1 /* 2 * Memory merging support. 3 * 4 * This code enables dynamic sharing of identical pages found in different 5 * memory areas, even if they are not shared by fork() 6 * 7 * Copyright (C) 2008-2009 Red Hat, Inc. 8 * Authors: 9 * Izik Eidus 10 * Andrea Arcangeli 11 * Chris Wright 12 * Hugh Dickins 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/rwsem.h> 23 #include <linux/pagemap.h> 24 #include <linux/rmap.h> 25 #include <linux/spinlock.h> 26 #include <linux/jhash.h> 27 #include <linux/delay.h> 28 #include <linux/kthread.h> 29 #include <linux/wait.h> 30 #include <linux/slab.h> 31 #include <linux/rbtree.h> 32 #include <linux/memory.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/swap.h> 35 #include <linux/ksm.h> 36 #include <linux/hashtable.h> 37 #include <linux/freezer.h> 38 #include <linux/oom.h> 39 #include <linux/numa.h> 40 41 #include <asm/tlbflush.h> 42 #include "internal.h" 43 44 #ifdef CONFIG_NUMA 45 #define NUMA(x) (x) 46 #define DO_NUMA(x) do { (x); } while (0) 47 #else 48 #define NUMA(x) (0) 49 #define DO_NUMA(x) do { } while (0) 50 #endif 51 52 /* 53 * A few notes about the KSM scanning process, 54 * to make it easier to understand the data structures below: 55 * 56 * In order to reduce excessive scanning, KSM sorts the memory pages by their 57 * contents into a data structure that holds pointers to the pages' locations. 58 * 59 * Since the contents of the pages may change at any moment, KSM cannot just 60 * insert the pages into a normal sorted tree and expect it to find anything. 61 * Therefore KSM uses two data structures - the stable and the unstable tree. 62 * 63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 64 * by their contents. Because each such page is write-protected, searching on 65 * this tree is fully assured to be working (except when pages are unmapped), 66 * and therefore this tree is called the stable tree. 67 * 68 * In addition to the stable tree, KSM uses a second data structure called the 69 * unstable tree: this tree holds pointers to pages which have been found to 70 * be "unchanged for a period of time". The unstable tree sorts these pages 71 * by their contents, but since they are not write-protected, KSM cannot rely 72 * upon the unstable tree to work correctly - the unstable tree is liable to 73 * be corrupted as its contents are modified, and so it is called unstable. 74 * 75 * KSM solves this problem by several techniques: 76 * 77 * 1) The unstable tree is flushed every time KSM completes scanning all 78 * memory areas, and then the tree is rebuilt again from the beginning. 79 * 2) KSM will only insert into the unstable tree, pages whose hash value 80 * has not changed since the previous scan of all memory areas. 81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 82 * colors of the nodes and not on their contents, assuring that even when 83 * the tree gets "corrupted" it won't get out of balance, so scanning time 84 * remains the same (also, searching and inserting nodes in an rbtree uses 85 * the same algorithm, so we have no overhead when we flush and rebuild). 86 * 4) KSM never flushes the stable tree, which means that even if it were to 87 * take 10 attempts to find a page in the unstable tree, once it is found, 88 * it is secured in the stable tree. (When we scan a new page, we first 89 * compare it against the stable tree, and then against the unstable tree.) 90 * 91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 92 * stable trees and multiple unstable trees: one of each for each NUMA node. 93 */ 94 95 /** 96 * struct mm_slot - ksm information per mm that is being scanned 97 * @link: link to the mm_slots hash list 98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 100 * @mm: the mm that this information is valid for 101 */ 102 struct mm_slot { 103 struct hlist_node link; 104 struct list_head mm_list; 105 struct rmap_item *rmap_list; 106 struct mm_struct *mm; 107 }; 108 109 /** 110 * struct ksm_scan - cursor for scanning 111 * @mm_slot: the current mm_slot we are scanning 112 * @address: the next address inside that to be scanned 113 * @rmap_list: link to the next rmap to be scanned in the rmap_list 114 * @seqnr: count of completed full scans (needed when removing unstable node) 115 * 116 * There is only the one ksm_scan instance of this cursor structure. 117 */ 118 struct ksm_scan { 119 struct mm_slot *mm_slot; 120 unsigned long address; 121 struct rmap_item **rmap_list; 122 unsigned long seqnr; 123 }; 124 125 /** 126 * struct stable_node - node of the stable rbtree 127 * @node: rb node of this ksm page in the stable tree 128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 129 * @list: linked into migrate_nodes, pending placement in the proper node tree 130 * @hlist: hlist head of rmap_items using this ksm page 131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 133 */ 134 struct stable_node { 135 union { 136 struct rb_node node; /* when node of stable tree */ 137 struct { /* when listed for migration */ 138 struct list_head *head; 139 struct list_head list; 140 }; 141 }; 142 struct hlist_head hlist; 143 unsigned long kpfn; 144 #ifdef CONFIG_NUMA 145 int nid; 146 #endif 147 }; 148 149 /** 150 * struct rmap_item - reverse mapping item for virtual addresses 151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 153 * @nid: NUMA node id of unstable tree in which linked (may not match page) 154 * @mm: the memory structure this rmap_item is pointing into 155 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 156 * @oldchecksum: previous checksum of the page at that virtual address 157 * @node: rb node of this rmap_item in the unstable tree 158 * @head: pointer to stable_node heading this list in the stable tree 159 * @hlist: link into hlist of rmap_items hanging off that stable_node 160 */ 161 struct rmap_item { 162 struct rmap_item *rmap_list; 163 union { 164 struct anon_vma *anon_vma; /* when stable */ 165 #ifdef CONFIG_NUMA 166 int nid; /* when node of unstable tree */ 167 #endif 168 }; 169 struct mm_struct *mm; 170 unsigned long address; /* + low bits used for flags below */ 171 unsigned int oldchecksum; /* when unstable */ 172 union { 173 struct rb_node node; /* when node of unstable tree */ 174 struct { /* when listed from stable tree */ 175 struct stable_node *head; 176 struct hlist_node hlist; 177 }; 178 }; 179 }; 180 181 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 182 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 183 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 184 185 /* The stable and unstable tree heads */ 186 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 187 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 188 static struct rb_root *root_stable_tree = one_stable_tree; 189 static struct rb_root *root_unstable_tree = one_unstable_tree; 190 191 /* Recently migrated nodes of stable tree, pending proper placement */ 192 static LIST_HEAD(migrate_nodes); 193 194 #define MM_SLOTS_HASH_BITS 10 195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 196 197 static struct mm_slot ksm_mm_head = { 198 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 199 }; 200 static struct ksm_scan ksm_scan = { 201 .mm_slot = &ksm_mm_head, 202 }; 203 204 static struct kmem_cache *rmap_item_cache; 205 static struct kmem_cache *stable_node_cache; 206 static struct kmem_cache *mm_slot_cache; 207 208 /* The number of nodes in the stable tree */ 209 static unsigned long ksm_pages_shared; 210 211 /* The number of page slots additionally sharing those nodes */ 212 static unsigned long ksm_pages_sharing; 213 214 /* The number of nodes in the unstable tree */ 215 static unsigned long ksm_pages_unshared; 216 217 /* The number of rmap_items in use: to calculate pages_volatile */ 218 static unsigned long ksm_rmap_items; 219 220 /* Number of pages ksmd should scan in one batch */ 221 static unsigned int ksm_thread_pages_to_scan = 100; 222 223 /* Milliseconds ksmd should sleep between batches */ 224 static unsigned int ksm_thread_sleep_millisecs = 20; 225 226 #ifdef CONFIG_NUMA 227 /* Zeroed when merging across nodes is not allowed */ 228 static unsigned int ksm_merge_across_nodes = 1; 229 static int ksm_nr_node_ids = 1; 230 #else 231 #define ksm_merge_across_nodes 1U 232 #define ksm_nr_node_ids 1 233 #endif 234 235 #define KSM_RUN_STOP 0 236 #define KSM_RUN_MERGE 1 237 #define KSM_RUN_UNMERGE 2 238 #define KSM_RUN_OFFLINE 4 239 static unsigned long ksm_run = KSM_RUN_STOP; 240 static void wait_while_offlining(void); 241 242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 243 static DEFINE_MUTEX(ksm_thread_mutex); 244 static DEFINE_SPINLOCK(ksm_mmlist_lock); 245 246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 247 sizeof(struct __struct), __alignof__(struct __struct),\ 248 (__flags), NULL) 249 250 static int __init ksm_slab_init(void) 251 { 252 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 253 if (!rmap_item_cache) 254 goto out; 255 256 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 257 if (!stable_node_cache) 258 goto out_free1; 259 260 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 261 if (!mm_slot_cache) 262 goto out_free2; 263 264 return 0; 265 266 out_free2: 267 kmem_cache_destroy(stable_node_cache); 268 out_free1: 269 kmem_cache_destroy(rmap_item_cache); 270 out: 271 return -ENOMEM; 272 } 273 274 static void __init ksm_slab_free(void) 275 { 276 kmem_cache_destroy(mm_slot_cache); 277 kmem_cache_destroy(stable_node_cache); 278 kmem_cache_destroy(rmap_item_cache); 279 mm_slot_cache = NULL; 280 } 281 282 static inline struct rmap_item *alloc_rmap_item(void) 283 { 284 struct rmap_item *rmap_item; 285 286 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL); 287 if (rmap_item) 288 ksm_rmap_items++; 289 return rmap_item; 290 } 291 292 static inline void free_rmap_item(struct rmap_item *rmap_item) 293 { 294 ksm_rmap_items--; 295 rmap_item->mm = NULL; /* debug safety */ 296 kmem_cache_free(rmap_item_cache, rmap_item); 297 } 298 299 static inline struct stable_node *alloc_stable_node(void) 300 { 301 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL); 302 } 303 304 static inline void free_stable_node(struct stable_node *stable_node) 305 { 306 kmem_cache_free(stable_node_cache, stable_node); 307 } 308 309 static inline struct mm_slot *alloc_mm_slot(void) 310 { 311 if (!mm_slot_cache) /* initialization failed */ 312 return NULL; 313 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 314 } 315 316 static inline void free_mm_slot(struct mm_slot *mm_slot) 317 { 318 kmem_cache_free(mm_slot_cache, mm_slot); 319 } 320 321 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 322 { 323 struct mm_slot *slot; 324 325 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 326 if (slot->mm == mm) 327 return slot; 328 329 return NULL; 330 } 331 332 static void insert_to_mm_slots_hash(struct mm_struct *mm, 333 struct mm_slot *mm_slot) 334 { 335 mm_slot->mm = mm; 336 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 337 } 338 339 /* 340 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 341 * page tables after it has passed through ksm_exit() - which, if necessary, 342 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set 343 * a special flag: they can just back out as soon as mm_users goes to zero. 344 * ksm_test_exit() is used throughout to make this test for exit: in some 345 * places for correctness, in some places just to avoid unnecessary work. 346 */ 347 static inline bool ksm_test_exit(struct mm_struct *mm) 348 { 349 return atomic_read(&mm->mm_users) == 0; 350 } 351 352 /* 353 * We use break_ksm to break COW on a ksm page: it's a stripped down 354 * 355 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1) 356 * put_page(page); 357 * 358 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 359 * in case the application has unmapped and remapped mm,addr meanwhile. 360 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 361 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. 362 * 363 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 364 * of the process that owns 'vma'. We also do not want to enforce 365 * protection keys here anyway. 366 */ 367 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 368 { 369 struct page *page; 370 int ret = 0; 371 372 do { 373 cond_resched(); 374 page = follow_page(vma, addr, 375 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 376 if (IS_ERR_OR_NULL(page)) 377 break; 378 if (PageKsm(page)) 379 ret = handle_mm_fault(vma->vm_mm, vma, addr, 380 FAULT_FLAG_WRITE | 381 FAULT_FLAG_REMOTE); 382 else 383 ret = VM_FAULT_WRITE; 384 put_page(page); 385 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 386 /* 387 * We must loop because handle_mm_fault() may back out if there's 388 * any difficulty e.g. if pte accessed bit gets updated concurrently. 389 * 390 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 391 * COW has been broken, even if the vma does not permit VM_WRITE; 392 * but note that a concurrent fault might break PageKsm for us. 393 * 394 * VM_FAULT_SIGBUS could occur if we race with truncation of the 395 * backing file, which also invalidates anonymous pages: that's 396 * okay, that truncation will have unmapped the PageKsm for us. 397 * 398 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 399 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 400 * current task has TIF_MEMDIE set, and will be OOM killed on return 401 * to user; and ksmd, having no mm, would never be chosen for that. 402 * 403 * But if the mm is in a limited mem_cgroup, then the fault may fail 404 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 405 * even ksmd can fail in this way - though it's usually breaking ksm 406 * just to undo a merge it made a moment before, so unlikely to oom. 407 * 408 * That's a pity: we might therefore have more kernel pages allocated 409 * than we're counting as nodes in the stable tree; but ksm_do_scan 410 * will retry to break_cow on each pass, so should recover the page 411 * in due course. The important thing is to not let VM_MERGEABLE 412 * be cleared while any such pages might remain in the area. 413 */ 414 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 415 } 416 417 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 418 unsigned long addr) 419 { 420 struct vm_area_struct *vma; 421 if (ksm_test_exit(mm)) 422 return NULL; 423 vma = find_vma(mm, addr); 424 if (!vma || vma->vm_start > addr) 425 return NULL; 426 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 427 return NULL; 428 return vma; 429 } 430 431 static void break_cow(struct rmap_item *rmap_item) 432 { 433 struct mm_struct *mm = rmap_item->mm; 434 unsigned long addr = rmap_item->address; 435 struct vm_area_struct *vma; 436 437 /* 438 * It is not an accident that whenever we want to break COW 439 * to undo, we also need to drop a reference to the anon_vma. 440 */ 441 put_anon_vma(rmap_item->anon_vma); 442 443 down_read(&mm->mmap_sem); 444 vma = find_mergeable_vma(mm, addr); 445 if (vma) 446 break_ksm(vma, addr); 447 up_read(&mm->mmap_sem); 448 } 449 450 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 451 { 452 struct mm_struct *mm = rmap_item->mm; 453 unsigned long addr = rmap_item->address; 454 struct vm_area_struct *vma; 455 struct page *page; 456 457 down_read(&mm->mmap_sem); 458 vma = find_mergeable_vma(mm, addr); 459 if (!vma) 460 goto out; 461 462 page = follow_page(vma, addr, FOLL_GET); 463 if (IS_ERR_OR_NULL(page)) 464 goto out; 465 if (PageAnon(page)) { 466 flush_anon_page(vma, page, addr); 467 flush_dcache_page(page); 468 } else { 469 put_page(page); 470 out: 471 page = NULL; 472 } 473 up_read(&mm->mmap_sem); 474 return page; 475 } 476 477 /* 478 * This helper is used for getting right index into array of tree roots. 479 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 480 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 481 * every node has its own stable and unstable tree. 482 */ 483 static inline int get_kpfn_nid(unsigned long kpfn) 484 { 485 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 486 } 487 488 static void remove_node_from_stable_tree(struct stable_node *stable_node) 489 { 490 struct rmap_item *rmap_item; 491 492 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 493 if (rmap_item->hlist.next) 494 ksm_pages_sharing--; 495 else 496 ksm_pages_shared--; 497 put_anon_vma(rmap_item->anon_vma); 498 rmap_item->address &= PAGE_MASK; 499 cond_resched(); 500 } 501 502 if (stable_node->head == &migrate_nodes) 503 list_del(&stable_node->list); 504 else 505 rb_erase(&stable_node->node, 506 root_stable_tree + NUMA(stable_node->nid)); 507 free_stable_node(stable_node); 508 } 509 510 /* 511 * get_ksm_page: checks if the page indicated by the stable node 512 * is still its ksm page, despite having held no reference to it. 513 * In which case we can trust the content of the page, and it 514 * returns the gotten page; but if the page has now been zapped, 515 * remove the stale node from the stable tree and return NULL. 516 * But beware, the stable node's page might be being migrated. 517 * 518 * You would expect the stable_node to hold a reference to the ksm page. 519 * But if it increments the page's count, swapping out has to wait for 520 * ksmd to come around again before it can free the page, which may take 521 * seconds or even minutes: much too unresponsive. So instead we use a 522 * "keyhole reference": access to the ksm page from the stable node peeps 523 * out through its keyhole to see if that page still holds the right key, 524 * pointing back to this stable node. This relies on freeing a PageAnon 525 * page to reset its page->mapping to NULL, and relies on no other use of 526 * a page to put something that might look like our key in page->mapping. 527 * is on its way to being freed; but it is an anomaly to bear in mind. 528 */ 529 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it) 530 { 531 struct page *page; 532 void *expected_mapping; 533 unsigned long kpfn; 534 535 expected_mapping = (void *)stable_node + 536 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM); 537 again: 538 kpfn = READ_ONCE(stable_node->kpfn); 539 page = pfn_to_page(kpfn); 540 541 /* 542 * page is computed from kpfn, so on most architectures reading 543 * page->mapping is naturally ordered after reading node->kpfn, 544 * but on Alpha we need to be more careful. 545 */ 546 smp_read_barrier_depends(); 547 if (READ_ONCE(page->mapping) != expected_mapping) 548 goto stale; 549 550 /* 551 * We cannot do anything with the page while its refcount is 0. 552 * Usually 0 means free, or tail of a higher-order page: in which 553 * case this node is no longer referenced, and should be freed; 554 * however, it might mean that the page is under page_freeze_refs(). 555 * The __remove_mapping() case is easy, again the node is now stale; 556 * but if page is swapcache in migrate_page_move_mapping(), it might 557 * still be our page, in which case it's essential to keep the node. 558 */ 559 while (!get_page_unless_zero(page)) { 560 /* 561 * Another check for page->mapping != expected_mapping would 562 * work here too. We have chosen the !PageSwapCache test to 563 * optimize the common case, when the page is or is about to 564 * be freed: PageSwapCache is cleared (under spin_lock_irq) 565 * in the freeze_refs section of __remove_mapping(); but Anon 566 * page->mapping reset to NULL later, in free_pages_prepare(). 567 */ 568 if (!PageSwapCache(page)) 569 goto stale; 570 cpu_relax(); 571 } 572 573 if (READ_ONCE(page->mapping) != expected_mapping) { 574 put_page(page); 575 goto stale; 576 } 577 578 if (lock_it) { 579 lock_page(page); 580 if (READ_ONCE(page->mapping) != expected_mapping) { 581 unlock_page(page); 582 put_page(page); 583 goto stale; 584 } 585 } 586 return page; 587 588 stale: 589 /* 590 * We come here from above when page->mapping or !PageSwapCache 591 * suggests that the node is stale; but it might be under migration. 592 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), 593 * before checking whether node->kpfn has been changed. 594 */ 595 smp_rmb(); 596 if (READ_ONCE(stable_node->kpfn) != kpfn) 597 goto again; 598 remove_node_from_stable_tree(stable_node); 599 return NULL; 600 } 601 602 /* 603 * Removing rmap_item from stable or unstable tree. 604 * This function will clean the information from the stable/unstable tree. 605 */ 606 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 607 { 608 if (rmap_item->address & STABLE_FLAG) { 609 struct stable_node *stable_node; 610 struct page *page; 611 612 stable_node = rmap_item->head; 613 page = get_ksm_page(stable_node, true); 614 if (!page) 615 goto out; 616 617 hlist_del(&rmap_item->hlist); 618 unlock_page(page); 619 put_page(page); 620 621 if (!hlist_empty(&stable_node->hlist)) 622 ksm_pages_sharing--; 623 else 624 ksm_pages_shared--; 625 626 put_anon_vma(rmap_item->anon_vma); 627 rmap_item->address &= PAGE_MASK; 628 629 } else if (rmap_item->address & UNSTABLE_FLAG) { 630 unsigned char age; 631 /* 632 * Usually ksmd can and must skip the rb_erase, because 633 * root_unstable_tree was already reset to RB_ROOT. 634 * But be careful when an mm is exiting: do the rb_erase 635 * if this rmap_item was inserted by this scan, rather 636 * than left over from before. 637 */ 638 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 639 BUG_ON(age > 1); 640 if (!age) 641 rb_erase(&rmap_item->node, 642 root_unstable_tree + NUMA(rmap_item->nid)); 643 ksm_pages_unshared--; 644 rmap_item->address &= PAGE_MASK; 645 } 646 out: 647 cond_resched(); /* we're called from many long loops */ 648 } 649 650 static void remove_trailing_rmap_items(struct mm_slot *mm_slot, 651 struct rmap_item **rmap_list) 652 { 653 while (*rmap_list) { 654 struct rmap_item *rmap_item = *rmap_list; 655 *rmap_list = rmap_item->rmap_list; 656 remove_rmap_item_from_tree(rmap_item); 657 free_rmap_item(rmap_item); 658 } 659 } 660 661 /* 662 * Though it's very tempting to unmerge rmap_items from stable tree rather 663 * than check every pte of a given vma, the locking doesn't quite work for 664 * that - an rmap_item is assigned to the stable tree after inserting ksm 665 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing 666 * rmap_items from parent to child at fork time (so as not to waste time 667 * if exit comes before the next scan reaches it). 668 * 669 * Similarly, although we'd like to remove rmap_items (so updating counts 670 * and freeing memory) when unmerging an area, it's easier to leave that 671 * to the next pass of ksmd - consider, for example, how ksmd might be 672 * in cmp_and_merge_page on one of the rmap_items we would be removing. 673 */ 674 static int unmerge_ksm_pages(struct vm_area_struct *vma, 675 unsigned long start, unsigned long end) 676 { 677 unsigned long addr; 678 int err = 0; 679 680 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 681 if (ksm_test_exit(vma->vm_mm)) 682 break; 683 if (signal_pending(current)) 684 err = -ERESTARTSYS; 685 else 686 err = break_ksm(vma, addr); 687 } 688 return err; 689 } 690 691 #ifdef CONFIG_SYSFS 692 /* 693 * Only called through the sysfs control interface: 694 */ 695 static int remove_stable_node(struct stable_node *stable_node) 696 { 697 struct page *page; 698 int err; 699 700 page = get_ksm_page(stable_node, true); 701 if (!page) { 702 /* 703 * get_ksm_page did remove_node_from_stable_tree itself. 704 */ 705 return 0; 706 } 707 708 if (WARN_ON_ONCE(page_mapped(page))) { 709 /* 710 * This should not happen: but if it does, just refuse to let 711 * merge_across_nodes be switched - there is no need to panic. 712 */ 713 err = -EBUSY; 714 } else { 715 /* 716 * The stable node did not yet appear stale to get_ksm_page(), 717 * since that allows for an unmapped ksm page to be recognized 718 * right up until it is freed; but the node is safe to remove. 719 * This page might be in a pagevec waiting to be freed, 720 * or it might be PageSwapCache (perhaps under writeback), 721 * or it might have been removed from swapcache a moment ago. 722 */ 723 set_page_stable_node(page, NULL); 724 remove_node_from_stable_tree(stable_node); 725 err = 0; 726 } 727 728 unlock_page(page); 729 put_page(page); 730 return err; 731 } 732 733 static int remove_all_stable_nodes(void) 734 { 735 struct stable_node *stable_node, *next; 736 int nid; 737 int err = 0; 738 739 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 740 while (root_stable_tree[nid].rb_node) { 741 stable_node = rb_entry(root_stable_tree[nid].rb_node, 742 struct stable_node, node); 743 if (remove_stable_node(stable_node)) { 744 err = -EBUSY; 745 break; /* proceed to next nid */ 746 } 747 cond_resched(); 748 } 749 } 750 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 751 if (remove_stable_node(stable_node)) 752 err = -EBUSY; 753 cond_resched(); 754 } 755 return err; 756 } 757 758 static int unmerge_and_remove_all_rmap_items(void) 759 { 760 struct mm_slot *mm_slot; 761 struct mm_struct *mm; 762 struct vm_area_struct *vma; 763 int err = 0; 764 765 spin_lock(&ksm_mmlist_lock); 766 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 767 struct mm_slot, mm_list); 768 spin_unlock(&ksm_mmlist_lock); 769 770 for (mm_slot = ksm_scan.mm_slot; 771 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 772 mm = mm_slot->mm; 773 down_read(&mm->mmap_sem); 774 for (vma = mm->mmap; vma; vma = vma->vm_next) { 775 if (ksm_test_exit(mm)) 776 break; 777 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 778 continue; 779 err = unmerge_ksm_pages(vma, 780 vma->vm_start, vma->vm_end); 781 if (err) 782 goto error; 783 } 784 785 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); 786 up_read(&mm->mmap_sem); 787 788 spin_lock(&ksm_mmlist_lock); 789 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 790 struct mm_slot, mm_list); 791 if (ksm_test_exit(mm)) { 792 hash_del(&mm_slot->link); 793 list_del(&mm_slot->mm_list); 794 spin_unlock(&ksm_mmlist_lock); 795 796 free_mm_slot(mm_slot); 797 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 798 mmdrop(mm); 799 } else 800 spin_unlock(&ksm_mmlist_lock); 801 } 802 803 /* Clean up stable nodes, but don't worry if some are still busy */ 804 remove_all_stable_nodes(); 805 ksm_scan.seqnr = 0; 806 return 0; 807 808 error: 809 up_read(&mm->mmap_sem); 810 spin_lock(&ksm_mmlist_lock); 811 ksm_scan.mm_slot = &ksm_mm_head; 812 spin_unlock(&ksm_mmlist_lock); 813 return err; 814 } 815 #endif /* CONFIG_SYSFS */ 816 817 static u32 calc_checksum(struct page *page) 818 { 819 u32 checksum; 820 void *addr = kmap_atomic(page); 821 checksum = jhash2(addr, PAGE_SIZE / 4, 17); 822 kunmap_atomic(addr); 823 return checksum; 824 } 825 826 static int memcmp_pages(struct page *page1, struct page *page2) 827 { 828 char *addr1, *addr2; 829 int ret; 830 831 addr1 = kmap_atomic(page1); 832 addr2 = kmap_atomic(page2); 833 ret = memcmp(addr1, addr2, PAGE_SIZE); 834 kunmap_atomic(addr2); 835 kunmap_atomic(addr1); 836 return ret; 837 } 838 839 static inline int pages_identical(struct page *page1, struct page *page2) 840 { 841 return !memcmp_pages(page1, page2); 842 } 843 844 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 845 pte_t *orig_pte) 846 { 847 struct mm_struct *mm = vma->vm_mm; 848 unsigned long addr; 849 pte_t *ptep; 850 spinlock_t *ptl; 851 int swapped; 852 int err = -EFAULT; 853 unsigned long mmun_start; /* For mmu_notifiers */ 854 unsigned long mmun_end; /* For mmu_notifiers */ 855 856 addr = page_address_in_vma(page, vma); 857 if (addr == -EFAULT) 858 goto out; 859 860 BUG_ON(PageTransCompound(page)); 861 862 mmun_start = addr; 863 mmun_end = addr + PAGE_SIZE; 864 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 865 866 ptep = page_check_address(page, mm, addr, &ptl, 0); 867 if (!ptep) 868 goto out_mn; 869 870 if (pte_write(*ptep) || pte_dirty(*ptep)) { 871 pte_t entry; 872 873 swapped = PageSwapCache(page); 874 flush_cache_page(vma, addr, page_to_pfn(page)); 875 /* 876 * Ok this is tricky, when get_user_pages_fast() run it doesn't 877 * take any lock, therefore the check that we are going to make 878 * with the pagecount against the mapcount is racey and 879 * O_DIRECT can happen right after the check. 880 * So we clear the pte and flush the tlb before the check 881 * this assure us that no O_DIRECT can happen after the check 882 * or in the middle of the check. 883 */ 884 entry = ptep_clear_flush_notify(vma, addr, ptep); 885 /* 886 * Check that no O_DIRECT or similar I/O is in progress on the 887 * page 888 */ 889 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 890 set_pte_at(mm, addr, ptep, entry); 891 goto out_unlock; 892 } 893 if (pte_dirty(entry)) 894 set_page_dirty(page); 895 entry = pte_mkclean(pte_wrprotect(entry)); 896 set_pte_at_notify(mm, addr, ptep, entry); 897 } 898 *orig_pte = *ptep; 899 err = 0; 900 901 out_unlock: 902 pte_unmap_unlock(ptep, ptl); 903 out_mn: 904 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 905 out: 906 return err; 907 } 908 909 /** 910 * replace_page - replace page in vma by new ksm page 911 * @vma: vma that holds the pte pointing to page 912 * @page: the page we are replacing by kpage 913 * @kpage: the ksm page we replace page by 914 * @orig_pte: the original value of the pte 915 * 916 * Returns 0 on success, -EFAULT on failure. 917 */ 918 static int replace_page(struct vm_area_struct *vma, struct page *page, 919 struct page *kpage, pte_t orig_pte) 920 { 921 struct mm_struct *mm = vma->vm_mm; 922 pmd_t *pmd; 923 pte_t *ptep; 924 spinlock_t *ptl; 925 unsigned long addr; 926 int err = -EFAULT; 927 unsigned long mmun_start; /* For mmu_notifiers */ 928 unsigned long mmun_end; /* For mmu_notifiers */ 929 930 addr = page_address_in_vma(page, vma); 931 if (addr == -EFAULT) 932 goto out; 933 934 pmd = mm_find_pmd(mm, addr); 935 if (!pmd) 936 goto out; 937 938 mmun_start = addr; 939 mmun_end = addr + PAGE_SIZE; 940 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 941 942 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 943 if (!pte_same(*ptep, orig_pte)) { 944 pte_unmap_unlock(ptep, ptl); 945 goto out_mn; 946 } 947 948 get_page(kpage); 949 page_add_anon_rmap(kpage, vma, addr, false); 950 951 flush_cache_page(vma, addr, pte_pfn(*ptep)); 952 ptep_clear_flush_notify(vma, addr, ptep); 953 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot)); 954 955 page_remove_rmap(page, false); 956 if (!page_mapped(page)) 957 try_to_free_swap(page); 958 put_page(page); 959 960 pte_unmap_unlock(ptep, ptl); 961 err = 0; 962 out_mn: 963 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 964 out: 965 return err; 966 } 967 968 /* 969 * try_to_merge_one_page - take two pages and merge them into one 970 * @vma: the vma that holds the pte pointing to page 971 * @page: the PageAnon page that we want to replace with kpage 972 * @kpage: the PageKsm page that we want to map instead of page, 973 * or NULL the first time when we want to use page as kpage. 974 * 975 * This function returns 0 if the pages were merged, -EFAULT otherwise. 976 */ 977 static int try_to_merge_one_page(struct vm_area_struct *vma, 978 struct page *page, struct page *kpage) 979 { 980 pte_t orig_pte = __pte(0); 981 int err = -EFAULT; 982 983 if (page == kpage) /* ksm page forked */ 984 return 0; 985 986 if (!PageAnon(page)) 987 goto out; 988 989 /* 990 * We need the page lock to read a stable PageSwapCache in 991 * write_protect_page(). We use trylock_page() instead of 992 * lock_page() because we don't want to wait here - we 993 * prefer to continue scanning and merging different pages, 994 * then come back to this page when it is unlocked. 995 */ 996 if (!trylock_page(page)) 997 goto out; 998 999 if (PageTransCompound(page)) { 1000 err = split_huge_page(page); 1001 if (err) 1002 goto out_unlock; 1003 } 1004 1005 /* 1006 * If this anonymous page is mapped only here, its pte may need 1007 * to be write-protected. If it's mapped elsewhere, all of its 1008 * ptes are necessarily already write-protected. But in either 1009 * case, we need to lock and check page_count is not raised. 1010 */ 1011 if (write_protect_page(vma, page, &orig_pte) == 0) { 1012 if (!kpage) { 1013 /* 1014 * While we hold page lock, upgrade page from 1015 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1016 * stable_tree_insert() will update stable_node. 1017 */ 1018 set_page_stable_node(page, NULL); 1019 mark_page_accessed(page); 1020 /* 1021 * Page reclaim just frees a clean page with no dirty 1022 * ptes: make sure that the ksm page would be swapped. 1023 */ 1024 if (!PageDirty(page)) 1025 SetPageDirty(page); 1026 err = 0; 1027 } else if (pages_identical(page, kpage)) 1028 err = replace_page(vma, page, kpage, orig_pte); 1029 } 1030 1031 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1032 munlock_vma_page(page); 1033 if (!PageMlocked(kpage)) { 1034 unlock_page(page); 1035 lock_page(kpage); 1036 mlock_vma_page(kpage); 1037 page = kpage; /* for final unlock */ 1038 } 1039 } 1040 1041 out_unlock: 1042 unlock_page(page); 1043 out: 1044 return err; 1045 } 1046 1047 /* 1048 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1049 * but no new kernel page is allocated: kpage must already be a ksm page. 1050 * 1051 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1052 */ 1053 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1054 struct page *page, struct page *kpage) 1055 { 1056 struct mm_struct *mm = rmap_item->mm; 1057 struct vm_area_struct *vma; 1058 int err = -EFAULT; 1059 1060 down_read(&mm->mmap_sem); 1061 vma = find_mergeable_vma(mm, rmap_item->address); 1062 if (!vma) 1063 goto out; 1064 1065 err = try_to_merge_one_page(vma, page, kpage); 1066 if (err) 1067 goto out; 1068 1069 /* Unstable nid is in union with stable anon_vma: remove first */ 1070 remove_rmap_item_from_tree(rmap_item); 1071 1072 /* Must get reference to anon_vma while still holding mmap_sem */ 1073 rmap_item->anon_vma = vma->anon_vma; 1074 get_anon_vma(vma->anon_vma); 1075 out: 1076 up_read(&mm->mmap_sem); 1077 return err; 1078 } 1079 1080 /* 1081 * try_to_merge_two_pages - take two identical pages and prepare them 1082 * to be merged into one page. 1083 * 1084 * This function returns the kpage if we successfully merged two identical 1085 * pages into one ksm page, NULL otherwise. 1086 * 1087 * Note that this function upgrades page to ksm page: if one of the pages 1088 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1089 */ 1090 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1091 struct page *page, 1092 struct rmap_item *tree_rmap_item, 1093 struct page *tree_page) 1094 { 1095 int err; 1096 1097 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1098 if (!err) { 1099 err = try_to_merge_with_ksm_page(tree_rmap_item, 1100 tree_page, page); 1101 /* 1102 * If that fails, we have a ksm page with only one pte 1103 * pointing to it: so break it. 1104 */ 1105 if (err) 1106 break_cow(rmap_item); 1107 } 1108 return err ? NULL : page; 1109 } 1110 1111 /* 1112 * stable_tree_search - search for page inside the stable tree 1113 * 1114 * This function checks if there is a page inside the stable tree 1115 * with identical content to the page that we are scanning right now. 1116 * 1117 * This function returns the stable tree node of identical content if found, 1118 * NULL otherwise. 1119 */ 1120 static struct page *stable_tree_search(struct page *page) 1121 { 1122 int nid; 1123 struct rb_root *root; 1124 struct rb_node **new; 1125 struct rb_node *parent; 1126 struct stable_node *stable_node; 1127 struct stable_node *page_node; 1128 1129 page_node = page_stable_node(page); 1130 if (page_node && page_node->head != &migrate_nodes) { 1131 /* ksm page forked */ 1132 get_page(page); 1133 return page; 1134 } 1135 1136 nid = get_kpfn_nid(page_to_pfn(page)); 1137 root = root_stable_tree + nid; 1138 again: 1139 new = &root->rb_node; 1140 parent = NULL; 1141 1142 while (*new) { 1143 struct page *tree_page; 1144 int ret; 1145 1146 cond_resched(); 1147 stable_node = rb_entry(*new, struct stable_node, node); 1148 tree_page = get_ksm_page(stable_node, false); 1149 if (!tree_page) { 1150 /* 1151 * If we walked over a stale stable_node, 1152 * get_ksm_page() will call rb_erase() and it 1153 * may rebalance the tree from under us. So 1154 * restart the search from scratch. Returning 1155 * NULL would be safe too, but we'd generate 1156 * false negative insertions just because some 1157 * stable_node was stale. 1158 */ 1159 goto again; 1160 } 1161 1162 ret = memcmp_pages(page, tree_page); 1163 put_page(tree_page); 1164 1165 parent = *new; 1166 if (ret < 0) 1167 new = &parent->rb_left; 1168 else if (ret > 0) 1169 new = &parent->rb_right; 1170 else { 1171 /* 1172 * Lock and unlock the stable_node's page (which 1173 * might already have been migrated) so that page 1174 * migration is sure to notice its raised count. 1175 * It would be more elegant to return stable_node 1176 * than kpage, but that involves more changes. 1177 */ 1178 tree_page = get_ksm_page(stable_node, true); 1179 if (tree_page) { 1180 unlock_page(tree_page); 1181 if (get_kpfn_nid(stable_node->kpfn) != 1182 NUMA(stable_node->nid)) { 1183 put_page(tree_page); 1184 goto replace; 1185 } 1186 return tree_page; 1187 } 1188 /* 1189 * There is now a place for page_node, but the tree may 1190 * have been rebalanced, so re-evaluate parent and new. 1191 */ 1192 if (page_node) 1193 goto again; 1194 return NULL; 1195 } 1196 } 1197 1198 if (!page_node) 1199 return NULL; 1200 1201 list_del(&page_node->list); 1202 DO_NUMA(page_node->nid = nid); 1203 rb_link_node(&page_node->node, parent, new); 1204 rb_insert_color(&page_node->node, root); 1205 get_page(page); 1206 return page; 1207 1208 replace: 1209 if (page_node) { 1210 list_del(&page_node->list); 1211 DO_NUMA(page_node->nid = nid); 1212 rb_replace_node(&stable_node->node, &page_node->node, root); 1213 get_page(page); 1214 } else { 1215 rb_erase(&stable_node->node, root); 1216 page = NULL; 1217 } 1218 stable_node->head = &migrate_nodes; 1219 list_add(&stable_node->list, stable_node->head); 1220 return page; 1221 } 1222 1223 /* 1224 * stable_tree_insert - insert stable tree node pointing to new ksm page 1225 * into the stable tree. 1226 * 1227 * This function returns the stable tree node just allocated on success, 1228 * NULL otherwise. 1229 */ 1230 static struct stable_node *stable_tree_insert(struct page *kpage) 1231 { 1232 int nid; 1233 unsigned long kpfn; 1234 struct rb_root *root; 1235 struct rb_node **new; 1236 struct rb_node *parent; 1237 struct stable_node *stable_node; 1238 1239 kpfn = page_to_pfn(kpage); 1240 nid = get_kpfn_nid(kpfn); 1241 root = root_stable_tree + nid; 1242 again: 1243 parent = NULL; 1244 new = &root->rb_node; 1245 1246 while (*new) { 1247 struct page *tree_page; 1248 int ret; 1249 1250 cond_resched(); 1251 stable_node = rb_entry(*new, struct stable_node, node); 1252 tree_page = get_ksm_page(stable_node, false); 1253 if (!tree_page) { 1254 /* 1255 * If we walked over a stale stable_node, 1256 * get_ksm_page() will call rb_erase() and it 1257 * may rebalance the tree from under us. So 1258 * restart the search from scratch. Returning 1259 * NULL would be safe too, but we'd generate 1260 * false negative insertions just because some 1261 * stable_node was stale. 1262 */ 1263 goto again; 1264 } 1265 1266 ret = memcmp_pages(kpage, tree_page); 1267 put_page(tree_page); 1268 1269 parent = *new; 1270 if (ret < 0) 1271 new = &parent->rb_left; 1272 else if (ret > 0) 1273 new = &parent->rb_right; 1274 else { 1275 /* 1276 * It is not a bug that stable_tree_search() didn't 1277 * find this node: because at that time our page was 1278 * not yet write-protected, so may have changed since. 1279 */ 1280 return NULL; 1281 } 1282 } 1283 1284 stable_node = alloc_stable_node(); 1285 if (!stable_node) 1286 return NULL; 1287 1288 INIT_HLIST_HEAD(&stable_node->hlist); 1289 stable_node->kpfn = kpfn; 1290 set_page_stable_node(kpage, stable_node); 1291 DO_NUMA(stable_node->nid = nid); 1292 rb_link_node(&stable_node->node, parent, new); 1293 rb_insert_color(&stable_node->node, root); 1294 1295 return stable_node; 1296 } 1297 1298 /* 1299 * unstable_tree_search_insert - search for identical page, 1300 * else insert rmap_item into the unstable tree. 1301 * 1302 * This function searches for a page in the unstable tree identical to the 1303 * page currently being scanned; and if no identical page is found in the 1304 * tree, we insert rmap_item as a new object into the unstable tree. 1305 * 1306 * This function returns pointer to rmap_item found to be identical 1307 * to the currently scanned page, NULL otherwise. 1308 * 1309 * This function does both searching and inserting, because they share 1310 * the same walking algorithm in an rbtree. 1311 */ 1312 static 1313 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1314 struct page *page, 1315 struct page **tree_pagep) 1316 { 1317 struct rb_node **new; 1318 struct rb_root *root; 1319 struct rb_node *parent = NULL; 1320 int nid; 1321 1322 nid = get_kpfn_nid(page_to_pfn(page)); 1323 root = root_unstable_tree + nid; 1324 new = &root->rb_node; 1325 1326 while (*new) { 1327 struct rmap_item *tree_rmap_item; 1328 struct page *tree_page; 1329 int ret; 1330 1331 cond_resched(); 1332 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1333 tree_page = get_mergeable_page(tree_rmap_item); 1334 if (!tree_page) 1335 return NULL; 1336 1337 /* 1338 * Don't substitute a ksm page for a forked page. 1339 */ 1340 if (page == tree_page) { 1341 put_page(tree_page); 1342 return NULL; 1343 } 1344 1345 ret = memcmp_pages(page, tree_page); 1346 1347 parent = *new; 1348 if (ret < 0) { 1349 put_page(tree_page); 1350 new = &parent->rb_left; 1351 } else if (ret > 0) { 1352 put_page(tree_page); 1353 new = &parent->rb_right; 1354 } else if (!ksm_merge_across_nodes && 1355 page_to_nid(tree_page) != nid) { 1356 /* 1357 * If tree_page has been migrated to another NUMA node, 1358 * it will be flushed out and put in the right unstable 1359 * tree next time: only merge with it when across_nodes. 1360 */ 1361 put_page(tree_page); 1362 return NULL; 1363 } else { 1364 *tree_pagep = tree_page; 1365 return tree_rmap_item; 1366 } 1367 } 1368 1369 rmap_item->address |= UNSTABLE_FLAG; 1370 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1371 DO_NUMA(rmap_item->nid = nid); 1372 rb_link_node(&rmap_item->node, parent, new); 1373 rb_insert_color(&rmap_item->node, root); 1374 1375 ksm_pages_unshared++; 1376 return NULL; 1377 } 1378 1379 /* 1380 * stable_tree_append - add another rmap_item to the linked list of 1381 * rmap_items hanging off a given node of the stable tree, all sharing 1382 * the same ksm page. 1383 */ 1384 static void stable_tree_append(struct rmap_item *rmap_item, 1385 struct stable_node *stable_node) 1386 { 1387 rmap_item->head = stable_node; 1388 rmap_item->address |= STABLE_FLAG; 1389 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 1390 1391 if (rmap_item->hlist.next) 1392 ksm_pages_sharing++; 1393 else 1394 ksm_pages_shared++; 1395 } 1396 1397 /* 1398 * cmp_and_merge_page - first see if page can be merged into the stable tree; 1399 * if not, compare checksum to previous and if it's the same, see if page can 1400 * be inserted into the unstable tree, or merged with a page already there and 1401 * both transferred to the stable tree. 1402 * 1403 * @page: the page that we are searching identical page to. 1404 * @rmap_item: the reverse mapping into the virtual address of this page 1405 */ 1406 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 1407 { 1408 struct rmap_item *tree_rmap_item; 1409 struct page *tree_page = NULL; 1410 struct stable_node *stable_node; 1411 struct page *kpage; 1412 unsigned int checksum; 1413 int err; 1414 1415 stable_node = page_stable_node(page); 1416 if (stable_node) { 1417 if (stable_node->head != &migrate_nodes && 1418 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) { 1419 rb_erase(&stable_node->node, 1420 root_stable_tree + NUMA(stable_node->nid)); 1421 stable_node->head = &migrate_nodes; 1422 list_add(&stable_node->list, stable_node->head); 1423 } 1424 if (stable_node->head != &migrate_nodes && 1425 rmap_item->head == stable_node) 1426 return; 1427 } 1428 1429 /* We first start with searching the page inside the stable tree */ 1430 kpage = stable_tree_search(page); 1431 if (kpage == page && rmap_item->head == stable_node) { 1432 put_page(kpage); 1433 return; 1434 } 1435 1436 remove_rmap_item_from_tree(rmap_item); 1437 1438 if (kpage) { 1439 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 1440 if (!err) { 1441 /* 1442 * The page was successfully merged: 1443 * add its rmap_item to the stable tree. 1444 */ 1445 lock_page(kpage); 1446 stable_tree_append(rmap_item, page_stable_node(kpage)); 1447 unlock_page(kpage); 1448 } 1449 put_page(kpage); 1450 return; 1451 } 1452 1453 /* 1454 * If the hash value of the page has changed from the last time 1455 * we calculated it, this page is changing frequently: therefore we 1456 * don't want to insert it in the unstable tree, and we don't want 1457 * to waste our time searching for something identical to it there. 1458 */ 1459 checksum = calc_checksum(page); 1460 if (rmap_item->oldchecksum != checksum) { 1461 rmap_item->oldchecksum = checksum; 1462 return; 1463 } 1464 1465 tree_rmap_item = 1466 unstable_tree_search_insert(rmap_item, page, &tree_page); 1467 if (tree_rmap_item) { 1468 kpage = try_to_merge_two_pages(rmap_item, page, 1469 tree_rmap_item, tree_page); 1470 put_page(tree_page); 1471 if (kpage) { 1472 /* 1473 * The pages were successfully merged: insert new 1474 * node in the stable tree and add both rmap_items. 1475 */ 1476 lock_page(kpage); 1477 stable_node = stable_tree_insert(kpage); 1478 if (stable_node) { 1479 stable_tree_append(tree_rmap_item, stable_node); 1480 stable_tree_append(rmap_item, stable_node); 1481 } 1482 unlock_page(kpage); 1483 1484 /* 1485 * If we fail to insert the page into the stable tree, 1486 * we will have 2 virtual addresses that are pointing 1487 * to a ksm page left outside the stable tree, 1488 * in which case we need to break_cow on both. 1489 */ 1490 if (!stable_node) { 1491 break_cow(tree_rmap_item); 1492 break_cow(rmap_item); 1493 } 1494 } 1495 } 1496 } 1497 1498 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 1499 struct rmap_item **rmap_list, 1500 unsigned long addr) 1501 { 1502 struct rmap_item *rmap_item; 1503 1504 while (*rmap_list) { 1505 rmap_item = *rmap_list; 1506 if ((rmap_item->address & PAGE_MASK) == addr) 1507 return rmap_item; 1508 if (rmap_item->address > addr) 1509 break; 1510 *rmap_list = rmap_item->rmap_list; 1511 remove_rmap_item_from_tree(rmap_item); 1512 free_rmap_item(rmap_item); 1513 } 1514 1515 rmap_item = alloc_rmap_item(); 1516 if (rmap_item) { 1517 /* It has already been zeroed */ 1518 rmap_item->mm = mm_slot->mm; 1519 rmap_item->address = addr; 1520 rmap_item->rmap_list = *rmap_list; 1521 *rmap_list = rmap_item; 1522 } 1523 return rmap_item; 1524 } 1525 1526 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 1527 { 1528 struct mm_struct *mm; 1529 struct mm_slot *slot; 1530 struct vm_area_struct *vma; 1531 struct rmap_item *rmap_item; 1532 int nid; 1533 1534 if (list_empty(&ksm_mm_head.mm_list)) 1535 return NULL; 1536 1537 slot = ksm_scan.mm_slot; 1538 if (slot == &ksm_mm_head) { 1539 /* 1540 * A number of pages can hang around indefinitely on per-cpu 1541 * pagevecs, raised page count preventing write_protect_page 1542 * from merging them. Though it doesn't really matter much, 1543 * it is puzzling to see some stuck in pages_volatile until 1544 * other activity jostles them out, and they also prevented 1545 * LTP's KSM test from succeeding deterministically; so drain 1546 * them here (here rather than on entry to ksm_do_scan(), 1547 * so we don't IPI too often when pages_to_scan is set low). 1548 */ 1549 lru_add_drain_all(); 1550 1551 /* 1552 * Whereas stale stable_nodes on the stable_tree itself 1553 * get pruned in the regular course of stable_tree_search(), 1554 * those moved out to the migrate_nodes list can accumulate: 1555 * so prune them once before each full scan. 1556 */ 1557 if (!ksm_merge_across_nodes) { 1558 struct stable_node *stable_node, *next; 1559 struct page *page; 1560 1561 list_for_each_entry_safe(stable_node, next, 1562 &migrate_nodes, list) { 1563 page = get_ksm_page(stable_node, false); 1564 if (page) 1565 put_page(page); 1566 cond_resched(); 1567 } 1568 } 1569 1570 for (nid = 0; nid < ksm_nr_node_ids; nid++) 1571 root_unstable_tree[nid] = RB_ROOT; 1572 1573 spin_lock(&ksm_mmlist_lock); 1574 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 1575 ksm_scan.mm_slot = slot; 1576 spin_unlock(&ksm_mmlist_lock); 1577 /* 1578 * Although we tested list_empty() above, a racing __ksm_exit 1579 * of the last mm on the list may have removed it since then. 1580 */ 1581 if (slot == &ksm_mm_head) 1582 return NULL; 1583 next_mm: 1584 ksm_scan.address = 0; 1585 ksm_scan.rmap_list = &slot->rmap_list; 1586 } 1587 1588 mm = slot->mm; 1589 down_read(&mm->mmap_sem); 1590 if (ksm_test_exit(mm)) 1591 vma = NULL; 1592 else 1593 vma = find_vma(mm, ksm_scan.address); 1594 1595 for (; vma; vma = vma->vm_next) { 1596 if (!(vma->vm_flags & VM_MERGEABLE)) 1597 continue; 1598 if (ksm_scan.address < vma->vm_start) 1599 ksm_scan.address = vma->vm_start; 1600 if (!vma->anon_vma) 1601 ksm_scan.address = vma->vm_end; 1602 1603 while (ksm_scan.address < vma->vm_end) { 1604 if (ksm_test_exit(mm)) 1605 break; 1606 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 1607 if (IS_ERR_OR_NULL(*page)) { 1608 ksm_scan.address += PAGE_SIZE; 1609 cond_resched(); 1610 continue; 1611 } 1612 if (PageAnon(*page)) { 1613 flush_anon_page(vma, *page, ksm_scan.address); 1614 flush_dcache_page(*page); 1615 rmap_item = get_next_rmap_item(slot, 1616 ksm_scan.rmap_list, ksm_scan.address); 1617 if (rmap_item) { 1618 ksm_scan.rmap_list = 1619 &rmap_item->rmap_list; 1620 ksm_scan.address += PAGE_SIZE; 1621 } else 1622 put_page(*page); 1623 up_read(&mm->mmap_sem); 1624 return rmap_item; 1625 } 1626 put_page(*page); 1627 ksm_scan.address += PAGE_SIZE; 1628 cond_resched(); 1629 } 1630 } 1631 1632 if (ksm_test_exit(mm)) { 1633 ksm_scan.address = 0; 1634 ksm_scan.rmap_list = &slot->rmap_list; 1635 } 1636 /* 1637 * Nuke all the rmap_items that are above this current rmap: 1638 * because there were no VM_MERGEABLE vmas with such addresses. 1639 */ 1640 remove_trailing_rmap_items(slot, ksm_scan.rmap_list); 1641 1642 spin_lock(&ksm_mmlist_lock); 1643 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 1644 struct mm_slot, mm_list); 1645 if (ksm_scan.address == 0) { 1646 /* 1647 * We've completed a full scan of all vmas, holding mmap_sem 1648 * throughout, and found no VM_MERGEABLE: so do the same as 1649 * __ksm_exit does to remove this mm from all our lists now. 1650 * This applies either when cleaning up after __ksm_exit 1651 * (but beware: we can reach here even before __ksm_exit), 1652 * or when all VM_MERGEABLE areas have been unmapped (and 1653 * mmap_sem then protects against race with MADV_MERGEABLE). 1654 */ 1655 hash_del(&slot->link); 1656 list_del(&slot->mm_list); 1657 spin_unlock(&ksm_mmlist_lock); 1658 1659 free_mm_slot(slot); 1660 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1661 up_read(&mm->mmap_sem); 1662 mmdrop(mm); 1663 } else { 1664 up_read(&mm->mmap_sem); 1665 /* 1666 * up_read(&mm->mmap_sem) first because after 1667 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 1668 * already have been freed under us by __ksm_exit() 1669 * because the "mm_slot" is still hashed and 1670 * ksm_scan.mm_slot doesn't point to it anymore. 1671 */ 1672 spin_unlock(&ksm_mmlist_lock); 1673 } 1674 1675 /* Repeat until we've completed scanning the whole list */ 1676 slot = ksm_scan.mm_slot; 1677 if (slot != &ksm_mm_head) 1678 goto next_mm; 1679 1680 ksm_scan.seqnr++; 1681 return NULL; 1682 } 1683 1684 /** 1685 * ksm_do_scan - the ksm scanner main worker function. 1686 * @scan_npages - number of pages we want to scan before we return. 1687 */ 1688 static void ksm_do_scan(unsigned int scan_npages) 1689 { 1690 struct rmap_item *rmap_item; 1691 struct page *uninitialized_var(page); 1692 1693 while (scan_npages-- && likely(!freezing(current))) { 1694 cond_resched(); 1695 rmap_item = scan_get_next_rmap_item(&page); 1696 if (!rmap_item) 1697 return; 1698 cmp_and_merge_page(page, rmap_item); 1699 put_page(page); 1700 } 1701 } 1702 1703 static int ksmd_should_run(void) 1704 { 1705 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 1706 } 1707 1708 static int ksm_scan_thread(void *nothing) 1709 { 1710 set_freezable(); 1711 set_user_nice(current, 5); 1712 1713 while (!kthread_should_stop()) { 1714 mutex_lock(&ksm_thread_mutex); 1715 wait_while_offlining(); 1716 if (ksmd_should_run()) 1717 ksm_do_scan(ksm_thread_pages_to_scan); 1718 mutex_unlock(&ksm_thread_mutex); 1719 1720 try_to_freeze(); 1721 1722 if (ksmd_should_run()) { 1723 schedule_timeout_interruptible( 1724 msecs_to_jiffies(ksm_thread_sleep_millisecs)); 1725 } else { 1726 wait_event_freezable(ksm_thread_wait, 1727 ksmd_should_run() || kthread_should_stop()); 1728 } 1729 } 1730 return 0; 1731 } 1732 1733 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 1734 unsigned long end, int advice, unsigned long *vm_flags) 1735 { 1736 struct mm_struct *mm = vma->vm_mm; 1737 int err; 1738 1739 switch (advice) { 1740 case MADV_MERGEABLE: 1741 /* 1742 * Be somewhat over-protective for now! 1743 */ 1744 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 1745 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 1746 VM_HUGETLB | VM_MIXEDMAP)) 1747 return 0; /* just ignore the advice */ 1748 1749 #ifdef VM_SAO 1750 if (*vm_flags & VM_SAO) 1751 return 0; 1752 #endif 1753 1754 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 1755 err = __ksm_enter(mm); 1756 if (err) 1757 return err; 1758 } 1759 1760 *vm_flags |= VM_MERGEABLE; 1761 break; 1762 1763 case MADV_UNMERGEABLE: 1764 if (!(*vm_flags & VM_MERGEABLE)) 1765 return 0; /* just ignore the advice */ 1766 1767 if (vma->anon_vma) { 1768 err = unmerge_ksm_pages(vma, start, end); 1769 if (err) 1770 return err; 1771 } 1772 1773 *vm_flags &= ~VM_MERGEABLE; 1774 break; 1775 } 1776 1777 return 0; 1778 } 1779 1780 int __ksm_enter(struct mm_struct *mm) 1781 { 1782 struct mm_slot *mm_slot; 1783 int needs_wakeup; 1784 1785 mm_slot = alloc_mm_slot(); 1786 if (!mm_slot) 1787 return -ENOMEM; 1788 1789 /* Check ksm_run too? Would need tighter locking */ 1790 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 1791 1792 spin_lock(&ksm_mmlist_lock); 1793 insert_to_mm_slots_hash(mm, mm_slot); 1794 /* 1795 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 1796 * insert just behind the scanning cursor, to let the area settle 1797 * down a little; when fork is followed by immediate exec, we don't 1798 * want ksmd to waste time setting up and tearing down an rmap_list. 1799 * 1800 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 1801 * scanning cursor, otherwise KSM pages in newly forked mms will be 1802 * missed: then we might as well insert at the end of the list. 1803 */ 1804 if (ksm_run & KSM_RUN_UNMERGE) 1805 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 1806 else 1807 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 1808 spin_unlock(&ksm_mmlist_lock); 1809 1810 set_bit(MMF_VM_MERGEABLE, &mm->flags); 1811 atomic_inc(&mm->mm_count); 1812 1813 if (needs_wakeup) 1814 wake_up_interruptible(&ksm_thread_wait); 1815 1816 return 0; 1817 } 1818 1819 void __ksm_exit(struct mm_struct *mm) 1820 { 1821 struct mm_slot *mm_slot; 1822 int easy_to_free = 0; 1823 1824 /* 1825 * This process is exiting: if it's straightforward (as is the 1826 * case when ksmd was never running), free mm_slot immediately. 1827 * But if it's at the cursor or has rmap_items linked to it, use 1828 * mmap_sem to synchronize with any break_cows before pagetables 1829 * are freed, and leave the mm_slot on the list for ksmd to free. 1830 * Beware: ksm may already have noticed it exiting and freed the slot. 1831 */ 1832 1833 spin_lock(&ksm_mmlist_lock); 1834 mm_slot = get_mm_slot(mm); 1835 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 1836 if (!mm_slot->rmap_list) { 1837 hash_del(&mm_slot->link); 1838 list_del(&mm_slot->mm_list); 1839 easy_to_free = 1; 1840 } else { 1841 list_move(&mm_slot->mm_list, 1842 &ksm_scan.mm_slot->mm_list); 1843 } 1844 } 1845 spin_unlock(&ksm_mmlist_lock); 1846 1847 if (easy_to_free) { 1848 free_mm_slot(mm_slot); 1849 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1850 mmdrop(mm); 1851 } else if (mm_slot) { 1852 down_write(&mm->mmap_sem); 1853 up_write(&mm->mmap_sem); 1854 } 1855 } 1856 1857 struct page *ksm_might_need_to_copy(struct page *page, 1858 struct vm_area_struct *vma, unsigned long address) 1859 { 1860 struct anon_vma *anon_vma = page_anon_vma(page); 1861 struct page *new_page; 1862 1863 if (PageKsm(page)) { 1864 if (page_stable_node(page) && 1865 !(ksm_run & KSM_RUN_UNMERGE)) 1866 return page; /* no need to copy it */ 1867 } else if (!anon_vma) { 1868 return page; /* no need to copy it */ 1869 } else if (anon_vma->root == vma->anon_vma->root && 1870 page->index == linear_page_index(vma, address)) { 1871 return page; /* still no need to copy it */ 1872 } 1873 if (!PageUptodate(page)) 1874 return page; /* let do_swap_page report the error */ 1875 1876 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1877 if (new_page) { 1878 copy_user_highpage(new_page, page, address, vma); 1879 1880 SetPageDirty(new_page); 1881 __SetPageUptodate(new_page); 1882 __SetPageLocked(new_page); 1883 } 1884 1885 return new_page; 1886 } 1887 1888 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 1889 { 1890 struct stable_node *stable_node; 1891 struct rmap_item *rmap_item; 1892 int ret = SWAP_AGAIN; 1893 int search_new_forks = 0; 1894 1895 VM_BUG_ON_PAGE(!PageKsm(page), page); 1896 1897 /* 1898 * Rely on the page lock to protect against concurrent modifications 1899 * to that page's node of the stable tree. 1900 */ 1901 VM_BUG_ON_PAGE(!PageLocked(page), page); 1902 1903 stable_node = page_stable_node(page); 1904 if (!stable_node) 1905 return ret; 1906 again: 1907 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 1908 struct anon_vma *anon_vma = rmap_item->anon_vma; 1909 struct anon_vma_chain *vmac; 1910 struct vm_area_struct *vma; 1911 1912 cond_resched(); 1913 anon_vma_lock_read(anon_vma); 1914 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 1915 0, ULONG_MAX) { 1916 cond_resched(); 1917 vma = vmac->vma; 1918 if (rmap_item->address < vma->vm_start || 1919 rmap_item->address >= vma->vm_end) 1920 continue; 1921 /* 1922 * Initially we examine only the vma which covers this 1923 * rmap_item; but later, if there is still work to do, 1924 * we examine covering vmas in other mms: in case they 1925 * were forked from the original since ksmd passed. 1926 */ 1927 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 1928 continue; 1929 1930 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1931 continue; 1932 1933 ret = rwc->rmap_one(page, vma, 1934 rmap_item->address, rwc->arg); 1935 if (ret != SWAP_AGAIN) { 1936 anon_vma_unlock_read(anon_vma); 1937 goto out; 1938 } 1939 if (rwc->done && rwc->done(page)) { 1940 anon_vma_unlock_read(anon_vma); 1941 goto out; 1942 } 1943 } 1944 anon_vma_unlock_read(anon_vma); 1945 } 1946 if (!search_new_forks++) 1947 goto again; 1948 out: 1949 return ret; 1950 } 1951 1952 #ifdef CONFIG_MIGRATION 1953 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 1954 { 1955 struct stable_node *stable_node; 1956 1957 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 1958 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 1959 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); 1960 1961 stable_node = page_stable_node(newpage); 1962 if (stable_node) { 1963 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); 1964 stable_node->kpfn = page_to_pfn(newpage); 1965 /* 1966 * newpage->mapping was set in advance; now we need smp_wmb() 1967 * to make sure that the new stable_node->kpfn is visible 1968 * to get_ksm_page() before it can see that oldpage->mapping 1969 * has gone stale (or that PageSwapCache has been cleared). 1970 */ 1971 smp_wmb(); 1972 set_page_stable_node(oldpage, NULL); 1973 } 1974 } 1975 #endif /* CONFIG_MIGRATION */ 1976 1977 #ifdef CONFIG_MEMORY_HOTREMOVE 1978 static void wait_while_offlining(void) 1979 { 1980 while (ksm_run & KSM_RUN_OFFLINE) { 1981 mutex_unlock(&ksm_thread_mutex); 1982 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 1983 TASK_UNINTERRUPTIBLE); 1984 mutex_lock(&ksm_thread_mutex); 1985 } 1986 } 1987 1988 static void ksm_check_stable_tree(unsigned long start_pfn, 1989 unsigned long end_pfn) 1990 { 1991 struct stable_node *stable_node, *next; 1992 struct rb_node *node; 1993 int nid; 1994 1995 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 1996 node = rb_first(root_stable_tree + nid); 1997 while (node) { 1998 stable_node = rb_entry(node, struct stable_node, node); 1999 if (stable_node->kpfn >= start_pfn && 2000 stable_node->kpfn < end_pfn) { 2001 /* 2002 * Don't get_ksm_page, page has already gone: 2003 * which is why we keep kpfn instead of page* 2004 */ 2005 remove_node_from_stable_tree(stable_node); 2006 node = rb_first(root_stable_tree + nid); 2007 } else 2008 node = rb_next(node); 2009 cond_resched(); 2010 } 2011 } 2012 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2013 if (stable_node->kpfn >= start_pfn && 2014 stable_node->kpfn < end_pfn) 2015 remove_node_from_stable_tree(stable_node); 2016 cond_resched(); 2017 } 2018 } 2019 2020 static int ksm_memory_callback(struct notifier_block *self, 2021 unsigned long action, void *arg) 2022 { 2023 struct memory_notify *mn = arg; 2024 2025 switch (action) { 2026 case MEM_GOING_OFFLINE: 2027 /* 2028 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2029 * and remove_all_stable_nodes() while memory is going offline: 2030 * it is unsafe for them to touch the stable tree at this time. 2031 * But unmerge_ksm_pages(), rmap lookups and other entry points 2032 * which do not need the ksm_thread_mutex are all safe. 2033 */ 2034 mutex_lock(&ksm_thread_mutex); 2035 ksm_run |= KSM_RUN_OFFLINE; 2036 mutex_unlock(&ksm_thread_mutex); 2037 break; 2038 2039 case MEM_OFFLINE: 2040 /* 2041 * Most of the work is done by page migration; but there might 2042 * be a few stable_nodes left over, still pointing to struct 2043 * pages which have been offlined: prune those from the tree, 2044 * otherwise get_ksm_page() might later try to access a 2045 * non-existent struct page. 2046 */ 2047 ksm_check_stable_tree(mn->start_pfn, 2048 mn->start_pfn + mn->nr_pages); 2049 /* fallthrough */ 2050 2051 case MEM_CANCEL_OFFLINE: 2052 mutex_lock(&ksm_thread_mutex); 2053 ksm_run &= ~KSM_RUN_OFFLINE; 2054 mutex_unlock(&ksm_thread_mutex); 2055 2056 smp_mb(); /* wake_up_bit advises this */ 2057 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2058 break; 2059 } 2060 return NOTIFY_OK; 2061 } 2062 #else 2063 static void wait_while_offlining(void) 2064 { 2065 } 2066 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2067 2068 #ifdef CONFIG_SYSFS 2069 /* 2070 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2071 */ 2072 2073 #define KSM_ATTR_RO(_name) \ 2074 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2075 #define KSM_ATTR(_name) \ 2076 static struct kobj_attribute _name##_attr = \ 2077 __ATTR(_name, 0644, _name##_show, _name##_store) 2078 2079 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2080 struct kobj_attribute *attr, char *buf) 2081 { 2082 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); 2083 } 2084 2085 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2086 struct kobj_attribute *attr, 2087 const char *buf, size_t count) 2088 { 2089 unsigned long msecs; 2090 int err; 2091 2092 err = kstrtoul(buf, 10, &msecs); 2093 if (err || msecs > UINT_MAX) 2094 return -EINVAL; 2095 2096 ksm_thread_sleep_millisecs = msecs; 2097 2098 return count; 2099 } 2100 KSM_ATTR(sleep_millisecs); 2101 2102 static ssize_t pages_to_scan_show(struct kobject *kobj, 2103 struct kobj_attribute *attr, char *buf) 2104 { 2105 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); 2106 } 2107 2108 static ssize_t pages_to_scan_store(struct kobject *kobj, 2109 struct kobj_attribute *attr, 2110 const char *buf, size_t count) 2111 { 2112 int err; 2113 unsigned long nr_pages; 2114 2115 err = kstrtoul(buf, 10, &nr_pages); 2116 if (err || nr_pages > UINT_MAX) 2117 return -EINVAL; 2118 2119 ksm_thread_pages_to_scan = nr_pages; 2120 2121 return count; 2122 } 2123 KSM_ATTR(pages_to_scan); 2124 2125 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2126 char *buf) 2127 { 2128 return sprintf(buf, "%lu\n", ksm_run); 2129 } 2130 2131 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2132 const char *buf, size_t count) 2133 { 2134 int err; 2135 unsigned long flags; 2136 2137 err = kstrtoul(buf, 10, &flags); 2138 if (err || flags > UINT_MAX) 2139 return -EINVAL; 2140 if (flags > KSM_RUN_UNMERGE) 2141 return -EINVAL; 2142 2143 /* 2144 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2145 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2146 * breaking COW to free the pages_shared (but leaves mm_slots 2147 * on the list for when ksmd may be set running again). 2148 */ 2149 2150 mutex_lock(&ksm_thread_mutex); 2151 wait_while_offlining(); 2152 if (ksm_run != flags) { 2153 ksm_run = flags; 2154 if (flags & KSM_RUN_UNMERGE) { 2155 set_current_oom_origin(); 2156 err = unmerge_and_remove_all_rmap_items(); 2157 clear_current_oom_origin(); 2158 if (err) { 2159 ksm_run = KSM_RUN_STOP; 2160 count = err; 2161 } 2162 } 2163 } 2164 mutex_unlock(&ksm_thread_mutex); 2165 2166 if (flags & KSM_RUN_MERGE) 2167 wake_up_interruptible(&ksm_thread_wait); 2168 2169 return count; 2170 } 2171 KSM_ATTR(run); 2172 2173 #ifdef CONFIG_NUMA 2174 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2175 struct kobj_attribute *attr, char *buf) 2176 { 2177 return sprintf(buf, "%u\n", ksm_merge_across_nodes); 2178 } 2179 2180 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2181 struct kobj_attribute *attr, 2182 const char *buf, size_t count) 2183 { 2184 int err; 2185 unsigned long knob; 2186 2187 err = kstrtoul(buf, 10, &knob); 2188 if (err) 2189 return err; 2190 if (knob > 1) 2191 return -EINVAL; 2192 2193 mutex_lock(&ksm_thread_mutex); 2194 wait_while_offlining(); 2195 if (ksm_merge_across_nodes != knob) { 2196 if (ksm_pages_shared || remove_all_stable_nodes()) 2197 err = -EBUSY; 2198 else if (root_stable_tree == one_stable_tree) { 2199 struct rb_root *buf; 2200 /* 2201 * This is the first time that we switch away from the 2202 * default of merging across nodes: must now allocate 2203 * a buffer to hold as many roots as may be needed. 2204 * Allocate stable and unstable together: 2205 * MAXSMP NODES_SHIFT 10 will use 16kB. 2206 */ 2207 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2208 GFP_KERNEL); 2209 /* Let us assume that RB_ROOT is NULL is zero */ 2210 if (!buf) 2211 err = -ENOMEM; 2212 else { 2213 root_stable_tree = buf; 2214 root_unstable_tree = buf + nr_node_ids; 2215 /* Stable tree is empty but not the unstable */ 2216 root_unstable_tree[0] = one_unstable_tree[0]; 2217 } 2218 } 2219 if (!err) { 2220 ksm_merge_across_nodes = knob; 2221 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2222 } 2223 } 2224 mutex_unlock(&ksm_thread_mutex); 2225 2226 return err ? err : count; 2227 } 2228 KSM_ATTR(merge_across_nodes); 2229 #endif 2230 2231 static ssize_t pages_shared_show(struct kobject *kobj, 2232 struct kobj_attribute *attr, char *buf) 2233 { 2234 return sprintf(buf, "%lu\n", ksm_pages_shared); 2235 } 2236 KSM_ATTR_RO(pages_shared); 2237 2238 static ssize_t pages_sharing_show(struct kobject *kobj, 2239 struct kobj_attribute *attr, char *buf) 2240 { 2241 return sprintf(buf, "%lu\n", ksm_pages_sharing); 2242 } 2243 KSM_ATTR_RO(pages_sharing); 2244 2245 static ssize_t pages_unshared_show(struct kobject *kobj, 2246 struct kobj_attribute *attr, char *buf) 2247 { 2248 return sprintf(buf, "%lu\n", ksm_pages_unshared); 2249 } 2250 KSM_ATTR_RO(pages_unshared); 2251 2252 static ssize_t pages_volatile_show(struct kobject *kobj, 2253 struct kobj_attribute *attr, char *buf) 2254 { 2255 long ksm_pages_volatile; 2256 2257 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 2258 - ksm_pages_sharing - ksm_pages_unshared; 2259 /* 2260 * It was not worth any locking to calculate that statistic, 2261 * but it might therefore sometimes be negative: conceal that. 2262 */ 2263 if (ksm_pages_volatile < 0) 2264 ksm_pages_volatile = 0; 2265 return sprintf(buf, "%ld\n", ksm_pages_volatile); 2266 } 2267 KSM_ATTR_RO(pages_volatile); 2268 2269 static ssize_t full_scans_show(struct kobject *kobj, 2270 struct kobj_attribute *attr, char *buf) 2271 { 2272 return sprintf(buf, "%lu\n", ksm_scan.seqnr); 2273 } 2274 KSM_ATTR_RO(full_scans); 2275 2276 static struct attribute *ksm_attrs[] = { 2277 &sleep_millisecs_attr.attr, 2278 &pages_to_scan_attr.attr, 2279 &run_attr.attr, 2280 &pages_shared_attr.attr, 2281 &pages_sharing_attr.attr, 2282 &pages_unshared_attr.attr, 2283 &pages_volatile_attr.attr, 2284 &full_scans_attr.attr, 2285 #ifdef CONFIG_NUMA 2286 &merge_across_nodes_attr.attr, 2287 #endif 2288 NULL, 2289 }; 2290 2291 static struct attribute_group ksm_attr_group = { 2292 .attrs = ksm_attrs, 2293 .name = "ksm", 2294 }; 2295 #endif /* CONFIG_SYSFS */ 2296 2297 static int __init ksm_init(void) 2298 { 2299 struct task_struct *ksm_thread; 2300 int err; 2301 2302 err = ksm_slab_init(); 2303 if (err) 2304 goto out; 2305 2306 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 2307 if (IS_ERR(ksm_thread)) { 2308 pr_err("ksm: creating kthread failed\n"); 2309 err = PTR_ERR(ksm_thread); 2310 goto out_free; 2311 } 2312 2313 #ifdef CONFIG_SYSFS 2314 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 2315 if (err) { 2316 pr_err("ksm: register sysfs failed\n"); 2317 kthread_stop(ksm_thread); 2318 goto out_free; 2319 } 2320 #else 2321 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 2322 2323 #endif /* CONFIG_SYSFS */ 2324 2325 #ifdef CONFIG_MEMORY_HOTREMOVE 2326 /* There is no significance to this priority 100 */ 2327 hotplug_memory_notifier(ksm_memory_callback, 100); 2328 #endif 2329 return 0; 2330 2331 out_free: 2332 ksm_slab_free(); 2333 out: 2334 return err; 2335 } 2336 subsys_initcall(ksm_init); 2337