1 /* 2 * Memory merging support. 3 * 4 * This code enables dynamic sharing of identical pages found in different 5 * memory areas, even if they are not shared by fork() 6 * 7 * Copyright (C) 2008-2009 Red Hat, Inc. 8 * Authors: 9 * Izik Eidus 10 * Andrea Arcangeli 11 * Chris Wright 12 * Hugh Dickins 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/rwsem.h> 23 #include <linux/pagemap.h> 24 #include <linux/rmap.h> 25 #include <linux/spinlock.h> 26 #include <linux/jhash.h> 27 #include <linux/delay.h> 28 #include <linux/kthread.h> 29 #include <linux/wait.h> 30 #include <linux/slab.h> 31 #include <linux/rbtree.h> 32 #include <linux/memory.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/swap.h> 35 #include <linux/ksm.h> 36 #include <linux/hashtable.h> 37 #include <linux/freezer.h> 38 #include <linux/oom.h> 39 #include <linux/numa.h> 40 41 #include <asm/tlbflush.h> 42 #include "internal.h" 43 44 #ifdef CONFIG_NUMA 45 #define NUMA(x) (x) 46 #define DO_NUMA(x) do { (x); } while (0) 47 #else 48 #define NUMA(x) (0) 49 #define DO_NUMA(x) do { } while (0) 50 #endif 51 52 /* 53 * A few notes about the KSM scanning process, 54 * to make it easier to understand the data structures below: 55 * 56 * In order to reduce excessive scanning, KSM sorts the memory pages by their 57 * contents into a data structure that holds pointers to the pages' locations. 58 * 59 * Since the contents of the pages may change at any moment, KSM cannot just 60 * insert the pages into a normal sorted tree and expect it to find anything. 61 * Therefore KSM uses two data structures - the stable and the unstable tree. 62 * 63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 64 * by their contents. Because each such page is write-protected, searching on 65 * this tree is fully assured to be working (except when pages are unmapped), 66 * and therefore this tree is called the stable tree. 67 * 68 * In addition to the stable tree, KSM uses a second data structure called the 69 * unstable tree: this tree holds pointers to pages which have been found to 70 * be "unchanged for a period of time". The unstable tree sorts these pages 71 * by their contents, but since they are not write-protected, KSM cannot rely 72 * upon the unstable tree to work correctly - the unstable tree is liable to 73 * be corrupted as its contents are modified, and so it is called unstable. 74 * 75 * KSM solves this problem by several techniques: 76 * 77 * 1) The unstable tree is flushed every time KSM completes scanning all 78 * memory areas, and then the tree is rebuilt again from the beginning. 79 * 2) KSM will only insert into the unstable tree, pages whose hash value 80 * has not changed since the previous scan of all memory areas. 81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 82 * colors of the nodes and not on their contents, assuring that even when 83 * the tree gets "corrupted" it won't get out of balance, so scanning time 84 * remains the same (also, searching and inserting nodes in an rbtree uses 85 * the same algorithm, so we have no overhead when we flush and rebuild). 86 * 4) KSM never flushes the stable tree, which means that even if it were to 87 * take 10 attempts to find a page in the unstable tree, once it is found, 88 * it is secured in the stable tree. (When we scan a new page, we first 89 * compare it against the stable tree, and then against the unstable tree.) 90 * 91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 92 * stable trees and multiple unstable trees: one of each for each NUMA node. 93 */ 94 95 /** 96 * struct mm_slot - ksm information per mm that is being scanned 97 * @link: link to the mm_slots hash list 98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 100 * @mm: the mm that this information is valid for 101 */ 102 struct mm_slot { 103 struct hlist_node link; 104 struct list_head mm_list; 105 struct rmap_item *rmap_list; 106 struct mm_struct *mm; 107 }; 108 109 /** 110 * struct ksm_scan - cursor for scanning 111 * @mm_slot: the current mm_slot we are scanning 112 * @address: the next address inside that to be scanned 113 * @rmap_list: link to the next rmap to be scanned in the rmap_list 114 * @seqnr: count of completed full scans (needed when removing unstable node) 115 * 116 * There is only the one ksm_scan instance of this cursor structure. 117 */ 118 struct ksm_scan { 119 struct mm_slot *mm_slot; 120 unsigned long address; 121 struct rmap_item **rmap_list; 122 unsigned long seqnr; 123 }; 124 125 /** 126 * struct stable_node - node of the stable rbtree 127 * @node: rb node of this ksm page in the stable tree 128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 129 * @list: linked into migrate_nodes, pending placement in the proper node tree 130 * @hlist: hlist head of rmap_items using this ksm page 131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 133 */ 134 struct stable_node { 135 union { 136 struct rb_node node; /* when node of stable tree */ 137 struct { /* when listed for migration */ 138 struct list_head *head; 139 struct list_head list; 140 }; 141 }; 142 struct hlist_head hlist; 143 unsigned long kpfn; 144 #ifdef CONFIG_NUMA 145 int nid; 146 #endif 147 }; 148 149 /** 150 * struct rmap_item - reverse mapping item for virtual addresses 151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 153 * @nid: NUMA node id of unstable tree in which linked (may not match page) 154 * @mm: the memory structure this rmap_item is pointing into 155 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 156 * @oldchecksum: previous checksum of the page at that virtual address 157 * @node: rb node of this rmap_item in the unstable tree 158 * @head: pointer to stable_node heading this list in the stable tree 159 * @hlist: link into hlist of rmap_items hanging off that stable_node 160 */ 161 struct rmap_item { 162 struct rmap_item *rmap_list; 163 union { 164 struct anon_vma *anon_vma; /* when stable */ 165 #ifdef CONFIG_NUMA 166 int nid; /* when node of unstable tree */ 167 #endif 168 }; 169 struct mm_struct *mm; 170 unsigned long address; /* + low bits used for flags below */ 171 unsigned int oldchecksum; /* when unstable */ 172 union { 173 struct rb_node node; /* when node of unstable tree */ 174 struct { /* when listed from stable tree */ 175 struct stable_node *head; 176 struct hlist_node hlist; 177 }; 178 }; 179 }; 180 181 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 182 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 183 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 184 185 /* The stable and unstable tree heads */ 186 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 187 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 188 static struct rb_root *root_stable_tree = one_stable_tree; 189 static struct rb_root *root_unstable_tree = one_unstable_tree; 190 191 /* Recently migrated nodes of stable tree, pending proper placement */ 192 static LIST_HEAD(migrate_nodes); 193 194 #define MM_SLOTS_HASH_BITS 10 195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 196 197 static struct mm_slot ksm_mm_head = { 198 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 199 }; 200 static struct ksm_scan ksm_scan = { 201 .mm_slot = &ksm_mm_head, 202 }; 203 204 static struct kmem_cache *rmap_item_cache; 205 static struct kmem_cache *stable_node_cache; 206 static struct kmem_cache *mm_slot_cache; 207 208 /* The number of nodes in the stable tree */ 209 static unsigned long ksm_pages_shared; 210 211 /* The number of page slots additionally sharing those nodes */ 212 static unsigned long ksm_pages_sharing; 213 214 /* The number of nodes in the unstable tree */ 215 static unsigned long ksm_pages_unshared; 216 217 /* The number of rmap_items in use: to calculate pages_volatile */ 218 static unsigned long ksm_rmap_items; 219 220 /* Number of pages ksmd should scan in one batch */ 221 static unsigned int ksm_thread_pages_to_scan = 100; 222 223 /* Milliseconds ksmd should sleep between batches */ 224 static unsigned int ksm_thread_sleep_millisecs = 20; 225 226 #ifdef CONFIG_NUMA 227 /* Zeroed when merging across nodes is not allowed */ 228 static unsigned int ksm_merge_across_nodes = 1; 229 static int ksm_nr_node_ids = 1; 230 #else 231 #define ksm_merge_across_nodes 1U 232 #define ksm_nr_node_ids 1 233 #endif 234 235 #define KSM_RUN_STOP 0 236 #define KSM_RUN_MERGE 1 237 #define KSM_RUN_UNMERGE 2 238 #define KSM_RUN_OFFLINE 4 239 static unsigned long ksm_run = KSM_RUN_STOP; 240 static void wait_while_offlining(void); 241 242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 243 static DEFINE_MUTEX(ksm_thread_mutex); 244 static DEFINE_SPINLOCK(ksm_mmlist_lock); 245 246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 247 sizeof(struct __struct), __alignof__(struct __struct),\ 248 (__flags), NULL) 249 250 static int __init ksm_slab_init(void) 251 { 252 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 253 if (!rmap_item_cache) 254 goto out; 255 256 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 257 if (!stable_node_cache) 258 goto out_free1; 259 260 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 261 if (!mm_slot_cache) 262 goto out_free2; 263 264 return 0; 265 266 out_free2: 267 kmem_cache_destroy(stable_node_cache); 268 out_free1: 269 kmem_cache_destroy(rmap_item_cache); 270 out: 271 return -ENOMEM; 272 } 273 274 static void __init ksm_slab_free(void) 275 { 276 kmem_cache_destroy(mm_slot_cache); 277 kmem_cache_destroy(stable_node_cache); 278 kmem_cache_destroy(rmap_item_cache); 279 mm_slot_cache = NULL; 280 } 281 282 static inline struct rmap_item *alloc_rmap_item(void) 283 { 284 struct rmap_item *rmap_item; 285 286 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL); 287 if (rmap_item) 288 ksm_rmap_items++; 289 return rmap_item; 290 } 291 292 static inline void free_rmap_item(struct rmap_item *rmap_item) 293 { 294 ksm_rmap_items--; 295 rmap_item->mm = NULL; /* debug safety */ 296 kmem_cache_free(rmap_item_cache, rmap_item); 297 } 298 299 static inline struct stable_node *alloc_stable_node(void) 300 { 301 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL); 302 } 303 304 static inline void free_stable_node(struct stable_node *stable_node) 305 { 306 kmem_cache_free(stable_node_cache, stable_node); 307 } 308 309 static inline struct mm_slot *alloc_mm_slot(void) 310 { 311 if (!mm_slot_cache) /* initialization failed */ 312 return NULL; 313 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 314 } 315 316 static inline void free_mm_slot(struct mm_slot *mm_slot) 317 { 318 kmem_cache_free(mm_slot_cache, mm_slot); 319 } 320 321 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 322 { 323 struct mm_slot *slot; 324 325 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 326 if (slot->mm == mm) 327 return slot; 328 329 return NULL; 330 } 331 332 static void insert_to_mm_slots_hash(struct mm_struct *mm, 333 struct mm_slot *mm_slot) 334 { 335 mm_slot->mm = mm; 336 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 337 } 338 339 /* 340 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 341 * page tables after it has passed through ksm_exit() - which, if necessary, 342 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set 343 * a special flag: they can just back out as soon as mm_users goes to zero. 344 * ksm_test_exit() is used throughout to make this test for exit: in some 345 * places for correctness, in some places just to avoid unnecessary work. 346 */ 347 static inline bool ksm_test_exit(struct mm_struct *mm) 348 { 349 return atomic_read(&mm->mm_users) == 0; 350 } 351 352 /* 353 * We use break_ksm to break COW on a ksm page: it's a stripped down 354 * 355 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1) 356 * put_page(page); 357 * 358 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 359 * in case the application has unmapped and remapped mm,addr meanwhile. 360 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 361 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. 362 * 363 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 364 * of the process that owns 'vma'. We also do not want to enforce 365 * protection keys here anyway. 366 */ 367 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 368 { 369 struct page *page; 370 int ret = 0; 371 372 do { 373 cond_resched(); 374 page = follow_page(vma, addr, 375 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 376 if (IS_ERR_OR_NULL(page)) 377 break; 378 if (PageKsm(page)) 379 ret = handle_mm_fault(vma->vm_mm, vma, addr, 380 FAULT_FLAG_WRITE | 381 FAULT_FLAG_REMOTE); 382 else 383 ret = VM_FAULT_WRITE; 384 put_page(page); 385 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 386 /* 387 * We must loop because handle_mm_fault() may back out if there's 388 * any difficulty e.g. if pte accessed bit gets updated concurrently. 389 * 390 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 391 * COW has been broken, even if the vma does not permit VM_WRITE; 392 * but note that a concurrent fault might break PageKsm for us. 393 * 394 * VM_FAULT_SIGBUS could occur if we race with truncation of the 395 * backing file, which also invalidates anonymous pages: that's 396 * okay, that truncation will have unmapped the PageKsm for us. 397 * 398 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 399 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 400 * current task has TIF_MEMDIE set, and will be OOM killed on return 401 * to user; and ksmd, having no mm, would never be chosen for that. 402 * 403 * But if the mm is in a limited mem_cgroup, then the fault may fail 404 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 405 * even ksmd can fail in this way - though it's usually breaking ksm 406 * just to undo a merge it made a moment before, so unlikely to oom. 407 * 408 * That's a pity: we might therefore have more kernel pages allocated 409 * than we're counting as nodes in the stable tree; but ksm_do_scan 410 * will retry to break_cow on each pass, so should recover the page 411 * in due course. The important thing is to not let VM_MERGEABLE 412 * be cleared while any such pages might remain in the area. 413 */ 414 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 415 } 416 417 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 418 unsigned long addr) 419 { 420 struct vm_area_struct *vma; 421 if (ksm_test_exit(mm)) 422 return NULL; 423 vma = find_vma(mm, addr); 424 if (!vma || vma->vm_start > addr) 425 return NULL; 426 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 427 return NULL; 428 return vma; 429 } 430 431 static void break_cow(struct rmap_item *rmap_item) 432 { 433 struct mm_struct *mm = rmap_item->mm; 434 unsigned long addr = rmap_item->address; 435 struct vm_area_struct *vma; 436 437 /* 438 * It is not an accident that whenever we want to break COW 439 * to undo, we also need to drop a reference to the anon_vma. 440 */ 441 put_anon_vma(rmap_item->anon_vma); 442 443 down_read(&mm->mmap_sem); 444 vma = find_mergeable_vma(mm, addr); 445 if (vma) 446 break_ksm(vma, addr); 447 up_read(&mm->mmap_sem); 448 } 449 450 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 451 { 452 struct mm_struct *mm = rmap_item->mm; 453 unsigned long addr = rmap_item->address; 454 struct vm_area_struct *vma; 455 struct page *page; 456 457 down_read(&mm->mmap_sem); 458 vma = find_mergeable_vma(mm, addr); 459 if (!vma) 460 goto out; 461 462 page = follow_page(vma, addr, FOLL_GET); 463 if (IS_ERR_OR_NULL(page)) 464 goto out; 465 if (PageAnon(page)) { 466 flush_anon_page(vma, page, addr); 467 flush_dcache_page(page); 468 } else { 469 put_page(page); 470 out: 471 page = NULL; 472 } 473 up_read(&mm->mmap_sem); 474 return page; 475 } 476 477 /* 478 * This helper is used for getting right index into array of tree roots. 479 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 480 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 481 * every node has its own stable and unstable tree. 482 */ 483 static inline int get_kpfn_nid(unsigned long kpfn) 484 { 485 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 486 } 487 488 static void remove_node_from_stable_tree(struct stable_node *stable_node) 489 { 490 struct rmap_item *rmap_item; 491 492 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 493 if (rmap_item->hlist.next) 494 ksm_pages_sharing--; 495 else 496 ksm_pages_shared--; 497 put_anon_vma(rmap_item->anon_vma); 498 rmap_item->address &= PAGE_MASK; 499 cond_resched(); 500 } 501 502 if (stable_node->head == &migrate_nodes) 503 list_del(&stable_node->list); 504 else 505 rb_erase(&stable_node->node, 506 root_stable_tree + NUMA(stable_node->nid)); 507 free_stable_node(stable_node); 508 } 509 510 /* 511 * get_ksm_page: checks if the page indicated by the stable node 512 * is still its ksm page, despite having held no reference to it. 513 * In which case we can trust the content of the page, and it 514 * returns the gotten page; but if the page has now been zapped, 515 * remove the stale node from the stable tree and return NULL. 516 * But beware, the stable node's page might be being migrated. 517 * 518 * You would expect the stable_node to hold a reference to the ksm page. 519 * But if it increments the page's count, swapping out has to wait for 520 * ksmd to come around again before it can free the page, which may take 521 * seconds or even minutes: much too unresponsive. So instead we use a 522 * "keyhole reference": access to the ksm page from the stable node peeps 523 * out through its keyhole to see if that page still holds the right key, 524 * pointing back to this stable node. This relies on freeing a PageAnon 525 * page to reset its page->mapping to NULL, and relies on no other use of 526 * a page to put something that might look like our key in page->mapping. 527 * is on its way to being freed; but it is an anomaly to bear in mind. 528 */ 529 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it) 530 { 531 struct page *page; 532 void *expected_mapping; 533 unsigned long kpfn; 534 535 expected_mapping = (void *)stable_node + 536 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM); 537 again: 538 kpfn = READ_ONCE(stable_node->kpfn); 539 page = pfn_to_page(kpfn); 540 541 /* 542 * page is computed from kpfn, so on most architectures reading 543 * page->mapping is naturally ordered after reading node->kpfn, 544 * but on Alpha we need to be more careful. 545 */ 546 smp_read_barrier_depends(); 547 if (READ_ONCE(page->mapping) != expected_mapping) 548 goto stale; 549 550 /* 551 * We cannot do anything with the page while its refcount is 0. 552 * Usually 0 means free, or tail of a higher-order page: in which 553 * case this node is no longer referenced, and should be freed; 554 * however, it might mean that the page is under page_freeze_refs(). 555 * The __remove_mapping() case is easy, again the node is now stale; 556 * but if page is swapcache in migrate_page_move_mapping(), it might 557 * still be our page, in which case it's essential to keep the node. 558 */ 559 while (!get_page_unless_zero(page)) { 560 /* 561 * Another check for page->mapping != expected_mapping would 562 * work here too. We have chosen the !PageSwapCache test to 563 * optimize the common case, when the page is or is about to 564 * be freed: PageSwapCache is cleared (under spin_lock_irq) 565 * in the freeze_refs section of __remove_mapping(); but Anon 566 * page->mapping reset to NULL later, in free_pages_prepare(). 567 */ 568 if (!PageSwapCache(page)) 569 goto stale; 570 cpu_relax(); 571 } 572 573 if (READ_ONCE(page->mapping) != expected_mapping) { 574 put_page(page); 575 goto stale; 576 } 577 578 if (lock_it) { 579 lock_page(page); 580 if (READ_ONCE(page->mapping) != expected_mapping) { 581 unlock_page(page); 582 put_page(page); 583 goto stale; 584 } 585 } 586 return page; 587 588 stale: 589 /* 590 * We come here from above when page->mapping or !PageSwapCache 591 * suggests that the node is stale; but it might be under migration. 592 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), 593 * before checking whether node->kpfn has been changed. 594 */ 595 smp_rmb(); 596 if (READ_ONCE(stable_node->kpfn) != kpfn) 597 goto again; 598 remove_node_from_stable_tree(stable_node); 599 return NULL; 600 } 601 602 /* 603 * Removing rmap_item from stable or unstable tree. 604 * This function will clean the information from the stable/unstable tree. 605 */ 606 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 607 { 608 if (rmap_item->address & STABLE_FLAG) { 609 struct stable_node *stable_node; 610 struct page *page; 611 612 stable_node = rmap_item->head; 613 page = get_ksm_page(stable_node, true); 614 if (!page) 615 goto out; 616 617 hlist_del(&rmap_item->hlist); 618 unlock_page(page); 619 put_page(page); 620 621 if (!hlist_empty(&stable_node->hlist)) 622 ksm_pages_sharing--; 623 else 624 ksm_pages_shared--; 625 626 put_anon_vma(rmap_item->anon_vma); 627 rmap_item->address &= PAGE_MASK; 628 629 } else if (rmap_item->address & UNSTABLE_FLAG) { 630 unsigned char age; 631 /* 632 * Usually ksmd can and must skip the rb_erase, because 633 * root_unstable_tree was already reset to RB_ROOT. 634 * But be careful when an mm is exiting: do the rb_erase 635 * if this rmap_item was inserted by this scan, rather 636 * than left over from before. 637 */ 638 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 639 BUG_ON(age > 1); 640 if (!age) 641 rb_erase(&rmap_item->node, 642 root_unstable_tree + NUMA(rmap_item->nid)); 643 ksm_pages_unshared--; 644 rmap_item->address &= PAGE_MASK; 645 } 646 out: 647 cond_resched(); /* we're called from many long loops */ 648 } 649 650 static void remove_trailing_rmap_items(struct mm_slot *mm_slot, 651 struct rmap_item **rmap_list) 652 { 653 while (*rmap_list) { 654 struct rmap_item *rmap_item = *rmap_list; 655 *rmap_list = rmap_item->rmap_list; 656 remove_rmap_item_from_tree(rmap_item); 657 free_rmap_item(rmap_item); 658 } 659 } 660 661 /* 662 * Though it's very tempting to unmerge rmap_items from stable tree rather 663 * than check every pte of a given vma, the locking doesn't quite work for 664 * that - an rmap_item is assigned to the stable tree after inserting ksm 665 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing 666 * rmap_items from parent to child at fork time (so as not to waste time 667 * if exit comes before the next scan reaches it). 668 * 669 * Similarly, although we'd like to remove rmap_items (so updating counts 670 * and freeing memory) when unmerging an area, it's easier to leave that 671 * to the next pass of ksmd - consider, for example, how ksmd might be 672 * in cmp_and_merge_page on one of the rmap_items we would be removing. 673 */ 674 static int unmerge_ksm_pages(struct vm_area_struct *vma, 675 unsigned long start, unsigned long end) 676 { 677 unsigned long addr; 678 int err = 0; 679 680 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 681 if (ksm_test_exit(vma->vm_mm)) 682 break; 683 if (signal_pending(current)) 684 err = -ERESTARTSYS; 685 else 686 err = break_ksm(vma, addr); 687 } 688 return err; 689 } 690 691 #ifdef CONFIG_SYSFS 692 /* 693 * Only called through the sysfs control interface: 694 */ 695 static int remove_stable_node(struct stable_node *stable_node) 696 { 697 struct page *page; 698 int err; 699 700 page = get_ksm_page(stable_node, true); 701 if (!page) { 702 /* 703 * get_ksm_page did remove_node_from_stable_tree itself. 704 */ 705 return 0; 706 } 707 708 if (WARN_ON_ONCE(page_mapped(page))) { 709 /* 710 * This should not happen: but if it does, just refuse to let 711 * merge_across_nodes be switched - there is no need to panic. 712 */ 713 err = -EBUSY; 714 } else { 715 /* 716 * The stable node did not yet appear stale to get_ksm_page(), 717 * since that allows for an unmapped ksm page to be recognized 718 * right up until it is freed; but the node is safe to remove. 719 * This page might be in a pagevec waiting to be freed, 720 * or it might be PageSwapCache (perhaps under writeback), 721 * or it might have been removed from swapcache a moment ago. 722 */ 723 set_page_stable_node(page, NULL); 724 remove_node_from_stable_tree(stable_node); 725 err = 0; 726 } 727 728 unlock_page(page); 729 put_page(page); 730 return err; 731 } 732 733 static int remove_all_stable_nodes(void) 734 { 735 struct stable_node *stable_node, *next; 736 int nid; 737 int err = 0; 738 739 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 740 while (root_stable_tree[nid].rb_node) { 741 stable_node = rb_entry(root_stable_tree[nid].rb_node, 742 struct stable_node, node); 743 if (remove_stable_node(stable_node)) { 744 err = -EBUSY; 745 break; /* proceed to next nid */ 746 } 747 cond_resched(); 748 } 749 } 750 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 751 if (remove_stable_node(stable_node)) 752 err = -EBUSY; 753 cond_resched(); 754 } 755 return err; 756 } 757 758 static int unmerge_and_remove_all_rmap_items(void) 759 { 760 struct mm_slot *mm_slot; 761 struct mm_struct *mm; 762 struct vm_area_struct *vma; 763 int err = 0; 764 765 spin_lock(&ksm_mmlist_lock); 766 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 767 struct mm_slot, mm_list); 768 spin_unlock(&ksm_mmlist_lock); 769 770 for (mm_slot = ksm_scan.mm_slot; 771 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 772 mm = mm_slot->mm; 773 down_read(&mm->mmap_sem); 774 for (vma = mm->mmap; vma; vma = vma->vm_next) { 775 if (ksm_test_exit(mm)) 776 break; 777 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 778 continue; 779 err = unmerge_ksm_pages(vma, 780 vma->vm_start, vma->vm_end); 781 if (err) 782 goto error; 783 } 784 785 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); 786 787 spin_lock(&ksm_mmlist_lock); 788 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 789 struct mm_slot, mm_list); 790 if (ksm_test_exit(mm)) { 791 hash_del(&mm_slot->link); 792 list_del(&mm_slot->mm_list); 793 spin_unlock(&ksm_mmlist_lock); 794 795 free_mm_slot(mm_slot); 796 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 797 up_read(&mm->mmap_sem); 798 mmdrop(mm); 799 } else { 800 spin_unlock(&ksm_mmlist_lock); 801 up_read(&mm->mmap_sem); 802 } 803 } 804 805 /* Clean up stable nodes, but don't worry if some are still busy */ 806 remove_all_stable_nodes(); 807 ksm_scan.seqnr = 0; 808 return 0; 809 810 error: 811 up_read(&mm->mmap_sem); 812 spin_lock(&ksm_mmlist_lock); 813 ksm_scan.mm_slot = &ksm_mm_head; 814 spin_unlock(&ksm_mmlist_lock); 815 return err; 816 } 817 #endif /* CONFIG_SYSFS */ 818 819 static u32 calc_checksum(struct page *page) 820 { 821 u32 checksum; 822 void *addr = kmap_atomic(page); 823 checksum = jhash2(addr, PAGE_SIZE / 4, 17); 824 kunmap_atomic(addr); 825 return checksum; 826 } 827 828 static int memcmp_pages(struct page *page1, struct page *page2) 829 { 830 char *addr1, *addr2; 831 int ret; 832 833 addr1 = kmap_atomic(page1); 834 addr2 = kmap_atomic(page2); 835 ret = memcmp(addr1, addr2, PAGE_SIZE); 836 kunmap_atomic(addr2); 837 kunmap_atomic(addr1); 838 return ret; 839 } 840 841 static inline int pages_identical(struct page *page1, struct page *page2) 842 { 843 return !memcmp_pages(page1, page2); 844 } 845 846 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 847 pte_t *orig_pte) 848 { 849 struct mm_struct *mm = vma->vm_mm; 850 unsigned long addr; 851 pte_t *ptep; 852 spinlock_t *ptl; 853 int swapped; 854 int err = -EFAULT; 855 unsigned long mmun_start; /* For mmu_notifiers */ 856 unsigned long mmun_end; /* For mmu_notifiers */ 857 858 addr = page_address_in_vma(page, vma); 859 if (addr == -EFAULT) 860 goto out; 861 862 BUG_ON(PageTransCompound(page)); 863 864 mmun_start = addr; 865 mmun_end = addr + PAGE_SIZE; 866 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 867 868 ptep = page_check_address(page, mm, addr, &ptl, 0); 869 if (!ptep) 870 goto out_mn; 871 872 if (pte_write(*ptep) || pte_dirty(*ptep)) { 873 pte_t entry; 874 875 swapped = PageSwapCache(page); 876 flush_cache_page(vma, addr, page_to_pfn(page)); 877 /* 878 * Ok this is tricky, when get_user_pages_fast() run it doesn't 879 * take any lock, therefore the check that we are going to make 880 * with the pagecount against the mapcount is racey and 881 * O_DIRECT can happen right after the check. 882 * So we clear the pte and flush the tlb before the check 883 * this assure us that no O_DIRECT can happen after the check 884 * or in the middle of the check. 885 */ 886 entry = ptep_clear_flush_notify(vma, addr, ptep); 887 /* 888 * Check that no O_DIRECT or similar I/O is in progress on the 889 * page 890 */ 891 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 892 set_pte_at(mm, addr, ptep, entry); 893 goto out_unlock; 894 } 895 if (pte_dirty(entry)) 896 set_page_dirty(page); 897 entry = pte_mkclean(pte_wrprotect(entry)); 898 set_pte_at_notify(mm, addr, ptep, entry); 899 } 900 *orig_pte = *ptep; 901 err = 0; 902 903 out_unlock: 904 pte_unmap_unlock(ptep, ptl); 905 out_mn: 906 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 907 out: 908 return err; 909 } 910 911 /** 912 * replace_page - replace page in vma by new ksm page 913 * @vma: vma that holds the pte pointing to page 914 * @page: the page we are replacing by kpage 915 * @kpage: the ksm page we replace page by 916 * @orig_pte: the original value of the pte 917 * 918 * Returns 0 on success, -EFAULT on failure. 919 */ 920 static int replace_page(struct vm_area_struct *vma, struct page *page, 921 struct page *kpage, pte_t orig_pte) 922 { 923 struct mm_struct *mm = vma->vm_mm; 924 pmd_t *pmd; 925 pte_t *ptep; 926 spinlock_t *ptl; 927 unsigned long addr; 928 int err = -EFAULT; 929 unsigned long mmun_start; /* For mmu_notifiers */ 930 unsigned long mmun_end; /* For mmu_notifiers */ 931 932 addr = page_address_in_vma(page, vma); 933 if (addr == -EFAULT) 934 goto out; 935 936 pmd = mm_find_pmd(mm, addr); 937 if (!pmd) 938 goto out; 939 940 mmun_start = addr; 941 mmun_end = addr + PAGE_SIZE; 942 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 943 944 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 945 if (!pte_same(*ptep, orig_pte)) { 946 pte_unmap_unlock(ptep, ptl); 947 goto out_mn; 948 } 949 950 get_page(kpage); 951 page_add_anon_rmap(kpage, vma, addr, false); 952 953 flush_cache_page(vma, addr, pte_pfn(*ptep)); 954 ptep_clear_flush_notify(vma, addr, ptep); 955 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot)); 956 957 page_remove_rmap(page, false); 958 if (!page_mapped(page)) 959 try_to_free_swap(page); 960 put_page(page); 961 962 pte_unmap_unlock(ptep, ptl); 963 err = 0; 964 out_mn: 965 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 966 out: 967 return err; 968 } 969 970 /* 971 * try_to_merge_one_page - take two pages and merge them into one 972 * @vma: the vma that holds the pte pointing to page 973 * @page: the PageAnon page that we want to replace with kpage 974 * @kpage: the PageKsm page that we want to map instead of page, 975 * or NULL the first time when we want to use page as kpage. 976 * 977 * This function returns 0 if the pages were merged, -EFAULT otherwise. 978 */ 979 static int try_to_merge_one_page(struct vm_area_struct *vma, 980 struct page *page, struct page *kpage) 981 { 982 pte_t orig_pte = __pte(0); 983 int err = -EFAULT; 984 985 if (page == kpage) /* ksm page forked */ 986 return 0; 987 988 if (!PageAnon(page)) 989 goto out; 990 991 /* 992 * We need the page lock to read a stable PageSwapCache in 993 * write_protect_page(). We use trylock_page() instead of 994 * lock_page() because we don't want to wait here - we 995 * prefer to continue scanning and merging different pages, 996 * then come back to this page when it is unlocked. 997 */ 998 if (!trylock_page(page)) 999 goto out; 1000 1001 if (PageTransCompound(page)) { 1002 err = split_huge_page(page); 1003 if (err) 1004 goto out_unlock; 1005 } 1006 1007 /* 1008 * If this anonymous page is mapped only here, its pte may need 1009 * to be write-protected. If it's mapped elsewhere, all of its 1010 * ptes are necessarily already write-protected. But in either 1011 * case, we need to lock and check page_count is not raised. 1012 */ 1013 if (write_protect_page(vma, page, &orig_pte) == 0) { 1014 if (!kpage) { 1015 /* 1016 * While we hold page lock, upgrade page from 1017 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1018 * stable_tree_insert() will update stable_node. 1019 */ 1020 set_page_stable_node(page, NULL); 1021 mark_page_accessed(page); 1022 /* 1023 * Page reclaim just frees a clean page with no dirty 1024 * ptes: make sure that the ksm page would be swapped. 1025 */ 1026 if (!PageDirty(page)) 1027 SetPageDirty(page); 1028 err = 0; 1029 } else if (pages_identical(page, kpage)) 1030 err = replace_page(vma, page, kpage, orig_pte); 1031 } 1032 1033 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1034 munlock_vma_page(page); 1035 if (!PageMlocked(kpage)) { 1036 unlock_page(page); 1037 lock_page(kpage); 1038 mlock_vma_page(kpage); 1039 page = kpage; /* for final unlock */ 1040 } 1041 } 1042 1043 out_unlock: 1044 unlock_page(page); 1045 out: 1046 return err; 1047 } 1048 1049 /* 1050 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1051 * but no new kernel page is allocated: kpage must already be a ksm page. 1052 * 1053 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1054 */ 1055 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1056 struct page *page, struct page *kpage) 1057 { 1058 struct mm_struct *mm = rmap_item->mm; 1059 struct vm_area_struct *vma; 1060 int err = -EFAULT; 1061 1062 down_read(&mm->mmap_sem); 1063 vma = find_mergeable_vma(mm, rmap_item->address); 1064 if (!vma) 1065 goto out; 1066 1067 err = try_to_merge_one_page(vma, page, kpage); 1068 if (err) 1069 goto out; 1070 1071 /* Unstable nid is in union with stable anon_vma: remove first */ 1072 remove_rmap_item_from_tree(rmap_item); 1073 1074 /* Must get reference to anon_vma while still holding mmap_sem */ 1075 rmap_item->anon_vma = vma->anon_vma; 1076 get_anon_vma(vma->anon_vma); 1077 out: 1078 up_read(&mm->mmap_sem); 1079 return err; 1080 } 1081 1082 /* 1083 * try_to_merge_two_pages - take two identical pages and prepare them 1084 * to be merged into one page. 1085 * 1086 * This function returns the kpage if we successfully merged two identical 1087 * pages into one ksm page, NULL otherwise. 1088 * 1089 * Note that this function upgrades page to ksm page: if one of the pages 1090 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1091 */ 1092 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1093 struct page *page, 1094 struct rmap_item *tree_rmap_item, 1095 struct page *tree_page) 1096 { 1097 int err; 1098 1099 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1100 if (!err) { 1101 err = try_to_merge_with_ksm_page(tree_rmap_item, 1102 tree_page, page); 1103 /* 1104 * If that fails, we have a ksm page with only one pte 1105 * pointing to it: so break it. 1106 */ 1107 if (err) 1108 break_cow(rmap_item); 1109 } 1110 return err ? NULL : page; 1111 } 1112 1113 /* 1114 * stable_tree_search - search for page inside the stable tree 1115 * 1116 * This function checks if there is a page inside the stable tree 1117 * with identical content to the page that we are scanning right now. 1118 * 1119 * This function returns the stable tree node of identical content if found, 1120 * NULL otherwise. 1121 */ 1122 static struct page *stable_tree_search(struct page *page) 1123 { 1124 int nid; 1125 struct rb_root *root; 1126 struct rb_node **new; 1127 struct rb_node *parent; 1128 struct stable_node *stable_node; 1129 struct stable_node *page_node; 1130 1131 page_node = page_stable_node(page); 1132 if (page_node && page_node->head != &migrate_nodes) { 1133 /* ksm page forked */ 1134 get_page(page); 1135 return page; 1136 } 1137 1138 nid = get_kpfn_nid(page_to_pfn(page)); 1139 root = root_stable_tree + nid; 1140 again: 1141 new = &root->rb_node; 1142 parent = NULL; 1143 1144 while (*new) { 1145 struct page *tree_page; 1146 int ret; 1147 1148 cond_resched(); 1149 stable_node = rb_entry(*new, struct stable_node, node); 1150 tree_page = get_ksm_page(stable_node, false); 1151 if (!tree_page) { 1152 /* 1153 * If we walked over a stale stable_node, 1154 * get_ksm_page() will call rb_erase() and it 1155 * may rebalance the tree from under us. So 1156 * restart the search from scratch. Returning 1157 * NULL would be safe too, but we'd generate 1158 * false negative insertions just because some 1159 * stable_node was stale. 1160 */ 1161 goto again; 1162 } 1163 1164 ret = memcmp_pages(page, tree_page); 1165 put_page(tree_page); 1166 1167 parent = *new; 1168 if (ret < 0) 1169 new = &parent->rb_left; 1170 else if (ret > 0) 1171 new = &parent->rb_right; 1172 else { 1173 /* 1174 * Lock and unlock the stable_node's page (which 1175 * might already have been migrated) so that page 1176 * migration is sure to notice its raised count. 1177 * It would be more elegant to return stable_node 1178 * than kpage, but that involves more changes. 1179 */ 1180 tree_page = get_ksm_page(stable_node, true); 1181 if (tree_page) { 1182 unlock_page(tree_page); 1183 if (get_kpfn_nid(stable_node->kpfn) != 1184 NUMA(stable_node->nid)) { 1185 put_page(tree_page); 1186 goto replace; 1187 } 1188 return tree_page; 1189 } 1190 /* 1191 * There is now a place for page_node, but the tree may 1192 * have been rebalanced, so re-evaluate parent and new. 1193 */ 1194 if (page_node) 1195 goto again; 1196 return NULL; 1197 } 1198 } 1199 1200 if (!page_node) 1201 return NULL; 1202 1203 list_del(&page_node->list); 1204 DO_NUMA(page_node->nid = nid); 1205 rb_link_node(&page_node->node, parent, new); 1206 rb_insert_color(&page_node->node, root); 1207 get_page(page); 1208 return page; 1209 1210 replace: 1211 if (page_node) { 1212 list_del(&page_node->list); 1213 DO_NUMA(page_node->nid = nid); 1214 rb_replace_node(&stable_node->node, &page_node->node, root); 1215 get_page(page); 1216 } else { 1217 rb_erase(&stable_node->node, root); 1218 page = NULL; 1219 } 1220 stable_node->head = &migrate_nodes; 1221 list_add(&stable_node->list, stable_node->head); 1222 return page; 1223 } 1224 1225 /* 1226 * stable_tree_insert - insert stable tree node pointing to new ksm page 1227 * into the stable tree. 1228 * 1229 * This function returns the stable tree node just allocated on success, 1230 * NULL otherwise. 1231 */ 1232 static struct stable_node *stable_tree_insert(struct page *kpage) 1233 { 1234 int nid; 1235 unsigned long kpfn; 1236 struct rb_root *root; 1237 struct rb_node **new; 1238 struct rb_node *parent; 1239 struct stable_node *stable_node; 1240 1241 kpfn = page_to_pfn(kpage); 1242 nid = get_kpfn_nid(kpfn); 1243 root = root_stable_tree + nid; 1244 again: 1245 parent = NULL; 1246 new = &root->rb_node; 1247 1248 while (*new) { 1249 struct page *tree_page; 1250 int ret; 1251 1252 cond_resched(); 1253 stable_node = rb_entry(*new, struct stable_node, node); 1254 tree_page = get_ksm_page(stable_node, false); 1255 if (!tree_page) { 1256 /* 1257 * If we walked over a stale stable_node, 1258 * get_ksm_page() will call rb_erase() and it 1259 * may rebalance the tree from under us. So 1260 * restart the search from scratch. Returning 1261 * NULL would be safe too, but we'd generate 1262 * false negative insertions just because some 1263 * stable_node was stale. 1264 */ 1265 goto again; 1266 } 1267 1268 ret = memcmp_pages(kpage, tree_page); 1269 put_page(tree_page); 1270 1271 parent = *new; 1272 if (ret < 0) 1273 new = &parent->rb_left; 1274 else if (ret > 0) 1275 new = &parent->rb_right; 1276 else { 1277 /* 1278 * It is not a bug that stable_tree_search() didn't 1279 * find this node: because at that time our page was 1280 * not yet write-protected, so may have changed since. 1281 */ 1282 return NULL; 1283 } 1284 } 1285 1286 stable_node = alloc_stable_node(); 1287 if (!stable_node) 1288 return NULL; 1289 1290 INIT_HLIST_HEAD(&stable_node->hlist); 1291 stable_node->kpfn = kpfn; 1292 set_page_stable_node(kpage, stable_node); 1293 DO_NUMA(stable_node->nid = nid); 1294 rb_link_node(&stable_node->node, parent, new); 1295 rb_insert_color(&stable_node->node, root); 1296 1297 return stable_node; 1298 } 1299 1300 /* 1301 * unstable_tree_search_insert - search for identical page, 1302 * else insert rmap_item into the unstable tree. 1303 * 1304 * This function searches for a page in the unstable tree identical to the 1305 * page currently being scanned; and if no identical page is found in the 1306 * tree, we insert rmap_item as a new object into the unstable tree. 1307 * 1308 * This function returns pointer to rmap_item found to be identical 1309 * to the currently scanned page, NULL otherwise. 1310 * 1311 * This function does both searching and inserting, because they share 1312 * the same walking algorithm in an rbtree. 1313 */ 1314 static 1315 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1316 struct page *page, 1317 struct page **tree_pagep) 1318 { 1319 struct rb_node **new; 1320 struct rb_root *root; 1321 struct rb_node *parent = NULL; 1322 int nid; 1323 1324 nid = get_kpfn_nid(page_to_pfn(page)); 1325 root = root_unstable_tree + nid; 1326 new = &root->rb_node; 1327 1328 while (*new) { 1329 struct rmap_item *tree_rmap_item; 1330 struct page *tree_page; 1331 int ret; 1332 1333 cond_resched(); 1334 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1335 tree_page = get_mergeable_page(tree_rmap_item); 1336 if (!tree_page) 1337 return NULL; 1338 1339 /* 1340 * Don't substitute a ksm page for a forked page. 1341 */ 1342 if (page == tree_page) { 1343 put_page(tree_page); 1344 return NULL; 1345 } 1346 1347 ret = memcmp_pages(page, tree_page); 1348 1349 parent = *new; 1350 if (ret < 0) { 1351 put_page(tree_page); 1352 new = &parent->rb_left; 1353 } else if (ret > 0) { 1354 put_page(tree_page); 1355 new = &parent->rb_right; 1356 } else if (!ksm_merge_across_nodes && 1357 page_to_nid(tree_page) != nid) { 1358 /* 1359 * If tree_page has been migrated to another NUMA node, 1360 * it will be flushed out and put in the right unstable 1361 * tree next time: only merge with it when across_nodes. 1362 */ 1363 put_page(tree_page); 1364 return NULL; 1365 } else { 1366 *tree_pagep = tree_page; 1367 return tree_rmap_item; 1368 } 1369 } 1370 1371 rmap_item->address |= UNSTABLE_FLAG; 1372 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1373 DO_NUMA(rmap_item->nid = nid); 1374 rb_link_node(&rmap_item->node, parent, new); 1375 rb_insert_color(&rmap_item->node, root); 1376 1377 ksm_pages_unshared++; 1378 return NULL; 1379 } 1380 1381 /* 1382 * stable_tree_append - add another rmap_item to the linked list of 1383 * rmap_items hanging off a given node of the stable tree, all sharing 1384 * the same ksm page. 1385 */ 1386 static void stable_tree_append(struct rmap_item *rmap_item, 1387 struct stable_node *stable_node) 1388 { 1389 rmap_item->head = stable_node; 1390 rmap_item->address |= STABLE_FLAG; 1391 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 1392 1393 if (rmap_item->hlist.next) 1394 ksm_pages_sharing++; 1395 else 1396 ksm_pages_shared++; 1397 } 1398 1399 /* 1400 * cmp_and_merge_page - first see if page can be merged into the stable tree; 1401 * if not, compare checksum to previous and if it's the same, see if page can 1402 * be inserted into the unstable tree, or merged with a page already there and 1403 * both transferred to the stable tree. 1404 * 1405 * @page: the page that we are searching identical page to. 1406 * @rmap_item: the reverse mapping into the virtual address of this page 1407 */ 1408 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 1409 { 1410 struct rmap_item *tree_rmap_item; 1411 struct page *tree_page = NULL; 1412 struct stable_node *stable_node; 1413 struct page *kpage; 1414 unsigned int checksum; 1415 int err; 1416 1417 stable_node = page_stable_node(page); 1418 if (stable_node) { 1419 if (stable_node->head != &migrate_nodes && 1420 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) { 1421 rb_erase(&stable_node->node, 1422 root_stable_tree + NUMA(stable_node->nid)); 1423 stable_node->head = &migrate_nodes; 1424 list_add(&stable_node->list, stable_node->head); 1425 } 1426 if (stable_node->head != &migrate_nodes && 1427 rmap_item->head == stable_node) 1428 return; 1429 } 1430 1431 /* We first start with searching the page inside the stable tree */ 1432 kpage = stable_tree_search(page); 1433 if (kpage == page && rmap_item->head == stable_node) { 1434 put_page(kpage); 1435 return; 1436 } 1437 1438 remove_rmap_item_from_tree(rmap_item); 1439 1440 if (kpage) { 1441 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 1442 if (!err) { 1443 /* 1444 * The page was successfully merged: 1445 * add its rmap_item to the stable tree. 1446 */ 1447 lock_page(kpage); 1448 stable_tree_append(rmap_item, page_stable_node(kpage)); 1449 unlock_page(kpage); 1450 } 1451 put_page(kpage); 1452 return; 1453 } 1454 1455 /* 1456 * If the hash value of the page has changed from the last time 1457 * we calculated it, this page is changing frequently: therefore we 1458 * don't want to insert it in the unstable tree, and we don't want 1459 * to waste our time searching for something identical to it there. 1460 */ 1461 checksum = calc_checksum(page); 1462 if (rmap_item->oldchecksum != checksum) { 1463 rmap_item->oldchecksum = checksum; 1464 return; 1465 } 1466 1467 tree_rmap_item = 1468 unstable_tree_search_insert(rmap_item, page, &tree_page); 1469 if (tree_rmap_item) { 1470 kpage = try_to_merge_two_pages(rmap_item, page, 1471 tree_rmap_item, tree_page); 1472 put_page(tree_page); 1473 if (kpage) { 1474 /* 1475 * The pages were successfully merged: insert new 1476 * node in the stable tree and add both rmap_items. 1477 */ 1478 lock_page(kpage); 1479 stable_node = stable_tree_insert(kpage); 1480 if (stable_node) { 1481 stable_tree_append(tree_rmap_item, stable_node); 1482 stable_tree_append(rmap_item, stable_node); 1483 } 1484 unlock_page(kpage); 1485 1486 /* 1487 * If we fail to insert the page into the stable tree, 1488 * we will have 2 virtual addresses that are pointing 1489 * to a ksm page left outside the stable tree, 1490 * in which case we need to break_cow on both. 1491 */ 1492 if (!stable_node) { 1493 break_cow(tree_rmap_item); 1494 break_cow(rmap_item); 1495 } 1496 } 1497 } 1498 } 1499 1500 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 1501 struct rmap_item **rmap_list, 1502 unsigned long addr) 1503 { 1504 struct rmap_item *rmap_item; 1505 1506 while (*rmap_list) { 1507 rmap_item = *rmap_list; 1508 if ((rmap_item->address & PAGE_MASK) == addr) 1509 return rmap_item; 1510 if (rmap_item->address > addr) 1511 break; 1512 *rmap_list = rmap_item->rmap_list; 1513 remove_rmap_item_from_tree(rmap_item); 1514 free_rmap_item(rmap_item); 1515 } 1516 1517 rmap_item = alloc_rmap_item(); 1518 if (rmap_item) { 1519 /* It has already been zeroed */ 1520 rmap_item->mm = mm_slot->mm; 1521 rmap_item->address = addr; 1522 rmap_item->rmap_list = *rmap_list; 1523 *rmap_list = rmap_item; 1524 } 1525 return rmap_item; 1526 } 1527 1528 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 1529 { 1530 struct mm_struct *mm; 1531 struct mm_slot *slot; 1532 struct vm_area_struct *vma; 1533 struct rmap_item *rmap_item; 1534 int nid; 1535 1536 if (list_empty(&ksm_mm_head.mm_list)) 1537 return NULL; 1538 1539 slot = ksm_scan.mm_slot; 1540 if (slot == &ksm_mm_head) { 1541 /* 1542 * A number of pages can hang around indefinitely on per-cpu 1543 * pagevecs, raised page count preventing write_protect_page 1544 * from merging them. Though it doesn't really matter much, 1545 * it is puzzling to see some stuck in pages_volatile until 1546 * other activity jostles them out, and they also prevented 1547 * LTP's KSM test from succeeding deterministically; so drain 1548 * them here (here rather than on entry to ksm_do_scan(), 1549 * so we don't IPI too often when pages_to_scan is set low). 1550 */ 1551 lru_add_drain_all(); 1552 1553 /* 1554 * Whereas stale stable_nodes on the stable_tree itself 1555 * get pruned in the regular course of stable_tree_search(), 1556 * those moved out to the migrate_nodes list can accumulate: 1557 * so prune them once before each full scan. 1558 */ 1559 if (!ksm_merge_across_nodes) { 1560 struct stable_node *stable_node, *next; 1561 struct page *page; 1562 1563 list_for_each_entry_safe(stable_node, next, 1564 &migrate_nodes, list) { 1565 page = get_ksm_page(stable_node, false); 1566 if (page) 1567 put_page(page); 1568 cond_resched(); 1569 } 1570 } 1571 1572 for (nid = 0; nid < ksm_nr_node_ids; nid++) 1573 root_unstable_tree[nid] = RB_ROOT; 1574 1575 spin_lock(&ksm_mmlist_lock); 1576 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 1577 ksm_scan.mm_slot = slot; 1578 spin_unlock(&ksm_mmlist_lock); 1579 /* 1580 * Although we tested list_empty() above, a racing __ksm_exit 1581 * of the last mm on the list may have removed it since then. 1582 */ 1583 if (slot == &ksm_mm_head) 1584 return NULL; 1585 next_mm: 1586 ksm_scan.address = 0; 1587 ksm_scan.rmap_list = &slot->rmap_list; 1588 } 1589 1590 mm = slot->mm; 1591 down_read(&mm->mmap_sem); 1592 if (ksm_test_exit(mm)) 1593 vma = NULL; 1594 else 1595 vma = find_vma(mm, ksm_scan.address); 1596 1597 for (; vma; vma = vma->vm_next) { 1598 if (!(vma->vm_flags & VM_MERGEABLE)) 1599 continue; 1600 if (ksm_scan.address < vma->vm_start) 1601 ksm_scan.address = vma->vm_start; 1602 if (!vma->anon_vma) 1603 ksm_scan.address = vma->vm_end; 1604 1605 while (ksm_scan.address < vma->vm_end) { 1606 if (ksm_test_exit(mm)) 1607 break; 1608 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 1609 if (IS_ERR_OR_NULL(*page)) { 1610 ksm_scan.address += PAGE_SIZE; 1611 cond_resched(); 1612 continue; 1613 } 1614 if (PageAnon(*page)) { 1615 flush_anon_page(vma, *page, ksm_scan.address); 1616 flush_dcache_page(*page); 1617 rmap_item = get_next_rmap_item(slot, 1618 ksm_scan.rmap_list, ksm_scan.address); 1619 if (rmap_item) { 1620 ksm_scan.rmap_list = 1621 &rmap_item->rmap_list; 1622 ksm_scan.address += PAGE_SIZE; 1623 } else 1624 put_page(*page); 1625 up_read(&mm->mmap_sem); 1626 return rmap_item; 1627 } 1628 put_page(*page); 1629 ksm_scan.address += PAGE_SIZE; 1630 cond_resched(); 1631 } 1632 } 1633 1634 if (ksm_test_exit(mm)) { 1635 ksm_scan.address = 0; 1636 ksm_scan.rmap_list = &slot->rmap_list; 1637 } 1638 /* 1639 * Nuke all the rmap_items that are above this current rmap: 1640 * because there were no VM_MERGEABLE vmas with such addresses. 1641 */ 1642 remove_trailing_rmap_items(slot, ksm_scan.rmap_list); 1643 1644 spin_lock(&ksm_mmlist_lock); 1645 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 1646 struct mm_slot, mm_list); 1647 if (ksm_scan.address == 0) { 1648 /* 1649 * We've completed a full scan of all vmas, holding mmap_sem 1650 * throughout, and found no VM_MERGEABLE: so do the same as 1651 * __ksm_exit does to remove this mm from all our lists now. 1652 * This applies either when cleaning up after __ksm_exit 1653 * (but beware: we can reach here even before __ksm_exit), 1654 * or when all VM_MERGEABLE areas have been unmapped (and 1655 * mmap_sem then protects against race with MADV_MERGEABLE). 1656 */ 1657 hash_del(&slot->link); 1658 list_del(&slot->mm_list); 1659 spin_unlock(&ksm_mmlist_lock); 1660 1661 free_mm_slot(slot); 1662 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1663 up_read(&mm->mmap_sem); 1664 mmdrop(mm); 1665 } else { 1666 spin_unlock(&ksm_mmlist_lock); 1667 up_read(&mm->mmap_sem); 1668 } 1669 1670 /* Repeat until we've completed scanning the whole list */ 1671 slot = ksm_scan.mm_slot; 1672 if (slot != &ksm_mm_head) 1673 goto next_mm; 1674 1675 ksm_scan.seqnr++; 1676 return NULL; 1677 } 1678 1679 /** 1680 * ksm_do_scan - the ksm scanner main worker function. 1681 * @scan_npages - number of pages we want to scan before we return. 1682 */ 1683 static void ksm_do_scan(unsigned int scan_npages) 1684 { 1685 struct rmap_item *rmap_item; 1686 struct page *uninitialized_var(page); 1687 1688 while (scan_npages-- && likely(!freezing(current))) { 1689 cond_resched(); 1690 rmap_item = scan_get_next_rmap_item(&page); 1691 if (!rmap_item) 1692 return; 1693 cmp_and_merge_page(page, rmap_item); 1694 put_page(page); 1695 } 1696 } 1697 1698 static int ksmd_should_run(void) 1699 { 1700 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 1701 } 1702 1703 static int ksm_scan_thread(void *nothing) 1704 { 1705 set_freezable(); 1706 set_user_nice(current, 5); 1707 1708 while (!kthread_should_stop()) { 1709 mutex_lock(&ksm_thread_mutex); 1710 wait_while_offlining(); 1711 if (ksmd_should_run()) 1712 ksm_do_scan(ksm_thread_pages_to_scan); 1713 mutex_unlock(&ksm_thread_mutex); 1714 1715 try_to_freeze(); 1716 1717 if (ksmd_should_run()) { 1718 schedule_timeout_interruptible( 1719 msecs_to_jiffies(ksm_thread_sleep_millisecs)); 1720 } else { 1721 wait_event_freezable(ksm_thread_wait, 1722 ksmd_should_run() || kthread_should_stop()); 1723 } 1724 } 1725 return 0; 1726 } 1727 1728 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 1729 unsigned long end, int advice, unsigned long *vm_flags) 1730 { 1731 struct mm_struct *mm = vma->vm_mm; 1732 int err; 1733 1734 switch (advice) { 1735 case MADV_MERGEABLE: 1736 /* 1737 * Be somewhat over-protective for now! 1738 */ 1739 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 1740 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 1741 VM_HUGETLB | VM_MIXEDMAP)) 1742 return 0; /* just ignore the advice */ 1743 1744 #ifdef VM_SAO 1745 if (*vm_flags & VM_SAO) 1746 return 0; 1747 #endif 1748 1749 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 1750 err = __ksm_enter(mm); 1751 if (err) 1752 return err; 1753 } 1754 1755 *vm_flags |= VM_MERGEABLE; 1756 break; 1757 1758 case MADV_UNMERGEABLE: 1759 if (!(*vm_flags & VM_MERGEABLE)) 1760 return 0; /* just ignore the advice */ 1761 1762 if (vma->anon_vma) { 1763 err = unmerge_ksm_pages(vma, start, end); 1764 if (err) 1765 return err; 1766 } 1767 1768 *vm_flags &= ~VM_MERGEABLE; 1769 break; 1770 } 1771 1772 return 0; 1773 } 1774 1775 int __ksm_enter(struct mm_struct *mm) 1776 { 1777 struct mm_slot *mm_slot; 1778 int needs_wakeup; 1779 1780 mm_slot = alloc_mm_slot(); 1781 if (!mm_slot) 1782 return -ENOMEM; 1783 1784 /* Check ksm_run too? Would need tighter locking */ 1785 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 1786 1787 spin_lock(&ksm_mmlist_lock); 1788 insert_to_mm_slots_hash(mm, mm_slot); 1789 /* 1790 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 1791 * insert just behind the scanning cursor, to let the area settle 1792 * down a little; when fork is followed by immediate exec, we don't 1793 * want ksmd to waste time setting up and tearing down an rmap_list. 1794 * 1795 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 1796 * scanning cursor, otherwise KSM pages in newly forked mms will be 1797 * missed: then we might as well insert at the end of the list. 1798 */ 1799 if (ksm_run & KSM_RUN_UNMERGE) 1800 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 1801 else 1802 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 1803 spin_unlock(&ksm_mmlist_lock); 1804 1805 set_bit(MMF_VM_MERGEABLE, &mm->flags); 1806 atomic_inc(&mm->mm_count); 1807 1808 if (needs_wakeup) 1809 wake_up_interruptible(&ksm_thread_wait); 1810 1811 return 0; 1812 } 1813 1814 void __ksm_exit(struct mm_struct *mm) 1815 { 1816 struct mm_slot *mm_slot; 1817 int easy_to_free = 0; 1818 1819 /* 1820 * This process is exiting: if it's straightforward (as is the 1821 * case when ksmd was never running), free mm_slot immediately. 1822 * But if it's at the cursor or has rmap_items linked to it, use 1823 * mmap_sem to synchronize with any break_cows before pagetables 1824 * are freed, and leave the mm_slot on the list for ksmd to free. 1825 * Beware: ksm may already have noticed it exiting and freed the slot. 1826 */ 1827 1828 spin_lock(&ksm_mmlist_lock); 1829 mm_slot = get_mm_slot(mm); 1830 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 1831 if (!mm_slot->rmap_list) { 1832 hash_del(&mm_slot->link); 1833 list_del(&mm_slot->mm_list); 1834 easy_to_free = 1; 1835 } else { 1836 list_move(&mm_slot->mm_list, 1837 &ksm_scan.mm_slot->mm_list); 1838 } 1839 } 1840 spin_unlock(&ksm_mmlist_lock); 1841 1842 if (easy_to_free) { 1843 free_mm_slot(mm_slot); 1844 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1845 mmdrop(mm); 1846 } else if (mm_slot) { 1847 down_write(&mm->mmap_sem); 1848 up_write(&mm->mmap_sem); 1849 } 1850 } 1851 1852 struct page *ksm_might_need_to_copy(struct page *page, 1853 struct vm_area_struct *vma, unsigned long address) 1854 { 1855 struct anon_vma *anon_vma = page_anon_vma(page); 1856 struct page *new_page; 1857 1858 if (PageKsm(page)) { 1859 if (page_stable_node(page) && 1860 !(ksm_run & KSM_RUN_UNMERGE)) 1861 return page; /* no need to copy it */ 1862 } else if (!anon_vma) { 1863 return page; /* no need to copy it */ 1864 } else if (anon_vma->root == vma->anon_vma->root && 1865 page->index == linear_page_index(vma, address)) { 1866 return page; /* still no need to copy it */ 1867 } 1868 if (!PageUptodate(page)) 1869 return page; /* let do_swap_page report the error */ 1870 1871 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1872 if (new_page) { 1873 copy_user_highpage(new_page, page, address, vma); 1874 1875 SetPageDirty(new_page); 1876 __SetPageUptodate(new_page); 1877 __SetPageLocked(new_page); 1878 } 1879 1880 return new_page; 1881 } 1882 1883 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 1884 { 1885 struct stable_node *stable_node; 1886 struct rmap_item *rmap_item; 1887 int ret = SWAP_AGAIN; 1888 int search_new_forks = 0; 1889 1890 VM_BUG_ON_PAGE(!PageKsm(page), page); 1891 1892 /* 1893 * Rely on the page lock to protect against concurrent modifications 1894 * to that page's node of the stable tree. 1895 */ 1896 VM_BUG_ON_PAGE(!PageLocked(page), page); 1897 1898 stable_node = page_stable_node(page); 1899 if (!stable_node) 1900 return ret; 1901 again: 1902 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 1903 struct anon_vma *anon_vma = rmap_item->anon_vma; 1904 struct anon_vma_chain *vmac; 1905 struct vm_area_struct *vma; 1906 1907 cond_resched(); 1908 anon_vma_lock_read(anon_vma); 1909 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 1910 0, ULONG_MAX) { 1911 cond_resched(); 1912 vma = vmac->vma; 1913 if (rmap_item->address < vma->vm_start || 1914 rmap_item->address >= vma->vm_end) 1915 continue; 1916 /* 1917 * Initially we examine only the vma which covers this 1918 * rmap_item; but later, if there is still work to do, 1919 * we examine covering vmas in other mms: in case they 1920 * were forked from the original since ksmd passed. 1921 */ 1922 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 1923 continue; 1924 1925 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1926 continue; 1927 1928 ret = rwc->rmap_one(page, vma, 1929 rmap_item->address, rwc->arg); 1930 if (ret != SWAP_AGAIN) { 1931 anon_vma_unlock_read(anon_vma); 1932 goto out; 1933 } 1934 if (rwc->done && rwc->done(page)) { 1935 anon_vma_unlock_read(anon_vma); 1936 goto out; 1937 } 1938 } 1939 anon_vma_unlock_read(anon_vma); 1940 } 1941 if (!search_new_forks++) 1942 goto again; 1943 out: 1944 return ret; 1945 } 1946 1947 #ifdef CONFIG_MIGRATION 1948 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 1949 { 1950 struct stable_node *stable_node; 1951 1952 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 1953 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 1954 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); 1955 1956 stable_node = page_stable_node(newpage); 1957 if (stable_node) { 1958 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); 1959 stable_node->kpfn = page_to_pfn(newpage); 1960 /* 1961 * newpage->mapping was set in advance; now we need smp_wmb() 1962 * to make sure that the new stable_node->kpfn is visible 1963 * to get_ksm_page() before it can see that oldpage->mapping 1964 * has gone stale (or that PageSwapCache has been cleared). 1965 */ 1966 smp_wmb(); 1967 set_page_stable_node(oldpage, NULL); 1968 } 1969 } 1970 #endif /* CONFIG_MIGRATION */ 1971 1972 #ifdef CONFIG_MEMORY_HOTREMOVE 1973 static void wait_while_offlining(void) 1974 { 1975 while (ksm_run & KSM_RUN_OFFLINE) { 1976 mutex_unlock(&ksm_thread_mutex); 1977 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 1978 TASK_UNINTERRUPTIBLE); 1979 mutex_lock(&ksm_thread_mutex); 1980 } 1981 } 1982 1983 static void ksm_check_stable_tree(unsigned long start_pfn, 1984 unsigned long end_pfn) 1985 { 1986 struct stable_node *stable_node, *next; 1987 struct rb_node *node; 1988 int nid; 1989 1990 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 1991 node = rb_first(root_stable_tree + nid); 1992 while (node) { 1993 stable_node = rb_entry(node, struct stable_node, node); 1994 if (stable_node->kpfn >= start_pfn && 1995 stable_node->kpfn < end_pfn) { 1996 /* 1997 * Don't get_ksm_page, page has already gone: 1998 * which is why we keep kpfn instead of page* 1999 */ 2000 remove_node_from_stable_tree(stable_node); 2001 node = rb_first(root_stable_tree + nid); 2002 } else 2003 node = rb_next(node); 2004 cond_resched(); 2005 } 2006 } 2007 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2008 if (stable_node->kpfn >= start_pfn && 2009 stable_node->kpfn < end_pfn) 2010 remove_node_from_stable_tree(stable_node); 2011 cond_resched(); 2012 } 2013 } 2014 2015 static int ksm_memory_callback(struct notifier_block *self, 2016 unsigned long action, void *arg) 2017 { 2018 struct memory_notify *mn = arg; 2019 2020 switch (action) { 2021 case MEM_GOING_OFFLINE: 2022 /* 2023 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2024 * and remove_all_stable_nodes() while memory is going offline: 2025 * it is unsafe for them to touch the stable tree at this time. 2026 * But unmerge_ksm_pages(), rmap lookups and other entry points 2027 * which do not need the ksm_thread_mutex are all safe. 2028 */ 2029 mutex_lock(&ksm_thread_mutex); 2030 ksm_run |= KSM_RUN_OFFLINE; 2031 mutex_unlock(&ksm_thread_mutex); 2032 break; 2033 2034 case MEM_OFFLINE: 2035 /* 2036 * Most of the work is done by page migration; but there might 2037 * be a few stable_nodes left over, still pointing to struct 2038 * pages which have been offlined: prune those from the tree, 2039 * otherwise get_ksm_page() might later try to access a 2040 * non-existent struct page. 2041 */ 2042 ksm_check_stable_tree(mn->start_pfn, 2043 mn->start_pfn + mn->nr_pages); 2044 /* fallthrough */ 2045 2046 case MEM_CANCEL_OFFLINE: 2047 mutex_lock(&ksm_thread_mutex); 2048 ksm_run &= ~KSM_RUN_OFFLINE; 2049 mutex_unlock(&ksm_thread_mutex); 2050 2051 smp_mb(); /* wake_up_bit advises this */ 2052 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2053 break; 2054 } 2055 return NOTIFY_OK; 2056 } 2057 #else 2058 static void wait_while_offlining(void) 2059 { 2060 } 2061 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2062 2063 #ifdef CONFIG_SYSFS 2064 /* 2065 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2066 */ 2067 2068 #define KSM_ATTR_RO(_name) \ 2069 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2070 #define KSM_ATTR(_name) \ 2071 static struct kobj_attribute _name##_attr = \ 2072 __ATTR(_name, 0644, _name##_show, _name##_store) 2073 2074 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2075 struct kobj_attribute *attr, char *buf) 2076 { 2077 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); 2078 } 2079 2080 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2081 struct kobj_attribute *attr, 2082 const char *buf, size_t count) 2083 { 2084 unsigned long msecs; 2085 int err; 2086 2087 err = kstrtoul(buf, 10, &msecs); 2088 if (err || msecs > UINT_MAX) 2089 return -EINVAL; 2090 2091 ksm_thread_sleep_millisecs = msecs; 2092 2093 return count; 2094 } 2095 KSM_ATTR(sleep_millisecs); 2096 2097 static ssize_t pages_to_scan_show(struct kobject *kobj, 2098 struct kobj_attribute *attr, char *buf) 2099 { 2100 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); 2101 } 2102 2103 static ssize_t pages_to_scan_store(struct kobject *kobj, 2104 struct kobj_attribute *attr, 2105 const char *buf, size_t count) 2106 { 2107 int err; 2108 unsigned long nr_pages; 2109 2110 err = kstrtoul(buf, 10, &nr_pages); 2111 if (err || nr_pages > UINT_MAX) 2112 return -EINVAL; 2113 2114 ksm_thread_pages_to_scan = nr_pages; 2115 2116 return count; 2117 } 2118 KSM_ATTR(pages_to_scan); 2119 2120 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2121 char *buf) 2122 { 2123 return sprintf(buf, "%lu\n", ksm_run); 2124 } 2125 2126 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2127 const char *buf, size_t count) 2128 { 2129 int err; 2130 unsigned long flags; 2131 2132 err = kstrtoul(buf, 10, &flags); 2133 if (err || flags > UINT_MAX) 2134 return -EINVAL; 2135 if (flags > KSM_RUN_UNMERGE) 2136 return -EINVAL; 2137 2138 /* 2139 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2140 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2141 * breaking COW to free the pages_shared (but leaves mm_slots 2142 * on the list for when ksmd may be set running again). 2143 */ 2144 2145 mutex_lock(&ksm_thread_mutex); 2146 wait_while_offlining(); 2147 if (ksm_run != flags) { 2148 ksm_run = flags; 2149 if (flags & KSM_RUN_UNMERGE) { 2150 set_current_oom_origin(); 2151 err = unmerge_and_remove_all_rmap_items(); 2152 clear_current_oom_origin(); 2153 if (err) { 2154 ksm_run = KSM_RUN_STOP; 2155 count = err; 2156 } 2157 } 2158 } 2159 mutex_unlock(&ksm_thread_mutex); 2160 2161 if (flags & KSM_RUN_MERGE) 2162 wake_up_interruptible(&ksm_thread_wait); 2163 2164 return count; 2165 } 2166 KSM_ATTR(run); 2167 2168 #ifdef CONFIG_NUMA 2169 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2170 struct kobj_attribute *attr, char *buf) 2171 { 2172 return sprintf(buf, "%u\n", ksm_merge_across_nodes); 2173 } 2174 2175 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2176 struct kobj_attribute *attr, 2177 const char *buf, size_t count) 2178 { 2179 int err; 2180 unsigned long knob; 2181 2182 err = kstrtoul(buf, 10, &knob); 2183 if (err) 2184 return err; 2185 if (knob > 1) 2186 return -EINVAL; 2187 2188 mutex_lock(&ksm_thread_mutex); 2189 wait_while_offlining(); 2190 if (ksm_merge_across_nodes != knob) { 2191 if (ksm_pages_shared || remove_all_stable_nodes()) 2192 err = -EBUSY; 2193 else if (root_stable_tree == one_stable_tree) { 2194 struct rb_root *buf; 2195 /* 2196 * This is the first time that we switch away from the 2197 * default of merging across nodes: must now allocate 2198 * a buffer to hold as many roots as may be needed. 2199 * Allocate stable and unstable together: 2200 * MAXSMP NODES_SHIFT 10 will use 16kB. 2201 */ 2202 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2203 GFP_KERNEL); 2204 /* Let us assume that RB_ROOT is NULL is zero */ 2205 if (!buf) 2206 err = -ENOMEM; 2207 else { 2208 root_stable_tree = buf; 2209 root_unstable_tree = buf + nr_node_ids; 2210 /* Stable tree is empty but not the unstable */ 2211 root_unstable_tree[0] = one_unstable_tree[0]; 2212 } 2213 } 2214 if (!err) { 2215 ksm_merge_across_nodes = knob; 2216 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2217 } 2218 } 2219 mutex_unlock(&ksm_thread_mutex); 2220 2221 return err ? err : count; 2222 } 2223 KSM_ATTR(merge_across_nodes); 2224 #endif 2225 2226 static ssize_t pages_shared_show(struct kobject *kobj, 2227 struct kobj_attribute *attr, char *buf) 2228 { 2229 return sprintf(buf, "%lu\n", ksm_pages_shared); 2230 } 2231 KSM_ATTR_RO(pages_shared); 2232 2233 static ssize_t pages_sharing_show(struct kobject *kobj, 2234 struct kobj_attribute *attr, char *buf) 2235 { 2236 return sprintf(buf, "%lu\n", ksm_pages_sharing); 2237 } 2238 KSM_ATTR_RO(pages_sharing); 2239 2240 static ssize_t pages_unshared_show(struct kobject *kobj, 2241 struct kobj_attribute *attr, char *buf) 2242 { 2243 return sprintf(buf, "%lu\n", ksm_pages_unshared); 2244 } 2245 KSM_ATTR_RO(pages_unshared); 2246 2247 static ssize_t pages_volatile_show(struct kobject *kobj, 2248 struct kobj_attribute *attr, char *buf) 2249 { 2250 long ksm_pages_volatile; 2251 2252 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 2253 - ksm_pages_sharing - ksm_pages_unshared; 2254 /* 2255 * It was not worth any locking to calculate that statistic, 2256 * but it might therefore sometimes be negative: conceal that. 2257 */ 2258 if (ksm_pages_volatile < 0) 2259 ksm_pages_volatile = 0; 2260 return sprintf(buf, "%ld\n", ksm_pages_volatile); 2261 } 2262 KSM_ATTR_RO(pages_volatile); 2263 2264 static ssize_t full_scans_show(struct kobject *kobj, 2265 struct kobj_attribute *attr, char *buf) 2266 { 2267 return sprintf(buf, "%lu\n", ksm_scan.seqnr); 2268 } 2269 KSM_ATTR_RO(full_scans); 2270 2271 static struct attribute *ksm_attrs[] = { 2272 &sleep_millisecs_attr.attr, 2273 &pages_to_scan_attr.attr, 2274 &run_attr.attr, 2275 &pages_shared_attr.attr, 2276 &pages_sharing_attr.attr, 2277 &pages_unshared_attr.attr, 2278 &pages_volatile_attr.attr, 2279 &full_scans_attr.attr, 2280 #ifdef CONFIG_NUMA 2281 &merge_across_nodes_attr.attr, 2282 #endif 2283 NULL, 2284 }; 2285 2286 static struct attribute_group ksm_attr_group = { 2287 .attrs = ksm_attrs, 2288 .name = "ksm", 2289 }; 2290 #endif /* CONFIG_SYSFS */ 2291 2292 static int __init ksm_init(void) 2293 { 2294 struct task_struct *ksm_thread; 2295 int err; 2296 2297 err = ksm_slab_init(); 2298 if (err) 2299 goto out; 2300 2301 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 2302 if (IS_ERR(ksm_thread)) { 2303 pr_err("ksm: creating kthread failed\n"); 2304 err = PTR_ERR(ksm_thread); 2305 goto out_free; 2306 } 2307 2308 #ifdef CONFIG_SYSFS 2309 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 2310 if (err) { 2311 pr_err("ksm: register sysfs failed\n"); 2312 kthread_stop(ksm_thread); 2313 goto out_free; 2314 } 2315 #else 2316 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 2317 2318 #endif /* CONFIG_SYSFS */ 2319 2320 #ifdef CONFIG_MEMORY_HOTREMOVE 2321 /* There is no significance to this priority 100 */ 2322 hotplug_memory_notifier(ksm_memory_callback, 100); 2323 #endif 2324 return 0; 2325 2326 out_free: 2327 ksm_slab_free(); 2328 out: 2329 return err; 2330 } 2331 subsys_initcall(ksm_init); 2332