1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/fs.h> 19 #include <linux/mman.h> 20 #include <linux/sched.h> 21 #include <linux/sched/mm.h> 22 #include <linux/sched/coredump.h> 23 #include <linux/rwsem.h> 24 #include <linux/pagemap.h> 25 #include <linux/rmap.h> 26 #include <linux/spinlock.h> 27 #include <linux/xxhash.h> 28 #include <linux/delay.h> 29 #include <linux/kthread.h> 30 #include <linux/wait.h> 31 #include <linux/slab.h> 32 #include <linux/rbtree.h> 33 #include <linux/memory.h> 34 #include <linux/mmu_notifier.h> 35 #include <linux/swap.h> 36 #include <linux/ksm.h> 37 #include <linux/hashtable.h> 38 #include <linux/freezer.h> 39 #include <linux/oom.h> 40 #include <linux/numa.h> 41 42 #include <asm/tlbflush.h> 43 #include "internal.h" 44 45 #ifdef CONFIG_NUMA 46 #define NUMA(x) (x) 47 #define DO_NUMA(x) do { (x); } while (0) 48 #else 49 #define NUMA(x) (0) 50 #define DO_NUMA(x) do { } while (0) 51 #endif 52 53 /** 54 * DOC: Overview 55 * 56 * A few notes about the KSM scanning process, 57 * to make it easier to understand the data structures below: 58 * 59 * In order to reduce excessive scanning, KSM sorts the memory pages by their 60 * contents into a data structure that holds pointers to the pages' locations. 61 * 62 * Since the contents of the pages may change at any moment, KSM cannot just 63 * insert the pages into a normal sorted tree and expect it to find anything. 64 * Therefore KSM uses two data structures - the stable and the unstable tree. 65 * 66 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 67 * by their contents. Because each such page is write-protected, searching on 68 * this tree is fully assured to be working (except when pages are unmapped), 69 * and therefore this tree is called the stable tree. 70 * 71 * The stable tree node includes information required for reverse 72 * mapping from a KSM page to virtual addresses that map this page. 73 * 74 * In order to avoid large latencies of the rmap walks on KSM pages, 75 * KSM maintains two types of nodes in the stable tree: 76 * 77 * * the regular nodes that keep the reverse mapping structures in a 78 * linked list 79 * * the "chains" that link nodes ("dups") that represent the same 80 * write protected memory content, but each "dup" corresponds to a 81 * different KSM page copy of that content 82 * 83 * Internally, the regular nodes, "dups" and "chains" are represented 84 * using the same :c:type:`struct stable_node` structure. 85 * 86 * In addition to the stable tree, KSM uses a second data structure called the 87 * unstable tree: this tree holds pointers to pages which have been found to 88 * be "unchanged for a period of time". The unstable tree sorts these pages 89 * by their contents, but since they are not write-protected, KSM cannot rely 90 * upon the unstable tree to work correctly - the unstable tree is liable to 91 * be corrupted as its contents are modified, and so it is called unstable. 92 * 93 * KSM solves this problem by several techniques: 94 * 95 * 1) The unstable tree is flushed every time KSM completes scanning all 96 * memory areas, and then the tree is rebuilt again from the beginning. 97 * 2) KSM will only insert into the unstable tree, pages whose hash value 98 * has not changed since the previous scan of all memory areas. 99 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 100 * colors of the nodes and not on their contents, assuring that even when 101 * the tree gets "corrupted" it won't get out of balance, so scanning time 102 * remains the same (also, searching and inserting nodes in an rbtree uses 103 * the same algorithm, so we have no overhead when we flush and rebuild). 104 * 4) KSM never flushes the stable tree, which means that even if it were to 105 * take 10 attempts to find a page in the unstable tree, once it is found, 106 * it is secured in the stable tree. (When we scan a new page, we first 107 * compare it against the stable tree, and then against the unstable tree.) 108 * 109 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 110 * stable trees and multiple unstable trees: one of each for each NUMA node. 111 */ 112 113 /** 114 * struct mm_slot - ksm information per mm that is being scanned 115 * @link: link to the mm_slots hash list 116 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 117 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 118 * @mm: the mm that this information is valid for 119 */ 120 struct mm_slot { 121 struct hlist_node link; 122 struct list_head mm_list; 123 struct rmap_item *rmap_list; 124 struct mm_struct *mm; 125 }; 126 127 /** 128 * struct ksm_scan - cursor for scanning 129 * @mm_slot: the current mm_slot we are scanning 130 * @address: the next address inside that to be scanned 131 * @rmap_list: link to the next rmap to be scanned in the rmap_list 132 * @seqnr: count of completed full scans (needed when removing unstable node) 133 * 134 * There is only the one ksm_scan instance of this cursor structure. 135 */ 136 struct ksm_scan { 137 struct mm_slot *mm_slot; 138 unsigned long address; 139 struct rmap_item **rmap_list; 140 unsigned long seqnr; 141 }; 142 143 /** 144 * struct stable_node - node of the stable rbtree 145 * @node: rb node of this ksm page in the stable tree 146 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 147 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 148 * @list: linked into migrate_nodes, pending placement in the proper node tree 149 * @hlist: hlist head of rmap_items using this ksm page 150 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 151 * @chain_prune_time: time of the last full garbage collection 152 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 153 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 154 */ 155 struct stable_node { 156 union { 157 struct rb_node node; /* when node of stable tree */ 158 struct { /* when listed for migration */ 159 struct list_head *head; 160 struct { 161 struct hlist_node hlist_dup; 162 struct list_head list; 163 }; 164 }; 165 }; 166 struct hlist_head hlist; 167 union { 168 unsigned long kpfn; 169 unsigned long chain_prune_time; 170 }; 171 /* 172 * STABLE_NODE_CHAIN can be any negative number in 173 * rmap_hlist_len negative range, but better not -1 to be able 174 * to reliably detect underflows. 175 */ 176 #define STABLE_NODE_CHAIN -1024 177 int rmap_hlist_len; 178 #ifdef CONFIG_NUMA 179 int nid; 180 #endif 181 }; 182 183 /** 184 * struct rmap_item - reverse mapping item for virtual addresses 185 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 186 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 187 * @nid: NUMA node id of unstable tree in which linked (may not match page) 188 * @mm: the memory structure this rmap_item is pointing into 189 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 190 * @oldchecksum: previous checksum of the page at that virtual address 191 * @node: rb node of this rmap_item in the unstable tree 192 * @head: pointer to stable_node heading this list in the stable tree 193 * @hlist: link into hlist of rmap_items hanging off that stable_node 194 */ 195 struct rmap_item { 196 struct rmap_item *rmap_list; 197 union { 198 struct anon_vma *anon_vma; /* when stable */ 199 #ifdef CONFIG_NUMA 200 int nid; /* when node of unstable tree */ 201 #endif 202 }; 203 struct mm_struct *mm; 204 unsigned long address; /* + low bits used for flags below */ 205 unsigned int oldchecksum; /* when unstable */ 206 union { 207 struct rb_node node; /* when node of unstable tree */ 208 struct { /* when listed from stable tree */ 209 struct stable_node *head; 210 struct hlist_node hlist; 211 }; 212 }; 213 }; 214 215 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 216 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 217 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 218 #define KSM_FLAG_MASK (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG) 219 /* to mask all the flags */ 220 221 /* The stable and unstable tree heads */ 222 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 223 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 224 static struct rb_root *root_stable_tree = one_stable_tree; 225 static struct rb_root *root_unstable_tree = one_unstable_tree; 226 227 /* Recently migrated nodes of stable tree, pending proper placement */ 228 static LIST_HEAD(migrate_nodes); 229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 230 231 #define MM_SLOTS_HASH_BITS 10 232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 233 234 static struct mm_slot ksm_mm_head = { 235 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 236 }; 237 static struct ksm_scan ksm_scan = { 238 .mm_slot = &ksm_mm_head, 239 }; 240 241 static struct kmem_cache *rmap_item_cache; 242 static struct kmem_cache *stable_node_cache; 243 static struct kmem_cache *mm_slot_cache; 244 245 /* The number of nodes in the stable tree */ 246 static unsigned long ksm_pages_shared; 247 248 /* The number of page slots additionally sharing those nodes */ 249 static unsigned long ksm_pages_sharing; 250 251 /* The number of nodes in the unstable tree */ 252 static unsigned long ksm_pages_unshared; 253 254 /* The number of rmap_items in use: to calculate pages_volatile */ 255 static unsigned long ksm_rmap_items; 256 257 /* The number of stable_node chains */ 258 static unsigned long ksm_stable_node_chains; 259 260 /* The number of stable_node dups linked to the stable_node chains */ 261 static unsigned long ksm_stable_node_dups; 262 263 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 264 static int ksm_stable_node_chains_prune_millisecs = 2000; 265 266 /* Maximum number of page slots sharing a stable node */ 267 static int ksm_max_page_sharing = 256; 268 269 /* Number of pages ksmd should scan in one batch */ 270 static unsigned int ksm_thread_pages_to_scan = 100; 271 272 /* Milliseconds ksmd should sleep between batches */ 273 static unsigned int ksm_thread_sleep_millisecs = 20; 274 275 /* Checksum of an empty (zeroed) page */ 276 static unsigned int zero_checksum __read_mostly; 277 278 /* Whether to merge empty (zeroed) pages with actual zero pages */ 279 static bool ksm_use_zero_pages __read_mostly; 280 281 #ifdef CONFIG_NUMA 282 /* Zeroed when merging across nodes is not allowed */ 283 static unsigned int ksm_merge_across_nodes = 1; 284 static int ksm_nr_node_ids = 1; 285 #else 286 #define ksm_merge_across_nodes 1U 287 #define ksm_nr_node_ids 1 288 #endif 289 290 #define KSM_RUN_STOP 0 291 #define KSM_RUN_MERGE 1 292 #define KSM_RUN_UNMERGE 2 293 #define KSM_RUN_OFFLINE 4 294 static unsigned long ksm_run = KSM_RUN_STOP; 295 static void wait_while_offlining(void); 296 297 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 298 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 299 static DEFINE_MUTEX(ksm_thread_mutex); 300 static DEFINE_SPINLOCK(ksm_mmlist_lock); 301 302 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 303 sizeof(struct __struct), __alignof__(struct __struct),\ 304 (__flags), NULL) 305 306 static int __init ksm_slab_init(void) 307 { 308 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 309 if (!rmap_item_cache) 310 goto out; 311 312 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 313 if (!stable_node_cache) 314 goto out_free1; 315 316 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 317 if (!mm_slot_cache) 318 goto out_free2; 319 320 return 0; 321 322 out_free2: 323 kmem_cache_destroy(stable_node_cache); 324 out_free1: 325 kmem_cache_destroy(rmap_item_cache); 326 out: 327 return -ENOMEM; 328 } 329 330 static void __init ksm_slab_free(void) 331 { 332 kmem_cache_destroy(mm_slot_cache); 333 kmem_cache_destroy(stable_node_cache); 334 kmem_cache_destroy(rmap_item_cache); 335 mm_slot_cache = NULL; 336 } 337 338 static __always_inline bool is_stable_node_chain(struct stable_node *chain) 339 { 340 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 341 } 342 343 static __always_inline bool is_stable_node_dup(struct stable_node *dup) 344 { 345 return dup->head == STABLE_NODE_DUP_HEAD; 346 } 347 348 static inline void stable_node_chain_add_dup(struct stable_node *dup, 349 struct stable_node *chain) 350 { 351 VM_BUG_ON(is_stable_node_dup(dup)); 352 dup->head = STABLE_NODE_DUP_HEAD; 353 VM_BUG_ON(!is_stable_node_chain(chain)); 354 hlist_add_head(&dup->hlist_dup, &chain->hlist); 355 ksm_stable_node_dups++; 356 } 357 358 static inline void __stable_node_dup_del(struct stable_node *dup) 359 { 360 VM_BUG_ON(!is_stable_node_dup(dup)); 361 hlist_del(&dup->hlist_dup); 362 ksm_stable_node_dups--; 363 } 364 365 static inline void stable_node_dup_del(struct stable_node *dup) 366 { 367 VM_BUG_ON(is_stable_node_chain(dup)); 368 if (is_stable_node_dup(dup)) 369 __stable_node_dup_del(dup); 370 else 371 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 372 #ifdef CONFIG_DEBUG_VM 373 dup->head = NULL; 374 #endif 375 } 376 377 static inline struct rmap_item *alloc_rmap_item(void) 378 { 379 struct rmap_item *rmap_item; 380 381 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 382 __GFP_NORETRY | __GFP_NOWARN); 383 if (rmap_item) 384 ksm_rmap_items++; 385 return rmap_item; 386 } 387 388 static inline void free_rmap_item(struct rmap_item *rmap_item) 389 { 390 ksm_rmap_items--; 391 rmap_item->mm = NULL; /* debug safety */ 392 kmem_cache_free(rmap_item_cache, rmap_item); 393 } 394 395 static inline struct stable_node *alloc_stable_node(void) 396 { 397 /* 398 * The allocation can take too long with GFP_KERNEL when memory is under 399 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 400 * grants access to memory reserves, helping to avoid this problem. 401 */ 402 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 403 } 404 405 static inline void free_stable_node(struct stable_node *stable_node) 406 { 407 VM_BUG_ON(stable_node->rmap_hlist_len && 408 !is_stable_node_chain(stable_node)); 409 kmem_cache_free(stable_node_cache, stable_node); 410 } 411 412 static inline struct mm_slot *alloc_mm_slot(void) 413 { 414 if (!mm_slot_cache) /* initialization failed */ 415 return NULL; 416 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 417 } 418 419 static inline void free_mm_slot(struct mm_slot *mm_slot) 420 { 421 kmem_cache_free(mm_slot_cache, mm_slot); 422 } 423 424 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 425 { 426 struct mm_slot *slot; 427 428 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 429 if (slot->mm == mm) 430 return slot; 431 432 return NULL; 433 } 434 435 static void insert_to_mm_slots_hash(struct mm_struct *mm, 436 struct mm_slot *mm_slot) 437 { 438 mm_slot->mm = mm; 439 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 440 } 441 442 /* 443 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 444 * page tables after it has passed through ksm_exit() - which, if necessary, 445 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 446 * a special flag: they can just back out as soon as mm_users goes to zero. 447 * ksm_test_exit() is used throughout to make this test for exit: in some 448 * places for correctness, in some places just to avoid unnecessary work. 449 */ 450 static inline bool ksm_test_exit(struct mm_struct *mm) 451 { 452 return atomic_read(&mm->mm_users) == 0; 453 } 454 455 /* 456 * We use break_ksm to break COW on a ksm page: it's a stripped down 457 * 458 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1) 459 * put_page(page); 460 * 461 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 462 * in case the application has unmapped and remapped mm,addr meanwhile. 463 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 464 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. 465 * 466 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 467 * of the process that owns 'vma'. We also do not want to enforce 468 * protection keys here anyway. 469 */ 470 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 471 { 472 struct page *page; 473 vm_fault_t ret = 0; 474 475 do { 476 cond_resched(); 477 page = follow_page(vma, addr, 478 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 479 if (IS_ERR_OR_NULL(page)) 480 break; 481 if (PageKsm(page)) 482 ret = handle_mm_fault(vma, addr, 483 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE); 484 else 485 ret = VM_FAULT_WRITE; 486 put_page(page); 487 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 488 /* 489 * We must loop because handle_mm_fault() may back out if there's 490 * any difficulty e.g. if pte accessed bit gets updated concurrently. 491 * 492 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 493 * COW has been broken, even if the vma does not permit VM_WRITE; 494 * but note that a concurrent fault might break PageKsm for us. 495 * 496 * VM_FAULT_SIGBUS could occur if we race with truncation of the 497 * backing file, which also invalidates anonymous pages: that's 498 * okay, that truncation will have unmapped the PageKsm for us. 499 * 500 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 501 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 502 * current task has TIF_MEMDIE set, and will be OOM killed on return 503 * to user; and ksmd, having no mm, would never be chosen for that. 504 * 505 * But if the mm is in a limited mem_cgroup, then the fault may fail 506 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 507 * even ksmd can fail in this way - though it's usually breaking ksm 508 * just to undo a merge it made a moment before, so unlikely to oom. 509 * 510 * That's a pity: we might therefore have more kernel pages allocated 511 * than we're counting as nodes in the stable tree; but ksm_do_scan 512 * will retry to break_cow on each pass, so should recover the page 513 * in due course. The important thing is to not let VM_MERGEABLE 514 * be cleared while any such pages might remain in the area. 515 */ 516 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 517 } 518 519 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 520 unsigned long addr) 521 { 522 struct vm_area_struct *vma; 523 if (ksm_test_exit(mm)) 524 return NULL; 525 vma = find_vma(mm, addr); 526 if (!vma || vma->vm_start > addr) 527 return NULL; 528 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 529 return NULL; 530 return vma; 531 } 532 533 static void break_cow(struct rmap_item *rmap_item) 534 { 535 struct mm_struct *mm = rmap_item->mm; 536 unsigned long addr = rmap_item->address; 537 struct vm_area_struct *vma; 538 539 /* 540 * It is not an accident that whenever we want to break COW 541 * to undo, we also need to drop a reference to the anon_vma. 542 */ 543 put_anon_vma(rmap_item->anon_vma); 544 545 mmap_read_lock(mm); 546 vma = find_mergeable_vma(mm, addr); 547 if (vma) 548 break_ksm(vma, addr); 549 mmap_read_unlock(mm); 550 } 551 552 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 553 { 554 struct mm_struct *mm = rmap_item->mm; 555 unsigned long addr = rmap_item->address; 556 struct vm_area_struct *vma; 557 struct page *page; 558 559 mmap_read_lock(mm); 560 vma = find_mergeable_vma(mm, addr); 561 if (!vma) 562 goto out; 563 564 page = follow_page(vma, addr, FOLL_GET); 565 if (IS_ERR_OR_NULL(page)) 566 goto out; 567 if (PageAnon(page)) { 568 flush_anon_page(vma, page, addr); 569 flush_dcache_page(page); 570 } else { 571 put_page(page); 572 out: 573 page = NULL; 574 } 575 mmap_read_unlock(mm); 576 return page; 577 } 578 579 /* 580 * This helper is used for getting right index into array of tree roots. 581 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 582 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 583 * every node has its own stable and unstable tree. 584 */ 585 static inline int get_kpfn_nid(unsigned long kpfn) 586 { 587 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 588 } 589 590 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup, 591 struct rb_root *root) 592 { 593 struct stable_node *chain = alloc_stable_node(); 594 VM_BUG_ON(is_stable_node_chain(dup)); 595 if (likely(chain)) { 596 INIT_HLIST_HEAD(&chain->hlist); 597 chain->chain_prune_time = jiffies; 598 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 599 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 600 chain->nid = NUMA_NO_NODE; /* debug */ 601 #endif 602 ksm_stable_node_chains++; 603 604 /* 605 * Put the stable node chain in the first dimension of 606 * the stable tree and at the same time remove the old 607 * stable node. 608 */ 609 rb_replace_node(&dup->node, &chain->node, root); 610 611 /* 612 * Move the old stable node to the second dimension 613 * queued in the hlist_dup. The invariant is that all 614 * dup stable_nodes in the chain->hlist point to pages 615 * that are write protected and have the exact same 616 * content. 617 */ 618 stable_node_chain_add_dup(dup, chain); 619 } 620 return chain; 621 } 622 623 static inline void free_stable_node_chain(struct stable_node *chain, 624 struct rb_root *root) 625 { 626 rb_erase(&chain->node, root); 627 free_stable_node(chain); 628 ksm_stable_node_chains--; 629 } 630 631 static void remove_node_from_stable_tree(struct stable_node *stable_node) 632 { 633 struct rmap_item *rmap_item; 634 635 /* check it's not STABLE_NODE_CHAIN or negative */ 636 BUG_ON(stable_node->rmap_hlist_len < 0); 637 638 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 639 if (rmap_item->hlist.next) 640 ksm_pages_sharing--; 641 else 642 ksm_pages_shared--; 643 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 644 stable_node->rmap_hlist_len--; 645 put_anon_vma(rmap_item->anon_vma); 646 rmap_item->address &= PAGE_MASK; 647 cond_resched(); 648 } 649 650 /* 651 * We need the second aligned pointer of the migrate_nodes 652 * list_head to stay clear from the rb_parent_color union 653 * (aligned and different than any node) and also different 654 * from &migrate_nodes. This will verify that future list.h changes 655 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 656 */ 657 #if defined(GCC_VERSION) && GCC_VERSION >= 40903 658 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 659 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 660 #endif 661 662 if (stable_node->head == &migrate_nodes) 663 list_del(&stable_node->list); 664 else 665 stable_node_dup_del(stable_node); 666 free_stable_node(stable_node); 667 } 668 669 enum get_ksm_page_flags { 670 GET_KSM_PAGE_NOLOCK, 671 GET_KSM_PAGE_LOCK, 672 GET_KSM_PAGE_TRYLOCK 673 }; 674 675 /* 676 * get_ksm_page: checks if the page indicated by the stable node 677 * is still its ksm page, despite having held no reference to it. 678 * In which case we can trust the content of the page, and it 679 * returns the gotten page; but if the page has now been zapped, 680 * remove the stale node from the stable tree and return NULL. 681 * But beware, the stable node's page might be being migrated. 682 * 683 * You would expect the stable_node to hold a reference to the ksm page. 684 * But if it increments the page's count, swapping out has to wait for 685 * ksmd to come around again before it can free the page, which may take 686 * seconds or even minutes: much too unresponsive. So instead we use a 687 * "keyhole reference": access to the ksm page from the stable node peeps 688 * out through its keyhole to see if that page still holds the right key, 689 * pointing back to this stable node. This relies on freeing a PageAnon 690 * page to reset its page->mapping to NULL, and relies on no other use of 691 * a page to put something that might look like our key in page->mapping. 692 * is on its way to being freed; but it is an anomaly to bear in mind. 693 */ 694 static struct page *get_ksm_page(struct stable_node *stable_node, 695 enum get_ksm_page_flags flags) 696 { 697 struct page *page; 698 void *expected_mapping; 699 unsigned long kpfn; 700 701 expected_mapping = (void *)((unsigned long)stable_node | 702 PAGE_MAPPING_KSM); 703 again: 704 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 705 page = pfn_to_page(kpfn); 706 if (READ_ONCE(page->mapping) != expected_mapping) 707 goto stale; 708 709 /* 710 * We cannot do anything with the page while its refcount is 0. 711 * Usually 0 means free, or tail of a higher-order page: in which 712 * case this node is no longer referenced, and should be freed; 713 * however, it might mean that the page is under page_ref_freeze(). 714 * The __remove_mapping() case is easy, again the node is now stale; 715 * the same is in reuse_ksm_page() case; but if page is swapcache 716 * in migrate_page_move_mapping(), it might still be our page, 717 * in which case it's essential to keep the node. 718 */ 719 while (!get_page_unless_zero(page)) { 720 /* 721 * Another check for page->mapping != expected_mapping would 722 * work here too. We have chosen the !PageSwapCache test to 723 * optimize the common case, when the page is or is about to 724 * be freed: PageSwapCache is cleared (under spin_lock_irq) 725 * in the ref_freeze section of __remove_mapping(); but Anon 726 * page->mapping reset to NULL later, in free_pages_prepare(). 727 */ 728 if (!PageSwapCache(page)) 729 goto stale; 730 cpu_relax(); 731 } 732 733 if (READ_ONCE(page->mapping) != expected_mapping) { 734 put_page(page); 735 goto stale; 736 } 737 738 if (flags == GET_KSM_PAGE_TRYLOCK) { 739 if (!trylock_page(page)) { 740 put_page(page); 741 return ERR_PTR(-EBUSY); 742 } 743 } else if (flags == GET_KSM_PAGE_LOCK) 744 lock_page(page); 745 746 if (flags != GET_KSM_PAGE_NOLOCK) { 747 if (READ_ONCE(page->mapping) != expected_mapping) { 748 unlock_page(page); 749 put_page(page); 750 goto stale; 751 } 752 } 753 return page; 754 755 stale: 756 /* 757 * We come here from above when page->mapping or !PageSwapCache 758 * suggests that the node is stale; but it might be under migration. 759 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), 760 * before checking whether node->kpfn has been changed. 761 */ 762 smp_rmb(); 763 if (READ_ONCE(stable_node->kpfn) != kpfn) 764 goto again; 765 remove_node_from_stable_tree(stable_node); 766 return NULL; 767 } 768 769 /* 770 * Removing rmap_item from stable or unstable tree. 771 * This function will clean the information from the stable/unstable tree. 772 */ 773 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 774 { 775 if (rmap_item->address & STABLE_FLAG) { 776 struct stable_node *stable_node; 777 struct page *page; 778 779 stable_node = rmap_item->head; 780 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 781 if (!page) 782 goto out; 783 784 hlist_del(&rmap_item->hlist); 785 unlock_page(page); 786 put_page(page); 787 788 if (!hlist_empty(&stable_node->hlist)) 789 ksm_pages_sharing--; 790 else 791 ksm_pages_shared--; 792 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 793 stable_node->rmap_hlist_len--; 794 795 put_anon_vma(rmap_item->anon_vma); 796 rmap_item->address &= PAGE_MASK; 797 798 } else if (rmap_item->address & UNSTABLE_FLAG) { 799 unsigned char age; 800 /* 801 * Usually ksmd can and must skip the rb_erase, because 802 * root_unstable_tree was already reset to RB_ROOT. 803 * But be careful when an mm is exiting: do the rb_erase 804 * if this rmap_item was inserted by this scan, rather 805 * than left over from before. 806 */ 807 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 808 BUG_ON(age > 1); 809 if (!age) 810 rb_erase(&rmap_item->node, 811 root_unstable_tree + NUMA(rmap_item->nid)); 812 ksm_pages_unshared--; 813 rmap_item->address &= PAGE_MASK; 814 } 815 out: 816 cond_resched(); /* we're called from many long loops */ 817 } 818 819 static void remove_trailing_rmap_items(struct mm_slot *mm_slot, 820 struct rmap_item **rmap_list) 821 { 822 while (*rmap_list) { 823 struct rmap_item *rmap_item = *rmap_list; 824 *rmap_list = rmap_item->rmap_list; 825 remove_rmap_item_from_tree(rmap_item); 826 free_rmap_item(rmap_item); 827 } 828 } 829 830 /* 831 * Though it's very tempting to unmerge rmap_items from stable tree rather 832 * than check every pte of a given vma, the locking doesn't quite work for 833 * that - an rmap_item is assigned to the stable tree after inserting ksm 834 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 835 * rmap_items from parent to child at fork time (so as not to waste time 836 * if exit comes before the next scan reaches it). 837 * 838 * Similarly, although we'd like to remove rmap_items (so updating counts 839 * and freeing memory) when unmerging an area, it's easier to leave that 840 * to the next pass of ksmd - consider, for example, how ksmd might be 841 * in cmp_and_merge_page on one of the rmap_items we would be removing. 842 */ 843 static int unmerge_ksm_pages(struct vm_area_struct *vma, 844 unsigned long start, unsigned long end) 845 { 846 unsigned long addr; 847 int err = 0; 848 849 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 850 if (ksm_test_exit(vma->vm_mm)) 851 break; 852 if (signal_pending(current)) 853 err = -ERESTARTSYS; 854 else 855 err = break_ksm(vma, addr); 856 } 857 return err; 858 } 859 860 static inline struct stable_node *page_stable_node(struct page *page) 861 { 862 return PageKsm(page) ? page_rmapping(page) : NULL; 863 } 864 865 static inline void set_page_stable_node(struct page *page, 866 struct stable_node *stable_node) 867 { 868 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 869 } 870 871 #ifdef CONFIG_SYSFS 872 /* 873 * Only called through the sysfs control interface: 874 */ 875 static int remove_stable_node(struct stable_node *stable_node) 876 { 877 struct page *page; 878 int err; 879 880 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 881 if (!page) { 882 /* 883 * get_ksm_page did remove_node_from_stable_tree itself. 884 */ 885 return 0; 886 } 887 888 /* 889 * Page could be still mapped if this races with __mmput() running in 890 * between ksm_exit() and exit_mmap(). Just refuse to let 891 * merge_across_nodes/max_page_sharing be switched. 892 */ 893 err = -EBUSY; 894 if (!page_mapped(page)) { 895 /* 896 * The stable node did not yet appear stale to get_ksm_page(), 897 * since that allows for an unmapped ksm page to be recognized 898 * right up until it is freed; but the node is safe to remove. 899 * This page might be in a pagevec waiting to be freed, 900 * or it might be PageSwapCache (perhaps under writeback), 901 * or it might have been removed from swapcache a moment ago. 902 */ 903 set_page_stable_node(page, NULL); 904 remove_node_from_stable_tree(stable_node); 905 err = 0; 906 } 907 908 unlock_page(page); 909 put_page(page); 910 return err; 911 } 912 913 static int remove_stable_node_chain(struct stable_node *stable_node, 914 struct rb_root *root) 915 { 916 struct stable_node *dup; 917 struct hlist_node *hlist_safe; 918 919 if (!is_stable_node_chain(stable_node)) { 920 VM_BUG_ON(is_stable_node_dup(stable_node)); 921 if (remove_stable_node(stable_node)) 922 return true; 923 else 924 return false; 925 } 926 927 hlist_for_each_entry_safe(dup, hlist_safe, 928 &stable_node->hlist, hlist_dup) { 929 VM_BUG_ON(!is_stable_node_dup(dup)); 930 if (remove_stable_node(dup)) 931 return true; 932 } 933 BUG_ON(!hlist_empty(&stable_node->hlist)); 934 free_stable_node_chain(stable_node, root); 935 return false; 936 } 937 938 static int remove_all_stable_nodes(void) 939 { 940 struct stable_node *stable_node, *next; 941 int nid; 942 int err = 0; 943 944 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 945 while (root_stable_tree[nid].rb_node) { 946 stable_node = rb_entry(root_stable_tree[nid].rb_node, 947 struct stable_node, node); 948 if (remove_stable_node_chain(stable_node, 949 root_stable_tree + nid)) { 950 err = -EBUSY; 951 break; /* proceed to next nid */ 952 } 953 cond_resched(); 954 } 955 } 956 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 957 if (remove_stable_node(stable_node)) 958 err = -EBUSY; 959 cond_resched(); 960 } 961 return err; 962 } 963 964 static int unmerge_and_remove_all_rmap_items(void) 965 { 966 struct mm_slot *mm_slot; 967 struct mm_struct *mm; 968 struct vm_area_struct *vma; 969 int err = 0; 970 971 spin_lock(&ksm_mmlist_lock); 972 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 973 struct mm_slot, mm_list); 974 spin_unlock(&ksm_mmlist_lock); 975 976 for (mm_slot = ksm_scan.mm_slot; 977 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 978 mm = mm_slot->mm; 979 mmap_read_lock(mm); 980 for (vma = mm->mmap; vma; vma = vma->vm_next) { 981 if (ksm_test_exit(mm)) 982 break; 983 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 984 continue; 985 err = unmerge_ksm_pages(vma, 986 vma->vm_start, vma->vm_end); 987 if (err) 988 goto error; 989 } 990 991 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); 992 mmap_read_unlock(mm); 993 994 spin_lock(&ksm_mmlist_lock); 995 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 996 struct mm_slot, mm_list); 997 if (ksm_test_exit(mm)) { 998 hash_del(&mm_slot->link); 999 list_del(&mm_slot->mm_list); 1000 spin_unlock(&ksm_mmlist_lock); 1001 1002 free_mm_slot(mm_slot); 1003 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1004 mmdrop(mm); 1005 } else 1006 spin_unlock(&ksm_mmlist_lock); 1007 } 1008 1009 /* Clean up stable nodes, but don't worry if some are still busy */ 1010 remove_all_stable_nodes(); 1011 ksm_scan.seqnr = 0; 1012 return 0; 1013 1014 error: 1015 mmap_read_unlock(mm); 1016 spin_lock(&ksm_mmlist_lock); 1017 ksm_scan.mm_slot = &ksm_mm_head; 1018 spin_unlock(&ksm_mmlist_lock); 1019 return err; 1020 } 1021 #endif /* CONFIG_SYSFS */ 1022 1023 static u32 calc_checksum(struct page *page) 1024 { 1025 u32 checksum; 1026 void *addr = kmap_atomic(page); 1027 checksum = xxhash(addr, PAGE_SIZE, 0); 1028 kunmap_atomic(addr); 1029 return checksum; 1030 } 1031 1032 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1033 pte_t *orig_pte) 1034 { 1035 struct mm_struct *mm = vma->vm_mm; 1036 struct page_vma_mapped_walk pvmw = { 1037 .page = page, 1038 .vma = vma, 1039 }; 1040 int swapped; 1041 int err = -EFAULT; 1042 struct mmu_notifier_range range; 1043 1044 pvmw.address = page_address_in_vma(page, vma); 1045 if (pvmw.address == -EFAULT) 1046 goto out; 1047 1048 BUG_ON(PageTransCompound(page)); 1049 1050 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 1051 pvmw.address, 1052 pvmw.address + PAGE_SIZE); 1053 mmu_notifier_invalidate_range_start(&range); 1054 1055 if (!page_vma_mapped_walk(&pvmw)) 1056 goto out_mn; 1057 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1058 goto out_unlock; 1059 1060 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1061 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) || 1062 mm_tlb_flush_pending(mm)) { 1063 pte_t entry; 1064 1065 swapped = PageSwapCache(page); 1066 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1067 /* 1068 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1069 * take any lock, therefore the check that we are going to make 1070 * with the pagecount against the mapcount is racey and 1071 * O_DIRECT can happen right after the check. 1072 * So we clear the pte and flush the tlb before the check 1073 * this assure us that no O_DIRECT can happen after the check 1074 * or in the middle of the check. 1075 * 1076 * No need to notify as we are downgrading page table to read 1077 * only not changing it to point to a new page. 1078 * 1079 * See Documentation/vm/mmu_notifier.rst 1080 */ 1081 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1082 /* 1083 * Check that no O_DIRECT or similar I/O is in progress on the 1084 * page 1085 */ 1086 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1087 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1088 goto out_unlock; 1089 } 1090 if (pte_dirty(entry)) 1091 set_page_dirty(page); 1092 1093 if (pte_protnone(entry)) 1094 entry = pte_mkclean(pte_clear_savedwrite(entry)); 1095 else 1096 entry = pte_mkclean(pte_wrprotect(entry)); 1097 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1098 } 1099 *orig_pte = *pvmw.pte; 1100 err = 0; 1101 1102 out_unlock: 1103 page_vma_mapped_walk_done(&pvmw); 1104 out_mn: 1105 mmu_notifier_invalidate_range_end(&range); 1106 out: 1107 return err; 1108 } 1109 1110 /** 1111 * replace_page - replace page in vma by new ksm page 1112 * @vma: vma that holds the pte pointing to page 1113 * @page: the page we are replacing by kpage 1114 * @kpage: the ksm page we replace page by 1115 * @orig_pte: the original value of the pte 1116 * 1117 * Returns 0 on success, -EFAULT on failure. 1118 */ 1119 static int replace_page(struct vm_area_struct *vma, struct page *page, 1120 struct page *kpage, pte_t orig_pte) 1121 { 1122 struct mm_struct *mm = vma->vm_mm; 1123 pmd_t *pmd; 1124 pte_t *ptep; 1125 pte_t newpte; 1126 spinlock_t *ptl; 1127 unsigned long addr; 1128 int err = -EFAULT; 1129 struct mmu_notifier_range range; 1130 1131 addr = page_address_in_vma(page, vma); 1132 if (addr == -EFAULT) 1133 goto out; 1134 1135 pmd = mm_find_pmd(mm, addr); 1136 if (!pmd) 1137 goto out; 1138 1139 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr, 1140 addr + PAGE_SIZE); 1141 mmu_notifier_invalidate_range_start(&range); 1142 1143 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1144 if (!pte_same(*ptep, orig_pte)) { 1145 pte_unmap_unlock(ptep, ptl); 1146 goto out_mn; 1147 } 1148 1149 /* 1150 * No need to check ksm_use_zero_pages here: we can only have a 1151 * zero_page here if ksm_use_zero_pages was enabled already. 1152 */ 1153 if (!is_zero_pfn(page_to_pfn(kpage))) { 1154 get_page(kpage); 1155 page_add_anon_rmap(kpage, vma, addr, false); 1156 newpte = mk_pte(kpage, vma->vm_page_prot); 1157 } else { 1158 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1159 vma->vm_page_prot)); 1160 /* 1161 * We're replacing an anonymous page with a zero page, which is 1162 * not anonymous. We need to do proper accounting otherwise we 1163 * will get wrong values in /proc, and a BUG message in dmesg 1164 * when tearing down the mm. 1165 */ 1166 dec_mm_counter(mm, MM_ANONPAGES); 1167 } 1168 1169 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1170 /* 1171 * No need to notify as we are replacing a read only page with another 1172 * read only page with the same content. 1173 * 1174 * See Documentation/vm/mmu_notifier.rst 1175 */ 1176 ptep_clear_flush(vma, addr, ptep); 1177 set_pte_at_notify(mm, addr, ptep, newpte); 1178 1179 page_remove_rmap(page, false); 1180 if (!page_mapped(page)) 1181 try_to_free_swap(page); 1182 put_page(page); 1183 1184 pte_unmap_unlock(ptep, ptl); 1185 err = 0; 1186 out_mn: 1187 mmu_notifier_invalidate_range_end(&range); 1188 out: 1189 return err; 1190 } 1191 1192 /* 1193 * try_to_merge_one_page - take two pages and merge them into one 1194 * @vma: the vma that holds the pte pointing to page 1195 * @page: the PageAnon page that we want to replace with kpage 1196 * @kpage: the PageKsm page that we want to map instead of page, 1197 * or NULL the first time when we want to use page as kpage. 1198 * 1199 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1200 */ 1201 static int try_to_merge_one_page(struct vm_area_struct *vma, 1202 struct page *page, struct page *kpage) 1203 { 1204 pte_t orig_pte = __pte(0); 1205 int err = -EFAULT; 1206 1207 if (page == kpage) /* ksm page forked */ 1208 return 0; 1209 1210 if (!PageAnon(page)) 1211 goto out; 1212 1213 /* 1214 * We need the page lock to read a stable PageSwapCache in 1215 * write_protect_page(). We use trylock_page() instead of 1216 * lock_page() because we don't want to wait here - we 1217 * prefer to continue scanning and merging different pages, 1218 * then come back to this page when it is unlocked. 1219 */ 1220 if (!trylock_page(page)) 1221 goto out; 1222 1223 if (PageTransCompound(page)) { 1224 if (split_huge_page(page)) 1225 goto out_unlock; 1226 } 1227 1228 /* 1229 * If this anonymous page is mapped only here, its pte may need 1230 * to be write-protected. If it's mapped elsewhere, all of its 1231 * ptes are necessarily already write-protected. But in either 1232 * case, we need to lock and check page_count is not raised. 1233 */ 1234 if (write_protect_page(vma, page, &orig_pte) == 0) { 1235 if (!kpage) { 1236 /* 1237 * While we hold page lock, upgrade page from 1238 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1239 * stable_tree_insert() will update stable_node. 1240 */ 1241 set_page_stable_node(page, NULL); 1242 mark_page_accessed(page); 1243 /* 1244 * Page reclaim just frees a clean page with no dirty 1245 * ptes: make sure that the ksm page would be swapped. 1246 */ 1247 if (!PageDirty(page)) 1248 SetPageDirty(page); 1249 err = 0; 1250 } else if (pages_identical(page, kpage)) 1251 err = replace_page(vma, page, kpage, orig_pte); 1252 } 1253 1254 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1255 munlock_vma_page(page); 1256 if (!PageMlocked(kpage)) { 1257 unlock_page(page); 1258 lock_page(kpage); 1259 mlock_vma_page(kpage); 1260 page = kpage; /* for final unlock */ 1261 } 1262 } 1263 1264 out_unlock: 1265 unlock_page(page); 1266 out: 1267 return err; 1268 } 1269 1270 /* 1271 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1272 * but no new kernel page is allocated: kpage must already be a ksm page. 1273 * 1274 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1275 */ 1276 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1277 struct page *page, struct page *kpage) 1278 { 1279 struct mm_struct *mm = rmap_item->mm; 1280 struct vm_area_struct *vma; 1281 int err = -EFAULT; 1282 1283 mmap_read_lock(mm); 1284 vma = find_mergeable_vma(mm, rmap_item->address); 1285 if (!vma) 1286 goto out; 1287 1288 err = try_to_merge_one_page(vma, page, kpage); 1289 if (err) 1290 goto out; 1291 1292 /* Unstable nid is in union with stable anon_vma: remove first */ 1293 remove_rmap_item_from_tree(rmap_item); 1294 1295 /* Must get reference to anon_vma while still holding mmap_lock */ 1296 rmap_item->anon_vma = vma->anon_vma; 1297 get_anon_vma(vma->anon_vma); 1298 out: 1299 mmap_read_unlock(mm); 1300 return err; 1301 } 1302 1303 /* 1304 * try_to_merge_two_pages - take two identical pages and prepare them 1305 * to be merged into one page. 1306 * 1307 * This function returns the kpage if we successfully merged two identical 1308 * pages into one ksm page, NULL otherwise. 1309 * 1310 * Note that this function upgrades page to ksm page: if one of the pages 1311 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1312 */ 1313 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1314 struct page *page, 1315 struct rmap_item *tree_rmap_item, 1316 struct page *tree_page) 1317 { 1318 int err; 1319 1320 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1321 if (!err) { 1322 err = try_to_merge_with_ksm_page(tree_rmap_item, 1323 tree_page, page); 1324 /* 1325 * If that fails, we have a ksm page with only one pte 1326 * pointing to it: so break it. 1327 */ 1328 if (err) 1329 break_cow(rmap_item); 1330 } 1331 return err ? NULL : page; 1332 } 1333 1334 static __always_inline 1335 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset) 1336 { 1337 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1338 /* 1339 * Check that at least one mapping still exists, otherwise 1340 * there's no much point to merge and share with this 1341 * stable_node, as the underlying tree_page of the other 1342 * sharer is going to be freed soon. 1343 */ 1344 return stable_node->rmap_hlist_len && 1345 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1346 } 1347 1348 static __always_inline 1349 bool is_page_sharing_candidate(struct stable_node *stable_node) 1350 { 1351 return __is_page_sharing_candidate(stable_node, 0); 1352 } 1353 1354 static struct page *stable_node_dup(struct stable_node **_stable_node_dup, 1355 struct stable_node **_stable_node, 1356 struct rb_root *root, 1357 bool prune_stale_stable_nodes) 1358 { 1359 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1360 struct hlist_node *hlist_safe; 1361 struct page *_tree_page, *tree_page = NULL; 1362 int nr = 0; 1363 int found_rmap_hlist_len; 1364 1365 if (!prune_stale_stable_nodes || 1366 time_before(jiffies, stable_node->chain_prune_time + 1367 msecs_to_jiffies( 1368 ksm_stable_node_chains_prune_millisecs))) 1369 prune_stale_stable_nodes = false; 1370 else 1371 stable_node->chain_prune_time = jiffies; 1372 1373 hlist_for_each_entry_safe(dup, hlist_safe, 1374 &stable_node->hlist, hlist_dup) { 1375 cond_resched(); 1376 /* 1377 * We must walk all stable_node_dup to prune the stale 1378 * stable nodes during lookup. 1379 * 1380 * get_ksm_page can drop the nodes from the 1381 * stable_node->hlist if they point to freed pages 1382 * (that's why we do a _safe walk). The "dup" 1383 * stable_node parameter itself will be freed from 1384 * under us if it returns NULL. 1385 */ 1386 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK); 1387 if (!_tree_page) 1388 continue; 1389 nr += 1; 1390 if (is_page_sharing_candidate(dup)) { 1391 if (!found || 1392 dup->rmap_hlist_len > found_rmap_hlist_len) { 1393 if (found) 1394 put_page(tree_page); 1395 found = dup; 1396 found_rmap_hlist_len = found->rmap_hlist_len; 1397 tree_page = _tree_page; 1398 1399 /* skip put_page for found dup */ 1400 if (!prune_stale_stable_nodes) 1401 break; 1402 continue; 1403 } 1404 } 1405 put_page(_tree_page); 1406 } 1407 1408 if (found) { 1409 /* 1410 * nr is counting all dups in the chain only if 1411 * prune_stale_stable_nodes is true, otherwise we may 1412 * break the loop at nr == 1 even if there are 1413 * multiple entries. 1414 */ 1415 if (prune_stale_stable_nodes && nr == 1) { 1416 /* 1417 * If there's not just one entry it would 1418 * corrupt memory, better BUG_ON. In KSM 1419 * context with no lock held it's not even 1420 * fatal. 1421 */ 1422 BUG_ON(stable_node->hlist.first->next); 1423 1424 /* 1425 * There's just one entry and it is below the 1426 * deduplication limit so drop the chain. 1427 */ 1428 rb_replace_node(&stable_node->node, &found->node, 1429 root); 1430 free_stable_node(stable_node); 1431 ksm_stable_node_chains--; 1432 ksm_stable_node_dups--; 1433 /* 1434 * NOTE: the caller depends on the stable_node 1435 * to be equal to stable_node_dup if the chain 1436 * was collapsed. 1437 */ 1438 *_stable_node = found; 1439 /* 1440 * Just for robustneess as stable_node is 1441 * otherwise left as a stable pointer, the 1442 * compiler shall optimize it away at build 1443 * time. 1444 */ 1445 stable_node = NULL; 1446 } else if (stable_node->hlist.first != &found->hlist_dup && 1447 __is_page_sharing_candidate(found, 1)) { 1448 /* 1449 * If the found stable_node dup can accept one 1450 * more future merge (in addition to the one 1451 * that is underway) and is not at the head of 1452 * the chain, put it there so next search will 1453 * be quicker in the !prune_stale_stable_nodes 1454 * case. 1455 * 1456 * NOTE: it would be inaccurate to use nr > 1 1457 * instead of checking the hlist.first pointer 1458 * directly, because in the 1459 * prune_stale_stable_nodes case "nr" isn't 1460 * the position of the found dup in the chain, 1461 * but the total number of dups in the chain. 1462 */ 1463 hlist_del(&found->hlist_dup); 1464 hlist_add_head(&found->hlist_dup, 1465 &stable_node->hlist); 1466 } 1467 } 1468 1469 *_stable_node_dup = found; 1470 return tree_page; 1471 } 1472 1473 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node, 1474 struct rb_root *root) 1475 { 1476 if (!is_stable_node_chain(stable_node)) 1477 return stable_node; 1478 if (hlist_empty(&stable_node->hlist)) { 1479 free_stable_node_chain(stable_node, root); 1480 return NULL; 1481 } 1482 return hlist_entry(stable_node->hlist.first, 1483 typeof(*stable_node), hlist_dup); 1484 } 1485 1486 /* 1487 * Like for get_ksm_page, this function can free the *_stable_node and 1488 * *_stable_node_dup if the returned tree_page is NULL. 1489 * 1490 * It can also free and overwrite *_stable_node with the found 1491 * stable_node_dup if the chain is collapsed (in which case 1492 * *_stable_node will be equal to *_stable_node_dup like if the chain 1493 * never existed). It's up to the caller to verify tree_page is not 1494 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1495 * 1496 * *_stable_node_dup is really a second output parameter of this 1497 * function and will be overwritten in all cases, the caller doesn't 1498 * need to initialize it. 1499 */ 1500 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup, 1501 struct stable_node **_stable_node, 1502 struct rb_root *root, 1503 bool prune_stale_stable_nodes) 1504 { 1505 struct stable_node *stable_node = *_stable_node; 1506 if (!is_stable_node_chain(stable_node)) { 1507 if (is_page_sharing_candidate(stable_node)) { 1508 *_stable_node_dup = stable_node; 1509 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); 1510 } 1511 /* 1512 * _stable_node_dup set to NULL means the stable_node 1513 * reached the ksm_max_page_sharing limit. 1514 */ 1515 *_stable_node_dup = NULL; 1516 return NULL; 1517 } 1518 return stable_node_dup(_stable_node_dup, _stable_node, root, 1519 prune_stale_stable_nodes); 1520 } 1521 1522 static __always_inline struct page *chain_prune(struct stable_node **s_n_d, 1523 struct stable_node **s_n, 1524 struct rb_root *root) 1525 { 1526 return __stable_node_chain(s_n_d, s_n, root, true); 1527 } 1528 1529 static __always_inline struct page *chain(struct stable_node **s_n_d, 1530 struct stable_node *s_n, 1531 struct rb_root *root) 1532 { 1533 struct stable_node *old_stable_node = s_n; 1534 struct page *tree_page; 1535 1536 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1537 /* not pruning dups so s_n cannot have changed */ 1538 VM_BUG_ON(s_n != old_stable_node); 1539 return tree_page; 1540 } 1541 1542 /* 1543 * stable_tree_search - search for page inside the stable tree 1544 * 1545 * This function checks if there is a page inside the stable tree 1546 * with identical content to the page that we are scanning right now. 1547 * 1548 * This function returns the stable tree node of identical content if found, 1549 * NULL otherwise. 1550 */ 1551 static struct page *stable_tree_search(struct page *page) 1552 { 1553 int nid; 1554 struct rb_root *root; 1555 struct rb_node **new; 1556 struct rb_node *parent; 1557 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1558 struct stable_node *page_node; 1559 1560 page_node = page_stable_node(page); 1561 if (page_node && page_node->head != &migrate_nodes) { 1562 /* ksm page forked */ 1563 get_page(page); 1564 return page; 1565 } 1566 1567 nid = get_kpfn_nid(page_to_pfn(page)); 1568 root = root_stable_tree + nid; 1569 again: 1570 new = &root->rb_node; 1571 parent = NULL; 1572 1573 while (*new) { 1574 struct page *tree_page; 1575 int ret; 1576 1577 cond_resched(); 1578 stable_node = rb_entry(*new, struct stable_node, node); 1579 stable_node_any = NULL; 1580 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1581 /* 1582 * NOTE: stable_node may have been freed by 1583 * chain_prune() if the returned stable_node_dup is 1584 * not NULL. stable_node_dup may have been inserted in 1585 * the rbtree instead as a regular stable_node (in 1586 * order to collapse the stable_node chain if a single 1587 * stable_node dup was found in it). In such case the 1588 * stable_node is overwritten by the calleee to point 1589 * to the stable_node_dup that was collapsed in the 1590 * stable rbtree and stable_node will be equal to 1591 * stable_node_dup like if the chain never existed. 1592 */ 1593 if (!stable_node_dup) { 1594 /* 1595 * Either all stable_node dups were full in 1596 * this stable_node chain, or this chain was 1597 * empty and should be rb_erased. 1598 */ 1599 stable_node_any = stable_node_dup_any(stable_node, 1600 root); 1601 if (!stable_node_any) { 1602 /* rb_erase just run */ 1603 goto again; 1604 } 1605 /* 1606 * Take any of the stable_node dups page of 1607 * this stable_node chain to let the tree walk 1608 * continue. All KSM pages belonging to the 1609 * stable_node dups in a stable_node chain 1610 * have the same content and they're 1611 * write protected at all times. Any will work 1612 * fine to continue the walk. 1613 */ 1614 tree_page = get_ksm_page(stable_node_any, 1615 GET_KSM_PAGE_NOLOCK); 1616 } 1617 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1618 if (!tree_page) { 1619 /* 1620 * If we walked over a stale stable_node, 1621 * get_ksm_page() will call rb_erase() and it 1622 * may rebalance the tree from under us. So 1623 * restart the search from scratch. Returning 1624 * NULL would be safe too, but we'd generate 1625 * false negative insertions just because some 1626 * stable_node was stale. 1627 */ 1628 goto again; 1629 } 1630 1631 ret = memcmp_pages(page, tree_page); 1632 put_page(tree_page); 1633 1634 parent = *new; 1635 if (ret < 0) 1636 new = &parent->rb_left; 1637 else if (ret > 0) 1638 new = &parent->rb_right; 1639 else { 1640 if (page_node) { 1641 VM_BUG_ON(page_node->head != &migrate_nodes); 1642 /* 1643 * Test if the migrated page should be merged 1644 * into a stable node dup. If the mapcount is 1645 * 1 we can migrate it with another KSM page 1646 * without adding it to the chain. 1647 */ 1648 if (page_mapcount(page) > 1) 1649 goto chain_append; 1650 } 1651 1652 if (!stable_node_dup) { 1653 /* 1654 * If the stable_node is a chain and 1655 * we got a payload match in memcmp 1656 * but we cannot merge the scanned 1657 * page in any of the existing 1658 * stable_node dups because they're 1659 * all full, we need to wait the 1660 * scanned page to find itself a match 1661 * in the unstable tree to create a 1662 * brand new KSM page to add later to 1663 * the dups of this stable_node. 1664 */ 1665 return NULL; 1666 } 1667 1668 /* 1669 * Lock and unlock the stable_node's page (which 1670 * might already have been migrated) so that page 1671 * migration is sure to notice its raised count. 1672 * It would be more elegant to return stable_node 1673 * than kpage, but that involves more changes. 1674 */ 1675 tree_page = get_ksm_page(stable_node_dup, 1676 GET_KSM_PAGE_TRYLOCK); 1677 1678 if (PTR_ERR(tree_page) == -EBUSY) 1679 return ERR_PTR(-EBUSY); 1680 1681 if (unlikely(!tree_page)) 1682 /* 1683 * The tree may have been rebalanced, 1684 * so re-evaluate parent and new. 1685 */ 1686 goto again; 1687 unlock_page(tree_page); 1688 1689 if (get_kpfn_nid(stable_node_dup->kpfn) != 1690 NUMA(stable_node_dup->nid)) { 1691 put_page(tree_page); 1692 goto replace; 1693 } 1694 return tree_page; 1695 } 1696 } 1697 1698 if (!page_node) 1699 return NULL; 1700 1701 list_del(&page_node->list); 1702 DO_NUMA(page_node->nid = nid); 1703 rb_link_node(&page_node->node, parent, new); 1704 rb_insert_color(&page_node->node, root); 1705 out: 1706 if (is_page_sharing_candidate(page_node)) { 1707 get_page(page); 1708 return page; 1709 } else 1710 return NULL; 1711 1712 replace: 1713 /* 1714 * If stable_node was a chain and chain_prune collapsed it, 1715 * stable_node has been updated to be the new regular 1716 * stable_node. A collapse of the chain is indistinguishable 1717 * from the case there was no chain in the stable 1718 * rbtree. Otherwise stable_node is the chain and 1719 * stable_node_dup is the dup to replace. 1720 */ 1721 if (stable_node_dup == stable_node) { 1722 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1723 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1724 /* there is no chain */ 1725 if (page_node) { 1726 VM_BUG_ON(page_node->head != &migrate_nodes); 1727 list_del(&page_node->list); 1728 DO_NUMA(page_node->nid = nid); 1729 rb_replace_node(&stable_node_dup->node, 1730 &page_node->node, 1731 root); 1732 if (is_page_sharing_candidate(page_node)) 1733 get_page(page); 1734 else 1735 page = NULL; 1736 } else { 1737 rb_erase(&stable_node_dup->node, root); 1738 page = NULL; 1739 } 1740 } else { 1741 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1742 __stable_node_dup_del(stable_node_dup); 1743 if (page_node) { 1744 VM_BUG_ON(page_node->head != &migrate_nodes); 1745 list_del(&page_node->list); 1746 DO_NUMA(page_node->nid = nid); 1747 stable_node_chain_add_dup(page_node, stable_node); 1748 if (is_page_sharing_candidate(page_node)) 1749 get_page(page); 1750 else 1751 page = NULL; 1752 } else { 1753 page = NULL; 1754 } 1755 } 1756 stable_node_dup->head = &migrate_nodes; 1757 list_add(&stable_node_dup->list, stable_node_dup->head); 1758 return page; 1759 1760 chain_append: 1761 /* stable_node_dup could be null if it reached the limit */ 1762 if (!stable_node_dup) 1763 stable_node_dup = stable_node_any; 1764 /* 1765 * If stable_node was a chain and chain_prune collapsed it, 1766 * stable_node has been updated to be the new regular 1767 * stable_node. A collapse of the chain is indistinguishable 1768 * from the case there was no chain in the stable 1769 * rbtree. Otherwise stable_node is the chain and 1770 * stable_node_dup is the dup to replace. 1771 */ 1772 if (stable_node_dup == stable_node) { 1773 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1774 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1775 /* chain is missing so create it */ 1776 stable_node = alloc_stable_node_chain(stable_node_dup, 1777 root); 1778 if (!stable_node) 1779 return NULL; 1780 } 1781 /* 1782 * Add this stable_node dup that was 1783 * migrated to the stable_node chain 1784 * of the current nid for this page 1785 * content. 1786 */ 1787 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1788 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1789 VM_BUG_ON(page_node->head != &migrate_nodes); 1790 list_del(&page_node->list); 1791 DO_NUMA(page_node->nid = nid); 1792 stable_node_chain_add_dup(page_node, stable_node); 1793 goto out; 1794 } 1795 1796 /* 1797 * stable_tree_insert - insert stable tree node pointing to new ksm page 1798 * into the stable tree. 1799 * 1800 * This function returns the stable tree node just allocated on success, 1801 * NULL otherwise. 1802 */ 1803 static struct stable_node *stable_tree_insert(struct page *kpage) 1804 { 1805 int nid; 1806 unsigned long kpfn; 1807 struct rb_root *root; 1808 struct rb_node **new; 1809 struct rb_node *parent; 1810 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1811 bool need_chain = false; 1812 1813 kpfn = page_to_pfn(kpage); 1814 nid = get_kpfn_nid(kpfn); 1815 root = root_stable_tree + nid; 1816 again: 1817 parent = NULL; 1818 new = &root->rb_node; 1819 1820 while (*new) { 1821 struct page *tree_page; 1822 int ret; 1823 1824 cond_resched(); 1825 stable_node = rb_entry(*new, struct stable_node, node); 1826 stable_node_any = NULL; 1827 tree_page = chain(&stable_node_dup, stable_node, root); 1828 if (!stable_node_dup) { 1829 /* 1830 * Either all stable_node dups were full in 1831 * this stable_node chain, or this chain was 1832 * empty and should be rb_erased. 1833 */ 1834 stable_node_any = stable_node_dup_any(stable_node, 1835 root); 1836 if (!stable_node_any) { 1837 /* rb_erase just run */ 1838 goto again; 1839 } 1840 /* 1841 * Take any of the stable_node dups page of 1842 * this stable_node chain to let the tree walk 1843 * continue. All KSM pages belonging to the 1844 * stable_node dups in a stable_node chain 1845 * have the same content and they're 1846 * write protected at all times. Any will work 1847 * fine to continue the walk. 1848 */ 1849 tree_page = get_ksm_page(stable_node_any, 1850 GET_KSM_PAGE_NOLOCK); 1851 } 1852 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1853 if (!tree_page) { 1854 /* 1855 * If we walked over a stale stable_node, 1856 * get_ksm_page() will call rb_erase() and it 1857 * may rebalance the tree from under us. So 1858 * restart the search from scratch. Returning 1859 * NULL would be safe too, but we'd generate 1860 * false negative insertions just because some 1861 * stable_node was stale. 1862 */ 1863 goto again; 1864 } 1865 1866 ret = memcmp_pages(kpage, tree_page); 1867 put_page(tree_page); 1868 1869 parent = *new; 1870 if (ret < 0) 1871 new = &parent->rb_left; 1872 else if (ret > 0) 1873 new = &parent->rb_right; 1874 else { 1875 need_chain = true; 1876 break; 1877 } 1878 } 1879 1880 stable_node_dup = alloc_stable_node(); 1881 if (!stable_node_dup) 1882 return NULL; 1883 1884 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1885 stable_node_dup->kpfn = kpfn; 1886 set_page_stable_node(kpage, stable_node_dup); 1887 stable_node_dup->rmap_hlist_len = 0; 1888 DO_NUMA(stable_node_dup->nid = nid); 1889 if (!need_chain) { 1890 rb_link_node(&stable_node_dup->node, parent, new); 1891 rb_insert_color(&stable_node_dup->node, root); 1892 } else { 1893 if (!is_stable_node_chain(stable_node)) { 1894 struct stable_node *orig = stable_node; 1895 /* chain is missing so create it */ 1896 stable_node = alloc_stable_node_chain(orig, root); 1897 if (!stable_node) { 1898 free_stable_node(stable_node_dup); 1899 return NULL; 1900 } 1901 } 1902 stable_node_chain_add_dup(stable_node_dup, stable_node); 1903 } 1904 1905 return stable_node_dup; 1906 } 1907 1908 /* 1909 * unstable_tree_search_insert - search for identical page, 1910 * else insert rmap_item into the unstable tree. 1911 * 1912 * This function searches for a page in the unstable tree identical to the 1913 * page currently being scanned; and if no identical page is found in the 1914 * tree, we insert rmap_item as a new object into the unstable tree. 1915 * 1916 * This function returns pointer to rmap_item found to be identical 1917 * to the currently scanned page, NULL otherwise. 1918 * 1919 * This function does both searching and inserting, because they share 1920 * the same walking algorithm in an rbtree. 1921 */ 1922 static 1923 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1924 struct page *page, 1925 struct page **tree_pagep) 1926 { 1927 struct rb_node **new; 1928 struct rb_root *root; 1929 struct rb_node *parent = NULL; 1930 int nid; 1931 1932 nid = get_kpfn_nid(page_to_pfn(page)); 1933 root = root_unstable_tree + nid; 1934 new = &root->rb_node; 1935 1936 while (*new) { 1937 struct rmap_item *tree_rmap_item; 1938 struct page *tree_page; 1939 int ret; 1940 1941 cond_resched(); 1942 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1943 tree_page = get_mergeable_page(tree_rmap_item); 1944 if (!tree_page) 1945 return NULL; 1946 1947 /* 1948 * Don't substitute a ksm page for a forked page. 1949 */ 1950 if (page == tree_page) { 1951 put_page(tree_page); 1952 return NULL; 1953 } 1954 1955 ret = memcmp_pages(page, tree_page); 1956 1957 parent = *new; 1958 if (ret < 0) { 1959 put_page(tree_page); 1960 new = &parent->rb_left; 1961 } else if (ret > 0) { 1962 put_page(tree_page); 1963 new = &parent->rb_right; 1964 } else if (!ksm_merge_across_nodes && 1965 page_to_nid(tree_page) != nid) { 1966 /* 1967 * If tree_page has been migrated to another NUMA node, 1968 * it will be flushed out and put in the right unstable 1969 * tree next time: only merge with it when across_nodes. 1970 */ 1971 put_page(tree_page); 1972 return NULL; 1973 } else { 1974 *tree_pagep = tree_page; 1975 return tree_rmap_item; 1976 } 1977 } 1978 1979 rmap_item->address |= UNSTABLE_FLAG; 1980 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1981 DO_NUMA(rmap_item->nid = nid); 1982 rb_link_node(&rmap_item->node, parent, new); 1983 rb_insert_color(&rmap_item->node, root); 1984 1985 ksm_pages_unshared++; 1986 return NULL; 1987 } 1988 1989 /* 1990 * stable_tree_append - add another rmap_item to the linked list of 1991 * rmap_items hanging off a given node of the stable tree, all sharing 1992 * the same ksm page. 1993 */ 1994 static void stable_tree_append(struct rmap_item *rmap_item, 1995 struct stable_node *stable_node, 1996 bool max_page_sharing_bypass) 1997 { 1998 /* 1999 * rmap won't find this mapping if we don't insert the 2000 * rmap_item in the right stable_node 2001 * duplicate. page_migration could break later if rmap breaks, 2002 * so we can as well crash here. We really need to check for 2003 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2004 * for other negative values as an underflow if detected here 2005 * for the first time (and not when decreasing rmap_hlist_len) 2006 * would be sign of memory corruption in the stable_node. 2007 */ 2008 BUG_ON(stable_node->rmap_hlist_len < 0); 2009 2010 stable_node->rmap_hlist_len++; 2011 if (!max_page_sharing_bypass) 2012 /* possibly non fatal but unexpected overflow, only warn */ 2013 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2014 ksm_max_page_sharing); 2015 2016 rmap_item->head = stable_node; 2017 rmap_item->address |= STABLE_FLAG; 2018 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2019 2020 if (rmap_item->hlist.next) 2021 ksm_pages_sharing++; 2022 else 2023 ksm_pages_shared++; 2024 } 2025 2026 /* 2027 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2028 * if not, compare checksum to previous and if it's the same, see if page can 2029 * be inserted into the unstable tree, or merged with a page already there and 2030 * both transferred to the stable tree. 2031 * 2032 * @page: the page that we are searching identical page to. 2033 * @rmap_item: the reverse mapping into the virtual address of this page 2034 */ 2035 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 2036 { 2037 struct mm_struct *mm = rmap_item->mm; 2038 struct rmap_item *tree_rmap_item; 2039 struct page *tree_page = NULL; 2040 struct stable_node *stable_node; 2041 struct page *kpage; 2042 unsigned int checksum; 2043 int err; 2044 bool max_page_sharing_bypass = false; 2045 2046 stable_node = page_stable_node(page); 2047 if (stable_node) { 2048 if (stable_node->head != &migrate_nodes && 2049 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2050 NUMA(stable_node->nid)) { 2051 stable_node_dup_del(stable_node); 2052 stable_node->head = &migrate_nodes; 2053 list_add(&stable_node->list, stable_node->head); 2054 } 2055 if (stable_node->head != &migrate_nodes && 2056 rmap_item->head == stable_node) 2057 return; 2058 /* 2059 * If it's a KSM fork, allow it to go over the sharing limit 2060 * without warnings. 2061 */ 2062 if (!is_page_sharing_candidate(stable_node)) 2063 max_page_sharing_bypass = true; 2064 } 2065 2066 /* We first start with searching the page inside the stable tree */ 2067 kpage = stable_tree_search(page); 2068 if (kpage == page && rmap_item->head == stable_node) { 2069 put_page(kpage); 2070 return; 2071 } 2072 2073 remove_rmap_item_from_tree(rmap_item); 2074 2075 if (kpage) { 2076 if (PTR_ERR(kpage) == -EBUSY) 2077 return; 2078 2079 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2080 if (!err) { 2081 /* 2082 * The page was successfully merged: 2083 * add its rmap_item to the stable tree. 2084 */ 2085 lock_page(kpage); 2086 stable_tree_append(rmap_item, page_stable_node(kpage), 2087 max_page_sharing_bypass); 2088 unlock_page(kpage); 2089 } 2090 put_page(kpage); 2091 return; 2092 } 2093 2094 /* 2095 * If the hash value of the page has changed from the last time 2096 * we calculated it, this page is changing frequently: therefore we 2097 * don't want to insert it in the unstable tree, and we don't want 2098 * to waste our time searching for something identical to it there. 2099 */ 2100 checksum = calc_checksum(page); 2101 if (rmap_item->oldchecksum != checksum) { 2102 rmap_item->oldchecksum = checksum; 2103 return; 2104 } 2105 2106 /* 2107 * Same checksum as an empty page. We attempt to merge it with the 2108 * appropriate zero page if the user enabled this via sysfs. 2109 */ 2110 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2111 struct vm_area_struct *vma; 2112 2113 mmap_read_lock(mm); 2114 vma = find_mergeable_vma(mm, rmap_item->address); 2115 if (vma) { 2116 err = try_to_merge_one_page(vma, page, 2117 ZERO_PAGE(rmap_item->address)); 2118 } else { 2119 /* 2120 * If the vma is out of date, we do not need to 2121 * continue. 2122 */ 2123 err = 0; 2124 } 2125 mmap_read_unlock(mm); 2126 /* 2127 * In case of failure, the page was not really empty, so we 2128 * need to continue. Otherwise we're done. 2129 */ 2130 if (!err) 2131 return; 2132 } 2133 tree_rmap_item = 2134 unstable_tree_search_insert(rmap_item, page, &tree_page); 2135 if (tree_rmap_item) { 2136 bool split; 2137 2138 kpage = try_to_merge_two_pages(rmap_item, page, 2139 tree_rmap_item, tree_page); 2140 /* 2141 * If both pages we tried to merge belong to the same compound 2142 * page, then we actually ended up increasing the reference 2143 * count of the same compound page twice, and split_huge_page 2144 * failed. 2145 * Here we set a flag if that happened, and we use it later to 2146 * try split_huge_page again. Since we call put_page right 2147 * afterwards, the reference count will be correct and 2148 * split_huge_page should succeed. 2149 */ 2150 split = PageTransCompound(page) 2151 && compound_head(page) == compound_head(tree_page); 2152 put_page(tree_page); 2153 if (kpage) { 2154 /* 2155 * The pages were successfully merged: insert new 2156 * node in the stable tree and add both rmap_items. 2157 */ 2158 lock_page(kpage); 2159 stable_node = stable_tree_insert(kpage); 2160 if (stable_node) { 2161 stable_tree_append(tree_rmap_item, stable_node, 2162 false); 2163 stable_tree_append(rmap_item, stable_node, 2164 false); 2165 } 2166 unlock_page(kpage); 2167 2168 /* 2169 * If we fail to insert the page into the stable tree, 2170 * we will have 2 virtual addresses that are pointing 2171 * to a ksm page left outside the stable tree, 2172 * in which case we need to break_cow on both. 2173 */ 2174 if (!stable_node) { 2175 break_cow(tree_rmap_item); 2176 break_cow(rmap_item); 2177 } 2178 } else if (split) { 2179 /* 2180 * We are here if we tried to merge two pages and 2181 * failed because they both belonged to the same 2182 * compound page. We will split the page now, but no 2183 * merging will take place. 2184 * We do not want to add the cost of a full lock; if 2185 * the page is locked, it is better to skip it and 2186 * perhaps try again later. 2187 */ 2188 if (!trylock_page(page)) 2189 return; 2190 split_huge_page(page); 2191 unlock_page(page); 2192 } 2193 } 2194 } 2195 2196 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 2197 struct rmap_item **rmap_list, 2198 unsigned long addr) 2199 { 2200 struct rmap_item *rmap_item; 2201 2202 while (*rmap_list) { 2203 rmap_item = *rmap_list; 2204 if ((rmap_item->address & PAGE_MASK) == addr) 2205 return rmap_item; 2206 if (rmap_item->address > addr) 2207 break; 2208 *rmap_list = rmap_item->rmap_list; 2209 remove_rmap_item_from_tree(rmap_item); 2210 free_rmap_item(rmap_item); 2211 } 2212 2213 rmap_item = alloc_rmap_item(); 2214 if (rmap_item) { 2215 /* It has already been zeroed */ 2216 rmap_item->mm = mm_slot->mm; 2217 rmap_item->address = addr; 2218 rmap_item->rmap_list = *rmap_list; 2219 *rmap_list = rmap_item; 2220 } 2221 return rmap_item; 2222 } 2223 2224 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 2225 { 2226 struct mm_struct *mm; 2227 struct mm_slot *slot; 2228 struct vm_area_struct *vma; 2229 struct rmap_item *rmap_item; 2230 int nid; 2231 2232 if (list_empty(&ksm_mm_head.mm_list)) 2233 return NULL; 2234 2235 slot = ksm_scan.mm_slot; 2236 if (slot == &ksm_mm_head) { 2237 /* 2238 * A number of pages can hang around indefinitely on per-cpu 2239 * pagevecs, raised page count preventing write_protect_page 2240 * from merging them. Though it doesn't really matter much, 2241 * it is puzzling to see some stuck in pages_volatile until 2242 * other activity jostles them out, and they also prevented 2243 * LTP's KSM test from succeeding deterministically; so drain 2244 * them here (here rather than on entry to ksm_do_scan(), 2245 * so we don't IPI too often when pages_to_scan is set low). 2246 */ 2247 lru_add_drain_all(); 2248 2249 /* 2250 * Whereas stale stable_nodes on the stable_tree itself 2251 * get pruned in the regular course of stable_tree_search(), 2252 * those moved out to the migrate_nodes list can accumulate: 2253 * so prune them once before each full scan. 2254 */ 2255 if (!ksm_merge_across_nodes) { 2256 struct stable_node *stable_node, *next; 2257 struct page *page; 2258 2259 list_for_each_entry_safe(stable_node, next, 2260 &migrate_nodes, list) { 2261 page = get_ksm_page(stable_node, 2262 GET_KSM_PAGE_NOLOCK); 2263 if (page) 2264 put_page(page); 2265 cond_resched(); 2266 } 2267 } 2268 2269 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2270 root_unstable_tree[nid] = RB_ROOT; 2271 2272 spin_lock(&ksm_mmlist_lock); 2273 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 2274 ksm_scan.mm_slot = slot; 2275 spin_unlock(&ksm_mmlist_lock); 2276 /* 2277 * Although we tested list_empty() above, a racing __ksm_exit 2278 * of the last mm on the list may have removed it since then. 2279 */ 2280 if (slot == &ksm_mm_head) 2281 return NULL; 2282 next_mm: 2283 ksm_scan.address = 0; 2284 ksm_scan.rmap_list = &slot->rmap_list; 2285 } 2286 2287 mm = slot->mm; 2288 mmap_read_lock(mm); 2289 if (ksm_test_exit(mm)) 2290 vma = NULL; 2291 else 2292 vma = find_vma(mm, ksm_scan.address); 2293 2294 for (; vma; vma = vma->vm_next) { 2295 if (!(vma->vm_flags & VM_MERGEABLE)) 2296 continue; 2297 if (ksm_scan.address < vma->vm_start) 2298 ksm_scan.address = vma->vm_start; 2299 if (!vma->anon_vma) 2300 ksm_scan.address = vma->vm_end; 2301 2302 while (ksm_scan.address < vma->vm_end) { 2303 if (ksm_test_exit(mm)) 2304 break; 2305 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2306 if (IS_ERR_OR_NULL(*page)) { 2307 ksm_scan.address += PAGE_SIZE; 2308 cond_resched(); 2309 continue; 2310 } 2311 if (PageAnon(*page)) { 2312 flush_anon_page(vma, *page, ksm_scan.address); 2313 flush_dcache_page(*page); 2314 rmap_item = get_next_rmap_item(slot, 2315 ksm_scan.rmap_list, ksm_scan.address); 2316 if (rmap_item) { 2317 ksm_scan.rmap_list = 2318 &rmap_item->rmap_list; 2319 ksm_scan.address += PAGE_SIZE; 2320 } else 2321 put_page(*page); 2322 mmap_read_unlock(mm); 2323 return rmap_item; 2324 } 2325 put_page(*page); 2326 ksm_scan.address += PAGE_SIZE; 2327 cond_resched(); 2328 } 2329 } 2330 2331 if (ksm_test_exit(mm)) { 2332 ksm_scan.address = 0; 2333 ksm_scan.rmap_list = &slot->rmap_list; 2334 } 2335 /* 2336 * Nuke all the rmap_items that are above this current rmap: 2337 * because there were no VM_MERGEABLE vmas with such addresses. 2338 */ 2339 remove_trailing_rmap_items(slot, ksm_scan.rmap_list); 2340 2341 spin_lock(&ksm_mmlist_lock); 2342 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 2343 struct mm_slot, mm_list); 2344 if (ksm_scan.address == 0) { 2345 /* 2346 * We've completed a full scan of all vmas, holding mmap_lock 2347 * throughout, and found no VM_MERGEABLE: so do the same as 2348 * __ksm_exit does to remove this mm from all our lists now. 2349 * This applies either when cleaning up after __ksm_exit 2350 * (but beware: we can reach here even before __ksm_exit), 2351 * or when all VM_MERGEABLE areas have been unmapped (and 2352 * mmap_lock then protects against race with MADV_MERGEABLE). 2353 */ 2354 hash_del(&slot->link); 2355 list_del(&slot->mm_list); 2356 spin_unlock(&ksm_mmlist_lock); 2357 2358 free_mm_slot(slot); 2359 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2360 mmap_read_unlock(mm); 2361 mmdrop(mm); 2362 } else { 2363 mmap_read_unlock(mm); 2364 /* 2365 * mmap_read_unlock(mm) first because after 2366 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2367 * already have been freed under us by __ksm_exit() 2368 * because the "mm_slot" is still hashed and 2369 * ksm_scan.mm_slot doesn't point to it anymore. 2370 */ 2371 spin_unlock(&ksm_mmlist_lock); 2372 } 2373 2374 /* Repeat until we've completed scanning the whole list */ 2375 slot = ksm_scan.mm_slot; 2376 if (slot != &ksm_mm_head) 2377 goto next_mm; 2378 2379 ksm_scan.seqnr++; 2380 return NULL; 2381 } 2382 2383 /** 2384 * ksm_do_scan - the ksm scanner main worker function. 2385 * @scan_npages: number of pages we want to scan before we return. 2386 */ 2387 static void ksm_do_scan(unsigned int scan_npages) 2388 { 2389 struct rmap_item *rmap_item; 2390 struct page *page; 2391 2392 while (scan_npages-- && likely(!freezing(current))) { 2393 cond_resched(); 2394 rmap_item = scan_get_next_rmap_item(&page); 2395 if (!rmap_item) 2396 return; 2397 cmp_and_merge_page(page, rmap_item); 2398 put_page(page); 2399 } 2400 } 2401 2402 static int ksmd_should_run(void) 2403 { 2404 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 2405 } 2406 2407 static int ksm_scan_thread(void *nothing) 2408 { 2409 unsigned int sleep_ms; 2410 2411 set_freezable(); 2412 set_user_nice(current, 5); 2413 2414 while (!kthread_should_stop()) { 2415 mutex_lock(&ksm_thread_mutex); 2416 wait_while_offlining(); 2417 if (ksmd_should_run()) 2418 ksm_do_scan(ksm_thread_pages_to_scan); 2419 mutex_unlock(&ksm_thread_mutex); 2420 2421 try_to_freeze(); 2422 2423 if (ksmd_should_run()) { 2424 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2425 wait_event_interruptible_timeout(ksm_iter_wait, 2426 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2427 msecs_to_jiffies(sleep_ms)); 2428 } else { 2429 wait_event_freezable(ksm_thread_wait, 2430 ksmd_should_run() || kthread_should_stop()); 2431 } 2432 } 2433 return 0; 2434 } 2435 2436 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2437 unsigned long end, int advice, unsigned long *vm_flags) 2438 { 2439 struct mm_struct *mm = vma->vm_mm; 2440 int err; 2441 2442 switch (advice) { 2443 case MADV_MERGEABLE: 2444 /* 2445 * Be somewhat over-protective for now! 2446 */ 2447 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 2448 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 2449 VM_HUGETLB | VM_MIXEDMAP)) 2450 return 0; /* just ignore the advice */ 2451 2452 if (vma_is_dax(vma)) 2453 return 0; 2454 2455 #ifdef VM_SAO 2456 if (*vm_flags & VM_SAO) 2457 return 0; 2458 #endif 2459 #ifdef VM_SPARC_ADI 2460 if (*vm_flags & VM_SPARC_ADI) 2461 return 0; 2462 #endif 2463 2464 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2465 err = __ksm_enter(mm); 2466 if (err) 2467 return err; 2468 } 2469 2470 *vm_flags |= VM_MERGEABLE; 2471 break; 2472 2473 case MADV_UNMERGEABLE: 2474 if (!(*vm_flags & VM_MERGEABLE)) 2475 return 0; /* just ignore the advice */ 2476 2477 if (vma->anon_vma) { 2478 err = unmerge_ksm_pages(vma, start, end); 2479 if (err) 2480 return err; 2481 } 2482 2483 *vm_flags &= ~VM_MERGEABLE; 2484 break; 2485 } 2486 2487 return 0; 2488 } 2489 EXPORT_SYMBOL_GPL(ksm_madvise); 2490 2491 int __ksm_enter(struct mm_struct *mm) 2492 { 2493 struct mm_slot *mm_slot; 2494 int needs_wakeup; 2495 2496 mm_slot = alloc_mm_slot(); 2497 if (!mm_slot) 2498 return -ENOMEM; 2499 2500 /* Check ksm_run too? Would need tighter locking */ 2501 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 2502 2503 spin_lock(&ksm_mmlist_lock); 2504 insert_to_mm_slots_hash(mm, mm_slot); 2505 /* 2506 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2507 * insert just behind the scanning cursor, to let the area settle 2508 * down a little; when fork is followed by immediate exec, we don't 2509 * want ksmd to waste time setting up and tearing down an rmap_list. 2510 * 2511 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2512 * scanning cursor, otherwise KSM pages in newly forked mms will be 2513 * missed: then we might as well insert at the end of the list. 2514 */ 2515 if (ksm_run & KSM_RUN_UNMERGE) 2516 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 2517 else 2518 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 2519 spin_unlock(&ksm_mmlist_lock); 2520 2521 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2522 mmgrab(mm); 2523 2524 if (needs_wakeup) 2525 wake_up_interruptible(&ksm_thread_wait); 2526 2527 return 0; 2528 } 2529 2530 void __ksm_exit(struct mm_struct *mm) 2531 { 2532 struct mm_slot *mm_slot; 2533 int easy_to_free = 0; 2534 2535 /* 2536 * This process is exiting: if it's straightforward (as is the 2537 * case when ksmd was never running), free mm_slot immediately. 2538 * But if it's at the cursor or has rmap_items linked to it, use 2539 * mmap_lock to synchronize with any break_cows before pagetables 2540 * are freed, and leave the mm_slot on the list for ksmd to free. 2541 * Beware: ksm may already have noticed it exiting and freed the slot. 2542 */ 2543 2544 spin_lock(&ksm_mmlist_lock); 2545 mm_slot = get_mm_slot(mm); 2546 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2547 if (!mm_slot->rmap_list) { 2548 hash_del(&mm_slot->link); 2549 list_del(&mm_slot->mm_list); 2550 easy_to_free = 1; 2551 } else { 2552 list_move(&mm_slot->mm_list, 2553 &ksm_scan.mm_slot->mm_list); 2554 } 2555 } 2556 spin_unlock(&ksm_mmlist_lock); 2557 2558 if (easy_to_free) { 2559 free_mm_slot(mm_slot); 2560 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2561 mmdrop(mm); 2562 } else if (mm_slot) { 2563 mmap_write_lock(mm); 2564 mmap_write_unlock(mm); 2565 } 2566 } 2567 2568 struct page *ksm_might_need_to_copy(struct page *page, 2569 struct vm_area_struct *vma, unsigned long address) 2570 { 2571 struct anon_vma *anon_vma = page_anon_vma(page); 2572 struct page *new_page; 2573 2574 if (PageKsm(page)) { 2575 if (page_stable_node(page) && 2576 !(ksm_run & KSM_RUN_UNMERGE)) 2577 return page; /* no need to copy it */ 2578 } else if (!anon_vma) { 2579 return page; /* no need to copy it */ 2580 } else if (anon_vma->root == vma->anon_vma->root && 2581 page->index == linear_page_index(vma, address)) { 2582 return page; /* still no need to copy it */ 2583 } 2584 if (!PageUptodate(page)) 2585 return page; /* let do_swap_page report the error */ 2586 2587 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2588 if (new_page) { 2589 copy_user_highpage(new_page, page, address, vma); 2590 2591 SetPageDirty(new_page); 2592 __SetPageUptodate(new_page); 2593 __SetPageLocked(new_page); 2594 } 2595 2596 return new_page; 2597 } 2598 2599 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 2600 { 2601 struct stable_node *stable_node; 2602 struct rmap_item *rmap_item; 2603 int search_new_forks = 0; 2604 2605 VM_BUG_ON_PAGE(!PageKsm(page), page); 2606 2607 /* 2608 * Rely on the page lock to protect against concurrent modifications 2609 * to that page's node of the stable tree. 2610 */ 2611 VM_BUG_ON_PAGE(!PageLocked(page), page); 2612 2613 stable_node = page_stable_node(page); 2614 if (!stable_node) 2615 return; 2616 again: 2617 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2618 struct anon_vma *anon_vma = rmap_item->anon_vma; 2619 struct anon_vma_chain *vmac; 2620 struct vm_area_struct *vma; 2621 2622 cond_resched(); 2623 anon_vma_lock_read(anon_vma); 2624 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2625 0, ULONG_MAX) { 2626 unsigned long addr; 2627 2628 cond_resched(); 2629 vma = vmac->vma; 2630 2631 /* Ignore the stable/unstable/sqnr flags */ 2632 addr = rmap_item->address & ~KSM_FLAG_MASK; 2633 2634 if (addr < vma->vm_start || addr >= vma->vm_end) 2635 continue; 2636 /* 2637 * Initially we examine only the vma which covers this 2638 * rmap_item; but later, if there is still work to do, 2639 * we examine covering vmas in other mms: in case they 2640 * were forked from the original since ksmd passed. 2641 */ 2642 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2643 continue; 2644 2645 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2646 continue; 2647 2648 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) { 2649 anon_vma_unlock_read(anon_vma); 2650 return; 2651 } 2652 if (rwc->done && rwc->done(page)) { 2653 anon_vma_unlock_read(anon_vma); 2654 return; 2655 } 2656 } 2657 anon_vma_unlock_read(anon_vma); 2658 } 2659 if (!search_new_forks++) 2660 goto again; 2661 } 2662 2663 bool reuse_ksm_page(struct page *page, 2664 struct vm_area_struct *vma, 2665 unsigned long address) 2666 { 2667 #ifdef CONFIG_DEBUG_VM 2668 if (WARN_ON(is_zero_pfn(page_to_pfn(page))) || 2669 WARN_ON(!page_mapped(page)) || 2670 WARN_ON(!PageLocked(page))) { 2671 dump_page(page, "reuse_ksm_page"); 2672 return false; 2673 } 2674 #endif 2675 2676 if (PageSwapCache(page) || !page_stable_node(page)) 2677 return false; 2678 /* Prohibit parallel get_ksm_page() */ 2679 if (!page_ref_freeze(page, 1)) 2680 return false; 2681 2682 page_move_anon_rmap(page, vma); 2683 page->index = linear_page_index(vma, address); 2684 page_ref_unfreeze(page, 1); 2685 2686 return true; 2687 } 2688 #ifdef CONFIG_MIGRATION 2689 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 2690 { 2691 struct stable_node *stable_node; 2692 2693 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 2694 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 2695 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); 2696 2697 stable_node = page_stable_node(newpage); 2698 if (stable_node) { 2699 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); 2700 stable_node->kpfn = page_to_pfn(newpage); 2701 /* 2702 * newpage->mapping was set in advance; now we need smp_wmb() 2703 * to make sure that the new stable_node->kpfn is visible 2704 * to get_ksm_page() before it can see that oldpage->mapping 2705 * has gone stale (or that PageSwapCache has been cleared). 2706 */ 2707 smp_wmb(); 2708 set_page_stable_node(oldpage, NULL); 2709 } 2710 } 2711 #endif /* CONFIG_MIGRATION */ 2712 2713 #ifdef CONFIG_MEMORY_HOTREMOVE 2714 static void wait_while_offlining(void) 2715 { 2716 while (ksm_run & KSM_RUN_OFFLINE) { 2717 mutex_unlock(&ksm_thread_mutex); 2718 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2719 TASK_UNINTERRUPTIBLE); 2720 mutex_lock(&ksm_thread_mutex); 2721 } 2722 } 2723 2724 static bool stable_node_dup_remove_range(struct stable_node *stable_node, 2725 unsigned long start_pfn, 2726 unsigned long end_pfn) 2727 { 2728 if (stable_node->kpfn >= start_pfn && 2729 stable_node->kpfn < end_pfn) { 2730 /* 2731 * Don't get_ksm_page, page has already gone: 2732 * which is why we keep kpfn instead of page* 2733 */ 2734 remove_node_from_stable_tree(stable_node); 2735 return true; 2736 } 2737 return false; 2738 } 2739 2740 static bool stable_node_chain_remove_range(struct stable_node *stable_node, 2741 unsigned long start_pfn, 2742 unsigned long end_pfn, 2743 struct rb_root *root) 2744 { 2745 struct stable_node *dup; 2746 struct hlist_node *hlist_safe; 2747 2748 if (!is_stable_node_chain(stable_node)) { 2749 VM_BUG_ON(is_stable_node_dup(stable_node)); 2750 return stable_node_dup_remove_range(stable_node, start_pfn, 2751 end_pfn); 2752 } 2753 2754 hlist_for_each_entry_safe(dup, hlist_safe, 2755 &stable_node->hlist, hlist_dup) { 2756 VM_BUG_ON(!is_stable_node_dup(dup)); 2757 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2758 } 2759 if (hlist_empty(&stable_node->hlist)) { 2760 free_stable_node_chain(stable_node, root); 2761 return true; /* notify caller that tree was rebalanced */ 2762 } else 2763 return false; 2764 } 2765 2766 static void ksm_check_stable_tree(unsigned long start_pfn, 2767 unsigned long end_pfn) 2768 { 2769 struct stable_node *stable_node, *next; 2770 struct rb_node *node; 2771 int nid; 2772 2773 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2774 node = rb_first(root_stable_tree + nid); 2775 while (node) { 2776 stable_node = rb_entry(node, struct stable_node, node); 2777 if (stable_node_chain_remove_range(stable_node, 2778 start_pfn, end_pfn, 2779 root_stable_tree + 2780 nid)) 2781 node = rb_first(root_stable_tree + nid); 2782 else 2783 node = rb_next(node); 2784 cond_resched(); 2785 } 2786 } 2787 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2788 if (stable_node->kpfn >= start_pfn && 2789 stable_node->kpfn < end_pfn) 2790 remove_node_from_stable_tree(stable_node); 2791 cond_resched(); 2792 } 2793 } 2794 2795 static int ksm_memory_callback(struct notifier_block *self, 2796 unsigned long action, void *arg) 2797 { 2798 struct memory_notify *mn = arg; 2799 2800 switch (action) { 2801 case MEM_GOING_OFFLINE: 2802 /* 2803 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2804 * and remove_all_stable_nodes() while memory is going offline: 2805 * it is unsafe for them to touch the stable tree at this time. 2806 * But unmerge_ksm_pages(), rmap lookups and other entry points 2807 * which do not need the ksm_thread_mutex are all safe. 2808 */ 2809 mutex_lock(&ksm_thread_mutex); 2810 ksm_run |= KSM_RUN_OFFLINE; 2811 mutex_unlock(&ksm_thread_mutex); 2812 break; 2813 2814 case MEM_OFFLINE: 2815 /* 2816 * Most of the work is done by page migration; but there might 2817 * be a few stable_nodes left over, still pointing to struct 2818 * pages which have been offlined: prune those from the tree, 2819 * otherwise get_ksm_page() might later try to access a 2820 * non-existent struct page. 2821 */ 2822 ksm_check_stable_tree(mn->start_pfn, 2823 mn->start_pfn + mn->nr_pages); 2824 fallthrough; 2825 case MEM_CANCEL_OFFLINE: 2826 mutex_lock(&ksm_thread_mutex); 2827 ksm_run &= ~KSM_RUN_OFFLINE; 2828 mutex_unlock(&ksm_thread_mutex); 2829 2830 smp_mb(); /* wake_up_bit advises this */ 2831 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2832 break; 2833 } 2834 return NOTIFY_OK; 2835 } 2836 #else 2837 static void wait_while_offlining(void) 2838 { 2839 } 2840 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2841 2842 #ifdef CONFIG_SYSFS 2843 /* 2844 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2845 */ 2846 2847 #define KSM_ATTR_RO(_name) \ 2848 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2849 #define KSM_ATTR(_name) \ 2850 static struct kobj_attribute _name##_attr = \ 2851 __ATTR(_name, 0644, _name##_show, _name##_store) 2852 2853 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2854 struct kobj_attribute *attr, char *buf) 2855 { 2856 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); 2857 } 2858 2859 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2860 struct kobj_attribute *attr, 2861 const char *buf, size_t count) 2862 { 2863 unsigned long msecs; 2864 int err; 2865 2866 err = kstrtoul(buf, 10, &msecs); 2867 if (err || msecs > UINT_MAX) 2868 return -EINVAL; 2869 2870 ksm_thread_sleep_millisecs = msecs; 2871 wake_up_interruptible(&ksm_iter_wait); 2872 2873 return count; 2874 } 2875 KSM_ATTR(sleep_millisecs); 2876 2877 static ssize_t pages_to_scan_show(struct kobject *kobj, 2878 struct kobj_attribute *attr, char *buf) 2879 { 2880 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); 2881 } 2882 2883 static ssize_t pages_to_scan_store(struct kobject *kobj, 2884 struct kobj_attribute *attr, 2885 const char *buf, size_t count) 2886 { 2887 int err; 2888 unsigned long nr_pages; 2889 2890 err = kstrtoul(buf, 10, &nr_pages); 2891 if (err || nr_pages > UINT_MAX) 2892 return -EINVAL; 2893 2894 ksm_thread_pages_to_scan = nr_pages; 2895 2896 return count; 2897 } 2898 KSM_ATTR(pages_to_scan); 2899 2900 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2901 char *buf) 2902 { 2903 return sprintf(buf, "%lu\n", ksm_run); 2904 } 2905 2906 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2907 const char *buf, size_t count) 2908 { 2909 int err; 2910 unsigned long flags; 2911 2912 err = kstrtoul(buf, 10, &flags); 2913 if (err || flags > UINT_MAX) 2914 return -EINVAL; 2915 if (flags > KSM_RUN_UNMERGE) 2916 return -EINVAL; 2917 2918 /* 2919 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2920 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2921 * breaking COW to free the pages_shared (but leaves mm_slots 2922 * on the list for when ksmd may be set running again). 2923 */ 2924 2925 mutex_lock(&ksm_thread_mutex); 2926 wait_while_offlining(); 2927 if (ksm_run != flags) { 2928 ksm_run = flags; 2929 if (flags & KSM_RUN_UNMERGE) { 2930 set_current_oom_origin(); 2931 err = unmerge_and_remove_all_rmap_items(); 2932 clear_current_oom_origin(); 2933 if (err) { 2934 ksm_run = KSM_RUN_STOP; 2935 count = err; 2936 } 2937 } 2938 } 2939 mutex_unlock(&ksm_thread_mutex); 2940 2941 if (flags & KSM_RUN_MERGE) 2942 wake_up_interruptible(&ksm_thread_wait); 2943 2944 return count; 2945 } 2946 KSM_ATTR(run); 2947 2948 #ifdef CONFIG_NUMA 2949 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2950 struct kobj_attribute *attr, char *buf) 2951 { 2952 return sprintf(buf, "%u\n", ksm_merge_across_nodes); 2953 } 2954 2955 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2956 struct kobj_attribute *attr, 2957 const char *buf, size_t count) 2958 { 2959 int err; 2960 unsigned long knob; 2961 2962 err = kstrtoul(buf, 10, &knob); 2963 if (err) 2964 return err; 2965 if (knob > 1) 2966 return -EINVAL; 2967 2968 mutex_lock(&ksm_thread_mutex); 2969 wait_while_offlining(); 2970 if (ksm_merge_across_nodes != knob) { 2971 if (ksm_pages_shared || remove_all_stable_nodes()) 2972 err = -EBUSY; 2973 else if (root_stable_tree == one_stable_tree) { 2974 struct rb_root *buf; 2975 /* 2976 * This is the first time that we switch away from the 2977 * default of merging across nodes: must now allocate 2978 * a buffer to hold as many roots as may be needed. 2979 * Allocate stable and unstable together: 2980 * MAXSMP NODES_SHIFT 10 will use 16kB. 2981 */ 2982 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2983 GFP_KERNEL); 2984 /* Let us assume that RB_ROOT is NULL is zero */ 2985 if (!buf) 2986 err = -ENOMEM; 2987 else { 2988 root_stable_tree = buf; 2989 root_unstable_tree = buf + nr_node_ids; 2990 /* Stable tree is empty but not the unstable */ 2991 root_unstable_tree[0] = one_unstable_tree[0]; 2992 } 2993 } 2994 if (!err) { 2995 ksm_merge_across_nodes = knob; 2996 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2997 } 2998 } 2999 mutex_unlock(&ksm_thread_mutex); 3000 3001 return err ? err : count; 3002 } 3003 KSM_ATTR(merge_across_nodes); 3004 #endif 3005 3006 static ssize_t use_zero_pages_show(struct kobject *kobj, 3007 struct kobj_attribute *attr, char *buf) 3008 { 3009 return sprintf(buf, "%u\n", ksm_use_zero_pages); 3010 } 3011 static ssize_t use_zero_pages_store(struct kobject *kobj, 3012 struct kobj_attribute *attr, 3013 const char *buf, size_t count) 3014 { 3015 int err; 3016 bool value; 3017 3018 err = kstrtobool(buf, &value); 3019 if (err) 3020 return -EINVAL; 3021 3022 ksm_use_zero_pages = value; 3023 3024 return count; 3025 } 3026 KSM_ATTR(use_zero_pages); 3027 3028 static ssize_t max_page_sharing_show(struct kobject *kobj, 3029 struct kobj_attribute *attr, char *buf) 3030 { 3031 return sprintf(buf, "%u\n", ksm_max_page_sharing); 3032 } 3033 3034 static ssize_t max_page_sharing_store(struct kobject *kobj, 3035 struct kobj_attribute *attr, 3036 const char *buf, size_t count) 3037 { 3038 int err; 3039 int knob; 3040 3041 err = kstrtoint(buf, 10, &knob); 3042 if (err) 3043 return err; 3044 /* 3045 * When a KSM page is created it is shared by 2 mappings. This 3046 * being a signed comparison, it implicitly verifies it's not 3047 * negative. 3048 */ 3049 if (knob < 2) 3050 return -EINVAL; 3051 3052 if (READ_ONCE(ksm_max_page_sharing) == knob) 3053 return count; 3054 3055 mutex_lock(&ksm_thread_mutex); 3056 wait_while_offlining(); 3057 if (ksm_max_page_sharing != knob) { 3058 if (ksm_pages_shared || remove_all_stable_nodes()) 3059 err = -EBUSY; 3060 else 3061 ksm_max_page_sharing = knob; 3062 } 3063 mutex_unlock(&ksm_thread_mutex); 3064 3065 return err ? err : count; 3066 } 3067 KSM_ATTR(max_page_sharing); 3068 3069 static ssize_t pages_shared_show(struct kobject *kobj, 3070 struct kobj_attribute *attr, char *buf) 3071 { 3072 return sprintf(buf, "%lu\n", ksm_pages_shared); 3073 } 3074 KSM_ATTR_RO(pages_shared); 3075 3076 static ssize_t pages_sharing_show(struct kobject *kobj, 3077 struct kobj_attribute *attr, char *buf) 3078 { 3079 return sprintf(buf, "%lu\n", ksm_pages_sharing); 3080 } 3081 KSM_ATTR_RO(pages_sharing); 3082 3083 static ssize_t pages_unshared_show(struct kobject *kobj, 3084 struct kobj_attribute *attr, char *buf) 3085 { 3086 return sprintf(buf, "%lu\n", ksm_pages_unshared); 3087 } 3088 KSM_ATTR_RO(pages_unshared); 3089 3090 static ssize_t pages_volatile_show(struct kobject *kobj, 3091 struct kobj_attribute *attr, char *buf) 3092 { 3093 long ksm_pages_volatile; 3094 3095 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3096 - ksm_pages_sharing - ksm_pages_unshared; 3097 /* 3098 * It was not worth any locking to calculate that statistic, 3099 * but it might therefore sometimes be negative: conceal that. 3100 */ 3101 if (ksm_pages_volatile < 0) 3102 ksm_pages_volatile = 0; 3103 return sprintf(buf, "%ld\n", ksm_pages_volatile); 3104 } 3105 KSM_ATTR_RO(pages_volatile); 3106 3107 static ssize_t stable_node_dups_show(struct kobject *kobj, 3108 struct kobj_attribute *attr, char *buf) 3109 { 3110 return sprintf(buf, "%lu\n", ksm_stable_node_dups); 3111 } 3112 KSM_ATTR_RO(stable_node_dups); 3113 3114 static ssize_t stable_node_chains_show(struct kobject *kobj, 3115 struct kobj_attribute *attr, char *buf) 3116 { 3117 return sprintf(buf, "%lu\n", ksm_stable_node_chains); 3118 } 3119 KSM_ATTR_RO(stable_node_chains); 3120 3121 static ssize_t 3122 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3123 struct kobj_attribute *attr, 3124 char *buf) 3125 { 3126 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3127 } 3128 3129 static ssize_t 3130 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3131 struct kobj_attribute *attr, 3132 const char *buf, size_t count) 3133 { 3134 unsigned long msecs; 3135 int err; 3136 3137 err = kstrtoul(buf, 10, &msecs); 3138 if (err || msecs > UINT_MAX) 3139 return -EINVAL; 3140 3141 ksm_stable_node_chains_prune_millisecs = msecs; 3142 3143 return count; 3144 } 3145 KSM_ATTR(stable_node_chains_prune_millisecs); 3146 3147 static ssize_t full_scans_show(struct kobject *kobj, 3148 struct kobj_attribute *attr, char *buf) 3149 { 3150 return sprintf(buf, "%lu\n", ksm_scan.seqnr); 3151 } 3152 KSM_ATTR_RO(full_scans); 3153 3154 static struct attribute *ksm_attrs[] = { 3155 &sleep_millisecs_attr.attr, 3156 &pages_to_scan_attr.attr, 3157 &run_attr.attr, 3158 &pages_shared_attr.attr, 3159 &pages_sharing_attr.attr, 3160 &pages_unshared_attr.attr, 3161 &pages_volatile_attr.attr, 3162 &full_scans_attr.attr, 3163 #ifdef CONFIG_NUMA 3164 &merge_across_nodes_attr.attr, 3165 #endif 3166 &max_page_sharing_attr.attr, 3167 &stable_node_chains_attr.attr, 3168 &stable_node_dups_attr.attr, 3169 &stable_node_chains_prune_millisecs_attr.attr, 3170 &use_zero_pages_attr.attr, 3171 NULL, 3172 }; 3173 3174 static const struct attribute_group ksm_attr_group = { 3175 .attrs = ksm_attrs, 3176 .name = "ksm", 3177 }; 3178 #endif /* CONFIG_SYSFS */ 3179 3180 static int __init ksm_init(void) 3181 { 3182 struct task_struct *ksm_thread; 3183 int err; 3184 3185 /* The correct value depends on page size and endianness */ 3186 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3187 /* Default to false for backwards compatibility */ 3188 ksm_use_zero_pages = false; 3189 3190 err = ksm_slab_init(); 3191 if (err) 3192 goto out; 3193 3194 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3195 if (IS_ERR(ksm_thread)) { 3196 pr_err("ksm: creating kthread failed\n"); 3197 err = PTR_ERR(ksm_thread); 3198 goto out_free; 3199 } 3200 3201 #ifdef CONFIG_SYSFS 3202 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3203 if (err) { 3204 pr_err("ksm: register sysfs failed\n"); 3205 kthread_stop(ksm_thread); 3206 goto out_free; 3207 } 3208 #else 3209 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3210 3211 #endif /* CONFIG_SYSFS */ 3212 3213 #ifdef CONFIG_MEMORY_HOTREMOVE 3214 /* There is no significance to this priority 100 */ 3215 hotplug_memory_notifier(ksm_memory_callback, 100); 3216 #endif 3217 return 0; 3218 3219 out_free: 3220 ksm_slab_free(); 3221 out: 3222 return err; 3223 } 3224 subsys_initcall(ksm_init); 3225