	struct stable_node *stable_node;
2698 
2699 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2700 	VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2701 	VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2702 
2703 	stable_node = folio_stable_node(folio);
2704 	if (stable_node) {
2705 		VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2706 		stable_node->kpfn = folio_pfn(newfolio);
2707 		/*
2708 		 * newfolio->mapping was set in advance; now we need smp_wmb()
2709 		 * to make sure that the new stable_node->kpfn is visible
2710 		 * to get_ksm_page() before it can see that folio->mapping
2711 		 * has gone stale (or that folio_test_swapcache has been cleared).
2712 		 */
2713 		smp_wmb();
2714 		set_page_stable_node(&folio->page, NULL);
2715 	}
2716 }
2717 #endif /* CONFIG_MIGRATION */
2718 
2719 #ifdef CONFIG_MEMORY_HOTREMOVE
2720 static void wait_while_offlining(void)
2721 {
2722 	while (ksm_run & KSM_RUN_OFFLINE) {
2723 		mutex_unlock(&ksm_thread_mutex);
2724 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2725 			    TASK_UNINTERRUPTIBLE);
2726 		mutex_lock(&ksm_thread_mutex);
2727 	}
2728 }
2729 
2730 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2731 					 unsigned long start_pfn,
2732 					 unsigned long end_pfn)
2733 {
2734 	if (stable_node->kpfn >= start_pfn &&
2735 	    stable_node->kpfn < end_pfn) {
2736 		/*
2737 		 * Don't get_ksm_page, page has already gone:
2738 		 * which is why we keep kpfn instead of page*
2739 		 */
2740 		remove_node_from_stable_tree(stable_node);
2741 		return true;
2742 	}
2743 	return false;
2744 }
2745 
2746 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2747 					   unsigned long start_pfn,
2748 					   unsigned long end_pfn,
2749 					   struct rb_root *root)
2750 {
2751 	struct stable_node *dup;
2752 	struct hlist_node *hlist_safe;
2753 
2754 	if (!is_stable_node_chain(stable_node)) {
2755 		VM_BUG_ON(is_stable_node_dup(stable_node));
2756 		return stable_node_dup_remove_range(stable_node, start_pfn,
2757 						    end_pfn);
2758 	}
2759 
2760 	hlist_for_each_entry_safe(dup, hlist_safe,
2761 				  &stable_node->hlist, hlist_dup) {
2762 		VM_BUG_ON(!is_stable_node_dup(dup));
2763 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2764 	}
2765 	if (hlist_empty(&stable_node->hlist)) {
2766 		free_stable_node_chain(stable_node, root);
2767 		return true; /* notify caller that tree was rebalanced */
2768 	} else
2769 		return false;
2770 }
2771 
2772 static void ksm_check_stable_tree(unsigned long start_pfn,
2773 				  unsigned long end_pfn)
2774 {
2775 	struct stable_node *stable_node, *next;
2776 	struct rb_node *node;
2777 	int nid;
2778 
2779 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2780 		node = rb_first(root_stable_tree + nid);
2781 		while (node) {
2782 			stable_node = rb_entry(node, struct stable_node, node);
2783 			if (stable_node_chain_remove_range(stable_node,
2784 							   start_pfn, end_pfn,
2785 							   root_stable_tree +
2786 							   nid))
2787 				node = rb_first(root_stable_tree + nid);
2788 			else
2789 				node = rb_next(node);
2790 			cond_resched();
2791 		}
2792 	}
2793 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2794 		if (stable_node->kpfn >= start_pfn &&
2795 		    stable_node->kpfn < end_pfn)
2796 			remove_node_from_stable_tree(stable_node);
2797 		cond_resched();
2798 	}
2799 }
2800 
2801 static int ksm_memory_callback(struct notifier_block *self,
2802 			       unsigned long action, void *arg)
2803 {
2804 	struct memory_notify *mn = arg;
2805 
2806 	switch (action) {
2807 	case MEM_GOING_OFFLINE:
2808 		/*
2809 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2810 		 * and remove_all_stable_nodes() while memory is going offline:
2811 		 * it is unsafe for them to touch the stable tree at this time.
2812 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2813 		 * which do not need the ksm_thread_mutex are all safe.
2814 		 */
2815 		mutex_lock(&ksm_thread_mutex);
2816 		ksm_run |= KSM_RUN_OFFLINE;
2817 		mutex_unlock(&ksm_thread_mutex);
2818 		break;
2819 
2820 	case MEM_OFFLINE:
2821 		/*
2822 		 * Most of the work is done by page migration; but there might
2823 		 * be a few stable_nodes left over, still pointing to struct
2824 		 * pages which have been offlined: prune those from the tree,
2825 		 * otherwise get_ksm_page() might later try to access a
2826 		 * non-existent struct page.
2827 		 */
2828 		ksm_check_stable_tree(mn->start_pfn,
2829 				      mn->start_pfn + mn->nr_pages);
2830 		fallthrough;
2831 	case MEM_CANCEL_OFFLINE:
2832 		mutex_lock(&ksm_thread_mutex);
2833 		ksm_run &= ~KSM_RUN_OFFLINE;
2834 		mutex_unlock(&ksm_thread_mutex);
2835 
2836 		smp_mb();	/* wake_up_bit advises this */
2837 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2838 		break;
2839 	}
2840 	return NOTIFY_OK;
2841 }
2842 #else
2843 static void wait_while_offlining(void)
2844 {
2845 }
2846 #endif /* CONFIG_MEMORY_HOTREMOVE */
2847 
2848 #ifdef CONFIG_SYSFS
2849 /*
2850  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2851  */
2852 
2853 #define KSM_ATTR_RO(_name) \
2854 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2855 #define KSM_ATTR(_name) \
2856 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
2857 
2858 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2859 				    struct kobj_attribute *attr, char *buf)
2860 {
2861 	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2862 }
2863 
2864 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2865 				     struct kobj_attribute *attr,
2866 				     const char *buf, size_t count)
2867 {
2868 	unsigned int msecs;
2869 	int err;
2870 
2871 	err = kstrtouint(buf, 10, &msecs);
2872 	if (err)
2873 		return -EINVAL;
2874 
2875 	ksm_thread_sleep_millisecs = msecs;
2876 	wake_up_interruptible(&ksm_iter_wait);
2877 
2878 	return count;
2879 }
2880 KSM_ATTR(sleep_millisecs);
2881 
2882 static ssize_t pages_to_scan_show(struct kobject *kobj,
2883 				  struct kobj_attribute *attr, char *buf)
2884 {
2885 	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2886 }
2887 
2888 static ssize_t pages_to_scan_store(struct kobject *kobj,
2889 				   struct kobj_attribute *attr,
2890 				   const char *buf, size_t count)
2891 {
2892 	unsigned int nr_pages;
2893 	int err;
2894 
2895 	err = kstrtouint(buf, 10, &nr_pages);
2896 	if (err)
2897 		return -EINVAL;
2898 
2899 	ksm_thread_pages_to_scan = nr_pages;
2900 
2901 	return count;
2902 }
2903 KSM_ATTR(pages_to_scan);
2904 
2905 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2906 			char *buf)
2907 {
2908 	return sysfs_emit(buf, "%lu\n", ksm_run);
2909 }
2910 
2911 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2912 			 const char *buf, size_t count)
2913 {
2914 	unsigned int flags;
2915 	int err;
2916 
2917 	err = kstrtouint(buf, 10, &flags);
2918 	if (err)
2919 		return -EINVAL;
2920 	if (flags > KSM_RUN_UNMERGE)
2921 		return -EINVAL;
2922 
2923 	/*
2924 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2925 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2926 	 * breaking COW to free the pages_shared (but leaves mm_slots
2927 	 * on the list for when ksmd may be set running again).
2928 	 */
2929 
2930 	mutex_lock(&ksm_thread_mutex);
2931 	wait_while_offlining();
2932 	if (ksm_run != flags) {
2933 		ksm_run = flags;
2934 		if (flags & KSM_RUN_UNMERGE) {
2935 			set_current_oom_origin();
2936 			err = unmerge_and_remove_all_rmap_items();
2937 			clear_current_oom_origin();
2938 			if (err) {
2939 				ksm_run = KSM_RUN_STOP;
2940 				count = err;
2941 			}
2942 		}
2943 	}
2944 	mutex_unlock(&ksm_thread_mutex);
2945 
2946 	if (flags & KSM_RUN_MERGE)
2947 		wake_up_interruptible(&ksm_thread_wait);
2948 
2949 	return count;
2950 }
2951 KSM_ATTR(run);
2952 
2953 #ifdef CONFIG_NUMA
2954 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2955 				       struct kobj_attribute *attr, char *buf)
2956 {
2957 	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2958 }
2959 
2960 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2961 				   struct kobj_attribute *attr,
2962 				   const char *buf, size_t count)
2963 {
2964 	int err;
2965 	unsigned long knob;
2966 
2967 	err = kstrtoul(buf, 10, &knob);
2968 	if (err)
2969 		return err;
2970 	if (knob > 1)
2971 		return -EINVAL;
2972 
2973 	mutex_lock(&ksm_thread_mutex);
2974 	wait_while_offlining();
2975 	if (ksm_merge_across_nodes != knob) {
2976 		if (ksm_pages_shared || remove_all_stable_nodes())
2977 			err = -EBUSY;
2978 		else if (root_stable_tree == one_stable_tree) {
2979 			struct rb_root *buf;
2980 			/*
2981 			 * This is the first time that we switch away from the
2982 			 * default of merging across nodes: must now allocate
2983 			 * a buffer to hold as many roots as may be needed.
2984 			 * Allocate stable and unstable together:
2985 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2986 			 */
2987 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2988 				      GFP_KERNEL);
2989 			/* Let us assume that RB_ROOT is NULL is zero */
2990 			if (!buf)
2991 				err = -ENOMEM;
2992 			else {
2993 				root_stable_tree = buf;
2994 				root_unstable_tree = buf + nr_node_ids;
2995 				/* Stable tree is empty but not the unstable */
2996 				root_unstable_tree[0] = one_unstable_tree[0];
2997 			}
2998 		}
2999 		if (!err) {
3000 			ksm_merge_across_nodes = knob;
3001 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3002 		}
3003 	}
3004 	mutex_unlock(&ksm_thread_mutex);
3005 
3006 	return err ? err : count;
3007 }
3008 KSM_ATTR(merge_across_nodes);
3009 #endif
3010 
3011 static ssize_t use_zero_pages_show(struct kobject *kobj,
3012 				   struct kobj_attribute *attr, char *buf)
3013 {
3014 	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3015 }
3016 static ssize_t use_zero_pages_store(struct kobject *kobj,
3017 				   struct kobj_attribute *attr,
3018 				   const char *buf, size_t count)
3019 {
3020 	int err;
3021 	bool value;
3022 
3023 	err = kstrtobool(buf, &value);
3024 	if (err)
3025 		return -EINVAL;
3026 
3027 	ksm_use_zero_pages = value;
3028 
3029 	return count;
3030 }
3031 KSM_ATTR(use_zero_pages);
3032 
3033 static ssize_t max_page_sharing_show(struct kobject *kobj,
3034 				     struct kobj_attribute *attr, char *buf)
3035 {
3036 	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3037 }
3038 
3039 static ssize_t max_page_sharing_store(struct kobject *kobj,
3040 				      struct kobj_attribute *attr,
3041 				      const char *buf, size_t count)
3042 {
3043 	int err;
3044 	int knob;
3045 
3046 	err = kstrtoint(buf, 10, &knob);
3047 	if (err)
3048 		return err;
3049 	/*
3050 	 * When a KSM page is created it is shared by 2 mappings. This
3051 	 * being a signed comparison, it implicitly verifies it's not
3052 	 * negative.
3053 	 */
3054 	if (knob < 2)
3055 		return -EINVAL;
3056 
3057 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3058 		return count;
3059 
3060 	mutex_lock(&ksm_thread_mutex);
3061 	wait_while_offlining();
3062 	if (ksm_max_page_sharing != knob) {
3063 		if (ksm_pages_shared || remove_all_stable_nodes())
3064 			err = -EBUSY;
3065 		else
3066 			ksm_max_page_sharing = knob;
3067 	}
3068 	mutex_unlock(&ksm_thread_mutex);
3069 
3070 	return err ? err : count;
3071 }
3072 KSM_ATTR(max_page_sharing);
3073 
3074 static ssize_t pages_shared_show(struct kobject *kobj,
3075 				 struct kobj_attribute *attr, char *buf)
3076 {
3077 	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3078 }
3079 KSM_ATTR_RO(pages_shared);
3080 
3081 static ssize_t pages_sharing_show(struct kobject *kobj,
3082 				  struct kobj_attribute *attr, char *buf)
3083 {
3084 	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3085 }
3086 KSM_ATTR_RO(pages_sharing);
3087 
3088 static ssize_t pages_unshared_show(struct kobject *kobj,
3089 				   struct kobj_attribute *attr, char *buf)
3090 {
3091 	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3092 }
3093 KSM_ATTR_RO(pages_unshared);
3094 
3095 static ssize_t pages_volatile_show(struct kobject *kobj,
3096 				   struct kobj_attribute *attr, char *buf)
3097 {
3098 	long ksm_pages_volatile;
3099 
3100 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3101 				- ksm_pages_sharing - ksm_pages_unshared;
3102 	/*
3103 	 * It was not worth any locking to calculate that statistic,
3104 	 * but it might therefore sometimes be negative: conceal that.
3105 	 */
3106 	if (ksm_pages_volatile < 0)
3107 		ksm_pages_volatile = 0;
3108 	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3109 }
3110 KSM_ATTR_RO(pages_volatile);
3111 
3112 static ssize_t stable_node_dups_show(struct kobject *kobj,
3113 				     struct kobj_attribute *attr, char *buf)
3114 {
3115 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3116 }
3117 KSM_ATTR_RO(stable_node_dups);
3118 
3119 static ssize_t stable_node_chains_show(struct kobject *kobj,
3120 				       struct kobj_attribute *attr, char *buf)
3121 {
3122 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3123 }
3124 KSM_ATTR_RO(stable_node_chains);
3125 
3126 static ssize_t
3127 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3128 					struct kobj_attribute *attr,
3129 					char *buf)
3130 {
3131 	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3132 }
3133 
3134 static ssize_t
3135 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3136 					 struct kobj_attribute *attr,
3137 					 const char *buf, size_t count)
3138 {
3139 	unsigned int msecs;
3140 	int err;
3141 
3142 	err = kstrtouint(buf, 10, &msecs);
3143 	if (err)
3144 		return -EINVAL;
3145 
3146 	ksm_stable_node_chains_prune_millisecs = msecs;
3147 
3148 	return count;
3149 }
3150 KSM_ATTR(stable_node_chains_prune_millisecs);
3151 
3152 static ssize_t full_scans_show(struct kobject *kobj,
3153 			       struct kobj_attribute *attr, char *buf)
3154 {
3155 	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3156 }
3157 KSM_ATTR_RO(full_scans);
3158 
3159 static struct attribute *ksm_attrs[] = {
3160 	&sleep_millisecs_attr.attr,
3161 	&pages_to_scan_attr.attr,
3162 	&run_attr.attr,
3163 	&pages_shared_attr.attr,
3164 	&pages_sharing_attr.attr,
3165 	&pages_unshared_attr.attr,
3166 	&pages_volatile_attr.attr,
3167 	&full_scans_attr.attr,
3168 #ifdef CONFIG_NUMA
3169 	&merge_across_nodes_attr.attr,
3170 #endif
3171 	&max_page_sharing_attr.attr,
3172 	&stable_node_chains_attr.attr,
3173 	&stable_node_dups_attr.attr,
3174 	&stable_node_chains_prune_millisecs_attr.attr,
3175 	&use_zero_pages_attr.attr,
3176 	NULL,
3177 };
3178 
3179 static const struct attribute_group ksm_attr_group = {
3180 	.attrs = ksm_attrs,
3181 	.name = "ksm",
3182 };
3183 #endif /* CONFIG_SYSFS */
3184 
3185 static int __init ksm_init(void)
3186 {
3187 	struct task_struct *ksm_thread;
3188 	int err;
3189 
3190 	/* The correct value depends on page size and endianness */
3191 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3192 	/* Default to false for backwards compatibility */
3193 	ksm_use_zero_pages = false;
3194 
3195 	err = ksm_slab_init();
3196 	if (err)
3197 		goto out;
3198 
3199 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3200 	if (IS_ERR(ksm_thread)) {
3201 		pr_err("ksm: creating kthread failed\n");
3202 		err = PTR_ERR(ksm_thread);
3203 		goto out_free;
3204 	}
3205 
3206 #ifdef CONFIG_SYSFS
3207 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3208 	if (err) {
3209 		pr_err("ksm: register sysfs failed\n");
3210 		kthread_stop(ksm_thread);
3211 		goto out_free;
3212 	}
3213 #else
3214 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3215 
3216 #endif /* CONFIG_SYSFS */
3217 
3218 #ifdef CONFIG_MEMORY_HOTREMOVE
3219 	/* There is no significance to this priority 100 */
3220 	hotplug_memory_notifier(ksm_memory_callback, 100);
3221 #endif
3222 	return 0;
3223 
3224 out_free:
3225 	ksm_slab_free();
3226 out:
3227 	return err;
3228 }
3229 subsys_initcall(ksm_init);
3230