1 /* 2 * Memory merging support. 3 * 4 * This code enables dynamic sharing of identical pages found in different 5 * memory areas, even if they are not shared by fork() 6 * 7 * Copyright (C) 2008-2009 Red Hat, Inc. 8 * Authors: 9 * Izik Eidus 10 * Andrea Arcangeli 11 * Chris Wright 12 * Hugh Dickins 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/rwsem.h> 23 #include <linux/pagemap.h> 24 #include <linux/rmap.h> 25 #include <linux/spinlock.h> 26 #include <linux/jhash.h> 27 #include <linux/delay.h> 28 #include <linux/kthread.h> 29 #include <linux/wait.h> 30 #include <linux/slab.h> 31 #include <linux/rbtree.h> 32 #include <linux/memory.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/swap.h> 35 #include <linux/ksm.h> 36 #include <linux/hashtable.h> 37 #include <linux/freezer.h> 38 #include <linux/oom.h> 39 #include <linux/numa.h> 40 41 #include <asm/tlbflush.h> 42 #include "internal.h" 43 44 #ifdef CONFIG_NUMA 45 #define NUMA(x) (x) 46 #define DO_NUMA(x) do { (x); } while (0) 47 #else 48 #define NUMA(x) (0) 49 #define DO_NUMA(x) do { } while (0) 50 #endif 51 52 /* 53 * A few notes about the KSM scanning process, 54 * to make it easier to understand the data structures below: 55 * 56 * In order to reduce excessive scanning, KSM sorts the memory pages by their 57 * contents into a data structure that holds pointers to the pages' locations. 58 * 59 * Since the contents of the pages may change at any moment, KSM cannot just 60 * insert the pages into a normal sorted tree and expect it to find anything. 61 * Therefore KSM uses two data structures - the stable and the unstable tree. 62 * 63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 64 * by their contents. Because each such page is write-protected, searching on 65 * this tree is fully assured to be working (except when pages are unmapped), 66 * and therefore this tree is called the stable tree. 67 * 68 * In addition to the stable tree, KSM uses a second data structure called the 69 * unstable tree: this tree holds pointers to pages which have been found to 70 * be "unchanged for a period of time". The unstable tree sorts these pages 71 * by their contents, but since they are not write-protected, KSM cannot rely 72 * upon the unstable tree to work correctly - the unstable tree is liable to 73 * be corrupted as its contents are modified, and so it is called unstable. 74 * 75 * KSM solves this problem by several techniques: 76 * 77 * 1) The unstable tree is flushed every time KSM completes scanning all 78 * memory areas, and then the tree is rebuilt again from the beginning. 79 * 2) KSM will only insert into the unstable tree, pages whose hash value 80 * has not changed since the previous scan of all memory areas. 81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 82 * colors of the nodes and not on their contents, assuring that even when 83 * the tree gets "corrupted" it won't get out of balance, so scanning time 84 * remains the same (also, searching and inserting nodes in an rbtree uses 85 * the same algorithm, so we have no overhead when we flush and rebuild). 86 * 4) KSM never flushes the stable tree, which means that even if it were to 87 * take 10 attempts to find a page in the unstable tree, once it is found, 88 * it is secured in the stable tree. (When we scan a new page, we first 89 * compare it against the stable tree, and then against the unstable tree.) 90 * 91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 92 * stable trees and multiple unstable trees: one of each for each NUMA node. 93 */ 94 95 /** 96 * struct mm_slot - ksm information per mm that is being scanned 97 * @link: link to the mm_slots hash list 98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 100 * @mm: the mm that this information is valid for 101 */ 102 struct mm_slot { 103 struct hlist_node link; 104 struct list_head mm_list; 105 struct rmap_item *rmap_list; 106 struct mm_struct *mm; 107 }; 108 109 /** 110 * struct ksm_scan - cursor for scanning 111 * @mm_slot: the current mm_slot we are scanning 112 * @address: the next address inside that to be scanned 113 * @rmap_list: link to the next rmap to be scanned in the rmap_list 114 * @seqnr: count of completed full scans (needed when removing unstable node) 115 * 116 * There is only the one ksm_scan instance of this cursor structure. 117 */ 118 struct ksm_scan { 119 struct mm_slot *mm_slot; 120 unsigned long address; 121 struct rmap_item **rmap_list; 122 unsigned long seqnr; 123 }; 124 125 /** 126 * struct stable_node - node of the stable rbtree 127 * @node: rb node of this ksm page in the stable tree 128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 129 * @list: linked into migrate_nodes, pending placement in the proper node tree 130 * @hlist: hlist head of rmap_items using this ksm page 131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 133 */ 134 struct stable_node { 135 union { 136 struct rb_node node; /* when node of stable tree */ 137 struct { /* when listed for migration */ 138 struct list_head *head; 139 struct list_head list; 140 }; 141 }; 142 struct hlist_head hlist; 143 unsigned long kpfn; 144 #ifdef CONFIG_NUMA 145 int nid; 146 #endif 147 }; 148 149 /** 150 * struct rmap_item - reverse mapping item for virtual addresses 151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 153 * @nid: NUMA node id of unstable tree in which linked (may not match page) 154 * @mm: the memory structure this rmap_item is pointing into 155 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 156 * @oldchecksum: previous checksum of the page at that virtual address 157 * @node: rb node of this rmap_item in the unstable tree 158 * @head: pointer to stable_node heading this list in the stable tree 159 * @hlist: link into hlist of rmap_items hanging off that stable_node 160 */ 161 struct rmap_item { 162 struct rmap_item *rmap_list; 163 union { 164 struct anon_vma *anon_vma; /* when stable */ 165 #ifdef CONFIG_NUMA 166 int nid; /* when node of unstable tree */ 167 #endif 168 }; 169 struct mm_struct *mm; 170 unsigned long address; /* + low bits used for flags below */ 171 unsigned int oldchecksum; /* when unstable */ 172 union { 173 struct rb_node node; /* when node of unstable tree */ 174 struct { /* when listed from stable tree */ 175 struct stable_node *head; 176 struct hlist_node hlist; 177 }; 178 }; 179 }; 180 181 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 182 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 183 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 184 185 /* The stable and unstable tree heads */ 186 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 187 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 188 static struct rb_root *root_stable_tree = one_stable_tree; 189 static struct rb_root *root_unstable_tree = one_unstable_tree; 190 191 /* Recently migrated nodes of stable tree, pending proper placement */ 192 static LIST_HEAD(migrate_nodes); 193 194 #define MM_SLOTS_HASH_BITS 10 195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 196 197 static struct mm_slot ksm_mm_head = { 198 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 199 }; 200 static struct ksm_scan ksm_scan = { 201 .mm_slot = &ksm_mm_head, 202 }; 203 204 static struct kmem_cache *rmap_item_cache; 205 static struct kmem_cache *stable_node_cache; 206 static struct kmem_cache *mm_slot_cache; 207 208 /* The number of nodes in the stable tree */ 209 static unsigned long ksm_pages_shared; 210 211 /* The number of page slots additionally sharing those nodes */ 212 static unsigned long ksm_pages_sharing; 213 214 /* The number of nodes in the unstable tree */ 215 static unsigned long ksm_pages_unshared; 216 217 /* The number of rmap_items in use: to calculate pages_volatile */ 218 static unsigned long ksm_rmap_items; 219 220 /* Number of pages ksmd should scan in one batch */ 221 static unsigned int ksm_thread_pages_to_scan = 100; 222 223 /* Milliseconds ksmd should sleep between batches */ 224 static unsigned int ksm_thread_sleep_millisecs = 20; 225 226 /* Checksum of an empty (zeroed) page */ 227 static unsigned int zero_checksum __read_mostly; 228 229 /* Whether to merge empty (zeroed) pages with actual zero pages */ 230 static bool ksm_use_zero_pages __read_mostly; 231 232 #ifdef CONFIG_NUMA 233 /* Zeroed when merging across nodes is not allowed */ 234 static unsigned int ksm_merge_across_nodes = 1; 235 static int ksm_nr_node_ids = 1; 236 #else 237 #define ksm_merge_across_nodes 1U 238 #define ksm_nr_node_ids 1 239 #endif 240 241 #define KSM_RUN_STOP 0 242 #define KSM_RUN_MERGE 1 243 #define KSM_RUN_UNMERGE 2 244 #define KSM_RUN_OFFLINE 4 245 static unsigned long ksm_run = KSM_RUN_STOP; 246 static void wait_while_offlining(void); 247 248 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 249 static DEFINE_MUTEX(ksm_thread_mutex); 250 static DEFINE_SPINLOCK(ksm_mmlist_lock); 251 252 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 253 sizeof(struct __struct), __alignof__(struct __struct),\ 254 (__flags), NULL) 255 256 static int __init ksm_slab_init(void) 257 { 258 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 259 if (!rmap_item_cache) 260 goto out; 261 262 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 263 if (!stable_node_cache) 264 goto out_free1; 265 266 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 267 if (!mm_slot_cache) 268 goto out_free2; 269 270 return 0; 271 272 out_free2: 273 kmem_cache_destroy(stable_node_cache); 274 out_free1: 275 kmem_cache_destroy(rmap_item_cache); 276 out: 277 return -ENOMEM; 278 } 279 280 static void __init ksm_slab_free(void) 281 { 282 kmem_cache_destroy(mm_slot_cache); 283 kmem_cache_destroy(stable_node_cache); 284 kmem_cache_destroy(rmap_item_cache); 285 mm_slot_cache = NULL; 286 } 287 288 static inline struct rmap_item *alloc_rmap_item(void) 289 { 290 struct rmap_item *rmap_item; 291 292 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 293 __GFP_NORETRY | __GFP_NOWARN); 294 if (rmap_item) 295 ksm_rmap_items++; 296 return rmap_item; 297 } 298 299 static inline void free_rmap_item(struct rmap_item *rmap_item) 300 { 301 ksm_rmap_items--; 302 rmap_item->mm = NULL; /* debug safety */ 303 kmem_cache_free(rmap_item_cache, rmap_item); 304 } 305 306 static inline struct stable_node *alloc_stable_node(void) 307 { 308 /* 309 * The allocation can take too long with GFP_KERNEL when memory is under 310 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 311 * grants access to memory reserves, helping to avoid this problem. 312 */ 313 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 314 } 315 316 static inline void free_stable_node(struct stable_node *stable_node) 317 { 318 kmem_cache_free(stable_node_cache, stable_node); 319 } 320 321 static inline struct mm_slot *alloc_mm_slot(void) 322 { 323 if (!mm_slot_cache) /* initialization failed */ 324 return NULL; 325 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 326 } 327 328 static inline void free_mm_slot(struct mm_slot *mm_slot) 329 { 330 kmem_cache_free(mm_slot_cache, mm_slot); 331 } 332 333 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 334 { 335 struct mm_slot *slot; 336 337 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 338 if (slot->mm == mm) 339 return slot; 340 341 return NULL; 342 } 343 344 static void insert_to_mm_slots_hash(struct mm_struct *mm, 345 struct mm_slot *mm_slot) 346 { 347 mm_slot->mm = mm; 348 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 349 } 350 351 /* 352 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 353 * page tables after it has passed through ksm_exit() - which, if necessary, 354 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set 355 * a special flag: they can just back out as soon as mm_users goes to zero. 356 * ksm_test_exit() is used throughout to make this test for exit: in some 357 * places for correctness, in some places just to avoid unnecessary work. 358 */ 359 static inline bool ksm_test_exit(struct mm_struct *mm) 360 { 361 return atomic_read(&mm->mm_users) == 0; 362 } 363 364 /* 365 * We use break_ksm to break COW on a ksm page: it's a stripped down 366 * 367 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1) 368 * put_page(page); 369 * 370 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 371 * in case the application has unmapped and remapped mm,addr meanwhile. 372 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 373 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. 374 * 375 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 376 * of the process that owns 'vma'. We also do not want to enforce 377 * protection keys here anyway. 378 */ 379 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 380 { 381 struct page *page; 382 int ret = 0; 383 384 do { 385 cond_resched(); 386 page = follow_page(vma, addr, 387 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 388 if (IS_ERR_OR_NULL(page)) 389 break; 390 if (PageKsm(page)) 391 ret = handle_mm_fault(vma, addr, 392 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE); 393 else 394 ret = VM_FAULT_WRITE; 395 put_page(page); 396 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 397 /* 398 * We must loop because handle_mm_fault() may back out if there's 399 * any difficulty e.g. if pte accessed bit gets updated concurrently. 400 * 401 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 402 * COW has been broken, even if the vma does not permit VM_WRITE; 403 * but note that a concurrent fault might break PageKsm for us. 404 * 405 * VM_FAULT_SIGBUS could occur if we race with truncation of the 406 * backing file, which also invalidates anonymous pages: that's 407 * okay, that truncation will have unmapped the PageKsm for us. 408 * 409 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 410 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 411 * current task has TIF_MEMDIE set, and will be OOM killed on return 412 * to user; and ksmd, having no mm, would never be chosen for that. 413 * 414 * But if the mm is in a limited mem_cgroup, then the fault may fail 415 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 416 * even ksmd can fail in this way - though it's usually breaking ksm 417 * just to undo a merge it made a moment before, so unlikely to oom. 418 * 419 * That's a pity: we might therefore have more kernel pages allocated 420 * than we're counting as nodes in the stable tree; but ksm_do_scan 421 * will retry to break_cow on each pass, so should recover the page 422 * in due course. The important thing is to not let VM_MERGEABLE 423 * be cleared while any such pages might remain in the area. 424 */ 425 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 426 } 427 428 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 429 unsigned long addr) 430 { 431 struct vm_area_struct *vma; 432 if (ksm_test_exit(mm)) 433 return NULL; 434 vma = find_vma(mm, addr); 435 if (!vma || vma->vm_start > addr) 436 return NULL; 437 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 438 return NULL; 439 return vma; 440 } 441 442 static void break_cow(struct rmap_item *rmap_item) 443 { 444 struct mm_struct *mm = rmap_item->mm; 445 unsigned long addr = rmap_item->address; 446 struct vm_area_struct *vma; 447 448 /* 449 * It is not an accident that whenever we want to break COW 450 * to undo, we also need to drop a reference to the anon_vma. 451 */ 452 put_anon_vma(rmap_item->anon_vma); 453 454 down_read(&mm->mmap_sem); 455 vma = find_mergeable_vma(mm, addr); 456 if (vma) 457 break_ksm(vma, addr); 458 up_read(&mm->mmap_sem); 459 } 460 461 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 462 { 463 struct mm_struct *mm = rmap_item->mm; 464 unsigned long addr = rmap_item->address; 465 struct vm_area_struct *vma; 466 struct page *page; 467 468 down_read(&mm->mmap_sem); 469 vma = find_mergeable_vma(mm, addr); 470 if (!vma) 471 goto out; 472 473 page = follow_page(vma, addr, FOLL_GET); 474 if (IS_ERR_OR_NULL(page)) 475 goto out; 476 if (PageAnon(page)) { 477 flush_anon_page(vma, page, addr); 478 flush_dcache_page(page); 479 } else { 480 put_page(page); 481 out: 482 page = NULL; 483 } 484 up_read(&mm->mmap_sem); 485 return page; 486 } 487 488 /* 489 * This helper is used for getting right index into array of tree roots. 490 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 491 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 492 * every node has its own stable and unstable tree. 493 */ 494 static inline int get_kpfn_nid(unsigned long kpfn) 495 { 496 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 497 } 498 499 static void remove_node_from_stable_tree(struct stable_node *stable_node) 500 { 501 struct rmap_item *rmap_item; 502 503 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 504 if (rmap_item->hlist.next) 505 ksm_pages_sharing--; 506 else 507 ksm_pages_shared--; 508 put_anon_vma(rmap_item->anon_vma); 509 rmap_item->address &= PAGE_MASK; 510 cond_resched(); 511 } 512 513 if (stable_node->head == &migrate_nodes) 514 list_del(&stable_node->list); 515 else 516 rb_erase(&stable_node->node, 517 root_stable_tree + NUMA(stable_node->nid)); 518 free_stable_node(stable_node); 519 } 520 521 /* 522 * get_ksm_page: checks if the page indicated by the stable node 523 * is still its ksm page, despite having held no reference to it. 524 * In which case we can trust the content of the page, and it 525 * returns the gotten page; but if the page has now been zapped, 526 * remove the stale node from the stable tree and return NULL. 527 * But beware, the stable node's page might be being migrated. 528 * 529 * You would expect the stable_node to hold a reference to the ksm page. 530 * But if it increments the page's count, swapping out has to wait for 531 * ksmd to come around again before it can free the page, which may take 532 * seconds or even minutes: much too unresponsive. So instead we use a 533 * "keyhole reference": access to the ksm page from the stable node peeps 534 * out through its keyhole to see if that page still holds the right key, 535 * pointing back to this stable node. This relies on freeing a PageAnon 536 * page to reset its page->mapping to NULL, and relies on no other use of 537 * a page to put something that might look like our key in page->mapping. 538 * is on its way to being freed; but it is an anomaly to bear in mind. 539 */ 540 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it) 541 { 542 struct page *page; 543 void *expected_mapping; 544 unsigned long kpfn; 545 546 expected_mapping = (void *)((unsigned long)stable_node | 547 PAGE_MAPPING_KSM); 548 again: 549 kpfn = READ_ONCE(stable_node->kpfn); 550 page = pfn_to_page(kpfn); 551 552 /* 553 * page is computed from kpfn, so on most architectures reading 554 * page->mapping is naturally ordered after reading node->kpfn, 555 * but on Alpha we need to be more careful. 556 */ 557 smp_read_barrier_depends(); 558 if (READ_ONCE(page->mapping) != expected_mapping) 559 goto stale; 560 561 /* 562 * We cannot do anything with the page while its refcount is 0. 563 * Usually 0 means free, or tail of a higher-order page: in which 564 * case this node is no longer referenced, and should be freed; 565 * however, it might mean that the page is under page_freeze_refs(). 566 * The __remove_mapping() case is easy, again the node is now stale; 567 * but if page is swapcache in migrate_page_move_mapping(), it might 568 * still be our page, in which case it's essential to keep the node. 569 */ 570 while (!get_page_unless_zero(page)) { 571 /* 572 * Another check for page->mapping != expected_mapping would 573 * work here too. We have chosen the !PageSwapCache test to 574 * optimize the common case, when the page is or is about to 575 * be freed: PageSwapCache is cleared (under spin_lock_irq) 576 * in the freeze_refs section of __remove_mapping(); but Anon 577 * page->mapping reset to NULL later, in free_pages_prepare(). 578 */ 579 if (!PageSwapCache(page)) 580 goto stale; 581 cpu_relax(); 582 } 583 584 if (READ_ONCE(page->mapping) != expected_mapping) { 585 put_page(page); 586 goto stale; 587 } 588 589 if (lock_it) { 590 lock_page(page); 591 if (READ_ONCE(page->mapping) != expected_mapping) { 592 unlock_page(page); 593 put_page(page); 594 goto stale; 595 } 596 } 597 return page; 598 599 stale: 600 /* 601 * We come here from above when page->mapping or !PageSwapCache 602 * suggests that the node is stale; but it might be under migration. 603 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), 604 * before checking whether node->kpfn has been changed. 605 */ 606 smp_rmb(); 607 if (READ_ONCE(stable_node->kpfn) != kpfn) 608 goto again; 609 remove_node_from_stable_tree(stable_node); 610 return NULL; 611 } 612 613 /* 614 * Removing rmap_item from stable or unstable tree. 615 * This function will clean the information from the stable/unstable tree. 616 */ 617 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 618 { 619 if (rmap_item->address & STABLE_FLAG) { 620 struct stable_node *stable_node; 621 struct page *page; 622 623 stable_node = rmap_item->head; 624 page = get_ksm_page(stable_node, true); 625 if (!page) 626 goto out; 627 628 hlist_del(&rmap_item->hlist); 629 unlock_page(page); 630 put_page(page); 631 632 if (!hlist_empty(&stable_node->hlist)) 633 ksm_pages_sharing--; 634 else 635 ksm_pages_shared--; 636 637 put_anon_vma(rmap_item->anon_vma); 638 rmap_item->address &= PAGE_MASK; 639 640 } else if (rmap_item->address & UNSTABLE_FLAG) { 641 unsigned char age; 642 /* 643 * Usually ksmd can and must skip the rb_erase, because 644 * root_unstable_tree was already reset to RB_ROOT. 645 * But be careful when an mm is exiting: do the rb_erase 646 * if this rmap_item was inserted by this scan, rather 647 * than left over from before. 648 */ 649 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 650 BUG_ON(age > 1); 651 if (!age) 652 rb_erase(&rmap_item->node, 653 root_unstable_tree + NUMA(rmap_item->nid)); 654 ksm_pages_unshared--; 655 rmap_item->address &= PAGE_MASK; 656 } 657 out: 658 cond_resched(); /* we're called from many long loops */ 659 } 660 661 static void remove_trailing_rmap_items(struct mm_slot *mm_slot, 662 struct rmap_item **rmap_list) 663 { 664 while (*rmap_list) { 665 struct rmap_item *rmap_item = *rmap_list; 666 *rmap_list = rmap_item->rmap_list; 667 remove_rmap_item_from_tree(rmap_item); 668 free_rmap_item(rmap_item); 669 } 670 } 671 672 /* 673 * Though it's very tempting to unmerge rmap_items from stable tree rather 674 * than check every pte of a given vma, the locking doesn't quite work for 675 * that - an rmap_item is assigned to the stable tree after inserting ksm 676 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing 677 * rmap_items from parent to child at fork time (so as not to waste time 678 * if exit comes before the next scan reaches it). 679 * 680 * Similarly, although we'd like to remove rmap_items (so updating counts 681 * and freeing memory) when unmerging an area, it's easier to leave that 682 * to the next pass of ksmd - consider, for example, how ksmd might be 683 * in cmp_and_merge_page on one of the rmap_items we would be removing. 684 */ 685 static int unmerge_ksm_pages(struct vm_area_struct *vma, 686 unsigned long start, unsigned long end) 687 { 688 unsigned long addr; 689 int err = 0; 690 691 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 692 if (ksm_test_exit(vma->vm_mm)) 693 break; 694 if (signal_pending(current)) 695 err = -ERESTARTSYS; 696 else 697 err = break_ksm(vma, addr); 698 } 699 return err; 700 } 701 702 #ifdef CONFIG_SYSFS 703 /* 704 * Only called through the sysfs control interface: 705 */ 706 static int remove_stable_node(struct stable_node *stable_node) 707 { 708 struct page *page; 709 int err; 710 711 page = get_ksm_page(stable_node, true); 712 if (!page) { 713 /* 714 * get_ksm_page did remove_node_from_stable_tree itself. 715 */ 716 return 0; 717 } 718 719 if (WARN_ON_ONCE(page_mapped(page))) { 720 /* 721 * This should not happen: but if it does, just refuse to let 722 * merge_across_nodes be switched - there is no need to panic. 723 */ 724 err = -EBUSY; 725 } else { 726 /* 727 * The stable node did not yet appear stale to get_ksm_page(), 728 * since that allows for an unmapped ksm page to be recognized 729 * right up until it is freed; but the node is safe to remove. 730 * This page might be in a pagevec waiting to be freed, 731 * or it might be PageSwapCache (perhaps under writeback), 732 * or it might have been removed from swapcache a moment ago. 733 */ 734 set_page_stable_node(page, NULL); 735 remove_node_from_stable_tree(stable_node); 736 err = 0; 737 } 738 739 unlock_page(page); 740 put_page(page); 741 return err; 742 } 743 744 static int remove_all_stable_nodes(void) 745 { 746 struct stable_node *stable_node, *next; 747 int nid; 748 int err = 0; 749 750 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 751 while (root_stable_tree[nid].rb_node) { 752 stable_node = rb_entry(root_stable_tree[nid].rb_node, 753 struct stable_node, node); 754 if (remove_stable_node(stable_node)) { 755 err = -EBUSY; 756 break; /* proceed to next nid */ 757 } 758 cond_resched(); 759 } 760 } 761 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 762 if (remove_stable_node(stable_node)) 763 err = -EBUSY; 764 cond_resched(); 765 } 766 return err; 767 } 768 769 static int unmerge_and_remove_all_rmap_items(void) 770 { 771 struct mm_slot *mm_slot; 772 struct mm_struct *mm; 773 struct vm_area_struct *vma; 774 int err = 0; 775 776 spin_lock(&ksm_mmlist_lock); 777 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 778 struct mm_slot, mm_list); 779 spin_unlock(&ksm_mmlist_lock); 780 781 for (mm_slot = ksm_scan.mm_slot; 782 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 783 mm = mm_slot->mm; 784 down_read(&mm->mmap_sem); 785 for (vma = mm->mmap; vma; vma = vma->vm_next) { 786 if (ksm_test_exit(mm)) 787 break; 788 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 789 continue; 790 err = unmerge_ksm_pages(vma, 791 vma->vm_start, vma->vm_end); 792 if (err) 793 goto error; 794 } 795 796 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); 797 up_read(&mm->mmap_sem); 798 799 spin_lock(&ksm_mmlist_lock); 800 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 801 struct mm_slot, mm_list); 802 if (ksm_test_exit(mm)) { 803 hash_del(&mm_slot->link); 804 list_del(&mm_slot->mm_list); 805 spin_unlock(&ksm_mmlist_lock); 806 807 free_mm_slot(mm_slot); 808 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 809 mmdrop(mm); 810 } else 811 spin_unlock(&ksm_mmlist_lock); 812 } 813 814 /* Clean up stable nodes, but don't worry if some are still busy */ 815 remove_all_stable_nodes(); 816 ksm_scan.seqnr = 0; 817 return 0; 818 819 error: 820 up_read(&mm->mmap_sem); 821 spin_lock(&ksm_mmlist_lock); 822 ksm_scan.mm_slot = &ksm_mm_head; 823 spin_unlock(&ksm_mmlist_lock); 824 return err; 825 } 826 #endif /* CONFIG_SYSFS */ 827 828 static u32 calc_checksum(struct page *page) 829 { 830 u32 checksum; 831 void *addr = kmap_atomic(page); 832 checksum = jhash2(addr, PAGE_SIZE / 4, 17); 833 kunmap_atomic(addr); 834 return checksum; 835 } 836 837 static int memcmp_pages(struct page *page1, struct page *page2) 838 { 839 char *addr1, *addr2; 840 int ret; 841 842 addr1 = kmap_atomic(page1); 843 addr2 = kmap_atomic(page2); 844 ret = memcmp(addr1, addr2, PAGE_SIZE); 845 kunmap_atomic(addr2); 846 kunmap_atomic(addr1); 847 return ret; 848 } 849 850 static inline int pages_identical(struct page *page1, struct page *page2) 851 { 852 return !memcmp_pages(page1, page2); 853 } 854 855 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 856 pte_t *orig_pte) 857 { 858 struct mm_struct *mm = vma->vm_mm; 859 struct page_vma_mapped_walk pvmw = { 860 .page = page, 861 .vma = vma, 862 }; 863 int swapped; 864 int err = -EFAULT; 865 unsigned long mmun_start; /* For mmu_notifiers */ 866 unsigned long mmun_end; /* For mmu_notifiers */ 867 868 pvmw.address = page_address_in_vma(page, vma); 869 if (pvmw.address == -EFAULT) 870 goto out; 871 872 BUG_ON(PageTransCompound(page)); 873 874 mmun_start = pvmw.address; 875 mmun_end = pvmw.address + PAGE_SIZE; 876 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 877 878 if (!page_vma_mapped_walk(&pvmw)) 879 goto out_mn; 880 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 881 goto out_unlock; 882 883 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 884 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte))) { 885 pte_t entry; 886 887 swapped = PageSwapCache(page); 888 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 889 /* 890 * Ok this is tricky, when get_user_pages_fast() run it doesn't 891 * take any lock, therefore the check that we are going to make 892 * with the pagecount against the mapcount is racey and 893 * O_DIRECT can happen right after the check. 894 * So we clear the pte and flush the tlb before the check 895 * this assure us that no O_DIRECT can happen after the check 896 * or in the middle of the check. 897 */ 898 entry = ptep_clear_flush_notify(vma, pvmw.address, pvmw.pte); 899 /* 900 * Check that no O_DIRECT or similar I/O is in progress on the 901 * page 902 */ 903 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 904 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 905 goto out_unlock; 906 } 907 if (pte_dirty(entry)) 908 set_page_dirty(page); 909 910 if (pte_protnone(entry)) 911 entry = pte_mkclean(pte_clear_savedwrite(entry)); 912 else 913 entry = pte_mkclean(pte_wrprotect(entry)); 914 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 915 } 916 *orig_pte = *pvmw.pte; 917 err = 0; 918 919 out_unlock: 920 page_vma_mapped_walk_done(&pvmw); 921 out_mn: 922 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 923 out: 924 return err; 925 } 926 927 /** 928 * replace_page - replace page in vma by new ksm page 929 * @vma: vma that holds the pte pointing to page 930 * @page: the page we are replacing by kpage 931 * @kpage: the ksm page we replace page by 932 * @orig_pte: the original value of the pte 933 * 934 * Returns 0 on success, -EFAULT on failure. 935 */ 936 static int replace_page(struct vm_area_struct *vma, struct page *page, 937 struct page *kpage, pte_t orig_pte) 938 { 939 struct mm_struct *mm = vma->vm_mm; 940 pmd_t *pmd; 941 pte_t *ptep; 942 pte_t newpte; 943 spinlock_t *ptl; 944 unsigned long addr; 945 int err = -EFAULT; 946 unsigned long mmun_start; /* For mmu_notifiers */ 947 unsigned long mmun_end; /* For mmu_notifiers */ 948 949 addr = page_address_in_vma(page, vma); 950 if (addr == -EFAULT) 951 goto out; 952 953 pmd = mm_find_pmd(mm, addr); 954 if (!pmd) 955 goto out; 956 957 mmun_start = addr; 958 mmun_end = addr + PAGE_SIZE; 959 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 960 961 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 962 if (!pte_same(*ptep, orig_pte)) { 963 pte_unmap_unlock(ptep, ptl); 964 goto out_mn; 965 } 966 967 /* 968 * No need to check ksm_use_zero_pages here: we can only have a 969 * zero_page here if ksm_use_zero_pages was enabled alreaady. 970 */ 971 if (!is_zero_pfn(page_to_pfn(kpage))) { 972 get_page(kpage); 973 page_add_anon_rmap(kpage, vma, addr, false); 974 newpte = mk_pte(kpage, vma->vm_page_prot); 975 } else { 976 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 977 vma->vm_page_prot)); 978 } 979 980 flush_cache_page(vma, addr, pte_pfn(*ptep)); 981 ptep_clear_flush_notify(vma, addr, ptep); 982 set_pte_at_notify(mm, addr, ptep, newpte); 983 984 page_remove_rmap(page, false); 985 if (!page_mapped(page)) 986 try_to_free_swap(page); 987 put_page(page); 988 989 pte_unmap_unlock(ptep, ptl); 990 err = 0; 991 out_mn: 992 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 993 out: 994 return err; 995 } 996 997 /* 998 * try_to_merge_one_page - take two pages and merge them into one 999 * @vma: the vma that holds the pte pointing to page 1000 * @page: the PageAnon page that we want to replace with kpage 1001 * @kpage: the PageKsm page that we want to map instead of page, 1002 * or NULL the first time when we want to use page as kpage. 1003 * 1004 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1005 */ 1006 static int try_to_merge_one_page(struct vm_area_struct *vma, 1007 struct page *page, struct page *kpage) 1008 { 1009 pte_t orig_pte = __pte(0); 1010 int err = -EFAULT; 1011 1012 if (page == kpage) /* ksm page forked */ 1013 return 0; 1014 1015 if (!PageAnon(page)) 1016 goto out; 1017 1018 /* 1019 * We need the page lock to read a stable PageSwapCache in 1020 * write_protect_page(). We use trylock_page() instead of 1021 * lock_page() because we don't want to wait here - we 1022 * prefer to continue scanning and merging different pages, 1023 * then come back to this page when it is unlocked. 1024 */ 1025 if (!trylock_page(page)) 1026 goto out; 1027 1028 if (PageTransCompound(page)) { 1029 err = split_huge_page(page); 1030 if (err) 1031 goto out_unlock; 1032 } 1033 1034 /* 1035 * If this anonymous page is mapped only here, its pte may need 1036 * to be write-protected. If it's mapped elsewhere, all of its 1037 * ptes are necessarily already write-protected. But in either 1038 * case, we need to lock and check page_count is not raised. 1039 */ 1040 if (write_protect_page(vma, page, &orig_pte) == 0) { 1041 if (!kpage) { 1042 /* 1043 * While we hold page lock, upgrade page from 1044 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1045 * stable_tree_insert() will update stable_node. 1046 */ 1047 set_page_stable_node(page, NULL); 1048 mark_page_accessed(page); 1049 /* 1050 * Page reclaim just frees a clean page with no dirty 1051 * ptes: make sure that the ksm page would be swapped. 1052 */ 1053 if (!PageDirty(page)) 1054 SetPageDirty(page); 1055 err = 0; 1056 } else if (pages_identical(page, kpage)) 1057 err = replace_page(vma, page, kpage, orig_pte); 1058 } 1059 1060 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1061 munlock_vma_page(page); 1062 if (!PageMlocked(kpage)) { 1063 unlock_page(page); 1064 lock_page(kpage); 1065 mlock_vma_page(kpage); 1066 page = kpage; /* for final unlock */ 1067 } 1068 } 1069 1070 out_unlock: 1071 unlock_page(page); 1072 out: 1073 return err; 1074 } 1075 1076 /* 1077 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1078 * but no new kernel page is allocated: kpage must already be a ksm page. 1079 * 1080 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1081 */ 1082 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1083 struct page *page, struct page *kpage) 1084 { 1085 struct mm_struct *mm = rmap_item->mm; 1086 struct vm_area_struct *vma; 1087 int err = -EFAULT; 1088 1089 down_read(&mm->mmap_sem); 1090 vma = find_mergeable_vma(mm, rmap_item->address); 1091 if (!vma) 1092 goto out; 1093 1094 err = try_to_merge_one_page(vma, page, kpage); 1095 if (err) 1096 goto out; 1097 1098 /* Unstable nid is in union with stable anon_vma: remove first */ 1099 remove_rmap_item_from_tree(rmap_item); 1100 1101 /* Must get reference to anon_vma while still holding mmap_sem */ 1102 rmap_item->anon_vma = vma->anon_vma; 1103 get_anon_vma(vma->anon_vma); 1104 out: 1105 up_read(&mm->mmap_sem); 1106 return err; 1107 } 1108 1109 /* 1110 * try_to_merge_two_pages - take two identical pages and prepare them 1111 * to be merged into one page. 1112 * 1113 * This function returns the kpage if we successfully merged two identical 1114 * pages into one ksm page, NULL otherwise. 1115 * 1116 * Note that this function upgrades page to ksm page: if one of the pages 1117 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1118 */ 1119 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1120 struct page *page, 1121 struct rmap_item *tree_rmap_item, 1122 struct page *tree_page) 1123 { 1124 int err; 1125 1126 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1127 if (!err) { 1128 err = try_to_merge_with_ksm_page(tree_rmap_item, 1129 tree_page, page); 1130 /* 1131 * If that fails, we have a ksm page with only one pte 1132 * pointing to it: so break it. 1133 */ 1134 if (err) 1135 break_cow(rmap_item); 1136 } 1137 return err ? NULL : page; 1138 } 1139 1140 /* 1141 * stable_tree_search - search for page inside the stable tree 1142 * 1143 * This function checks if there is a page inside the stable tree 1144 * with identical content to the page that we are scanning right now. 1145 * 1146 * This function returns the stable tree node of identical content if found, 1147 * NULL otherwise. 1148 */ 1149 static struct page *stable_tree_search(struct page *page) 1150 { 1151 int nid; 1152 struct rb_root *root; 1153 struct rb_node **new; 1154 struct rb_node *parent; 1155 struct stable_node *stable_node; 1156 struct stable_node *page_node; 1157 1158 page_node = page_stable_node(page); 1159 if (page_node && page_node->head != &migrate_nodes) { 1160 /* ksm page forked */ 1161 get_page(page); 1162 return page; 1163 } 1164 1165 nid = get_kpfn_nid(page_to_pfn(page)); 1166 root = root_stable_tree + nid; 1167 again: 1168 new = &root->rb_node; 1169 parent = NULL; 1170 1171 while (*new) { 1172 struct page *tree_page; 1173 int ret; 1174 1175 cond_resched(); 1176 stable_node = rb_entry(*new, struct stable_node, node); 1177 tree_page = get_ksm_page(stable_node, false); 1178 if (!tree_page) { 1179 /* 1180 * If we walked over a stale stable_node, 1181 * get_ksm_page() will call rb_erase() and it 1182 * may rebalance the tree from under us. So 1183 * restart the search from scratch. Returning 1184 * NULL would be safe too, but we'd generate 1185 * false negative insertions just because some 1186 * stable_node was stale. 1187 */ 1188 goto again; 1189 } 1190 1191 ret = memcmp_pages(page, tree_page); 1192 put_page(tree_page); 1193 1194 parent = *new; 1195 if (ret < 0) 1196 new = &parent->rb_left; 1197 else if (ret > 0) 1198 new = &parent->rb_right; 1199 else { 1200 /* 1201 * Lock and unlock the stable_node's page (which 1202 * might already have been migrated) so that page 1203 * migration is sure to notice its raised count. 1204 * It would be more elegant to return stable_node 1205 * than kpage, but that involves more changes. 1206 */ 1207 tree_page = get_ksm_page(stable_node, true); 1208 if (tree_page) { 1209 unlock_page(tree_page); 1210 if (get_kpfn_nid(stable_node->kpfn) != 1211 NUMA(stable_node->nid)) { 1212 put_page(tree_page); 1213 goto replace; 1214 } 1215 return tree_page; 1216 } 1217 /* 1218 * There is now a place for page_node, but the tree may 1219 * have been rebalanced, so re-evaluate parent and new. 1220 */ 1221 if (page_node) 1222 goto again; 1223 return NULL; 1224 } 1225 } 1226 1227 if (!page_node) 1228 return NULL; 1229 1230 list_del(&page_node->list); 1231 DO_NUMA(page_node->nid = nid); 1232 rb_link_node(&page_node->node, parent, new); 1233 rb_insert_color(&page_node->node, root); 1234 get_page(page); 1235 return page; 1236 1237 replace: 1238 if (page_node) { 1239 list_del(&page_node->list); 1240 DO_NUMA(page_node->nid = nid); 1241 rb_replace_node(&stable_node->node, &page_node->node, root); 1242 get_page(page); 1243 } else { 1244 rb_erase(&stable_node->node, root); 1245 page = NULL; 1246 } 1247 stable_node->head = &migrate_nodes; 1248 list_add(&stable_node->list, stable_node->head); 1249 return page; 1250 } 1251 1252 /* 1253 * stable_tree_insert - insert stable tree node pointing to new ksm page 1254 * into the stable tree. 1255 * 1256 * This function returns the stable tree node just allocated on success, 1257 * NULL otherwise. 1258 */ 1259 static struct stable_node *stable_tree_insert(struct page *kpage) 1260 { 1261 int nid; 1262 unsigned long kpfn; 1263 struct rb_root *root; 1264 struct rb_node **new; 1265 struct rb_node *parent; 1266 struct stable_node *stable_node; 1267 1268 kpfn = page_to_pfn(kpage); 1269 nid = get_kpfn_nid(kpfn); 1270 root = root_stable_tree + nid; 1271 again: 1272 parent = NULL; 1273 new = &root->rb_node; 1274 1275 while (*new) { 1276 struct page *tree_page; 1277 int ret; 1278 1279 cond_resched(); 1280 stable_node = rb_entry(*new, struct stable_node, node); 1281 tree_page = get_ksm_page(stable_node, false); 1282 if (!tree_page) { 1283 /* 1284 * If we walked over a stale stable_node, 1285 * get_ksm_page() will call rb_erase() and it 1286 * may rebalance the tree from under us. So 1287 * restart the search from scratch. Returning 1288 * NULL would be safe too, but we'd generate 1289 * false negative insertions just because some 1290 * stable_node was stale. 1291 */ 1292 goto again; 1293 } 1294 1295 ret = memcmp_pages(kpage, tree_page); 1296 put_page(tree_page); 1297 1298 parent = *new; 1299 if (ret < 0) 1300 new = &parent->rb_left; 1301 else if (ret > 0) 1302 new = &parent->rb_right; 1303 else { 1304 /* 1305 * It is not a bug that stable_tree_search() didn't 1306 * find this node: because at that time our page was 1307 * not yet write-protected, so may have changed since. 1308 */ 1309 return NULL; 1310 } 1311 } 1312 1313 stable_node = alloc_stable_node(); 1314 if (!stable_node) 1315 return NULL; 1316 1317 INIT_HLIST_HEAD(&stable_node->hlist); 1318 stable_node->kpfn = kpfn; 1319 set_page_stable_node(kpage, stable_node); 1320 DO_NUMA(stable_node->nid = nid); 1321 rb_link_node(&stable_node->node, parent, new); 1322 rb_insert_color(&stable_node->node, root); 1323 1324 return stable_node; 1325 } 1326 1327 /* 1328 * unstable_tree_search_insert - search for identical page, 1329 * else insert rmap_item into the unstable tree. 1330 * 1331 * This function searches for a page in the unstable tree identical to the 1332 * page currently being scanned; and if no identical page is found in the 1333 * tree, we insert rmap_item as a new object into the unstable tree. 1334 * 1335 * This function returns pointer to rmap_item found to be identical 1336 * to the currently scanned page, NULL otherwise. 1337 * 1338 * This function does both searching and inserting, because they share 1339 * the same walking algorithm in an rbtree. 1340 */ 1341 static 1342 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1343 struct page *page, 1344 struct page **tree_pagep) 1345 { 1346 struct rb_node **new; 1347 struct rb_root *root; 1348 struct rb_node *parent = NULL; 1349 int nid; 1350 1351 nid = get_kpfn_nid(page_to_pfn(page)); 1352 root = root_unstable_tree + nid; 1353 new = &root->rb_node; 1354 1355 while (*new) { 1356 struct rmap_item *tree_rmap_item; 1357 struct page *tree_page; 1358 int ret; 1359 1360 cond_resched(); 1361 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1362 tree_page = get_mergeable_page(tree_rmap_item); 1363 if (!tree_page) 1364 return NULL; 1365 1366 /* 1367 * Don't substitute a ksm page for a forked page. 1368 */ 1369 if (page == tree_page) { 1370 put_page(tree_page); 1371 return NULL; 1372 } 1373 1374 ret = memcmp_pages(page, tree_page); 1375 1376 parent = *new; 1377 if (ret < 0) { 1378 put_page(tree_page); 1379 new = &parent->rb_left; 1380 } else if (ret > 0) { 1381 put_page(tree_page); 1382 new = &parent->rb_right; 1383 } else if (!ksm_merge_across_nodes && 1384 page_to_nid(tree_page) != nid) { 1385 /* 1386 * If tree_page has been migrated to another NUMA node, 1387 * it will be flushed out and put in the right unstable 1388 * tree next time: only merge with it when across_nodes. 1389 */ 1390 put_page(tree_page); 1391 return NULL; 1392 } else { 1393 *tree_pagep = tree_page; 1394 return tree_rmap_item; 1395 } 1396 } 1397 1398 rmap_item->address |= UNSTABLE_FLAG; 1399 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1400 DO_NUMA(rmap_item->nid = nid); 1401 rb_link_node(&rmap_item->node, parent, new); 1402 rb_insert_color(&rmap_item->node, root); 1403 1404 ksm_pages_unshared++; 1405 return NULL; 1406 } 1407 1408 /* 1409 * stable_tree_append - add another rmap_item to the linked list of 1410 * rmap_items hanging off a given node of the stable tree, all sharing 1411 * the same ksm page. 1412 */ 1413 static void stable_tree_append(struct rmap_item *rmap_item, 1414 struct stable_node *stable_node) 1415 { 1416 rmap_item->head = stable_node; 1417 rmap_item->address |= STABLE_FLAG; 1418 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 1419 1420 if (rmap_item->hlist.next) 1421 ksm_pages_sharing++; 1422 else 1423 ksm_pages_shared++; 1424 } 1425 1426 /* 1427 * cmp_and_merge_page - first see if page can be merged into the stable tree; 1428 * if not, compare checksum to previous and if it's the same, see if page can 1429 * be inserted into the unstable tree, or merged with a page already there and 1430 * both transferred to the stable tree. 1431 * 1432 * @page: the page that we are searching identical page to. 1433 * @rmap_item: the reverse mapping into the virtual address of this page 1434 */ 1435 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 1436 { 1437 struct rmap_item *tree_rmap_item; 1438 struct page *tree_page = NULL; 1439 struct stable_node *stable_node; 1440 struct page *kpage; 1441 unsigned int checksum; 1442 int err; 1443 1444 stable_node = page_stable_node(page); 1445 if (stable_node) { 1446 if (stable_node->head != &migrate_nodes && 1447 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) { 1448 rb_erase(&stable_node->node, 1449 root_stable_tree + NUMA(stable_node->nid)); 1450 stable_node->head = &migrate_nodes; 1451 list_add(&stable_node->list, stable_node->head); 1452 } 1453 if (stable_node->head != &migrate_nodes && 1454 rmap_item->head == stable_node) 1455 return; 1456 } 1457 1458 /* We first start with searching the page inside the stable tree */ 1459 kpage = stable_tree_search(page); 1460 if (kpage == page && rmap_item->head == stable_node) { 1461 put_page(kpage); 1462 return; 1463 } 1464 1465 remove_rmap_item_from_tree(rmap_item); 1466 1467 if (kpage) { 1468 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 1469 if (!err) { 1470 /* 1471 * The page was successfully merged: 1472 * add its rmap_item to the stable tree. 1473 */ 1474 lock_page(kpage); 1475 stable_tree_append(rmap_item, page_stable_node(kpage)); 1476 unlock_page(kpage); 1477 } 1478 put_page(kpage); 1479 return; 1480 } 1481 1482 /* 1483 * If the hash value of the page has changed from the last time 1484 * we calculated it, this page is changing frequently: therefore we 1485 * don't want to insert it in the unstable tree, and we don't want 1486 * to waste our time searching for something identical to it there. 1487 */ 1488 checksum = calc_checksum(page); 1489 if (rmap_item->oldchecksum != checksum) { 1490 rmap_item->oldchecksum = checksum; 1491 return; 1492 } 1493 1494 /* 1495 * Same checksum as an empty page. We attempt to merge it with the 1496 * appropriate zero page if the user enabled this via sysfs. 1497 */ 1498 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 1499 struct vm_area_struct *vma; 1500 1501 vma = find_mergeable_vma(rmap_item->mm, rmap_item->address); 1502 err = try_to_merge_one_page(vma, page, 1503 ZERO_PAGE(rmap_item->address)); 1504 /* 1505 * In case of failure, the page was not really empty, so we 1506 * need to continue. Otherwise we're done. 1507 */ 1508 if (!err) 1509 return; 1510 } 1511 tree_rmap_item = 1512 unstable_tree_search_insert(rmap_item, page, &tree_page); 1513 if (tree_rmap_item) { 1514 kpage = try_to_merge_two_pages(rmap_item, page, 1515 tree_rmap_item, tree_page); 1516 put_page(tree_page); 1517 if (kpage) { 1518 /* 1519 * The pages were successfully merged: insert new 1520 * node in the stable tree and add both rmap_items. 1521 */ 1522 lock_page(kpage); 1523 stable_node = stable_tree_insert(kpage); 1524 if (stable_node) { 1525 stable_tree_append(tree_rmap_item, stable_node); 1526 stable_tree_append(rmap_item, stable_node); 1527 } 1528 unlock_page(kpage); 1529 1530 /* 1531 * If we fail to insert the page into the stable tree, 1532 * we will have 2 virtual addresses that are pointing 1533 * to a ksm page left outside the stable tree, 1534 * in which case we need to break_cow on both. 1535 */ 1536 if (!stable_node) { 1537 break_cow(tree_rmap_item); 1538 break_cow(rmap_item); 1539 } 1540 } 1541 } 1542 } 1543 1544 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 1545 struct rmap_item **rmap_list, 1546 unsigned long addr) 1547 { 1548 struct rmap_item *rmap_item; 1549 1550 while (*rmap_list) { 1551 rmap_item = *rmap_list; 1552 if ((rmap_item->address & PAGE_MASK) == addr) 1553 return rmap_item; 1554 if (rmap_item->address > addr) 1555 break; 1556 *rmap_list = rmap_item->rmap_list; 1557 remove_rmap_item_from_tree(rmap_item); 1558 free_rmap_item(rmap_item); 1559 } 1560 1561 rmap_item = alloc_rmap_item(); 1562 if (rmap_item) { 1563 /* It has already been zeroed */ 1564 rmap_item->mm = mm_slot->mm; 1565 rmap_item->address = addr; 1566 rmap_item->rmap_list = *rmap_list; 1567 *rmap_list = rmap_item; 1568 } 1569 return rmap_item; 1570 } 1571 1572 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 1573 { 1574 struct mm_struct *mm; 1575 struct mm_slot *slot; 1576 struct vm_area_struct *vma; 1577 struct rmap_item *rmap_item; 1578 int nid; 1579 1580 if (list_empty(&ksm_mm_head.mm_list)) 1581 return NULL; 1582 1583 slot = ksm_scan.mm_slot; 1584 if (slot == &ksm_mm_head) { 1585 /* 1586 * A number of pages can hang around indefinitely on per-cpu 1587 * pagevecs, raised page count preventing write_protect_page 1588 * from merging them. Though it doesn't really matter much, 1589 * it is puzzling to see some stuck in pages_volatile until 1590 * other activity jostles them out, and they also prevented 1591 * LTP's KSM test from succeeding deterministically; so drain 1592 * them here (here rather than on entry to ksm_do_scan(), 1593 * so we don't IPI too often when pages_to_scan is set low). 1594 */ 1595 lru_add_drain_all(); 1596 1597 /* 1598 * Whereas stale stable_nodes on the stable_tree itself 1599 * get pruned in the regular course of stable_tree_search(), 1600 * those moved out to the migrate_nodes list can accumulate: 1601 * so prune them once before each full scan. 1602 */ 1603 if (!ksm_merge_across_nodes) { 1604 struct stable_node *stable_node, *next; 1605 struct page *page; 1606 1607 list_for_each_entry_safe(stable_node, next, 1608 &migrate_nodes, list) { 1609 page = get_ksm_page(stable_node, false); 1610 if (page) 1611 put_page(page); 1612 cond_resched(); 1613 } 1614 } 1615 1616 for (nid = 0; nid < ksm_nr_node_ids; nid++) 1617 root_unstable_tree[nid] = RB_ROOT; 1618 1619 spin_lock(&ksm_mmlist_lock); 1620 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 1621 ksm_scan.mm_slot = slot; 1622 spin_unlock(&ksm_mmlist_lock); 1623 /* 1624 * Although we tested list_empty() above, a racing __ksm_exit 1625 * of the last mm on the list may have removed it since then. 1626 */ 1627 if (slot == &ksm_mm_head) 1628 return NULL; 1629 next_mm: 1630 ksm_scan.address = 0; 1631 ksm_scan.rmap_list = &slot->rmap_list; 1632 } 1633 1634 mm = slot->mm; 1635 down_read(&mm->mmap_sem); 1636 if (ksm_test_exit(mm)) 1637 vma = NULL; 1638 else 1639 vma = find_vma(mm, ksm_scan.address); 1640 1641 for (; vma; vma = vma->vm_next) { 1642 if (!(vma->vm_flags & VM_MERGEABLE)) 1643 continue; 1644 if (ksm_scan.address < vma->vm_start) 1645 ksm_scan.address = vma->vm_start; 1646 if (!vma->anon_vma) 1647 ksm_scan.address = vma->vm_end; 1648 1649 while (ksm_scan.address < vma->vm_end) { 1650 if (ksm_test_exit(mm)) 1651 break; 1652 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 1653 if (IS_ERR_OR_NULL(*page)) { 1654 ksm_scan.address += PAGE_SIZE; 1655 cond_resched(); 1656 continue; 1657 } 1658 if (PageAnon(*page)) { 1659 flush_anon_page(vma, *page, ksm_scan.address); 1660 flush_dcache_page(*page); 1661 rmap_item = get_next_rmap_item(slot, 1662 ksm_scan.rmap_list, ksm_scan.address); 1663 if (rmap_item) { 1664 ksm_scan.rmap_list = 1665 &rmap_item->rmap_list; 1666 ksm_scan.address += PAGE_SIZE; 1667 } else 1668 put_page(*page); 1669 up_read(&mm->mmap_sem); 1670 return rmap_item; 1671 } 1672 put_page(*page); 1673 ksm_scan.address += PAGE_SIZE; 1674 cond_resched(); 1675 } 1676 } 1677 1678 if (ksm_test_exit(mm)) { 1679 ksm_scan.address = 0; 1680 ksm_scan.rmap_list = &slot->rmap_list; 1681 } 1682 /* 1683 * Nuke all the rmap_items that are above this current rmap: 1684 * because there were no VM_MERGEABLE vmas with such addresses. 1685 */ 1686 remove_trailing_rmap_items(slot, ksm_scan.rmap_list); 1687 1688 spin_lock(&ksm_mmlist_lock); 1689 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 1690 struct mm_slot, mm_list); 1691 if (ksm_scan.address == 0) { 1692 /* 1693 * We've completed a full scan of all vmas, holding mmap_sem 1694 * throughout, and found no VM_MERGEABLE: so do the same as 1695 * __ksm_exit does to remove this mm from all our lists now. 1696 * This applies either when cleaning up after __ksm_exit 1697 * (but beware: we can reach here even before __ksm_exit), 1698 * or when all VM_MERGEABLE areas have been unmapped (and 1699 * mmap_sem then protects against race with MADV_MERGEABLE). 1700 */ 1701 hash_del(&slot->link); 1702 list_del(&slot->mm_list); 1703 spin_unlock(&ksm_mmlist_lock); 1704 1705 free_mm_slot(slot); 1706 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1707 up_read(&mm->mmap_sem); 1708 mmdrop(mm); 1709 } else { 1710 up_read(&mm->mmap_sem); 1711 /* 1712 * up_read(&mm->mmap_sem) first because after 1713 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 1714 * already have been freed under us by __ksm_exit() 1715 * because the "mm_slot" is still hashed and 1716 * ksm_scan.mm_slot doesn't point to it anymore. 1717 */ 1718 spin_unlock(&ksm_mmlist_lock); 1719 } 1720 1721 /* Repeat until we've completed scanning the whole list */ 1722 slot = ksm_scan.mm_slot; 1723 if (slot != &ksm_mm_head) 1724 goto next_mm; 1725 1726 ksm_scan.seqnr++; 1727 return NULL; 1728 } 1729 1730 /** 1731 * ksm_do_scan - the ksm scanner main worker function. 1732 * @scan_npages - number of pages we want to scan before we return. 1733 */ 1734 static void ksm_do_scan(unsigned int scan_npages) 1735 { 1736 struct rmap_item *rmap_item; 1737 struct page *uninitialized_var(page); 1738 1739 while (scan_npages-- && likely(!freezing(current))) { 1740 cond_resched(); 1741 rmap_item = scan_get_next_rmap_item(&page); 1742 if (!rmap_item) 1743 return; 1744 cmp_and_merge_page(page, rmap_item); 1745 put_page(page); 1746 } 1747 } 1748 1749 static int ksmd_should_run(void) 1750 { 1751 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 1752 } 1753 1754 static int ksm_scan_thread(void *nothing) 1755 { 1756 set_freezable(); 1757 set_user_nice(current, 5); 1758 1759 while (!kthread_should_stop()) { 1760 mutex_lock(&ksm_thread_mutex); 1761 wait_while_offlining(); 1762 if (ksmd_should_run()) 1763 ksm_do_scan(ksm_thread_pages_to_scan); 1764 mutex_unlock(&ksm_thread_mutex); 1765 1766 try_to_freeze(); 1767 1768 if (ksmd_should_run()) { 1769 schedule_timeout_interruptible( 1770 msecs_to_jiffies(ksm_thread_sleep_millisecs)); 1771 } else { 1772 wait_event_freezable(ksm_thread_wait, 1773 ksmd_should_run() || kthread_should_stop()); 1774 } 1775 } 1776 return 0; 1777 } 1778 1779 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 1780 unsigned long end, int advice, unsigned long *vm_flags) 1781 { 1782 struct mm_struct *mm = vma->vm_mm; 1783 int err; 1784 1785 switch (advice) { 1786 case MADV_MERGEABLE: 1787 /* 1788 * Be somewhat over-protective for now! 1789 */ 1790 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 1791 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 1792 VM_HUGETLB | VM_MIXEDMAP)) 1793 return 0; /* just ignore the advice */ 1794 1795 #ifdef VM_SAO 1796 if (*vm_flags & VM_SAO) 1797 return 0; 1798 #endif 1799 1800 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 1801 err = __ksm_enter(mm); 1802 if (err) 1803 return err; 1804 } 1805 1806 *vm_flags |= VM_MERGEABLE; 1807 break; 1808 1809 case MADV_UNMERGEABLE: 1810 if (!(*vm_flags & VM_MERGEABLE)) 1811 return 0; /* just ignore the advice */ 1812 1813 if (vma->anon_vma) { 1814 err = unmerge_ksm_pages(vma, start, end); 1815 if (err) 1816 return err; 1817 } 1818 1819 *vm_flags &= ~VM_MERGEABLE; 1820 break; 1821 } 1822 1823 return 0; 1824 } 1825 1826 int __ksm_enter(struct mm_struct *mm) 1827 { 1828 struct mm_slot *mm_slot; 1829 int needs_wakeup; 1830 1831 mm_slot = alloc_mm_slot(); 1832 if (!mm_slot) 1833 return -ENOMEM; 1834 1835 /* Check ksm_run too? Would need tighter locking */ 1836 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 1837 1838 spin_lock(&ksm_mmlist_lock); 1839 insert_to_mm_slots_hash(mm, mm_slot); 1840 /* 1841 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 1842 * insert just behind the scanning cursor, to let the area settle 1843 * down a little; when fork is followed by immediate exec, we don't 1844 * want ksmd to waste time setting up and tearing down an rmap_list. 1845 * 1846 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 1847 * scanning cursor, otherwise KSM pages in newly forked mms will be 1848 * missed: then we might as well insert at the end of the list. 1849 */ 1850 if (ksm_run & KSM_RUN_UNMERGE) 1851 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 1852 else 1853 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 1854 spin_unlock(&ksm_mmlist_lock); 1855 1856 set_bit(MMF_VM_MERGEABLE, &mm->flags); 1857 atomic_inc(&mm->mm_count); 1858 1859 if (needs_wakeup) 1860 wake_up_interruptible(&ksm_thread_wait); 1861 1862 return 0; 1863 } 1864 1865 void __ksm_exit(struct mm_struct *mm) 1866 { 1867 struct mm_slot *mm_slot; 1868 int easy_to_free = 0; 1869 1870 /* 1871 * This process is exiting: if it's straightforward (as is the 1872 * case when ksmd was never running), free mm_slot immediately. 1873 * But if it's at the cursor or has rmap_items linked to it, use 1874 * mmap_sem to synchronize with any break_cows before pagetables 1875 * are freed, and leave the mm_slot on the list for ksmd to free. 1876 * Beware: ksm may already have noticed it exiting and freed the slot. 1877 */ 1878 1879 spin_lock(&ksm_mmlist_lock); 1880 mm_slot = get_mm_slot(mm); 1881 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 1882 if (!mm_slot->rmap_list) { 1883 hash_del(&mm_slot->link); 1884 list_del(&mm_slot->mm_list); 1885 easy_to_free = 1; 1886 } else { 1887 list_move(&mm_slot->mm_list, 1888 &ksm_scan.mm_slot->mm_list); 1889 } 1890 } 1891 spin_unlock(&ksm_mmlist_lock); 1892 1893 if (easy_to_free) { 1894 free_mm_slot(mm_slot); 1895 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1896 mmdrop(mm); 1897 } else if (mm_slot) { 1898 down_write(&mm->mmap_sem); 1899 up_write(&mm->mmap_sem); 1900 } 1901 } 1902 1903 struct page *ksm_might_need_to_copy(struct page *page, 1904 struct vm_area_struct *vma, unsigned long address) 1905 { 1906 struct anon_vma *anon_vma = page_anon_vma(page); 1907 struct page *new_page; 1908 1909 if (PageKsm(page)) { 1910 if (page_stable_node(page) && 1911 !(ksm_run & KSM_RUN_UNMERGE)) 1912 return page; /* no need to copy it */ 1913 } else if (!anon_vma) { 1914 return page; /* no need to copy it */ 1915 } else if (anon_vma->root == vma->anon_vma->root && 1916 page->index == linear_page_index(vma, address)) { 1917 return page; /* still no need to copy it */ 1918 } 1919 if (!PageUptodate(page)) 1920 return page; /* let do_swap_page report the error */ 1921 1922 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1923 if (new_page) { 1924 copy_user_highpage(new_page, page, address, vma); 1925 1926 SetPageDirty(new_page); 1927 __SetPageUptodate(new_page); 1928 __SetPageLocked(new_page); 1929 } 1930 1931 return new_page; 1932 } 1933 1934 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 1935 { 1936 struct stable_node *stable_node; 1937 struct rmap_item *rmap_item; 1938 int ret = SWAP_AGAIN; 1939 int search_new_forks = 0; 1940 1941 VM_BUG_ON_PAGE(!PageKsm(page), page); 1942 1943 /* 1944 * Rely on the page lock to protect against concurrent modifications 1945 * to that page's node of the stable tree. 1946 */ 1947 VM_BUG_ON_PAGE(!PageLocked(page), page); 1948 1949 stable_node = page_stable_node(page); 1950 if (!stable_node) 1951 return ret; 1952 again: 1953 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 1954 struct anon_vma *anon_vma = rmap_item->anon_vma; 1955 struct anon_vma_chain *vmac; 1956 struct vm_area_struct *vma; 1957 1958 cond_resched(); 1959 anon_vma_lock_read(anon_vma); 1960 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 1961 0, ULONG_MAX) { 1962 cond_resched(); 1963 vma = vmac->vma; 1964 if (rmap_item->address < vma->vm_start || 1965 rmap_item->address >= vma->vm_end) 1966 continue; 1967 /* 1968 * Initially we examine only the vma which covers this 1969 * rmap_item; but later, if there is still work to do, 1970 * we examine covering vmas in other mms: in case they 1971 * were forked from the original since ksmd passed. 1972 */ 1973 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 1974 continue; 1975 1976 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1977 continue; 1978 1979 ret = rwc->rmap_one(page, vma, 1980 rmap_item->address, rwc->arg); 1981 if (ret != SWAP_AGAIN) { 1982 anon_vma_unlock_read(anon_vma); 1983 goto out; 1984 } 1985 if (rwc->done && rwc->done(page)) { 1986 anon_vma_unlock_read(anon_vma); 1987 goto out; 1988 } 1989 } 1990 anon_vma_unlock_read(anon_vma); 1991 } 1992 if (!search_new_forks++) 1993 goto again; 1994 out: 1995 return ret; 1996 } 1997 1998 #ifdef CONFIG_MIGRATION 1999 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 2000 { 2001 struct stable_node *stable_node; 2002 2003 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 2004 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 2005 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); 2006 2007 stable_node = page_stable_node(newpage); 2008 if (stable_node) { 2009 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); 2010 stable_node->kpfn = page_to_pfn(newpage); 2011 /* 2012 * newpage->mapping was set in advance; now we need smp_wmb() 2013 * to make sure that the new stable_node->kpfn is visible 2014 * to get_ksm_page() before it can see that oldpage->mapping 2015 * has gone stale (or that PageSwapCache has been cleared). 2016 */ 2017 smp_wmb(); 2018 set_page_stable_node(oldpage, NULL); 2019 } 2020 } 2021 #endif /* CONFIG_MIGRATION */ 2022 2023 #ifdef CONFIG_MEMORY_HOTREMOVE 2024 static void wait_while_offlining(void) 2025 { 2026 while (ksm_run & KSM_RUN_OFFLINE) { 2027 mutex_unlock(&ksm_thread_mutex); 2028 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2029 TASK_UNINTERRUPTIBLE); 2030 mutex_lock(&ksm_thread_mutex); 2031 } 2032 } 2033 2034 static void ksm_check_stable_tree(unsigned long start_pfn, 2035 unsigned long end_pfn) 2036 { 2037 struct stable_node *stable_node, *next; 2038 struct rb_node *node; 2039 int nid; 2040 2041 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2042 node = rb_first(root_stable_tree + nid); 2043 while (node) { 2044 stable_node = rb_entry(node, struct stable_node, node); 2045 if (stable_node->kpfn >= start_pfn && 2046 stable_node->kpfn < end_pfn) { 2047 /* 2048 * Don't get_ksm_page, page has already gone: 2049 * which is why we keep kpfn instead of page* 2050 */ 2051 remove_node_from_stable_tree(stable_node); 2052 node = rb_first(root_stable_tree + nid); 2053 } else 2054 node = rb_next(node); 2055 cond_resched(); 2056 } 2057 } 2058 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2059 if (stable_node->kpfn >= start_pfn && 2060 stable_node->kpfn < end_pfn) 2061 remove_node_from_stable_tree(stable_node); 2062 cond_resched(); 2063 } 2064 } 2065 2066 static int ksm_memory_callback(struct notifier_block *self, 2067 unsigned long action, void *arg) 2068 { 2069 struct memory_notify *mn = arg; 2070 2071 switch (action) { 2072 case MEM_GOING_OFFLINE: 2073 /* 2074 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2075 * and remove_all_stable_nodes() while memory is going offline: 2076 * it is unsafe for them to touch the stable tree at this time. 2077 * But unmerge_ksm_pages(), rmap lookups and other entry points 2078 * which do not need the ksm_thread_mutex are all safe. 2079 */ 2080 mutex_lock(&ksm_thread_mutex); 2081 ksm_run |= KSM_RUN_OFFLINE; 2082 mutex_unlock(&ksm_thread_mutex); 2083 break; 2084 2085 case MEM_OFFLINE: 2086 /* 2087 * Most of the work is done by page migration; but there might 2088 * be a few stable_nodes left over, still pointing to struct 2089 * pages which have been offlined: prune those from the tree, 2090 * otherwise get_ksm_page() might later try to access a 2091 * non-existent struct page. 2092 */ 2093 ksm_check_stable_tree(mn->start_pfn, 2094 mn->start_pfn + mn->nr_pages); 2095 /* fallthrough */ 2096 2097 case MEM_CANCEL_OFFLINE: 2098 mutex_lock(&ksm_thread_mutex); 2099 ksm_run &= ~KSM_RUN_OFFLINE; 2100 mutex_unlock(&ksm_thread_mutex); 2101 2102 smp_mb(); /* wake_up_bit advises this */ 2103 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2104 break; 2105 } 2106 return NOTIFY_OK; 2107 } 2108 #else 2109 static void wait_while_offlining(void) 2110 { 2111 } 2112 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2113 2114 #ifdef CONFIG_SYSFS 2115 /* 2116 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2117 */ 2118 2119 #define KSM_ATTR_RO(_name) \ 2120 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2121 #define KSM_ATTR(_name) \ 2122 static struct kobj_attribute _name##_attr = \ 2123 __ATTR(_name, 0644, _name##_show, _name##_store) 2124 2125 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2126 struct kobj_attribute *attr, char *buf) 2127 { 2128 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); 2129 } 2130 2131 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2132 struct kobj_attribute *attr, 2133 const char *buf, size_t count) 2134 { 2135 unsigned long msecs; 2136 int err; 2137 2138 err = kstrtoul(buf, 10, &msecs); 2139 if (err || msecs > UINT_MAX) 2140 return -EINVAL; 2141 2142 ksm_thread_sleep_millisecs = msecs; 2143 2144 return count; 2145 } 2146 KSM_ATTR(sleep_millisecs); 2147 2148 static ssize_t pages_to_scan_show(struct kobject *kobj, 2149 struct kobj_attribute *attr, char *buf) 2150 { 2151 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); 2152 } 2153 2154 static ssize_t pages_to_scan_store(struct kobject *kobj, 2155 struct kobj_attribute *attr, 2156 const char *buf, size_t count) 2157 { 2158 int err; 2159 unsigned long nr_pages; 2160 2161 err = kstrtoul(buf, 10, &nr_pages); 2162 if (err || nr_pages > UINT_MAX) 2163 return -EINVAL; 2164 2165 ksm_thread_pages_to_scan = nr_pages; 2166 2167 return count; 2168 } 2169 KSM_ATTR(pages_to_scan); 2170 2171 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2172 char *buf) 2173 { 2174 return sprintf(buf, "%lu\n", ksm_run); 2175 } 2176 2177 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2178 const char *buf, size_t count) 2179 { 2180 int err; 2181 unsigned long flags; 2182 2183 err = kstrtoul(buf, 10, &flags); 2184 if (err || flags > UINT_MAX) 2185 return -EINVAL; 2186 if (flags > KSM_RUN_UNMERGE) 2187 return -EINVAL; 2188 2189 /* 2190 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2191 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2192 * breaking COW to free the pages_shared (but leaves mm_slots 2193 * on the list for when ksmd may be set running again). 2194 */ 2195 2196 mutex_lock(&ksm_thread_mutex); 2197 wait_while_offlining(); 2198 if (ksm_run != flags) { 2199 ksm_run = flags; 2200 if (flags & KSM_RUN_UNMERGE) { 2201 set_current_oom_origin(); 2202 err = unmerge_and_remove_all_rmap_items(); 2203 clear_current_oom_origin(); 2204 if (err) { 2205 ksm_run = KSM_RUN_STOP; 2206 count = err; 2207 } 2208 } 2209 } 2210 mutex_unlock(&ksm_thread_mutex); 2211 2212 if (flags & KSM_RUN_MERGE) 2213 wake_up_interruptible(&ksm_thread_wait); 2214 2215 return count; 2216 } 2217 KSM_ATTR(run); 2218 2219 #ifdef CONFIG_NUMA 2220 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2221 struct kobj_attribute *attr, char *buf) 2222 { 2223 return sprintf(buf, "%u\n", ksm_merge_across_nodes); 2224 } 2225 2226 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2227 struct kobj_attribute *attr, 2228 const char *buf, size_t count) 2229 { 2230 int err; 2231 unsigned long knob; 2232 2233 err = kstrtoul(buf, 10, &knob); 2234 if (err) 2235 return err; 2236 if (knob > 1) 2237 return -EINVAL; 2238 2239 mutex_lock(&ksm_thread_mutex); 2240 wait_while_offlining(); 2241 if (ksm_merge_across_nodes != knob) { 2242 if (ksm_pages_shared || remove_all_stable_nodes()) 2243 err = -EBUSY; 2244 else if (root_stable_tree == one_stable_tree) { 2245 struct rb_root *buf; 2246 /* 2247 * This is the first time that we switch away from the 2248 * default of merging across nodes: must now allocate 2249 * a buffer to hold as many roots as may be needed. 2250 * Allocate stable and unstable together: 2251 * MAXSMP NODES_SHIFT 10 will use 16kB. 2252 */ 2253 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2254 GFP_KERNEL); 2255 /* Let us assume that RB_ROOT is NULL is zero */ 2256 if (!buf) 2257 err = -ENOMEM; 2258 else { 2259 root_stable_tree = buf; 2260 root_unstable_tree = buf + nr_node_ids; 2261 /* Stable tree is empty but not the unstable */ 2262 root_unstable_tree[0] = one_unstable_tree[0]; 2263 } 2264 } 2265 if (!err) { 2266 ksm_merge_across_nodes = knob; 2267 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2268 } 2269 } 2270 mutex_unlock(&ksm_thread_mutex); 2271 2272 return err ? err : count; 2273 } 2274 KSM_ATTR(merge_across_nodes); 2275 #endif 2276 2277 static ssize_t use_zero_pages_show(struct kobject *kobj, 2278 struct kobj_attribute *attr, char *buf) 2279 { 2280 return sprintf(buf, "%u\n", ksm_use_zero_pages); 2281 } 2282 static ssize_t use_zero_pages_store(struct kobject *kobj, 2283 struct kobj_attribute *attr, 2284 const char *buf, size_t count) 2285 { 2286 int err; 2287 bool value; 2288 2289 err = kstrtobool(buf, &value); 2290 if (err) 2291 return -EINVAL; 2292 2293 ksm_use_zero_pages = value; 2294 2295 return count; 2296 } 2297 KSM_ATTR(use_zero_pages); 2298 2299 static ssize_t pages_shared_show(struct kobject *kobj, 2300 struct kobj_attribute *attr, char *buf) 2301 { 2302 return sprintf(buf, "%lu\n", ksm_pages_shared); 2303 } 2304 KSM_ATTR_RO(pages_shared); 2305 2306 static ssize_t pages_sharing_show(struct kobject *kobj, 2307 struct kobj_attribute *attr, char *buf) 2308 { 2309 return sprintf(buf, "%lu\n", ksm_pages_sharing); 2310 } 2311 KSM_ATTR_RO(pages_sharing); 2312 2313 static ssize_t pages_unshared_show(struct kobject *kobj, 2314 struct kobj_attribute *attr, char *buf) 2315 { 2316 return sprintf(buf, "%lu\n", ksm_pages_unshared); 2317 } 2318 KSM_ATTR_RO(pages_unshared); 2319 2320 static ssize_t pages_volatile_show(struct kobject *kobj, 2321 struct kobj_attribute *attr, char *buf) 2322 { 2323 long ksm_pages_volatile; 2324 2325 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 2326 - ksm_pages_sharing - ksm_pages_unshared; 2327 /* 2328 * It was not worth any locking to calculate that statistic, 2329 * but it might therefore sometimes be negative: conceal that. 2330 */ 2331 if (ksm_pages_volatile < 0) 2332 ksm_pages_volatile = 0; 2333 return sprintf(buf, "%ld\n", ksm_pages_volatile); 2334 } 2335 KSM_ATTR_RO(pages_volatile); 2336 2337 static ssize_t full_scans_show(struct kobject *kobj, 2338 struct kobj_attribute *attr, char *buf) 2339 { 2340 return sprintf(buf, "%lu\n", ksm_scan.seqnr); 2341 } 2342 KSM_ATTR_RO(full_scans); 2343 2344 static struct attribute *ksm_attrs[] = { 2345 &sleep_millisecs_attr.attr, 2346 &pages_to_scan_attr.attr, 2347 &run_attr.attr, 2348 &pages_shared_attr.attr, 2349 &pages_sharing_attr.attr, 2350 &pages_unshared_attr.attr, 2351 &pages_volatile_attr.attr, 2352 &full_scans_attr.attr, 2353 #ifdef CONFIG_NUMA 2354 &merge_across_nodes_attr.attr, 2355 #endif 2356 &use_zero_pages_attr.attr, 2357 NULL, 2358 }; 2359 2360 static struct attribute_group ksm_attr_group = { 2361 .attrs = ksm_attrs, 2362 .name = "ksm", 2363 }; 2364 #endif /* CONFIG_SYSFS */ 2365 2366 static int __init ksm_init(void) 2367 { 2368 struct task_struct *ksm_thread; 2369 int err; 2370 2371 /* The correct value depends on page size and endianness */ 2372 zero_checksum = calc_checksum(ZERO_PAGE(0)); 2373 /* Default to false for backwards compatibility */ 2374 ksm_use_zero_pages = false; 2375 2376 err = ksm_slab_init(); 2377 if (err) 2378 goto out; 2379 2380 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 2381 if (IS_ERR(ksm_thread)) { 2382 pr_err("ksm: creating kthread failed\n"); 2383 err = PTR_ERR(ksm_thread); 2384 goto out_free; 2385 } 2386 2387 #ifdef CONFIG_SYSFS 2388 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 2389 if (err) { 2390 pr_err("ksm: register sysfs failed\n"); 2391 kthread_stop(ksm_thread); 2392 goto out_free; 2393 } 2394 #else 2395 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 2396 2397 #endif /* CONFIG_SYSFS */ 2398 2399 #ifdef CONFIG_MEMORY_HOTREMOVE 2400 /* There is no significance to this priority 100 */ 2401 hotplug_memory_notifier(ksm_memory_callback, 100); 2402 #endif 2403 return 0; 2404 2405 out_free: 2406 ksm_slab_free(); 2407 out: 2408 return err; 2409 } 2410 subsys_initcall(ksm_init); 2411