xref: /openbmc/linux/mm/ksm.c (revision 4e1a33b1)
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40 
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43 
44 #ifdef CONFIG_NUMA
45 #define NUMA(x)		(x)
46 #define DO_NUMA(x)	do { (x); } while (0)
47 #else
48 #define NUMA(x)		(0)
49 #define DO_NUMA(x)	do { } while (0)
50 #endif
51 
52 /*
53  * A few notes about the KSM scanning process,
54  * to make it easier to understand the data structures below:
55  *
56  * In order to reduce excessive scanning, KSM sorts the memory pages by their
57  * contents into a data structure that holds pointers to the pages' locations.
58  *
59  * Since the contents of the pages may change at any moment, KSM cannot just
60  * insert the pages into a normal sorted tree and expect it to find anything.
61  * Therefore KSM uses two data structures - the stable and the unstable tree.
62  *
63  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64  * by their contents.  Because each such page is write-protected, searching on
65  * this tree is fully assured to be working (except when pages are unmapped),
66  * and therefore this tree is called the stable tree.
67  *
68  * In addition to the stable tree, KSM uses a second data structure called the
69  * unstable tree: this tree holds pointers to pages which have been found to
70  * be "unchanged for a period of time".  The unstable tree sorts these pages
71  * by their contents, but since they are not write-protected, KSM cannot rely
72  * upon the unstable tree to work correctly - the unstable tree is liable to
73  * be corrupted as its contents are modified, and so it is called unstable.
74  *
75  * KSM solves this problem by several techniques:
76  *
77  * 1) The unstable tree is flushed every time KSM completes scanning all
78  *    memory areas, and then the tree is rebuilt again from the beginning.
79  * 2) KSM will only insert into the unstable tree, pages whose hash value
80  *    has not changed since the previous scan of all memory areas.
81  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82  *    colors of the nodes and not on their contents, assuring that even when
83  *    the tree gets "corrupted" it won't get out of balance, so scanning time
84  *    remains the same (also, searching and inserting nodes in an rbtree uses
85  *    the same algorithm, so we have no overhead when we flush and rebuild).
86  * 4) KSM never flushes the stable tree, which means that even if it were to
87  *    take 10 attempts to find a page in the unstable tree, once it is found,
88  *    it is secured in the stable tree.  (When we scan a new page, we first
89  *    compare it against the stable tree, and then against the unstable tree.)
90  *
91  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92  * stable trees and multiple unstable trees: one of each for each NUMA node.
93  */
94 
95 /**
96  * struct mm_slot - ksm information per mm that is being scanned
97  * @link: link to the mm_slots hash list
98  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100  * @mm: the mm that this information is valid for
101  */
102 struct mm_slot {
103 	struct hlist_node link;
104 	struct list_head mm_list;
105 	struct rmap_item *rmap_list;
106 	struct mm_struct *mm;
107 };
108 
109 /**
110  * struct ksm_scan - cursor for scanning
111  * @mm_slot: the current mm_slot we are scanning
112  * @address: the next address inside that to be scanned
113  * @rmap_list: link to the next rmap to be scanned in the rmap_list
114  * @seqnr: count of completed full scans (needed when removing unstable node)
115  *
116  * There is only the one ksm_scan instance of this cursor structure.
117  */
118 struct ksm_scan {
119 	struct mm_slot *mm_slot;
120 	unsigned long address;
121 	struct rmap_item **rmap_list;
122 	unsigned long seqnr;
123 };
124 
125 /**
126  * struct stable_node - node of the stable rbtree
127  * @node: rb node of this ksm page in the stable tree
128  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129  * @list: linked into migrate_nodes, pending placement in the proper node tree
130  * @hlist: hlist head of rmap_items using this ksm page
131  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133  */
134 struct stable_node {
135 	union {
136 		struct rb_node node;	/* when node of stable tree */
137 		struct {		/* when listed for migration */
138 			struct list_head *head;
139 			struct list_head list;
140 		};
141 	};
142 	struct hlist_head hlist;
143 	unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145 	int nid;
146 #endif
147 };
148 
149 /**
150  * struct rmap_item - reverse mapping item for virtual addresses
151  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153  * @nid: NUMA node id of unstable tree in which linked (may not match page)
154  * @mm: the memory structure this rmap_item is pointing into
155  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156  * @oldchecksum: previous checksum of the page at that virtual address
157  * @node: rb node of this rmap_item in the unstable tree
158  * @head: pointer to stable_node heading this list in the stable tree
159  * @hlist: link into hlist of rmap_items hanging off that stable_node
160  */
161 struct rmap_item {
162 	struct rmap_item *rmap_list;
163 	union {
164 		struct anon_vma *anon_vma;	/* when stable */
165 #ifdef CONFIG_NUMA
166 		int nid;		/* when node of unstable tree */
167 #endif
168 	};
169 	struct mm_struct *mm;
170 	unsigned long address;		/* + low bits used for flags below */
171 	unsigned int oldchecksum;	/* when unstable */
172 	union {
173 		struct rb_node node;	/* when node of unstable tree */
174 		struct {		/* when listed from stable tree */
175 			struct stable_node *head;
176 			struct hlist_node hlist;
177 		};
178 	};
179 };
180 
181 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
183 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
184 
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
190 
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
193 
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196 
197 static struct mm_slot ksm_mm_head = {
198 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199 };
200 static struct ksm_scan ksm_scan = {
201 	.mm_slot = &ksm_mm_head,
202 };
203 
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
207 
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
210 
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
213 
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
216 
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
219 
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
222 
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
225 
226 /* Checksum of an empty (zeroed) page */
227 static unsigned int zero_checksum __read_mostly;
228 
229 /* Whether to merge empty (zeroed) pages with actual zero pages */
230 static bool ksm_use_zero_pages __read_mostly;
231 
232 #ifdef CONFIG_NUMA
233 /* Zeroed when merging across nodes is not allowed */
234 static unsigned int ksm_merge_across_nodes = 1;
235 static int ksm_nr_node_ids = 1;
236 #else
237 #define ksm_merge_across_nodes	1U
238 #define ksm_nr_node_ids		1
239 #endif
240 
241 #define KSM_RUN_STOP	0
242 #define KSM_RUN_MERGE	1
243 #define KSM_RUN_UNMERGE	2
244 #define KSM_RUN_OFFLINE	4
245 static unsigned long ksm_run = KSM_RUN_STOP;
246 static void wait_while_offlining(void);
247 
248 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
249 static DEFINE_MUTEX(ksm_thread_mutex);
250 static DEFINE_SPINLOCK(ksm_mmlist_lock);
251 
252 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
253 		sizeof(struct __struct), __alignof__(struct __struct),\
254 		(__flags), NULL)
255 
256 static int __init ksm_slab_init(void)
257 {
258 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
259 	if (!rmap_item_cache)
260 		goto out;
261 
262 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
263 	if (!stable_node_cache)
264 		goto out_free1;
265 
266 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
267 	if (!mm_slot_cache)
268 		goto out_free2;
269 
270 	return 0;
271 
272 out_free2:
273 	kmem_cache_destroy(stable_node_cache);
274 out_free1:
275 	kmem_cache_destroy(rmap_item_cache);
276 out:
277 	return -ENOMEM;
278 }
279 
280 static void __init ksm_slab_free(void)
281 {
282 	kmem_cache_destroy(mm_slot_cache);
283 	kmem_cache_destroy(stable_node_cache);
284 	kmem_cache_destroy(rmap_item_cache);
285 	mm_slot_cache = NULL;
286 }
287 
288 static inline struct rmap_item *alloc_rmap_item(void)
289 {
290 	struct rmap_item *rmap_item;
291 
292 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
293 						__GFP_NORETRY | __GFP_NOWARN);
294 	if (rmap_item)
295 		ksm_rmap_items++;
296 	return rmap_item;
297 }
298 
299 static inline void free_rmap_item(struct rmap_item *rmap_item)
300 {
301 	ksm_rmap_items--;
302 	rmap_item->mm = NULL;	/* debug safety */
303 	kmem_cache_free(rmap_item_cache, rmap_item);
304 }
305 
306 static inline struct stable_node *alloc_stable_node(void)
307 {
308 	/*
309 	 * The allocation can take too long with GFP_KERNEL when memory is under
310 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
311 	 * grants access to memory reserves, helping to avoid this problem.
312 	 */
313 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
314 }
315 
316 static inline void free_stable_node(struct stable_node *stable_node)
317 {
318 	kmem_cache_free(stable_node_cache, stable_node);
319 }
320 
321 static inline struct mm_slot *alloc_mm_slot(void)
322 {
323 	if (!mm_slot_cache)	/* initialization failed */
324 		return NULL;
325 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
326 }
327 
328 static inline void free_mm_slot(struct mm_slot *mm_slot)
329 {
330 	kmem_cache_free(mm_slot_cache, mm_slot);
331 }
332 
333 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
334 {
335 	struct mm_slot *slot;
336 
337 	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
338 		if (slot->mm == mm)
339 			return slot;
340 
341 	return NULL;
342 }
343 
344 static void insert_to_mm_slots_hash(struct mm_struct *mm,
345 				    struct mm_slot *mm_slot)
346 {
347 	mm_slot->mm = mm;
348 	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
349 }
350 
351 /*
352  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
353  * page tables after it has passed through ksm_exit() - which, if necessary,
354  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
355  * a special flag: they can just back out as soon as mm_users goes to zero.
356  * ksm_test_exit() is used throughout to make this test for exit: in some
357  * places for correctness, in some places just to avoid unnecessary work.
358  */
359 static inline bool ksm_test_exit(struct mm_struct *mm)
360 {
361 	return atomic_read(&mm->mm_users) == 0;
362 }
363 
364 /*
365  * We use break_ksm to break COW on a ksm page: it's a stripped down
366  *
367  *	if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
368  *		put_page(page);
369  *
370  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
371  * in case the application has unmapped and remapped mm,addr meanwhile.
372  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
373  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
374  *
375  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
376  * of the process that owns 'vma'.  We also do not want to enforce
377  * protection keys here anyway.
378  */
379 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
380 {
381 	struct page *page;
382 	int ret = 0;
383 
384 	do {
385 		cond_resched();
386 		page = follow_page(vma, addr,
387 				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
388 		if (IS_ERR_OR_NULL(page))
389 			break;
390 		if (PageKsm(page))
391 			ret = handle_mm_fault(vma, addr,
392 					FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
393 		else
394 			ret = VM_FAULT_WRITE;
395 		put_page(page);
396 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
397 	/*
398 	 * We must loop because handle_mm_fault() may back out if there's
399 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
400 	 *
401 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
402 	 * COW has been broken, even if the vma does not permit VM_WRITE;
403 	 * but note that a concurrent fault might break PageKsm for us.
404 	 *
405 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
406 	 * backing file, which also invalidates anonymous pages: that's
407 	 * okay, that truncation will have unmapped the PageKsm for us.
408 	 *
409 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
410 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
411 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
412 	 * to user; and ksmd, having no mm, would never be chosen for that.
413 	 *
414 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
415 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
416 	 * even ksmd can fail in this way - though it's usually breaking ksm
417 	 * just to undo a merge it made a moment before, so unlikely to oom.
418 	 *
419 	 * That's a pity: we might therefore have more kernel pages allocated
420 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
421 	 * will retry to break_cow on each pass, so should recover the page
422 	 * in due course.  The important thing is to not let VM_MERGEABLE
423 	 * be cleared while any such pages might remain in the area.
424 	 */
425 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
426 }
427 
428 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
429 		unsigned long addr)
430 {
431 	struct vm_area_struct *vma;
432 	if (ksm_test_exit(mm))
433 		return NULL;
434 	vma = find_vma(mm, addr);
435 	if (!vma || vma->vm_start > addr)
436 		return NULL;
437 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
438 		return NULL;
439 	return vma;
440 }
441 
442 static void break_cow(struct rmap_item *rmap_item)
443 {
444 	struct mm_struct *mm = rmap_item->mm;
445 	unsigned long addr = rmap_item->address;
446 	struct vm_area_struct *vma;
447 
448 	/*
449 	 * It is not an accident that whenever we want to break COW
450 	 * to undo, we also need to drop a reference to the anon_vma.
451 	 */
452 	put_anon_vma(rmap_item->anon_vma);
453 
454 	down_read(&mm->mmap_sem);
455 	vma = find_mergeable_vma(mm, addr);
456 	if (vma)
457 		break_ksm(vma, addr);
458 	up_read(&mm->mmap_sem);
459 }
460 
461 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
462 {
463 	struct mm_struct *mm = rmap_item->mm;
464 	unsigned long addr = rmap_item->address;
465 	struct vm_area_struct *vma;
466 	struct page *page;
467 
468 	down_read(&mm->mmap_sem);
469 	vma = find_mergeable_vma(mm, addr);
470 	if (!vma)
471 		goto out;
472 
473 	page = follow_page(vma, addr, FOLL_GET);
474 	if (IS_ERR_OR_NULL(page))
475 		goto out;
476 	if (PageAnon(page)) {
477 		flush_anon_page(vma, page, addr);
478 		flush_dcache_page(page);
479 	} else {
480 		put_page(page);
481 out:
482 		page = NULL;
483 	}
484 	up_read(&mm->mmap_sem);
485 	return page;
486 }
487 
488 /*
489  * This helper is used for getting right index into array of tree roots.
490  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
491  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
492  * every node has its own stable and unstable tree.
493  */
494 static inline int get_kpfn_nid(unsigned long kpfn)
495 {
496 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
497 }
498 
499 static void remove_node_from_stable_tree(struct stable_node *stable_node)
500 {
501 	struct rmap_item *rmap_item;
502 
503 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
504 		if (rmap_item->hlist.next)
505 			ksm_pages_sharing--;
506 		else
507 			ksm_pages_shared--;
508 		put_anon_vma(rmap_item->anon_vma);
509 		rmap_item->address &= PAGE_MASK;
510 		cond_resched();
511 	}
512 
513 	if (stable_node->head == &migrate_nodes)
514 		list_del(&stable_node->list);
515 	else
516 		rb_erase(&stable_node->node,
517 			 root_stable_tree + NUMA(stable_node->nid));
518 	free_stable_node(stable_node);
519 }
520 
521 /*
522  * get_ksm_page: checks if the page indicated by the stable node
523  * is still its ksm page, despite having held no reference to it.
524  * In which case we can trust the content of the page, and it
525  * returns the gotten page; but if the page has now been zapped,
526  * remove the stale node from the stable tree and return NULL.
527  * But beware, the stable node's page might be being migrated.
528  *
529  * You would expect the stable_node to hold a reference to the ksm page.
530  * But if it increments the page's count, swapping out has to wait for
531  * ksmd to come around again before it can free the page, which may take
532  * seconds or even minutes: much too unresponsive.  So instead we use a
533  * "keyhole reference": access to the ksm page from the stable node peeps
534  * out through its keyhole to see if that page still holds the right key,
535  * pointing back to this stable node.  This relies on freeing a PageAnon
536  * page to reset its page->mapping to NULL, and relies on no other use of
537  * a page to put something that might look like our key in page->mapping.
538  * is on its way to being freed; but it is an anomaly to bear in mind.
539  */
540 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
541 {
542 	struct page *page;
543 	void *expected_mapping;
544 	unsigned long kpfn;
545 
546 	expected_mapping = (void *)((unsigned long)stable_node |
547 					PAGE_MAPPING_KSM);
548 again:
549 	kpfn = READ_ONCE(stable_node->kpfn);
550 	page = pfn_to_page(kpfn);
551 
552 	/*
553 	 * page is computed from kpfn, so on most architectures reading
554 	 * page->mapping is naturally ordered after reading node->kpfn,
555 	 * but on Alpha we need to be more careful.
556 	 */
557 	smp_read_barrier_depends();
558 	if (READ_ONCE(page->mapping) != expected_mapping)
559 		goto stale;
560 
561 	/*
562 	 * We cannot do anything with the page while its refcount is 0.
563 	 * Usually 0 means free, or tail of a higher-order page: in which
564 	 * case this node is no longer referenced, and should be freed;
565 	 * however, it might mean that the page is under page_freeze_refs().
566 	 * The __remove_mapping() case is easy, again the node is now stale;
567 	 * but if page is swapcache in migrate_page_move_mapping(), it might
568 	 * still be our page, in which case it's essential to keep the node.
569 	 */
570 	while (!get_page_unless_zero(page)) {
571 		/*
572 		 * Another check for page->mapping != expected_mapping would
573 		 * work here too.  We have chosen the !PageSwapCache test to
574 		 * optimize the common case, when the page is or is about to
575 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
576 		 * in the freeze_refs section of __remove_mapping(); but Anon
577 		 * page->mapping reset to NULL later, in free_pages_prepare().
578 		 */
579 		if (!PageSwapCache(page))
580 			goto stale;
581 		cpu_relax();
582 	}
583 
584 	if (READ_ONCE(page->mapping) != expected_mapping) {
585 		put_page(page);
586 		goto stale;
587 	}
588 
589 	if (lock_it) {
590 		lock_page(page);
591 		if (READ_ONCE(page->mapping) != expected_mapping) {
592 			unlock_page(page);
593 			put_page(page);
594 			goto stale;
595 		}
596 	}
597 	return page;
598 
599 stale:
600 	/*
601 	 * We come here from above when page->mapping or !PageSwapCache
602 	 * suggests that the node is stale; but it might be under migration.
603 	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
604 	 * before checking whether node->kpfn has been changed.
605 	 */
606 	smp_rmb();
607 	if (READ_ONCE(stable_node->kpfn) != kpfn)
608 		goto again;
609 	remove_node_from_stable_tree(stable_node);
610 	return NULL;
611 }
612 
613 /*
614  * Removing rmap_item from stable or unstable tree.
615  * This function will clean the information from the stable/unstable tree.
616  */
617 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
618 {
619 	if (rmap_item->address & STABLE_FLAG) {
620 		struct stable_node *stable_node;
621 		struct page *page;
622 
623 		stable_node = rmap_item->head;
624 		page = get_ksm_page(stable_node, true);
625 		if (!page)
626 			goto out;
627 
628 		hlist_del(&rmap_item->hlist);
629 		unlock_page(page);
630 		put_page(page);
631 
632 		if (!hlist_empty(&stable_node->hlist))
633 			ksm_pages_sharing--;
634 		else
635 			ksm_pages_shared--;
636 
637 		put_anon_vma(rmap_item->anon_vma);
638 		rmap_item->address &= PAGE_MASK;
639 
640 	} else if (rmap_item->address & UNSTABLE_FLAG) {
641 		unsigned char age;
642 		/*
643 		 * Usually ksmd can and must skip the rb_erase, because
644 		 * root_unstable_tree was already reset to RB_ROOT.
645 		 * But be careful when an mm is exiting: do the rb_erase
646 		 * if this rmap_item was inserted by this scan, rather
647 		 * than left over from before.
648 		 */
649 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
650 		BUG_ON(age > 1);
651 		if (!age)
652 			rb_erase(&rmap_item->node,
653 				 root_unstable_tree + NUMA(rmap_item->nid));
654 		ksm_pages_unshared--;
655 		rmap_item->address &= PAGE_MASK;
656 	}
657 out:
658 	cond_resched();		/* we're called from many long loops */
659 }
660 
661 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
662 				       struct rmap_item **rmap_list)
663 {
664 	while (*rmap_list) {
665 		struct rmap_item *rmap_item = *rmap_list;
666 		*rmap_list = rmap_item->rmap_list;
667 		remove_rmap_item_from_tree(rmap_item);
668 		free_rmap_item(rmap_item);
669 	}
670 }
671 
672 /*
673  * Though it's very tempting to unmerge rmap_items from stable tree rather
674  * than check every pte of a given vma, the locking doesn't quite work for
675  * that - an rmap_item is assigned to the stable tree after inserting ksm
676  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
677  * rmap_items from parent to child at fork time (so as not to waste time
678  * if exit comes before the next scan reaches it).
679  *
680  * Similarly, although we'd like to remove rmap_items (so updating counts
681  * and freeing memory) when unmerging an area, it's easier to leave that
682  * to the next pass of ksmd - consider, for example, how ksmd might be
683  * in cmp_and_merge_page on one of the rmap_items we would be removing.
684  */
685 static int unmerge_ksm_pages(struct vm_area_struct *vma,
686 			     unsigned long start, unsigned long end)
687 {
688 	unsigned long addr;
689 	int err = 0;
690 
691 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
692 		if (ksm_test_exit(vma->vm_mm))
693 			break;
694 		if (signal_pending(current))
695 			err = -ERESTARTSYS;
696 		else
697 			err = break_ksm(vma, addr);
698 	}
699 	return err;
700 }
701 
702 #ifdef CONFIG_SYSFS
703 /*
704  * Only called through the sysfs control interface:
705  */
706 static int remove_stable_node(struct stable_node *stable_node)
707 {
708 	struct page *page;
709 	int err;
710 
711 	page = get_ksm_page(stable_node, true);
712 	if (!page) {
713 		/*
714 		 * get_ksm_page did remove_node_from_stable_tree itself.
715 		 */
716 		return 0;
717 	}
718 
719 	if (WARN_ON_ONCE(page_mapped(page))) {
720 		/*
721 		 * This should not happen: but if it does, just refuse to let
722 		 * merge_across_nodes be switched - there is no need to panic.
723 		 */
724 		err = -EBUSY;
725 	} else {
726 		/*
727 		 * The stable node did not yet appear stale to get_ksm_page(),
728 		 * since that allows for an unmapped ksm page to be recognized
729 		 * right up until it is freed; but the node is safe to remove.
730 		 * This page might be in a pagevec waiting to be freed,
731 		 * or it might be PageSwapCache (perhaps under writeback),
732 		 * or it might have been removed from swapcache a moment ago.
733 		 */
734 		set_page_stable_node(page, NULL);
735 		remove_node_from_stable_tree(stable_node);
736 		err = 0;
737 	}
738 
739 	unlock_page(page);
740 	put_page(page);
741 	return err;
742 }
743 
744 static int remove_all_stable_nodes(void)
745 {
746 	struct stable_node *stable_node, *next;
747 	int nid;
748 	int err = 0;
749 
750 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
751 		while (root_stable_tree[nid].rb_node) {
752 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
753 						struct stable_node, node);
754 			if (remove_stable_node(stable_node)) {
755 				err = -EBUSY;
756 				break;	/* proceed to next nid */
757 			}
758 			cond_resched();
759 		}
760 	}
761 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
762 		if (remove_stable_node(stable_node))
763 			err = -EBUSY;
764 		cond_resched();
765 	}
766 	return err;
767 }
768 
769 static int unmerge_and_remove_all_rmap_items(void)
770 {
771 	struct mm_slot *mm_slot;
772 	struct mm_struct *mm;
773 	struct vm_area_struct *vma;
774 	int err = 0;
775 
776 	spin_lock(&ksm_mmlist_lock);
777 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
778 						struct mm_slot, mm_list);
779 	spin_unlock(&ksm_mmlist_lock);
780 
781 	for (mm_slot = ksm_scan.mm_slot;
782 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
783 		mm = mm_slot->mm;
784 		down_read(&mm->mmap_sem);
785 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
786 			if (ksm_test_exit(mm))
787 				break;
788 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
789 				continue;
790 			err = unmerge_ksm_pages(vma,
791 						vma->vm_start, vma->vm_end);
792 			if (err)
793 				goto error;
794 		}
795 
796 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
797 		up_read(&mm->mmap_sem);
798 
799 		spin_lock(&ksm_mmlist_lock);
800 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
801 						struct mm_slot, mm_list);
802 		if (ksm_test_exit(mm)) {
803 			hash_del(&mm_slot->link);
804 			list_del(&mm_slot->mm_list);
805 			spin_unlock(&ksm_mmlist_lock);
806 
807 			free_mm_slot(mm_slot);
808 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
809 			mmdrop(mm);
810 		} else
811 			spin_unlock(&ksm_mmlist_lock);
812 	}
813 
814 	/* Clean up stable nodes, but don't worry if some are still busy */
815 	remove_all_stable_nodes();
816 	ksm_scan.seqnr = 0;
817 	return 0;
818 
819 error:
820 	up_read(&mm->mmap_sem);
821 	spin_lock(&ksm_mmlist_lock);
822 	ksm_scan.mm_slot = &ksm_mm_head;
823 	spin_unlock(&ksm_mmlist_lock);
824 	return err;
825 }
826 #endif /* CONFIG_SYSFS */
827 
828 static u32 calc_checksum(struct page *page)
829 {
830 	u32 checksum;
831 	void *addr = kmap_atomic(page);
832 	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
833 	kunmap_atomic(addr);
834 	return checksum;
835 }
836 
837 static int memcmp_pages(struct page *page1, struct page *page2)
838 {
839 	char *addr1, *addr2;
840 	int ret;
841 
842 	addr1 = kmap_atomic(page1);
843 	addr2 = kmap_atomic(page2);
844 	ret = memcmp(addr1, addr2, PAGE_SIZE);
845 	kunmap_atomic(addr2);
846 	kunmap_atomic(addr1);
847 	return ret;
848 }
849 
850 static inline int pages_identical(struct page *page1, struct page *page2)
851 {
852 	return !memcmp_pages(page1, page2);
853 }
854 
855 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
856 			      pte_t *orig_pte)
857 {
858 	struct mm_struct *mm = vma->vm_mm;
859 	struct page_vma_mapped_walk pvmw = {
860 		.page = page,
861 		.vma = vma,
862 	};
863 	int swapped;
864 	int err = -EFAULT;
865 	unsigned long mmun_start;	/* For mmu_notifiers */
866 	unsigned long mmun_end;		/* For mmu_notifiers */
867 
868 	pvmw.address = page_address_in_vma(page, vma);
869 	if (pvmw.address == -EFAULT)
870 		goto out;
871 
872 	BUG_ON(PageTransCompound(page));
873 
874 	mmun_start = pvmw.address;
875 	mmun_end   = pvmw.address + PAGE_SIZE;
876 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
877 
878 	if (!page_vma_mapped_walk(&pvmw))
879 		goto out_mn;
880 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
881 		goto out_unlock;
882 
883 	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
884 	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte))) {
885 		pte_t entry;
886 
887 		swapped = PageSwapCache(page);
888 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
889 		/*
890 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
891 		 * take any lock, therefore the check that we are going to make
892 		 * with the pagecount against the mapcount is racey and
893 		 * O_DIRECT can happen right after the check.
894 		 * So we clear the pte and flush the tlb before the check
895 		 * this assure us that no O_DIRECT can happen after the check
896 		 * or in the middle of the check.
897 		 */
898 		entry = ptep_clear_flush_notify(vma, pvmw.address, pvmw.pte);
899 		/*
900 		 * Check that no O_DIRECT or similar I/O is in progress on the
901 		 * page
902 		 */
903 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
904 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
905 			goto out_unlock;
906 		}
907 		if (pte_dirty(entry))
908 			set_page_dirty(page);
909 
910 		if (pte_protnone(entry))
911 			entry = pte_mkclean(pte_clear_savedwrite(entry));
912 		else
913 			entry = pte_mkclean(pte_wrprotect(entry));
914 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
915 	}
916 	*orig_pte = *pvmw.pte;
917 	err = 0;
918 
919 out_unlock:
920 	page_vma_mapped_walk_done(&pvmw);
921 out_mn:
922 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
923 out:
924 	return err;
925 }
926 
927 /**
928  * replace_page - replace page in vma by new ksm page
929  * @vma:      vma that holds the pte pointing to page
930  * @page:     the page we are replacing by kpage
931  * @kpage:    the ksm page we replace page by
932  * @orig_pte: the original value of the pte
933  *
934  * Returns 0 on success, -EFAULT on failure.
935  */
936 static int replace_page(struct vm_area_struct *vma, struct page *page,
937 			struct page *kpage, pte_t orig_pte)
938 {
939 	struct mm_struct *mm = vma->vm_mm;
940 	pmd_t *pmd;
941 	pte_t *ptep;
942 	pte_t newpte;
943 	spinlock_t *ptl;
944 	unsigned long addr;
945 	int err = -EFAULT;
946 	unsigned long mmun_start;	/* For mmu_notifiers */
947 	unsigned long mmun_end;		/* For mmu_notifiers */
948 
949 	addr = page_address_in_vma(page, vma);
950 	if (addr == -EFAULT)
951 		goto out;
952 
953 	pmd = mm_find_pmd(mm, addr);
954 	if (!pmd)
955 		goto out;
956 
957 	mmun_start = addr;
958 	mmun_end   = addr + PAGE_SIZE;
959 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
960 
961 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
962 	if (!pte_same(*ptep, orig_pte)) {
963 		pte_unmap_unlock(ptep, ptl);
964 		goto out_mn;
965 	}
966 
967 	/*
968 	 * No need to check ksm_use_zero_pages here: we can only have a
969 	 * zero_page here if ksm_use_zero_pages was enabled alreaady.
970 	 */
971 	if (!is_zero_pfn(page_to_pfn(kpage))) {
972 		get_page(kpage);
973 		page_add_anon_rmap(kpage, vma, addr, false);
974 		newpte = mk_pte(kpage, vma->vm_page_prot);
975 	} else {
976 		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
977 					       vma->vm_page_prot));
978 	}
979 
980 	flush_cache_page(vma, addr, pte_pfn(*ptep));
981 	ptep_clear_flush_notify(vma, addr, ptep);
982 	set_pte_at_notify(mm, addr, ptep, newpte);
983 
984 	page_remove_rmap(page, false);
985 	if (!page_mapped(page))
986 		try_to_free_swap(page);
987 	put_page(page);
988 
989 	pte_unmap_unlock(ptep, ptl);
990 	err = 0;
991 out_mn:
992 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
993 out:
994 	return err;
995 }
996 
997 /*
998  * try_to_merge_one_page - take two pages and merge them into one
999  * @vma: the vma that holds the pte pointing to page
1000  * @page: the PageAnon page that we want to replace with kpage
1001  * @kpage: the PageKsm page that we want to map instead of page,
1002  *         or NULL the first time when we want to use page as kpage.
1003  *
1004  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1005  */
1006 static int try_to_merge_one_page(struct vm_area_struct *vma,
1007 				 struct page *page, struct page *kpage)
1008 {
1009 	pte_t orig_pte = __pte(0);
1010 	int err = -EFAULT;
1011 
1012 	if (page == kpage)			/* ksm page forked */
1013 		return 0;
1014 
1015 	if (!PageAnon(page))
1016 		goto out;
1017 
1018 	/*
1019 	 * We need the page lock to read a stable PageSwapCache in
1020 	 * write_protect_page().  We use trylock_page() instead of
1021 	 * lock_page() because we don't want to wait here - we
1022 	 * prefer to continue scanning and merging different pages,
1023 	 * then come back to this page when it is unlocked.
1024 	 */
1025 	if (!trylock_page(page))
1026 		goto out;
1027 
1028 	if (PageTransCompound(page)) {
1029 		err = split_huge_page(page);
1030 		if (err)
1031 			goto out_unlock;
1032 	}
1033 
1034 	/*
1035 	 * If this anonymous page is mapped only here, its pte may need
1036 	 * to be write-protected.  If it's mapped elsewhere, all of its
1037 	 * ptes are necessarily already write-protected.  But in either
1038 	 * case, we need to lock and check page_count is not raised.
1039 	 */
1040 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1041 		if (!kpage) {
1042 			/*
1043 			 * While we hold page lock, upgrade page from
1044 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1045 			 * stable_tree_insert() will update stable_node.
1046 			 */
1047 			set_page_stable_node(page, NULL);
1048 			mark_page_accessed(page);
1049 			/*
1050 			 * Page reclaim just frees a clean page with no dirty
1051 			 * ptes: make sure that the ksm page would be swapped.
1052 			 */
1053 			if (!PageDirty(page))
1054 				SetPageDirty(page);
1055 			err = 0;
1056 		} else if (pages_identical(page, kpage))
1057 			err = replace_page(vma, page, kpage, orig_pte);
1058 	}
1059 
1060 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1061 		munlock_vma_page(page);
1062 		if (!PageMlocked(kpage)) {
1063 			unlock_page(page);
1064 			lock_page(kpage);
1065 			mlock_vma_page(kpage);
1066 			page = kpage;		/* for final unlock */
1067 		}
1068 	}
1069 
1070 out_unlock:
1071 	unlock_page(page);
1072 out:
1073 	return err;
1074 }
1075 
1076 /*
1077  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1078  * but no new kernel page is allocated: kpage must already be a ksm page.
1079  *
1080  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1081  */
1082 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1083 				      struct page *page, struct page *kpage)
1084 {
1085 	struct mm_struct *mm = rmap_item->mm;
1086 	struct vm_area_struct *vma;
1087 	int err = -EFAULT;
1088 
1089 	down_read(&mm->mmap_sem);
1090 	vma = find_mergeable_vma(mm, rmap_item->address);
1091 	if (!vma)
1092 		goto out;
1093 
1094 	err = try_to_merge_one_page(vma, page, kpage);
1095 	if (err)
1096 		goto out;
1097 
1098 	/* Unstable nid is in union with stable anon_vma: remove first */
1099 	remove_rmap_item_from_tree(rmap_item);
1100 
1101 	/* Must get reference to anon_vma while still holding mmap_sem */
1102 	rmap_item->anon_vma = vma->anon_vma;
1103 	get_anon_vma(vma->anon_vma);
1104 out:
1105 	up_read(&mm->mmap_sem);
1106 	return err;
1107 }
1108 
1109 /*
1110  * try_to_merge_two_pages - take two identical pages and prepare them
1111  * to be merged into one page.
1112  *
1113  * This function returns the kpage if we successfully merged two identical
1114  * pages into one ksm page, NULL otherwise.
1115  *
1116  * Note that this function upgrades page to ksm page: if one of the pages
1117  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1118  */
1119 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1120 					   struct page *page,
1121 					   struct rmap_item *tree_rmap_item,
1122 					   struct page *tree_page)
1123 {
1124 	int err;
1125 
1126 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1127 	if (!err) {
1128 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1129 							tree_page, page);
1130 		/*
1131 		 * If that fails, we have a ksm page with only one pte
1132 		 * pointing to it: so break it.
1133 		 */
1134 		if (err)
1135 			break_cow(rmap_item);
1136 	}
1137 	return err ? NULL : page;
1138 }
1139 
1140 /*
1141  * stable_tree_search - search for page inside the stable tree
1142  *
1143  * This function checks if there is a page inside the stable tree
1144  * with identical content to the page that we are scanning right now.
1145  *
1146  * This function returns the stable tree node of identical content if found,
1147  * NULL otherwise.
1148  */
1149 static struct page *stable_tree_search(struct page *page)
1150 {
1151 	int nid;
1152 	struct rb_root *root;
1153 	struct rb_node **new;
1154 	struct rb_node *parent;
1155 	struct stable_node *stable_node;
1156 	struct stable_node *page_node;
1157 
1158 	page_node = page_stable_node(page);
1159 	if (page_node && page_node->head != &migrate_nodes) {
1160 		/* ksm page forked */
1161 		get_page(page);
1162 		return page;
1163 	}
1164 
1165 	nid = get_kpfn_nid(page_to_pfn(page));
1166 	root = root_stable_tree + nid;
1167 again:
1168 	new = &root->rb_node;
1169 	parent = NULL;
1170 
1171 	while (*new) {
1172 		struct page *tree_page;
1173 		int ret;
1174 
1175 		cond_resched();
1176 		stable_node = rb_entry(*new, struct stable_node, node);
1177 		tree_page = get_ksm_page(stable_node, false);
1178 		if (!tree_page) {
1179 			/*
1180 			 * If we walked over a stale stable_node,
1181 			 * get_ksm_page() will call rb_erase() and it
1182 			 * may rebalance the tree from under us. So
1183 			 * restart the search from scratch. Returning
1184 			 * NULL would be safe too, but we'd generate
1185 			 * false negative insertions just because some
1186 			 * stable_node was stale.
1187 			 */
1188 			goto again;
1189 		}
1190 
1191 		ret = memcmp_pages(page, tree_page);
1192 		put_page(tree_page);
1193 
1194 		parent = *new;
1195 		if (ret < 0)
1196 			new = &parent->rb_left;
1197 		else if (ret > 0)
1198 			new = &parent->rb_right;
1199 		else {
1200 			/*
1201 			 * Lock and unlock the stable_node's page (which
1202 			 * might already have been migrated) so that page
1203 			 * migration is sure to notice its raised count.
1204 			 * It would be more elegant to return stable_node
1205 			 * than kpage, but that involves more changes.
1206 			 */
1207 			tree_page = get_ksm_page(stable_node, true);
1208 			if (tree_page) {
1209 				unlock_page(tree_page);
1210 				if (get_kpfn_nid(stable_node->kpfn) !=
1211 						NUMA(stable_node->nid)) {
1212 					put_page(tree_page);
1213 					goto replace;
1214 				}
1215 				return tree_page;
1216 			}
1217 			/*
1218 			 * There is now a place for page_node, but the tree may
1219 			 * have been rebalanced, so re-evaluate parent and new.
1220 			 */
1221 			if (page_node)
1222 				goto again;
1223 			return NULL;
1224 		}
1225 	}
1226 
1227 	if (!page_node)
1228 		return NULL;
1229 
1230 	list_del(&page_node->list);
1231 	DO_NUMA(page_node->nid = nid);
1232 	rb_link_node(&page_node->node, parent, new);
1233 	rb_insert_color(&page_node->node, root);
1234 	get_page(page);
1235 	return page;
1236 
1237 replace:
1238 	if (page_node) {
1239 		list_del(&page_node->list);
1240 		DO_NUMA(page_node->nid = nid);
1241 		rb_replace_node(&stable_node->node, &page_node->node, root);
1242 		get_page(page);
1243 	} else {
1244 		rb_erase(&stable_node->node, root);
1245 		page = NULL;
1246 	}
1247 	stable_node->head = &migrate_nodes;
1248 	list_add(&stable_node->list, stable_node->head);
1249 	return page;
1250 }
1251 
1252 /*
1253  * stable_tree_insert - insert stable tree node pointing to new ksm page
1254  * into the stable tree.
1255  *
1256  * This function returns the stable tree node just allocated on success,
1257  * NULL otherwise.
1258  */
1259 static struct stable_node *stable_tree_insert(struct page *kpage)
1260 {
1261 	int nid;
1262 	unsigned long kpfn;
1263 	struct rb_root *root;
1264 	struct rb_node **new;
1265 	struct rb_node *parent;
1266 	struct stable_node *stable_node;
1267 
1268 	kpfn = page_to_pfn(kpage);
1269 	nid = get_kpfn_nid(kpfn);
1270 	root = root_stable_tree + nid;
1271 again:
1272 	parent = NULL;
1273 	new = &root->rb_node;
1274 
1275 	while (*new) {
1276 		struct page *tree_page;
1277 		int ret;
1278 
1279 		cond_resched();
1280 		stable_node = rb_entry(*new, struct stable_node, node);
1281 		tree_page = get_ksm_page(stable_node, false);
1282 		if (!tree_page) {
1283 			/*
1284 			 * If we walked over a stale stable_node,
1285 			 * get_ksm_page() will call rb_erase() and it
1286 			 * may rebalance the tree from under us. So
1287 			 * restart the search from scratch. Returning
1288 			 * NULL would be safe too, but we'd generate
1289 			 * false negative insertions just because some
1290 			 * stable_node was stale.
1291 			 */
1292 			goto again;
1293 		}
1294 
1295 		ret = memcmp_pages(kpage, tree_page);
1296 		put_page(tree_page);
1297 
1298 		parent = *new;
1299 		if (ret < 0)
1300 			new = &parent->rb_left;
1301 		else if (ret > 0)
1302 			new = &parent->rb_right;
1303 		else {
1304 			/*
1305 			 * It is not a bug that stable_tree_search() didn't
1306 			 * find this node: because at that time our page was
1307 			 * not yet write-protected, so may have changed since.
1308 			 */
1309 			return NULL;
1310 		}
1311 	}
1312 
1313 	stable_node = alloc_stable_node();
1314 	if (!stable_node)
1315 		return NULL;
1316 
1317 	INIT_HLIST_HEAD(&stable_node->hlist);
1318 	stable_node->kpfn = kpfn;
1319 	set_page_stable_node(kpage, stable_node);
1320 	DO_NUMA(stable_node->nid = nid);
1321 	rb_link_node(&stable_node->node, parent, new);
1322 	rb_insert_color(&stable_node->node, root);
1323 
1324 	return stable_node;
1325 }
1326 
1327 /*
1328  * unstable_tree_search_insert - search for identical page,
1329  * else insert rmap_item into the unstable tree.
1330  *
1331  * This function searches for a page in the unstable tree identical to the
1332  * page currently being scanned; and if no identical page is found in the
1333  * tree, we insert rmap_item as a new object into the unstable tree.
1334  *
1335  * This function returns pointer to rmap_item found to be identical
1336  * to the currently scanned page, NULL otherwise.
1337  *
1338  * This function does both searching and inserting, because they share
1339  * the same walking algorithm in an rbtree.
1340  */
1341 static
1342 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1343 					      struct page *page,
1344 					      struct page **tree_pagep)
1345 {
1346 	struct rb_node **new;
1347 	struct rb_root *root;
1348 	struct rb_node *parent = NULL;
1349 	int nid;
1350 
1351 	nid = get_kpfn_nid(page_to_pfn(page));
1352 	root = root_unstable_tree + nid;
1353 	new = &root->rb_node;
1354 
1355 	while (*new) {
1356 		struct rmap_item *tree_rmap_item;
1357 		struct page *tree_page;
1358 		int ret;
1359 
1360 		cond_resched();
1361 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1362 		tree_page = get_mergeable_page(tree_rmap_item);
1363 		if (!tree_page)
1364 			return NULL;
1365 
1366 		/*
1367 		 * Don't substitute a ksm page for a forked page.
1368 		 */
1369 		if (page == tree_page) {
1370 			put_page(tree_page);
1371 			return NULL;
1372 		}
1373 
1374 		ret = memcmp_pages(page, tree_page);
1375 
1376 		parent = *new;
1377 		if (ret < 0) {
1378 			put_page(tree_page);
1379 			new = &parent->rb_left;
1380 		} else if (ret > 0) {
1381 			put_page(tree_page);
1382 			new = &parent->rb_right;
1383 		} else if (!ksm_merge_across_nodes &&
1384 			   page_to_nid(tree_page) != nid) {
1385 			/*
1386 			 * If tree_page has been migrated to another NUMA node,
1387 			 * it will be flushed out and put in the right unstable
1388 			 * tree next time: only merge with it when across_nodes.
1389 			 */
1390 			put_page(tree_page);
1391 			return NULL;
1392 		} else {
1393 			*tree_pagep = tree_page;
1394 			return tree_rmap_item;
1395 		}
1396 	}
1397 
1398 	rmap_item->address |= UNSTABLE_FLAG;
1399 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1400 	DO_NUMA(rmap_item->nid = nid);
1401 	rb_link_node(&rmap_item->node, parent, new);
1402 	rb_insert_color(&rmap_item->node, root);
1403 
1404 	ksm_pages_unshared++;
1405 	return NULL;
1406 }
1407 
1408 /*
1409  * stable_tree_append - add another rmap_item to the linked list of
1410  * rmap_items hanging off a given node of the stable tree, all sharing
1411  * the same ksm page.
1412  */
1413 static void stable_tree_append(struct rmap_item *rmap_item,
1414 			       struct stable_node *stable_node)
1415 {
1416 	rmap_item->head = stable_node;
1417 	rmap_item->address |= STABLE_FLAG;
1418 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1419 
1420 	if (rmap_item->hlist.next)
1421 		ksm_pages_sharing++;
1422 	else
1423 		ksm_pages_shared++;
1424 }
1425 
1426 /*
1427  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1428  * if not, compare checksum to previous and if it's the same, see if page can
1429  * be inserted into the unstable tree, or merged with a page already there and
1430  * both transferred to the stable tree.
1431  *
1432  * @page: the page that we are searching identical page to.
1433  * @rmap_item: the reverse mapping into the virtual address of this page
1434  */
1435 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1436 {
1437 	struct rmap_item *tree_rmap_item;
1438 	struct page *tree_page = NULL;
1439 	struct stable_node *stable_node;
1440 	struct page *kpage;
1441 	unsigned int checksum;
1442 	int err;
1443 
1444 	stable_node = page_stable_node(page);
1445 	if (stable_node) {
1446 		if (stable_node->head != &migrate_nodes &&
1447 		    get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1448 			rb_erase(&stable_node->node,
1449 				 root_stable_tree + NUMA(stable_node->nid));
1450 			stable_node->head = &migrate_nodes;
1451 			list_add(&stable_node->list, stable_node->head);
1452 		}
1453 		if (stable_node->head != &migrate_nodes &&
1454 		    rmap_item->head == stable_node)
1455 			return;
1456 	}
1457 
1458 	/* We first start with searching the page inside the stable tree */
1459 	kpage = stable_tree_search(page);
1460 	if (kpage == page && rmap_item->head == stable_node) {
1461 		put_page(kpage);
1462 		return;
1463 	}
1464 
1465 	remove_rmap_item_from_tree(rmap_item);
1466 
1467 	if (kpage) {
1468 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1469 		if (!err) {
1470 			/*
1471 			 * The page was successfully merged:
1472 			 * add its rmap_item to the stable tree.
1473 			 */
1474 			lock_page(kpage);
1475 			stable_tree_append(rmap_item, page_stable_node(kpage));
1476 			unlock_page(kpage);
1477 		}
1478 		put_page(kpage);
1479 		return;
1480 	}
1481 
1482 	/*
1483 	 * If the hash value of the page has changed from the last time
1484 	 * we calculated it, this page is changing frequently: therefore we
1485 	 * don't want to insert it in the unstable tree, and we don't want
1486 	 * to waste our time searching for something identical to it there.
1487 	 */
1488 	checksum = calc_checksum(page);
1489 	if (rmap_item->oldchecksum != checksum) {
1490 		rmap_item->oldchecksum = checksum;
1491 		return;
1492 	}
1493 
1494 	/*
1495 	 * Same checksum as an empty page. We attempt to merge it with the
1496 	 * appropriate zero page if the user enabled this via sysfs.
1497 	 */
1498 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
1499 		struct vm_area_struct *vma;
1500 
1501 		vma = find_mergeable_vma(rmap_item->mm, rmap_item->address);
1502 		err = try_to_merge_one_page(vma, page,
1503 					    ZERO_PAGE(rmap_item->address));
1504 		/*
1505 		 * In case of failure, the page was not really empty, so we
1506 		 * need to continue. Otherwise we're done.
1507 		 */
1508 		if (!err)
1509 			return;
1510 	}
1511 	tree_rmap_item =
1512 		unstable_tree_search_insert(rmap_item, page, &tree_page);
1513 	if (tree_rmap_item) {
1514 		kpage = try_to_merge_two_pages(rmap_item, page,
1515 						tree_rmap_item, tree_page);
1516 		put_page(tree_page);
1517 		if (kpage) {
1518 			/*
1519 			 * The pages were successfully merged: insert new
1520 			 * node in the stable tree and add both rmap_items.
1521 			 */
1522 			lock_page(kpage);
1523 			stable_node = stable_tree_insert(kpage);
1524 			if (stable_node) {
1525 				stable_tree_append(tree_rmap_item, stable_node);
1526 				stable_tree_append(rmap_item, stable_node);
1527 			}
1528 			unlock_page(kpage);
1529 
1530 			/*
1531 			 * If we fail to insert the page into the stable tree,
1532 			 * we will have 2 virtual addresses that are pointing
1533 			 * to a ksm page left outside the stable tree,
1534 			 * in which case we need to break_cow on both.
1535 			 */
1536 			if (!stable_node) {
1537 				break_cow(tree_rmap_item);
1538 				break_cow(rmap_item);
1539 			}
1540 		}
1541 	}
1542 }
1543 
1544 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1545 					    struct rmap_item **rmap_list,
1546 					    unsigned long addr)
1547 {
1548 	struct rmap_item *rmap_item;
1549 
1550 	while (*rmap_list) {
1551 		rmap_item = *rmap_list;
1552 		if ((rmap_item->address & PAGE_MASK) == addr)
1553 			return rmap_item;
1554 		if (rmap_item->address > addr)
1555 			break;
1556 		*rmap_list = rmap_item->rmap_list;
1557 		remove_rmap_item_from_tree(rmap_item);
1558 		free_rmap_item(rmap_item);
1559 	}
1560 
1561 	rmap_item = alloc_rmap_item();
1562 	if (rmap_item) {
1563 		/* It has already been zeroed */
1564 		rmap_item->mm = mm_slot->mm;
1565 		rmap_item->address = addr;
1566 		rmap_item->rmap_list = *rmap_list;
1567 		*rmap_list = rmap_item;
1568 	}
1569 	return rmap_item;
1570 }
1571 
1572 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1573 {
1574 	struct mm_struct *mm;
1575 	struct mm_slot *slot;
1576 	struct vm_area_struct *vma;
1577 	struct rmap_item *rmap_item;
1578 	int nid;
1579 
1580 	if (list_empty(&ksm_mm_head.mm_list))
1581 		return NULL;
1582 
1583 	slot = ksm_scan.mm_slot;
1584 	if (slot == &ksm_mm_head) {
1585 		/*
1586 		 * A number of pages can hang around indefinitely on per-cpu
1587 		 * pagevecs, raised page count preventing write_protect_page
1588 		 * from merging them.  Though it doesn't really matter much,
1589 		 * it is puzzling to see some stuck in pages_volatile until
1590 		 * other activity jostles them out, and they also prevented
1591 		 * LTP's KSM test from succeeding deterministically; so drain
1592 		 * them here (here rather than on entry to ksm_do_scan(),
1593 		 * so we don't IPI too often when pages_to_scan is set low).
1594 		 */
1595 		lru_add_drain_all();
1596 
1597 		/*
1598 		 * Whereas stale stable_nodes on the stable_tree itself
1599 		 * get pruned in the regular course of stable_tree_search(),
1600 		 * those moved out to the migrate_nodes list can accumulate:
1601 		 * so prune them once before each full scan.
1602 		 */
1603 		if (!ksm_merge_across_nodes) {
1604 			struct stable_node *stable_node, *next;
1605 			struct page *page;
1606 
1607 			list_for_each_entry_safe(stable_node, next,
1608 						 &migrate_nodes, list) {
1609 				page = get_ksm_page(stable_node, false);
1610 				if (page)
1611 					put_page(page);
1612 				cond_resched();
1613 			}
1614 		}
1615 
1616 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
1617 			root_unstable_tree[nid] = RB_ROOT;
1618 
1619 		spin_lock(&ksm_mmlist_lock);
1620 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1621 		ksm_scan.mm_slot = slot;
1622 		spin_unlock(&ksm_mmlist_lock);
1623 		/*
1624 		 * Although we tested list_empty() above, a racing __ksm_exit
1625 		 * of the last mm on the list may have removed it since then.
1626 		 */
1627 		if (slot == &ksm_mm_head)
1628 			return NULL;
1629 next_mm:
1630 		ksm_scan.address = 0;
1631 		ksm_scan.rmap_list = &slot->rmap_list;
1632 	}
1633 
1634 	mm = slot->mm;
1635 	down_read(&mm->mmap_sem);
1636 	if (ksm_test_exit(mm))
1637 		vma = NULL;
1638 	else
1639 		vma = find_vma(mm, ksm_scan.address);
1640 
1641 	for (; vma; vma = vma->vm_next) {
1642 		if (!(vma->vm_flags & VM_MERGEABLE))
1643 			continue;
1644 		if (ksm_scan.address < vma->vm_start)
1645 			ksm_scan.address = vma->vm_start;
1646 		if (!vma->anon_vma)
1647 			ksm_scan.address = vma->vm_end;
1648 
1649 		while (ksm_scan.address < vma->vm_end) {
1650 			if (ksm_test_exit(mm))
1651 				break;
1652 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1653 			if (IS_ERR_OR_NULL(*page)) {
1654 				ksm_scan.address += PAGE_SIZE;
1655 				cond_resched();
1656 				continue;
1657 			}
1658 			if (PageAnon(*page)) {
1659 				flush_anon_page(vma, *page, ksm_scan.address);
1660 				flush_dcache_page(*page);
1661 				rmap_item = get_next_rmap_item(slot,
1662 					ksm_scan.rmap_list, ksm_scan.address);
1663 				if (rmap_item) {
1664 					ksm_scan.rmap_list =
1665 							&rmap_item->rmap_list;
1666 					ksm_scan.address += PAGE_SIZE;
1667 				} else
1668 					put_page(*page);
1669 				up_read(&mm->mmap_sem);
1670 				return rmap_item;
1671 			}
1672 			put_page(*page);
1673 			ksm_scan.address += PAGE_SIZE;
1674 			cond_resched();
1675 		}
1676 	}
1677 
1678 	if (ksm_test_exit(mm)) {
1679 		ksm_scan.address = 0;
1680 		ksm_scan.rmap_list = &slot->rmap_list;
1681 	}
1682 	/*
1683 	 * Nuke all the rmap_items that are above this current rmap:
1684 	 * because there were no VM_MERGEABLE vmas with such addresses.
1685 	 */
1686 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1687 
1688 	spin_lock(&ksm_mmlist_lock);
1689 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1690 						struct mm_slot, mm_list);
1691 	if (ksm_scan.address == 0) {
1692 		/*
1693 		 * We've completed a full scan of all vmas, holding mmap_sem
1694 		 * throughout, and found no VM_MERGEABLE: so do the same as
1695 		 * __ksm_exit does to remove this mm from all our lists now.
1696 		 * This applies either when cleaning up after __ksm_exit
1697 		 * (but beware: we can reach here even before __ksm_exit),
1698 		 * or when all VM_MERGEABLE areas have been unmapped (and
1699 		 * mmap_sem then protects against race with MADV_MERGEABLE).
1700 		 */
1701 		hash_del(&slot->link);
1702 		list_del(&slot->mm_list);
1703 		spin_unlock(&ksm_mmlist_lock);
1704 
1705 		free_mm_slot(slot);
1706 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1707 		up_read(&mm->mmap_sem);
1708 		mmdrop(mm);
1709 	} else {
1710 		up_read(&mm->mmap_sem);
1711 		/*
1712 		 * up_read(&mm->mmap_sem) first because after
1713 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
1714 		 * already have been freed under us by __ksm_exit()
1715 		 * because the "mm_slot" is still hashed and
1716 		 * ksm_scan.mm_slot doesn't point to it anymore.
1717 		 */
1718 		spin_unlock(&ksm_mmlist_lock);
1719 	}
1720 
1721 	/* Repeat until we've completed scanning the whole list */
1722 	slot = ksm_scan.mm_slot;
1723 	if (slot != &ksm_mm_head)
1724 		goto next_mm;
1725 
1726 	ksm_scan.seqnr++;
1727 	return NULL;
1728 }
1729 
1730 /**
1731  * ksm_do_scan  - the ksm scanner main worker function.
1732  * @scan_npages - number of pages we want to scan before we return.
1733  */
1734 static void ksm_do_scan(unsigned int scan_npages)
1735 {
1736 	struct rmap_item *rmap_item;
1737 	struct page *uninitialized_var(page);
1738 
1739 	while (scan_npages-- && likely(!freezing(current))) {
1740 		cond_resched();
1741 		rmap_item = scan_get_next_rmap_item(&page);
1742 		if (!rmap_item)
1743 			return;
1744 		cmp_and_merge_page(page, rmap_item);
1745 		put_page(page);
1746 	}
1747 }
1748 
1749 static int ksmd_should_run(void)
1750 {
1751 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1752 }
1753 
1754 static int ksm_scan_thread(void *nothing)
1755 {
1756 	set_freezable();
1757 	set_user_nice(current, 5);
1758 
1759 	while (!kthread_should_stop()) {
1760 		mutex_lock(&ksm_thread_mutex);
1761 		wait_while_offlining();
1762 		if (ksmd_should_run())
1763 			ksm_do_scan(ksm_thread_pages_to_scan);
1764 		mutex_unlock(&ksm_thread_mutex);
1765 
1766 		try_to_freeze();
1767 
1768 		if (ksmd_should_run()) {
1769 			schedule_timeout_interruptible(
1770 				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1771 		} else {
1772 			wait_event_freezable(ksm_thread_wait,
1773 				ksmd_should_run() || kthread_should_stop());
1774 		}
1775 	}
1776 	return 0;
1777 }
1778 
1779 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1780 		unsigned long end, int advice, unsigned long *vm_flags)
1781 {
1782 	struct mm_struct *mm = vma->vm_mm;
1783 	int err;
1784 
1785 	switch (advice) {
1786 	case MADV_MERGEABLE:
1787 		/*
1788 		 * Be somewhat over-protective for now!
1789 		 */
1790 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1791 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1792 				 VM_HUGETLB | VM_MIXEDMAP))
1793 			return 0;		/* just ignore the advice */
1794 
1795 #ifdef VM_SAO
1796 		if (*vm_flags & VM_SAO)
1797 			return 0;
1798 #endif
1799 
1800 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1801 			err = __ksm_enter(mm);
1802 			if (err)
1803 				return err;
1804 		}
1805 
1806 		*vm_flags |= VM_MERGEABLE;
1807 		break;
1808 
1809 	case MADV_UNMERGEABLE:
1810 		if (!(*vm_flags & VM_MERGEABLE))
1811 			return 0;		/* just ignore the advice */
1812 
1813 		if (vma->anon_vma) {
1814 			err = unmerge_ksm_pages(vma, start, end);
1815 			if (err)
1816 				return err;
1817 		}
1818 
1819 		*vm_flags &= ~VM_MERGEABLE;
1820 		break;
1821 	}
1822 
1823 	return 0;
1824 }
1825 
1826 int __ksm_enter(struct mm_struct *mm)
1827 {
1828 	struct mm_slot *mm_slot;
1829 	int needs_wakeup;
1830 
1831 	mm_slot = alloc_mm_slot();
1832 	if (!mm_slot)
1833 		return -ENOMEM;
1834 
1835 	/* Check ksm_run too?  Would need tighter locking */
1836 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1837 
1838 	spin_lock(&ksm_mmlist_lock);
1839 	insert_to_mm_slots_hash(mm, mm_slot);
1840 	/*
1841 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1842 	 * insert just behind the scanning cursor, to let the area settle
1843 	 * down a little; when fork is followed by immediate exec, we don't
1844 	 * want ksmd to waste time setting up and tearing down an rmap_list.
1845 	 *
1846 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1847 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
1848 	 * missed: then we might as well insert at the end of the list.
1849 	 */
1850 	if (ksm_run & KSM_RUN_UNMERGE)
1851 		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1852 	else
1853 		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1854 	spin_unlock(&ksm_mmlist_lock);
1855 
1856 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1857 	atomic_inc(&mm->mm_count);
1858 
1859 	if (needs_wakeup)
1860 		wake_up_interruptible(&ksm_thread_wait);
1861 
1862 	return 0;
1863 }
1864 
1865 void __ksm_exit(struct mm_struct *mm)
1866 {
1867 	struct mm_slot *mm_slot;
1868 	int easy_to_free = 0;
1869 
1870 	/*
1871 	 * This process is exiting: if it's straightforward (as is the
1872 	 * case when ksmd was never running), free mm_slot immediately.
1873 	 * But if it's at the cursor or has rmap_items linked to it, use
1874 	 * mmap_sem to synchronize with any break_cows before pagetables
1875 	 * are freed, and leave the mm_slot on the list for ksmd to free.
1876 	 * Beware: ksm may already have noticed it exiting and freed the slot.
1877 	 */
1878 
1879 	spin_lock(&ksm_mmlist_lock);
1880 	mm_slot = get_mm_slot(mm);
1881 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1882 		if (!mm_slot->rmap_list) {
1883 			hash_del(&mm_slot->link);
1884 			list_del(&mm_slot->mm_list);
1885 			easy_to_free = 1;
1886 		} else {
1887 			list_move(&mm_slot->mm_list,
1888 				  &ksm_scan.mm_slot->mm_list);
1889 		}
1890 	}
1891 	spin_unlock(&ksm_mmlist_lock);
1892 
1893 	if (easy_to_free) {
1894 		free_mm_slot(mm_slot);
1895 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1896 		mmdrop(mm);
1897 	} else if (mm_slot) {
1898 		down_write(&mm->mmap_sem);
1899 		up_write(&mm->mmap_sem);
1900 	}
1901 }
1902 
1903 struct page *ksm_might_need_to_copy(struct page *page,
1904 			struct vm_area_struct *vma, unsigned long address)
1905 {
1906 	struct anon_vma *anon_vma = page_anon_vma(page);
1907 	struct page *new_page;
1908 
1909 	if (PageKsm(page)) {
1910 		if (page_stable_node(page) &&
1911 		    !(ksm_run & KSM_RUN_UNMERGE))
1912 			return page;	/* no need to copy it */
1913 	} else if (!anon_vma) {
1914 		return page;		/* no need to copy it */
1915 	} else if (anon_vma->root == vma->anon_vma->root &&
1916 		 page->index == linear_page_index(vma, address)) {
1917 		return page;		/* still no need to copy it */
1918 	}
1919 	if (!PageUptodate(page))
1920 		return page;		/* let do_swap_page report the error */
1921 
1922 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1923 	if (new_page) {
1924 		copy_user_highpage(new_page, page, address, vma);
1925 
1926 		SetPageDirty(new_page);
1927 		__SetPageUptodate(new_page);
1928 		__SetPageLocked(new_page);
1929 	}
1930 
1931 	return new_page;
1932 }
1933 
1934 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1935 {
1936 	struct stable_node *stable_node;
1937 	struct rmap_item *rmap_item;
1938 	int ret = SWAP_AGAIN;
1939 	int search_new_forks = 0;
1940 
1941 	VM_BUG_ON_PAGE(!PageKsm(page), page);
1942 
1943 	/*
1944 	 * Rely on the page lock to protect against concurrent modifications
1945 	 * to that page's node of the stable tree.
1946 	 */
1947 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1948 
1949 	stable_node = page_stable_node(page);
1950 	if (!stable_node)
1951 		return ret;
1952 again:
1953 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1954 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1955 		struct anon_vma_chain *vmac;
1956 		struct vm_area_struct *vma;
1957 
1958 		cond_resched();
1959 		anon_vma_lock_read(anon_vma);
1960 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1961 					       0, ULONG_MAX) {
1962 			cond_resched();
1963 			vma = vmac->vma;
1964 			if (rmap_item->address < vma->vm_start ||
1965 			    rmap_item->address >= vma->vm_end)
1966 				continue;
1967 			/*
1968 			 * Initially we examine only the vma which covers this
1969 			 * rmap_item; but later, if there is still work to do,
1970 			 * we examine covering vmas in other mms: in case they
1971 			 * were forked from the original since ksmd passed.
1972 			 */
1973 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1974 				continue;
1975 
1976 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1977 				continue;
1978 
1979 			ret = rwc->rmap_one(page, vma,
1980 					rmap_item->address, rwc->arg);
1981 			if (ret != SWAP_AGAIN) {
1982 				anon_vma_unlock_read(anon_vma);
1983 				goto out;
1984 			}
1985 			if (rwc->done && rwc->done(page)) {
1986 				anon_vma_unlock_read(anon_vma);
1987 				goto out;
1988 			}
1989 		}
1990 		anon_vma_unlock_read(anon_vma);
1991 	}
1992 	if (!search_new_forks++)
1993 		goto again;
1994 out:
1995 	return ret;
1996 }
1997 
1998 #ifdef CONFIG_MIGRATION
1999 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2000 {
2001 	struct stable_node *stable_node;
2002 
2003 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2004 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2005 	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2006 
2007 	stable_node = page_stable_node(newpage);
2008 	if (stable_node) {
2009 		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2010 		stable_node->kpfn = page_to_pfn(newpage);
2011 		/*
2012 		 * newpage->mapping was set in advance; now we need smp_wmb()
2013 		 * to make sure that the new stable_node->kpfn is visible
2014 		 * to get_ksm_page() before it can see that oldpage->mapping
2015 		 * has gone stale (or that PageSwapCache has been cleared).
2016 		 */
2017 		smp_wmb();
2018 		set_page_stable_node(oldpage, NULL);
2019 	}
2020 }
2021 #endif /* CONFIG_MIGRATION */
2022 
2023 #ifdef CONFIG_MEMORY_HOTREMOVE
2024 static void wait_while_offlining(void)
2025 {
2026 	while (ksm_run & KSM_RUN_OFFLINE) {
2027 		mutex_unlock(&ksm_thread_mutex);
2028 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2029 			    TASK_UNINTERRUPTIBLE);
2030 		mutex_lock(&ksm_thread_mutex);
2031 	}
2032 }
2033 
2034 static void ksm_check_stable_tree(unsigned long start_pfn,
2035 				  unsigned long end_pfn)
2036 {
2037 	struct stable_node *stable_node, *next;
2038 	struct rb_node *node;
2039 	int nid;
2040 
2041 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2042 		node = rb_first(root_stable_tree + nid);
2043 		while (node) {
2044 			stable_node = rb_entry(node, struct stable_node, node);
2045 			if (stable_node->kpfn >= start_pfn &&
2046 			    stable_node->kpfn < end_pfn) {
2047 				/*
2048 				 * Don't get_ksm_page, page has already gone:
2049 				 * which is why we keep kpfn instead of page*
2050 				 */
2051 				remove_node_from_stable_tree(stable_node);
2052 				node = rb_first(root_stable_tree + nid);
2053 			} else
2054 				node = rb_next(node);
2055 			cond_resched();
2056 		}
2057 	}
2058 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2059 		if (stable_node->kpfn >= start_pfn &&
2060 		    stable_node->kpfn < end_pfn)
2061 			remove_node_from_stable_tree(stable_node);
2062 		cond_resched();
2063 	}
2064 }
2065 
2066 static int ksm_memory_callback(struct notifier_block *self,
2067 			       unsigned long action, void *arg)
2068 {
2069 	struct memory_notify *mn = arg;
2070 
2071 	switch (action) {
2072 	case MEM_GOING_OFFLINE:
2073 		/*
2074 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2075 		 * and remove_all_stable_nodes() while memory is going offline:
2076 		 * it is unsafe for them to touch the stable tree at this time.
2077 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2078 		 * which do not need the ksm_thread_mutex are all safe.
2079 		 */
2080 		mutex_lock(&ksm_thread_mutex);
2081 		ksm_run |= KSM_RUN_OFFLINE;
2082 		mutex_unlock(&ksm_thread_mutex);
2083 		break;
2084 
2085 	case MEM_OFFLINE:
2086 		/*
2087 		 * Most of the work is done by page migration; but there might
2088 		 * be a few stable_nodes left over, still pointing to struct
2089 		 * pages which have been offlined: prune those from the tree,
2090 		 * otherwise get_ksm_page() might later try to access a
2091 		 * non-existent struct page.
2092 		 */
2093 		ksm_check_stable_tree(mn->start_pfn,
2094 				      mn->start_pfn + mn->nr_pages);
2095 		/* fallthrough */
2096 
2097 	case MEM_CANCEL_OFFLINE:
2098 		mutex_lock(&ksm_thread_mutex);
2099 		ksm_run &= ~KSM_RUN_OFFLINE;
2100 		mutex_unlock(&ksm_thread_mutex);
2101 
2102 		smp_mb();	/* wake_up_bit advises this */
2103 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2104 		break;
2105 	}
2106 	return NOTIFY_OK;
2107 }
2108 #else
2109 static void wait_while_offlining(void)
2110 {
2111 }
2112 #endif /* CONFIG_MEMORY_HOTREMOVE */
2113 
2114 #ifdef CONFIG_SYSFS
2115 /*
2116  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2117  */
2118 
2119 #define KSM_ATTR_RO(_name) \
2120 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2121 #define KSM_ATTR(_name) \
2122 	static struct kobj_attribute _name##_attr = \
2123 		__ATTR(_name, 0644, _name##_show, _name##_store)
2124 
2125 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2126 				    struct kobj_attribute *attr, char *buf)
2127 {
2128 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2129 }
2130 
2131 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2132 				     struct kobj_attribute *attr,
2133 				     const char *buf, size_t count)
2134 {
2135 	unsigned long msecs;
2136 	int err;
2137 
2138 	err = kstrtoul(buf, 10, &msecs);
2139 	if (err || msecs > UINT_MAX)
2140 		return -EINVAL;
2141 
2142 	ksm_thread_sleep_millisecs = msecs;
2143 
2144 	return count;
2145 }
2146 KSM_ATTR(sleep_millisecs);
2147 
2148 static ssize_t pages_to_scan_show(struct kobject *kobj,
2149 				  struct kobj_attribute *attr, char *buf)
2150 {
2151 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2152 }
2153 
2154 static ssize_t pages_to_scan_store(struct kobject *kobj,
2155 				   struct kobj_attribute *attr,
2156 				   const char *buf, size_t count)
2157 {
2158 	int err;
2159 	unsigned long nr_pages;
2160 
2161 	err = kstrtoul(buf, 10, &nr_pages);
2162 	if (err || nr_pages > UINT_MAX)
2163 		return -EINVAL;
2164 
2165 	ksm_thread_pages_to_scan = nr_pages;
2166 
2167 	return count;
2168 }
2169 KSM_ATTR(pages_to_scan);
2170 
2171 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2172 			char *buf)
2173 {
2174 	return sprintf(buf, "%lu\n", ksm_run);
2175 }
2176 
2177 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2178 			 const char *buf, size_t count)
2179 {
2180 	int err;
2181 	unsigned long flags;
2182 
2183 	err = kstrtoul(buf, 10, &flags);
2184 	if (err || flags > UINT_MAX)
2185 		return -EINVAL;
2186 	if (flags > KSM_RUN_UNMERGE)
2187 		return -EINVAL;
2188 
2189 	/*
2190 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2191 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2192 	 * breaking COW to free the pages_shared (but leaves mm_slots
2193 	 * on the list for when ksmd may be set running again).
2194 	 */
2195 
2196 	mutex_lock(&ksm_thread_mutex);
2197 	wait_while_offlining();
2198 	if (ksm_run != flags) {
2199 		ksm_run = flags;
2200 		if (flags & KSM_RUN_UNMERGE) {
2201 			set_current_oom_origin();
2202 			err = unmerge_and_remove_all_rmap_items();
2203 			clear_current_oom_origin();
2204 			if (err) {
2205 				ksm_run = KSM_RUN_STOP;
2206 				count = err;
2207 			}
2208 		}
2209 	}
2210 	mutex_unlock(&ksm_thread_mutex);
2211 
2212 	if (flags & KSM_RUN_MERGE)
2213 		wake_up_interruptible(&ksm_thread_wait);
2214 
2215 	return count;
2216 }
2217 KSM_ATTR(run);
2218 
2219 #ifdef CONFIG_NUMA
2220 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2221 				struct kobj_attribute *attr, char *buf)
2222 {
2223 	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2224 }
2225 
2226 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2227 				   struct kobj_attribute *attr,
2228 				   const char *buf, size_t count)
2229 {
2230 	int err;
2231 	unsigned long knob;
2232 
2233 	err = kstrtoul(buf, 10, &knob);
2234 	if (err)
2235 		return err;
2236 	if (knob > 1)
2237 		return -EINVAL;
2238 
2239 	mutex_lock(&ksm_thread_mutex);
2240 	wait_while_offlining();
2241 	if (ksm_merge_across_nodes != knob) {
2242 		if (ksm_pages_shared || remove_all_stable_nodes())
2243 			err = -EBUSY;
2244 		else if (root_stable_tree == one_stable_tree) {
2245 			struct rb_root *buf;
2246 			/*
2247 			 * This is the first time that we switch away from the
2248 			 * default of merging across nodes: must now allocate
2249 			 * a buffer to hold as many roots as may be needed.
2250 			 * Allocate stable and unstable together:
2251 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2252 			 */
2253 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2254 				      GFP_KERNEL);
2255 			/* Let us assume that RB_ROOT is NULL is zero */
2256 			if (!buf)
2257 				err = -ENOMEM;
2258 			else {
2259 				root_stable_tree = buf;
2260 				root_unstable_tree = buf + nr_node_ids;
2261 				/* Stable tree is empty but not the unstable */
2262 				root_unstable_tree[0] = one_unstable_tree[0];
2263 			}
2264 		}
2265 		if (!err) {
2266 			ksm_merge_across_nodes = knob;
2267 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2268 		}
2269 	}
2270 	mutex_unlock(&ksm_thread_mutex);
2271 
2272 	return err ? err : count;
2273 }
2274 KSM_ATTR(merge_across_nodes);
2275 #endif
2276 
2277 static ssize_t use_zero_pages_show(struct kobject *kobj,
2278 				struct kobj_attribute *attr, char *buf)
2279 {
2280 	return sprintf(buf, "%u\n", ksm_use_zero_pages);
2281 }
2282 static ssize_t use_zero_pages_store(struct kobject *kobj,
2283 				   struct kobj_attribute *attr,
2284 				   const char *buf, size_t count)
2285 {
2286 	int err;
2287 	bool value;
2288 
2289 	err = kstrtobool(buf, &value);
2290 	if (err)
2291 		return -EINVAL;
2292 
2293 	ksm_use_zero_pages = value;
2294 
2295 	return count;
2296 }
2297 KSM_ATTR(use_zero_pages);
2298 
2299 static ssize_t pages_shared_show(struct kobject *kobj,
2300 				 struct kobj_attribute *attr, char *buf)
2301 {
2302 	return sprintf(buf, "%lu\n", ksm_pages_shared);
2303 }
2304 KSM_ATTR_RO(pages_shared);
2305 
2306 static ssize_t pages_sharing_show(struct kobject *kobj,
2307 				  struct kobj_attribute *attr, char *buf)
2308 {
2309 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
2310 }
2311 KSM_ATTR_RO(pages_sharing);
2312 
2313 static ssize_t pages_unshared_show(struct kobject *kobj,
2314 				   struct kobj_attribute *attr, char *buf)
2315 {
2316 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
2317 }
2318 KSM_ATTR_RO(pages_unshared);
2319 
2320 static ssize_t pages_volatile_show(struct kobject *kobj,
2321 				   struct kobj_attribute *attr, char *buf)
2322 {
2323 	long ksm_pages_volatile;
2324 
2325 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2326 				- ksm_pages_sharing - ksm_pages_unshared;
2327 	/*
2328 	 * It was not worth any locking to calculate that statistic,
2329 	 * but it might therefore sometimes be negative: conceal that.
2330 	 */
2331 	if (ksm_pages_volatile < 0)
2332 		ksm_pages_volatile = 0;
2333 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
2334 }
2335 KSM_ATTR_RO(pages_volatile);
2336 
2337 static ssize_t full_scans_show(struct kobject *kobj,
2338 			       struct kobj_attribute *attr, char *buf)
2339 {
2340 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2341 }
2342 KSM_ATTR_RO(full_scans);
2343 
2344 static struct attribute *ksm_attrs[] = {
2345 	&sleep_millisecs_attr.attr,
2346 	&pages_to_scan_attr.attr,
2347 	&run_attr.attr,
2348 	&pages_shared_attr.attr,
2349 	&pages_sharing_attr.attr,
2350 	&pages_unshared_attr.attr,
2351 	&pages_volatile_attr.attr,
2352 	&full_scans_attr.attr,
2353 #ifdef CONFIG_NUMA
2354 	&merge_across_nodes_attr.attr,
2355 #endif
2356 	&use_zero_pages_attr.attr,
2357 	NULL,
2358 };
2359 
2360 static struct attribute_group ksm_attr_group = {
2361 	.attrs = ksm_attrs,
2362 	.name = "ksm",
2363 };
2364 #endif /* CONFIG_SYSFS */
2365 
2366 static int __init ksm_init(void)
2367 {
2368 	struct task_struct *ksm_thread;
2369 	int err;
2370 
2371 	/* The correct value depends on page size and endianness */
2372 	zero_checksum = calc_checksum(ZERO_PAGE(0));
2373 	/* Default to false for backwards compatibility */
2374 	ksm_use_zero_pages = false;
2375 
2376 	err = ksm_slab_init();
2377 	if (err)
2378 		goto out;
2379 
2380 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2381 	if (IS_ERR(ksm_thread)) {
2382 		pr_err("ksm: creating kthread failed\n");
2383 		err = PTR_ERR(ksm_thread);
2384 		goto out_free;
2385 	}
2386 
2387 #ifdef CONFIG_SYSFS
2388 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2389 	if (err) {
2390 		pr_err("ksm: register sysfs failed\n");
2391 		kthread_stop(ksm_thread);
2392 		goto out_free;
2393 	}
2394 #else
2395 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
2396 
2397 #endif /* CONFIG_SYSFS */
2398 
2399 #ifdef CONFIG_MEMORY_HOTREMOVE
2400 	/* There is no significance to this priority 100 */
2401 	hotplug_memory_notifier(ksm_memory_callback, 100);
2402 #endif
2403 	return 0;
2404 
2405 out_free:
2406 	ksm_slab_free();
2407 out:
2408 	return err;
2409 }
2410 subsys_initcall(ksm_init);
2411