1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/coredump.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/xxhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 43 #include <asm/tlbflush.h> 44 #include "internal.h" 45 #include "mm_slot.h" 46 47 #ifdef CONFIG_NUMA 48 #define NUMA(x) (x) 49 #define DO_NUMA(x) do { (x); } while (0) 50 #else 51 #define NUMA(x) (0) 52 #define DO_NUMA(x) do { } while (0) 53 #endif 54 55 /** 56 * DOC: Overview 57 * 58 * A few notes about the KSM scanning process, 59 * to make it easier to understand the data structures below: 60 * 61 * In order to reduce excessive scanning, KSM sorts the memory pages by their 62 * contents into a data structure that holds pointers to the pages' locations. 63 * 64 * Since the contents of the pages may change at any moment, KSM cannot just 65 * insert the pages into a normal sorted tree and expect it to find anything. 66 * Therefore KSM uses two data structures - the stable and the unstable tree. 67 * 68 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 69 * by their contents. Because each such page is write-protected, searching on 70 * this tree is fully assured to be working (except when pages are unmapped), 71 * and therefore this tree is called the stable tree. 72 * 73 * The stable tree node includes information required for reverse 74 * mapping from a KSM page to virtual addresses that map this page. 75 * 76 * In order to avoid large latencies of the rmap walks on KSM pages, 77 * KSM maintains two types of nodes in the stable tree: 78 * 79 * * the regular nodes that keep the reverse mapping structures in a 80 * linked list 81 * * the "chains" that link nodes ("dups") that represent the same 82 * write protected memory content, but each "dup" corresponds to a 83 * different KSM page copy of that content 84 * 85 * Internally, the regular nodes, "dups" and "chains" are represented 86 * using the same struct ksm_stable_node structure. 87 * 88 * In addition to the stable tree, KSM uses a second data structure called the 89 * unstable tree: this tree holds pointers to pages which have been found to 90 * be "unchanged for a period of time". The unstable tree sorts these pages 91 * by their contents, but since they are not write-protected, KSM cannot rely 92 * upon the unstable tree to work correctly - the unstable tree is liable to 93 * be corrupted as its contents are modified, and so it is called unstable. 94 * 95 * KSM solves this problem by several techniques: 96 * 97 * 1) The unstable tree is flushed every time KSM completes scanning all 98 * memory areas, and then the tree is rebuilt again from the beginning. 99 * 2) KSM will only insert into the unstable tree, pages whose hash value 100 * has not changed since the previous scan of all memory areas. 101 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 102 * colors of the nodes and not on their contents, assuring that even when 103 * the tree gets "corrupted" it won't get out of balance, so scanning time 104 * remains the same (also, searching and inserting nodes in an rbtree uses 105 * the same algorithm, so we have no overhead when we flush and rebuild). 106 * 4) KSM never flushes the stable tree, which means that even if it were to 107 * take 10 attempts to find a page in the unstable tree, once it is found, 108 * it is secured in the stable tree. (When we scan a new page, we first 109 * compare it against the stable tree, and then against the unstable tree.) 110 * 111 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 112 * stable trees and multiple unstable trees: one of each for each NUMA node. 113 */ 114 115 /** 116 * struct ksm_mm_slot - ksm information per mm that is being scanned 117 * @slot: hash lookup from mm to mm_slot 118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 119 */ 120 struct ksm_mm_slot { 121 struct mm_slot slot; 122 struct ksm_rmap_item *rmap_list; 123 }; 124 125 /** 126 * struct ksm_scan - cursor for scanning 127 * @mm_slot: the current mm_slot we are scanning 128 * @address: the next address inside that to be scanned 129 * @rmap_list: link to the next rmap to be scanned in the rmap_list 130 * @seqnr: count of completed full scans (needed when removing unstable node) 131 * 132 * There is only the one ksm_scan instance of this cursor structure. 133 */ 134 struct ksm_scan { 135 struct ksm_mm_slot *mm_slot; 136 unsigned long address; 137 struct ksm_rmap_item **rmap_list; 138 unsigned long seqnr; 139 }; 140 141 /** 142 * struct ksm_stable_node - node of the stable rbtree 143 * @node: rb node of this ksm page in the stable tree 144 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 145 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 146 * @list: linked into migrate_nodes, pending placement in the proper node tree 147 * @hlist: hlist head of rmap_items using this ksm page 148 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 149 * @chain_prune_time: time of the last full garbage collection 150 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 151 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 152 */ 153 struct ksm_stable_node { 154 union { 155 struct rb_node node; /* when node of stable tree */ 156 struct { /* when listed for migration */ 157 struct list_head *head; 158 struct { 159 struct hlist_node hlist_dup; 160 struct list_head list; 161 }; 162 }; 163 }; 164 struct hlist_head hlist; 165 union { 166 unsigned long kpfn; 167 unsigned long chain_prune_time; 168 }; 169 /* 170 * STABLE_NODE_CHAIN can be any negative number in 171 * rmap_hlist_len negative range, but better not -1 to be able 172 * to reliably detect underflows. 173 */ 174 #define STABLE_NODE_CHAIN -1024 175 int rmap_hlist_len; 176 #ifdef CONFIG_NUMA 177 int nid; 178 #endif 179 }; 180 181 /** 182 * struct ksm_rmap_item - reverse mapping item for virtual addresses 183 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 184 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 185 * @nid: NUMA node id of unstable tree in which linked (may not match page) 186 * @mm: the memory structure this rmap_item is pointing into 187 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 188 * @oldchecksum: previous checksum of the page at that virtual address 189 * @node: rb node of this rmap_item in the unstable tree 190 * @head: pointer to stable_node heading this list in the stable tree 191 * @hlist: link into hlist of rmap_items hanging off that stable_node 192 */ 193 struct ksm_rmap_item { 194 struct ksm_rmap_item *rmap_list; 195 union { 196 struct anon_vma *anon_vma; /* when stable */ 197 #ifdef CONFIG_NUMA 198 int nid; /* when node of unstable tree */ 199 #endif 200 }; 201 struct mm_struct *mm; 202 unsigned long address; /* + low bits used for flags below */ 203 unsigned int oldchecksum; /* when unstable */ 204 union { 205 struct rb_node node; /* when node of unstable tree */ 206 struct { /* when listed from stable tree */ 207 struct ksm_stable_node *head; 208 struct hlist_node hlist; 209 }; 210 }; 211 }; 212 213 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 214 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 215 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 216 217 /* The stable and unstable tree heads */ 218 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 219 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 220 static struct rb_root *root_stable_tree = one_stable_tree; 221 static struct rb_root *root_unstable_tree = one_unstable_tree; 222 223 /* Recently migrated nodes of stable tree, pending proper placement */ 224 static LIST_HEAD(migrate_nodes); 225 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 226 227 #define MM_SLOTS_HASH_BITS 10 228 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 229 230 static struct ksm_mm_slot ksm_mm_head = { 231 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node), 232 }; 233 static struct ksm_scan ksm_scan = { 234 .mm_slot = &ksm_mm_head, 235 }; 236 237 static struct kmem_cache *rmap_item_cache; 238 static struct kmem_cache *stable_node_cache; 239 static struct kmem_cache *mm_slot_cache; 240 241 /* The number of nodes in the stable tree */ 242 static unsigned long ksm_pages_shared; 243 244 /* The number of page slots additionally sharing those nodes */ 245 static unsigned long ksm_pages_sharing; 246 247 /* The number of nodes in the unstable tree */ 248 static unsigned long ksm_pages_unshared; 249 250 /* The number of rmap_items in use: to calculate pages_volatile */ 251 static unsigned long ksm_rmap_items; 252 253 /* The number of stable_node chains */ 254 static unsigned long ksm_stable_node_chains; 255 256 /* The number of stable_node dups linked to the stable_node chains */ 257 static unsigned long ksm_stable_node_dups; 258 259 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 260 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000; 261 262 /* Maximum number of page slots sharing a stable node */ 263 static int ksm_max_page_sharing = 256; 264 265 /* Number of pages ksmd should scan in one batch */ 266 static unsigned int ksm_thread_pages_to_scan = 100; 267 268 /* Milliseconds ksmd should sleep between batches */ 269 static unsigned int ksm_thread_sleep_millisecs = 20; 270 271 /* Checksum of an empty (zeroed) page */ 272 static unsigned int zero_checksum __read_mostly; 273 274 /* Whether to merge empty (zeroed) pages with actual zero pages */ 275 static bool ksm_use_zero_pages __read_mostly; 276 277 #ifdef CONFIG_NUMA 278 /* Zeroed when merging across nodes is not allowed */ 279 static unsigned int ksm_merge_across_nodes = 1; 280 static int ksm_nr_node_ids = 1; 281 #else 282 #define ksm_merge_across_nodes 1U 283 #define ksm_nr_node_ids 1 284 #endif 285 286 #define KSM_RUN_STOP 0 287 #define KSM_RUN_MERGE 1 288 #define KSM_RUN_UNMERGE 2 289 #define KSM_RUN_OFFLINE 4 290 static unsigned long ksm_run = KSM_RUN_STOP; 291 static void wait_while_offlining(void); 292 293 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 294 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 295 static DEFINE_MUTEX(ksm_thread_mutex); 296 static DEFINE_SPINLOCK(ksm_mmlist_lock); 297 298 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 299 sizeof(struct __struct), __alignof__(struct __struct),\ 300 (__flags), NULL) 301 302 static int __init ksm_slab_init(void) 303 { 304 rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0); 305 if (!rmap_item_cache) 306 goto out; 307 308 stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0); 309 if (!stable_node_cache) 310 goto out_free1; 311 312 mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0); 313 if (!mm_slot_cache) 314 goto out_free2; 315 316 return 0; 317 318 out_free2: 319 kmem_cache_destroy(stable_node_cache); 320 out_free1: 321 kmem_cache_destroy(rmap_item_cache); 322 out: 323 return -ENOMEM; 324 } 325 326 static void __init ksm_slab_free(void) 327 { 328 kmem_cache_destroy(mm_slot_cache); 329 kmem_cache_destroy(stable_node_cache); 330 kmem_cache_destroy(rmap_item_cache); 331 mm_slot_cache = NULL; 332 } 333 334 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain) 335 { 336 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 337 } 338 339 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup) 340 { 341 return dup->head == STABLE_NODE_DUP_HEAD; 342 } 343 344 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup, 345 struct ksm_stable_node *chain) 346 { 347 VM_BUG_ON(is_stable_node_dup(dup)); 348 dup->head = STABLE_NODE_DUP_HEAD; 349 VM_BUG_ON(!is_stable_node_chain(chain)); 350 hlist_add_head(&dup->hlist_dup, &chain->hlist); 351 ksm_stable_node_dups++; 352 } 353 354 static inline void __stable_node_dup_del(struct ksm_stable_node *dup) 355 { 356 VM_BUG_ON(!is_stable_node_dup(dup)); 357 hlist_del(&dup->hlist_dup); 358 ksm_stable_node_dups--; 359 } 360 361 static inline void stable_node_dup_del(struct ksm_stable_node *dup) 362 { 363 VM_BUG_ON(is_stable_node_chain(dup)); 364 if (is_stable_node_dup(dup)) 365 __stable_node_dup_del(dup); 366 else 367 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 368 #ifdef CONFIG_DEBUG_VM 369 dup->head = NULL; 370 #endif 371 } 372 373 static inline struct ksm_rmap_item *alloc_rmap_item(void) 374 { 375 struct ksm_rmap_item *rmap_item; 376 377 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 378 __GFP_NORETRY | __GFP_NOWARN); 379 if (rmap_item) 380 ksm_rmap_items++; 381 return rmap_item; 382 } 383 384 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item) 385 { 386 ksm_rmap_items--; 387 rmap_item->mm->ksm_rmap_items--; 388 rmap_item->mm = NULL; /* debug safety */ 389 kmem_cache_free(rmap_item_cache, rmap_item); 390 } 391 392 static inline struct ksm_stable_node *alloc_stable_node(void) 393 { 394 /* 395 * The allocation can take too long with GFP_KERNEL when memory is under 396 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 397 * grants access to memory reserves, helping to avoid this problem. 398 */ 399 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 400 } 401 402 static inline void free_stable_node(struct ksm_stable_node *stable_node) 403 { 404 VM_BUG_ON(stable_node->rmap_hlist_len && 405 !is_stable_node_chain(stable_node)); 406 kmem_cache_free(stable_node_cache, stable_node); 407 } 408 409 /* 410 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 411 * page tables after it has passed through ksm_exit() - which, if necessary, 412 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 413 * a special flag: they can just back out as soon as mm_users goes to zero. 414 * ksm_test_exit() is used throughout to make this test for exit: in some 415 * places for correctness, in some places just to avoid unnecessary work. 416 */ 417 static inline bool ksm_test_exit(struct mm_struct *mm) 418 { 419 return atomic_read(&mm->mm_users) == 0; 420 } 421 422 /* 423 * We use break_ksm to break COW on a ksm page: it's a stripped down 424 * 425 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1) 426 * put_page(page); 427 * 428 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 429 * in case the application has unmapped and remapped mm,addr meanwhile. 430 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 431 * mmap of /dev/mem, where we would not want to touch it. 432 * 433 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 434 * of the process that owns 'vma'. We also do not want to enforce 435 * protection keys here anyway. 436 */ 437 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 438 { 439 struct page *page; 440 vm_fault_t ret = 0; 441 442 do { 443 cond_resched(); 444 page = follow_page(vma, addr, 445 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 446 if (IS_ERR_OR_NULL(page)) 447 break; 448 if (PageKsm(page)) 449 ret = handle_mm_fault(vma, addr, 450 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE, 451 NULL); 452 else 453 ret = VM_FAULT_WRITE; 454 put_page(page); 455 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 456 /* 457 * We must loop because handle_mm_fault() may back out if there's 458 * any difficulty e.g. if pte accessed bit gets updated concurrently. 459 * 460 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 461 * COW has been broken, even if the vma does not permit VM_WRITE; 462 * but note that a concurrent fault might break PageKsm for us. 463 * 464 * VM_FAULT_SIGBUS could occur if we race with truncation of the 465 * backing file, which also invalidates anonymous pages: that's 466 * okay, that truncation will have unmapped the PageKsm for us. 467 * 468 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 469 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 470 * current task has TIF_MEMDIE set, and will be OOM killed on return 471 * to user; and ksmd, having no mm, would never be chosen for that. 472 * 473 * But if the mm is in a limited mem_cgroup, then the fault may fail 474 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 475 * even ksmd can fail in this way - though it's usually breaking ksm 476 * just to undo a merge it made a moment before, so unlikely to oom. 477 * 478 * That's a pity: we might therefore have more kernel pages allocated 479 * than we're counting as nodes in the stable tree; but ksm_do_scan 480 * will retry to break_cow on each pass, so should recover the page 481 * in due course. The important thing is to not let VM_MERGEABLE 482 * be cleared while any such pages might remain in the area. 483 */ 484 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 485 } 486 487 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 488 unsigned long addr) 489 { 490 struct vm_area_struct *vma; 491 if (ksm_test_exit(mm)) 492 return NULL; 493 vma = vma_lookup(mm, addr); 494 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 495 return NULL; 496 return vma; 497 } 498 499 static void break_cow(struct ksm_rmap_item *rmap_item) 500 { 501 struct mm_struct *mm = rmap_item->mm; 502 unsigned long addr = rmap_item->address; 503 struct vm_area_struct *vma; 504 505 /* 506 * It is not an accident that whenever we want to break COW 507 * to undo, we also need to drop a reference to the anon_vma. 508 */ 509 put_anon_vma(rmap_item->anon_vma); 510 511 mmap_read_lock(mm); 512 vma = find_mergeable_vma(mm, addr); 513 if (vma) 514 break_ksm(vma, addr); 515 mmap_read_unlock(mm); 516 } 517 518 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item) 519 { 520 struct mm_struct *mm = rmap_item->mm; 521 unsigned long addr = rmap_item->address; 522 struct vm_area_struct *vma; 523 struct page *page; 524 525 mmap_read_lock(mm); 526 vma = find_mergeable_vma(mm, addr); 527 if (!vma) 528 goto out; 529 530 page = follow_page(vma, addr, FOLL_GET); 531 if (IS_ERR_OR_NULL(page)) 532 goto out; 533 if (is_zone_device_page(page)) 534 goto out_putpage; 535 if (PageAnon(page)) { 536 flush_anon_page(vma, page, addr); 537 flush_dcache_page(page); 538 } else { 539 out_putpage: 540 put_page(page); 541 out: 542 page = NULL; 543 } 544 mmap_read_unlock(mm); 545 return page; 546 } 547 548 /* 549 * This helper is used for getting right index into array of tree roots. 550 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 551 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 552 * every node has its own stable and unstable tree. 553 */ 554 static inline int get_kpfn_nid(unsigned long kpfn) 555 { 556 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 557 } 558 559 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup, 560 struct rb_root *root) 561 { 562 struct ksm_stable_node *chain = alloc_stable_node(); 563 VM_BUG_ON(is_stable_node_chain(dup)); 564 if (likely(chain)) { 565 INIT_HLIST_HEAD(&chain->hlist); 566 chain->chain_prune_time = jiffies; 567 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 568 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 569 chain->nid = NUMA_NO_NODE; /* debug */ 570 #endif 571 ksm_stable_node_chains++; 572 573 /* 574 * Put the stable node chain in the first dimension of 575 * the stable tree and at the same time remove the old 576 * stable node. 577 */ 578 rb_replace_node(&dup->node, &chain->node, root); 579 580 /* 581 * Move the old stable node to the second dimension 582 * queued in the hlist_dup. The invariant is that all 583 * dup stable_nodes in the chain->hlist point to pages 584 * that are write protected and have the exact same 585 * content. 586 */ 587 stable_node_chain_add_dup(dup, chain); 588 } 589 return chain; 590 } 591 592 static inline void free_stable_node_chain(struct ksm_stable_node *chain, 593 struct rb_root *root) 594 { 595 rb_erase(&chain->node, root); 596 free_stable_node(chain); 597 ksm_stable_node_chains--; 598 } 599 600 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node) 601 { 602 struct ksm_rmap_item *rmap_item; 603 604 /* check it's not STABLE_NODE_CHAIN or negative */ 605 BUG_ON(stable_node->rmap_hlist_len < 0); 606 607 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 608 if (rmap_item->hlist.next) 609 ksm_pages_sharing--; 610 else 611 ksm_pages_shared--; 612 613 rmap_item->mm->ksm_merging_pages--; 614 615 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 616 stable_node->rmap_hlist_len--; 617 put_anon_vma(rmap_item->anon_vma); 618 rmap_item->address &= PAGE_MASK; 619 cond_resched(); 620 } 621 622 /* 623 * We need the second aligned pointer of the migrate_nodes 624 * list_head to stay clear from the rb_parent_color union 625 * (aligned and different than any node) and also different 626 * from &migrate_nodes. This will verify that future list.h changes 627 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 628 */ 629 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 630 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 631 632 if (stable_node->head == &migrate_nodes) 633 list_del(&stable_node->list); 634 else 635 stable_node_dup_del(stable_node); 636 free_stable_node(stable_node); 637 } 638 639 enum get_ksm_page_flags { 640 GET_KSM_PAGE_NOLOCK, 641 GET_KSM_PAGE_LOCK, 642 GET_KSM_PAGE_TRYLOCK 643 }; 644 645 /* 646 * get_ksm_page: checks if the page indicated by the stable node 647 * is still its ksm page, despite having held no reference to it. 648 * In which case we can trust the content of the page, and it 649 * returns the gotten page; but if the page has now been zapped, 650 * remove the stale node from the stable tree and return NULL. 651 * But beware, the stable node's page might be being migrated. 652 * 653 * You would expect the stable_node to hold a reference to the ksm page. 654 * But if it increments the page's count, swapping out has to wait for 655 * ksmd to come around again before it can free the page, which may take 656 * seconds or even minutes: much too unresponsive. So instead we use a 657 * "keyhole reference": access to the ksm page from the stable node peeps 658 * out through its keyhole to see if that page still holds the right key, 659 * pointing back to this stable node. This relies on freeing a PageAnon 660 * page to reset its page->mapping to NULL, and relies on no other use of 661 * a page to put something that might look like our key in page->mapping. 662 * is on its way to being freed; but it is an anomaly to bear in mind. 663 */ 664 static struct page *get_ksm_page(struct ksm_stable_node *stable_node, 665 enum get_ksm_page_flags flags) 666 { 667 struct page *page; 668 void *expected_mapping; 669 unsigned long kpfn; 670 671 expected_mapping = (void *)((unsigned long)stable_node | 672 PAGE_MAPPING_KSM); 673 again: 674 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 675 page = pfn_to_page(kpfn); 676 if (READ_ONCE(page->mapping) != expected_mapping) 677 goto stale; 678 679 /* 680 * We cannot do anything with the page while its refcount is 0. 681 * Usually 0 means free, or tail of a higher-order page: in which 682 * case this node is no longer referenced, and should be freed; 683 * however, it might mean that the page is under page_ref_freeze(). 684 * The __remove_mapping() case is easy, again the node is now stale; 685 * the same is in reuse_ksm_page() case; but if page is swapcache 686 * in folio_migrate_mapping(), it might still be our page, 687 * in which case it's essential to keep the node. 688 */ 689 while (!get_page_unless_zero(page)) { 690 /* 691 * Another check for page->mapping != expected_mapping would 692 * work here too. We have chosen the !PageSwapCache test to 693 * optimize the common case, when the page is or is about to 694 * be freed: PageSwapCache is cleared (under spin_lock_irq) 695 * in the ref_freeze section of __remove_mapping(); but Anon 696 * page->mapping reset to NULL later, in free_pages_prepare(). 697 */ 698 if (!PageSwapCache(page)) 699 goto stale; 700 cpu_relax(); 701 } 702 703 if (READ_ONCE(page->mapping) != expected_mapping) { 704 put_page(page); 705 goto stale; 706 } 707 708 if (flags == GET_KSM_PAGE_TRYLOCK) { 709 if (!trylock_page(page)) { 710 put_page(page); 711 return ERR_PTR(-EBUSY); 712 } 713 } else if (flags == GET_KSM_PAGE_LOCK) 714 lock_page(page); 715 716 if (flags != GET_KSM_PAGE_NOLOCK) { 717 if (READ_ONCE(page->mapping) != expected_mapping) { 718 unlock_page(page); 719 put_page(page); 720 goto stale; 721 } 722 } 723 return page; 724 725 stale: 726 /* 727 * We come here from above when page->mapping or !PageSwapCache 728 * suggests that the node is stale; but it might be under migration. 729 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(), 730 * before checking whether node->kpfn has been changed. 731 */ 732 smp_rmb(); 733 if (READ_ONCE(stable_node->kpfn) != kpfn) 734 goto again; 735 remove_node_from_stable_tree(stable_node); 736 return NULL; 737 } 738 739 /* 740 * Removing rmap_item from stable or unstable tree. 741 * This function will clean the information from the stable/unstable tree. 742 */ 743 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item) 744 { 745 if (rmap_item->address & STABLE_FLAG) { 746 struct ksm_stable_node *stable_node; 747 struct page *page; 748 749 stable_node = rmap_item->head; 750 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 751 if (!page) 752 goto out; 753 754 hlist_del(&rmap_item->hlist); 755 unlock_page(page); 756 put_page(page); 757 758 if (!hlist_empty(&stable_node->hlist)) 759 ksm_pages_sharing--; 760 else 761 ksm_pages_shared--; 762 763 rmap_item->mm->ksm_merging_pages--; 764 765 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 766 stable_node->rmap_hlist_len--; 767 768 put_anon_vma(rmap_item->anon_vma); 769 rmap_item->head = NULL; 770 rmap_item->address &= PAGE_MASK; 771 772 } else if (rmap_item->address & UNSTABLE_FLAG) { 773 unsigned char age; 774 /* 775 * Usually ksmd can and must skip the rb_erase, because 776 * root_unstable_tree was already reset to RB_ROOT. 777 * But be careful when an mm is exiting: do the rb_erase 778 * if this rmap_item was inserted by this scan, rather 779 * than left over from before. 780 */ 781 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 782 BUG_ON(age > 1); 783 if (!age) 784 rb_erase(&rmap_item->node, 785 root_unstable_tree + NUMA(rmap_item->nid)); 786 ksm_pages_unshared--; 787 rmap_item->address &= PAGE_MASK; 788 } 789 out: 790 cond_resched(); /* we're called from many long loops */ 791 } 792 793 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list) 794 { 795 while (*rmap_list) { 796 struct ksm_rmap_item *rmap_item = *rmap_list; 797 *rmap_list = rmap_item->rmap_list; 798 remove_rmap_item_from_tree(rmap_item); 799 free_rmap_item(rmap_item); 800 } 801 } 802 803 /* 804 * Though it's very tempting to unmerge rmap_items from stable tree rather 805 * than check every pte of a given vma, the locking doesn't quite work for 806 * that - an rmap_item is assigned to the stable tree after inserting ksm 807 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 808 * rmap_items from parent to child at fork time (so as not to waste time 809 * if exit comes before the next scan reaches it). 810 * 811 * Similarly, although we'd like to remove rmap_items (so updating counts 812 * and freeing memory) when unmerging an area, it's easier to leave that 813 * to the next pass of ksmd - consider, for example, how ksmd might be 814 * in cmp_and_merge_page on one of the rmap_items we would be removing. 815 */ 816 static int unmerge_ksm_pages(struct vm_area_struct *vma, 817 unsigned long start, unsigned long end) 818 { 819 unsigned long addr; 820 int err = 0; 821 822 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 823 if (ksm_test_exit(vma->vm_mm)) 824 break; 825 if (signal_pending(current)) 826 err = -ERESTARTSYS; 827 else 828 err = break_ksm(vma, addr); 829 } 830 return err; 831 } 832 833 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio) 834 { 835 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL; 836 } 837 838 static inline struct ksm_stable_node *page_stable_node(struct page *page) 839 { 840 return folio_stable_node(page_folio(page)); 841 } 842 843 static inline void set_page_stable_node(struct page *page, 844 struct ksm_stable_node *stable_node) 845 { 846 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page); 847 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 848 } 849 850 #ifdef CONFIG_SYSFS 851 /* 852 * Only called through the sysfs control interface: 853 */ 854 static int remove_stable_node(struct ksm_stable_node *stable_node) 855 { 856 struct page *page; 857 int err; 858 859 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 860 if (!page) { 861 /* 862 * get_ksm_page did remove_node_from_stable_tree itself. 863 */ 864 return 0; 865 } 866 867 /* 868 * Page could be still mapped if this races with __mmput() running in 869 * between ksm_exit() and exit_mmap(). Just refuse to let 870 * merge_across_nodes/max_page_sharing be switched. 871 */ 872 err = -EBUSY; 873 if (!page_mapped(page)) { 874 /* 875 * The stable node did not yet appear stale to get_ksm_page(), 876 * since that allows for an unmapped ksm page to be recognized 877 * right up until it is freed; but the node is safe to remove. 878 * This page might be in a pagevec waiting to be freed, 879 * or it might be PageSwapCache (perhaps under writeback), 880 * or it might have been removed from swapcache a moment ago. 881 */ 882 set_page_stable_node(page, NULL); 883 remove_node_from_stable_tree(stable_node); 884 err = 0; 885 } 886 887 unlock_page(page); 888 put_page(page); 889 return err; 890 } 891 892 static int remove_stable_node_chain(struct ksm_stable_node *stable_node, 893 struct rb_root *root) 894 { 895 struct ksm_stable_node *dup; 896 struct hlist_node *hlist_safe; 897 898 if (!is_stable_node_chain(stable_node)) { 899 VM_BUG_ON(is_stable_node_dup(stable_node)); 900 if (remove_stable_node(stable_node)) 901 return true; 902 else 903 return false; 904 } 905 906 hlist_for_each_entry_safe(dup, hlist_safe, 907 &stable_node->hlist, hlist_dup) { 908 VM_BUG_ON(!is_stable_node_dup(dup)); 909 if (remove_stable_node(dup)) 910 return true; 911 } 912 BUG_ON(!hlist_empty(&stable_node->hlist)); 913 free_stable_node_chain(stable_node, root); 914 return false; 915 } 916 917 static int remove_all_stable_nodes(void) 918 { 919 struct ksm_stable_node *stable_node, *next; 920 int nid; 921 int err = 0; 922 923 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 924 while (root_stable_tree[nid].rb_node) { 925 stable_node = rb_entry(root_stable_tree[nid].rb_node, 926 struct ksm_stable_node, node); 927 if (remove_stable_node_chain(stable_node, 928 root_stable_tree + nid)) { 929 err = -EBUSY; 930 break; /* proceed to next nid */ 931 } 932 cond_resched(); 933 } 934 } 935 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 936 if (remove_stable_node(stable_node)) 937 err = -EBUSY; 938 cond_resched(); 939 } 940 return err; 941 } 942 943 static int unmerge_and_remove_all_rmap_items(void) 944 { 945 struct ksm_mm_slot *mm_slot; 946 struct mm_slot *slot; 947 struct mm_struct *mm; 948 struct vm_area_struct *vma; 949 int err = 0; 950 951 spin_lock(&ksm_mmlist_lock); 952 slot = list_entry(ksm_mm_head.slot.mm_node.next, 953 struct mm_slot, mm_node); 954 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 955 spin_unlock(&ksm_mmlist_lock); 956 957 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head; 958 mm_slot = ksm_scan.mm_slot) { 959 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0); 960 961 mm = mm_slot->slot.mm; 962 mmap_read_lock(mm); 963 for_each_vma(vmi, vma) { 964 if (ksm_test_exit(mm)) 965 break; 966 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 967 continue; 968 err = unmerge_ksm_pages(vma, 969 vma->vm_start, vma->vm_end); 970 if (err) 971 goto error; 972 } 973 974 remove_trailing_rmap_items(&mm_slot->rmap_list); 975 mmap_read_unlock(mm); 976 977 spin_lock(&ksm_mmlist_lock); 978 slot = list_entry(mm_slot->slot.mm_node.next, 979 struct mm_slot, mm_node); 980 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 981 if (ksm_test_exit(mm)) { 982 hash_del(&mm_slot->slot.hash); 983 list_del(&mm_slot->slot.mm_node); 984 spin_unlock(&ksm_mmlist_lock); 985 986 mm_slot_free(mm_slot_cache, mm_slot); 987 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 988 mmdrop(mm); 989 } else 990 spin_unlock(&ksm_mmlist_lock); 991 } 992 993 /* Clean up stable nodes, but don't worry if some are still busy */ 994 remove_all_stable_nodes(); 995 ksm_scan.seqnr = 0; 996 return 0; 997 998 error: 999 mmap_read_unlock(mm); 1000 spin_lock(&ksm_mmlist_lock); 1001 ksm_scan.mm_slot = &ksm_mm_head; 1002 spin_unlock(&ksm_mmlist_lock); 1003 return err; 1004 } 1005 #endif /* CONFIG_SYSFS */ 1006 1007 static u32 calc_checksum(struct page *page) 1008 { 1009 u32 checksum; 1010 void *addr = kmap_atomic(page); 1011 checksum = xxhash(addr, PAGE_SIZE, 0); 1012 kunmap_atomic(addr); 1013 return checksum; 1014 } 1015 1016 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1017 pte_t *orig_pte) 1018 { 1019 struct mm_struct *mm = vma->vm_mm; 1020 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0); 1021 int swapped; 1022 int err = -EFAULT; 1023 struct mmu_notifier_range range; 1024 bool anon_exclusive; 1025 1026 pvmw.address = page_address_in_vma(page, vma); 1027 if (pvmw.address == -EFAULT) 1028 goto out; 1029 1030 BUG_ON(PageTransCompound(page)); 1031 1032 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 1033 pvmw.address, 1034 pvmw.address + PAGE_SIZE); 1035 mmu_notifier_invalidate_range_start(&range); 1036 1037 if (!page_vma_mapped_walk(&pvmw)) 1038 goto out_mn; 1039 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1040 goto out_unlock; 1041 1042 anon_exclusive = PageAnonExclusive(page); 1043 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1044 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) || 1045 anon_exclusive || mm_tlb_flush_pending(mm)) { 1046 pte_t entry; 1047 1048 swapped = PageSwapCache(page); 1049 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1050 /* 1051 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1052 * take any lock, therefore the check that we are going to make 1053 * with the pagecount against the mapcount is racy and 1054 * O_DIRECT can happen right after the check. 1055 * So we clear the pte and flush the tlb before the check 1056 * this assure us that no O_DIRECT can happen after the check 1057 * or in the middle of the check. 1058 * 1059 * No need to notify as we are downgrading page table to read 1060 * only not changing it to point to a new page. 1061 * 1062 * See Documentation/mm/mmu_notifier.rst 1063 */ 1064 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1065 /* 1066 * Check that no O_DIRECT or similar I/O is in progress on the 1067 * page 1068 */ 1069 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1070 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1071 goto out_unlock; 1072 } 1073 1074 /* See page_try_share_anon_rmap(): clear PTE first. */ 1075 if (anon_exclusive && page_try_share_anon_rmap(page)) { 1076 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1077 goto out_unlock; 1078 } 1079 1080 if (pte_dirty(entry)) 1081 set_page_dirty(page); 1082 1083 if (pte_protnone(entry)) 1084 entry = pte_mkclean(pte_clear_savedwrite(entry)); 1085 else 1086 entry = pte_mkclean(pte_wrprotect(entry)); 1087 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1088 } 1089 *orig_pte = *pvmw.pte; 1090 err = 0; 1091 1092 out_unlock: 1093 page_vma_mapped_walk_done(&pvmw); 1094 out_mn: 1095 mmu_notifier_invalidate_range_end(&range); 1096 out: 1097 return err; 1098 } 1099 1100 /** 1101 * replace_page - replace page in vma by new ksm page 1102 * @vma: vma that holds the pte pointing to page 1103 * @page: the page we are replacing by kpage 1104 * @kpage: the ksm page we replace page by 1105 * @orig_pte: the original value of the pte 1106 * 1107 * Returns 0 on success, -EFAULT on failure. 1108 */ 1109 static int replace_page(struct vm_area_struct *vma, struct page *page, 1110 struct page *kpage, pte_t orig_pte) 1111 { 1112 struct mm_struct *mm = vma->vm_mm; 1113 struct folio *folio; 1114 pmd_t *pmd; 1115 pmd_t pmde; 1116 pte_t *ptep; 1117 pte_t newpte; 1118 spinlock_t *ptl; 1119 unsigned long addr; 1120 int err = -EFAULT; 1121 struct mmu_notifier_range range; 1122 1123 addr = page_address_in_vma(page, vma); 1124 if (addr == -EFAULT) 1125 goto out; 1126 1127 pmd = mm_find_pmd(mm, addr); 1128 if (!pmd) 1129 goto out; 1130 /* 1131 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 1132 * without holding anon_vma lock for write. So when looking for a 1133 * genuine pmde (in which to find pte), test present and !THP together. 1134 */ 1135 pmde = *pmd; 1136 barrier(); 1137 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 1138 goto out; 1139 1140 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr, 1141 addr + PAGE_SIZE); 1142 mmu_notifier_invalidate_range_start(&range); 1143 1144 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1145 if (!pte_same(*ptep, orig_pte)) { 1146 pte_unmap_unlock(ptep, ptl); 1147 goto out_mn; 1148 } 1149 VM_BUG_ON_PAGE(PageAnonExclusive(page), page); 1150 VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage); 1151 1152 /* 1153 * No need to check ksm_use_zero_pages here: we can only have a 1154 * zero_page here if ksm_use_zero_pages was enabled already. 1155 */ 1156 if (!is_zero_pfn(page_to_pfn(kpage))) { 1157 get_page(kpage); 1158 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE); 1159 newpte = mk_pte(kpage, vma->vm_page_prot); 1160 } else { 1161 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1162 vma->vm_page_prot)); 1163 /* 1164 * We're replacing an anonymous page with a zero page, which is 1165 * not anonymous. We need to do proper accounting otherwise we 1166 * will get wrong values in /proc, and a BUG message in dmesg 1167 * when tearing down the mm. 1168 */ 1169 dec_mm_counter(mm, MM_ANONPAGES); 1170 } 1171 1172 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1173 /* 1174 * No need to notify as we are replacing a read only page with another 1175 * read only page with the same content. 1176 * 1177 * See Documentation/mm/mmu_notifier.rst 1178 */ 1179 ptep_clear_flush(vma, addr, ptep); 1180 set_pte_at_notify(mm, addr, ptep, newpte); 1181 1182 folio = page_folio(page); 1183 page_remove_rmap(page, vma, false); 1184 if (!folio_mapped(folio)) 1185 folio_free_swap(folio); 1186 folio_put(folio); 1187 1188 pte_unmap_unlock(ptep, ptl); 1189 err = 0; 1190 out_mn: 1191 mmu_notifier_invalidate_range_end(&range); 1192 out: 1193 return err; 1194 } 1195 1196 /* 1197 * try_to_merge_one_page - take two pages and merge them into one 1198 * @vma: the vma that holds the pte pointing to page 1199 * @page: the PageAnon page that we want to replace with kpage 1200 * @kpage: the PageKsm page that we want to map instead of page, 1201 * or NULL the first time when we want to use page as kpage. 1202 * 1203 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1204 */ 1205 static int try_to_merge_one_page(struct vm_area_struct *vma, 1206 struct page *page, struct page *kpage) 1207 { 1208 pte_t orig_pte = __pte(0); 1209 int err = -EFAULT; 1210 1211 if (page == kpage) /* ksm page forked */ 1212 return 0; 1213 1214 if (!PageAnon(page)) 1215 goto out; 1216 1217 /* 1218 * We need the page lock to read a stable PageSwapCache in 1219 * write_protect_page(). We use trylock_page() instead of 1220 * lock_page() because we don't want to wait here - we 1221 * prefer to continue scanning and merging different pages, 1222 * then come back to this page when it is unlocked. 1223 */ 1224 if (!trylock_page(page)) 1225 goto out; 1226 1227 if (PageTransCompound(page)) { 1228 if (split_huge_page(page)) 1229 goto out_unlock; 1230 } 1231 1232 /* 1233 * If this anonymous page is mapped only here, its pte may need 1234 * to be write-protected. If it's mapped elsewhere, all of its 1235 * ptes are necessarily already write-protected. But in either 1236 * case, we need to lock and check page_count is not raised. 1237 */ 1238 if (write_protect_page(vma, page, &orig_pte) == 0) { 1239 if (!kpage) { 1240 /* 1241 * While we hold page lock, upgrade page from 1242 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1243 * stable_tree_insert() will update stable_node. 1244 */ 1245 set_page_stable_node(page, NULL); 1246 mark_page_accessed(page); 1247 /* 1248 * Page reclaim just frees a clean page with no dirty 1249 * ptes: make sure that the ksm page would be swapped. 1250 */ 1251 if (!PageDirty(page)) 1252 SetPageDirty(page); 1253 err = 0; 1254 } else if (pages_identical(page, kpage)) 1255 err = replace_page(vma, page, kpage, orig_pte); 1256 } 1257 1258 out_unlock: 1259 unlock_page(page); 1260 out: 1261 return err; 1262 } 1263 1264 /* 1265 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1266 * but no new kernel page is allocated: kpage must already be a ksm page. 1267 * 1268 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1269 */ 1270 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item, 1271 struct page *page, struct page *kpage) 1272 { 1273 struct mm_struct *mm = rmap_item->mm; 1274 struct vm_area_struct *vma; 1275 int err = -EFAULT; 1276 1277 mmap_read_lock(mm); 1278 vma = find_mergeable_vma(mm, rmap_item->address); 1279 if (!vma) 1280 goto out; 1281 1282 err = try_to_merge_one_page(vma, page, kpage); 1283 if (err) 1284 goto out; 1285 1286 /* Unstable nid is in union with stable anon_vma: remove first */ 1287 remove_rmap_item_from_tree(rmap_item); 1288 1289 /* Must get reference to anon_vma while still holding mmap_lock */ 1290 rmap_item->anon_vma = vma->anon_vma; 1291 get_anon_vma(vma->anon_vma); 1292 out: 1293 mmap_read_unlock(mm); 1294 return err; 1295 } 1296 1297 /* 1298 * try_to_merge_two_pages - take two identical pages and prepare them 1299 * to be merged into one page. 1300 * 1301 * This function returns the kpage if we successfully merged two identical 1302 * pages into one ksm page, NULL otherwise. 1303 * 1304 * Note that this function upgrades page to ksm page: if one of the pages 1305 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1306 */ 1307 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item, 1308 struct page *page, 1309 struct ksm_rmap_item *tree_rmap_item, 1310 struct page *tree_page) 1311 { 1312 int err; 1313 1314 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1315 if (!err) { 1316 err = try_to_merge_with_ksm_page(tree_rmap_item, 1317 tree_page, page); 1318 /* 1319 * If that fails, we have a ksm page with only one pte 1320 * pointing to it: so break it. 1321 */ 1322 if (err) 1323 break_cow(rmap_item); 1324 } 1325 return err ? NULL : page; 1326 } 1327 1328 static __always_inline 1329 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset) 1330 { 1331 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1332 /* 1333 * Check that at least one mapping still exists, otherwise 1334 * there's no much point to merge and share with this 1335 * stable_node, as the underlying tree_page of the other 1336 * sharer is going to be freed soon. 1337 */ 1338 return stable_node->rmap_hlist_len && 1339 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1340 } 1341 1342 static __always_inline 1343 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node) 1344 { 1345 return __is_page_sharing_candidate(stable_node, 0); 1346 } 1347 1348 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup, 1349 struct ksm_stable_node **_stable_node, 1350 struct rb_root *root, 1351 bool prune_stale_stable_nodes) 1352 { 1353 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1354 struct hlist_node *hlist_safe; 1355 struct page *_tree_page, *tree_page = NULL; 1356 int nr = 0; 1357 int found_rmap_hlist_len; 1358 1359 if (!prune_stale_stable_nodes || 1360 time_before(jiffies, stable_node->chain_prune_time + 1361 msecs_to_jiffies( 1362 ksm_stable_node_chains_prune_millisecs))) 1363 prune_stale_stable_nodes = false; 1364 else 1365 stable_node->chain_prune_time = jiffies; 1366 1367 hlist_for_each_entry_safe(dup, hlist_safe, 1368 &stable_node->hlist, hlist_dup) { 1369 cond_resched(); 1370 /* 1371 * We must walk all stable_node_dup to prune the stale 1372 * stable nodes during lookup. 1373 * 1374 * get_ksm_page can drop the nodes from the 1375 * stable_node->hlist if they point to freed pages 1376 * (that's why we do a _safe walk). The "dup" 1377 * stable_node parameter itself will be freed from 1378 * under us if it returns NULL. 1379 */ 1380 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK); 1381 if (!_tree_page) 1382 continue; 1383 nr += 1; 1384 if (is_page_sharing_candidate(dup)) { 1385 if (!found || 1386 dup->rmap_hlist_len > found_rmap_hlist_len) { 1387 if (found) 1388 put_page(tree_page); 1389 found = dup; 1390 found_rmap_hlist_len = found->rmap_hlist_len; 1391 tree_page = _tree_page; 1392 1393 /* skip put_page for found dup */ 1394 if (!prune_stale_stable_nodes) 1395 break; 1396 continue; 1397 } 1398 } 1399 put_page(_tree_page); 1400 } 1401 1402 if (found) { 1403 /* 1404 * nr is counting all dups in the chain only if 1405 * prune_stale_stable_nodes is true, otherwise we may 1406 * break the loop at nr == 1 even if there are 1407 * multiple entries. 1408 */ 1409 if (prune_stale_stable_nodes && nr == 1) { 1410 /* 1411 * If there's not just one entry it would 1412 * corrupt memory, better BUG_ON. In KSM 1413 * context with no lock held it's not even 1414 * fatal. 1415 */ 1416 BUG_ON(stable_node->hlist.first->next); 1417 1418 /* 1419 * There's just one entry and it is below the 1420 * deduplication limit so drop the chain. 1421 */ 1422 rb_replace_node(&stable_node->node, &found->node, 1423 root); 1424 free_stable_node(stable_node); 1425 ksm_stable_node_chains--; 1426 ksm_stable_node_dups--; 1427 /* 1428 * NOTE: the caller depends on the stable_node 1429 * to be equal to stable_node_dup if the chain 1430 * was collapsed. 1431 */ 1432 *_stable_node = found; 1433 /* 1434 * Just for robustness, as stable_node is 1435 * otherwise left as a stable pointer, the 1436 * compiler shall optimize it away at build 1437 * time. 1438 */ 1439 stable_node = NULL; 1440 } else if (stable_node->hlist.first != &found->hlist_dup && 1441 __is_page_sharing_candidate(found, 1)) { 1442 /* 1443 * If the found stable_node dup can accept one 1444 * more future merge (in addition to the one 1445 * that is underway) and is not at the head of 1446 * the chain, put it there so next search will 1447 * be quicker in the !prune_stale_stable_nodes 1448 * case. 1449 * 1450 * NOTE: it would be inaccurate to use nr > 1 1451 * instead of checking the hlist.first pointer 1452 * directly, because in the 1453 * prune_stale_stable_nodes case "nr" isn't 1454 * the position of the found dup in the chain, 1455 * but the total number of dups in the chain. 1456 */ 1457 hlist_del(&found->hlist_dup); 1458 hlist_add_head(&found->hlist_dup, 1459 &stable_node->hlist); 1460 } 1461 } 1462 1463 *_stable_node_dup = found; 1464 return tree_page; 1465 } 1466 1467 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node, 1468 struct rb_root *root) 1469 { 1470 if (!is_stable_node_chain(stable_node)) 1471 return stable_node; 1472 if (hlist_empty(&stable_node->hlist)) { 1473 free_stable_node_chain(stable_node, root); 1474 return NULL; 1475 } 1476 return hlist_entry(stable_node->hlist.first, 1477 typeof(*stable_node), hlist_dup); 1478 } 1479 1480 /* 1481 * Like for get_ksm_page, this function can free the *_stable_node and 1482 * *_stable_node_dup if the returned tree_page is NULL. 1483 * 1484 * It can also free and overwrite *_stable_node with the found 1485 * stable_node_dup if the chain is collapsed (in which case 1486 * *_stable_node will be equal to *_stable_node_dup like if the chain 1487 * never existed). It's up to the caller to verify tree_page is not 1488 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1489 * 1490 * *_stable_node_dup is really a second output parameter of this 1491 * function and will be overwritten in all cases, the caller doesn't 1492 * need to initialize it. 1493 */ 1494 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup, 1495 struct ksm_stable_node **_stable_node, 1496 struct rb_root *root, 1497 bool prune_stale_stable_nodes) 1498 { 1499 struct ksm_stable_node *stable_node = *_stable_node; 1500 if (!is_stable_node_chain(stable_node)) { 1501 if (is_page_sharing_candidate(stable_node)) { 1502 *_stable_node_dup = stable_node; 1503 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); 1504 } 1505 /* 1506 * _stable_node_dup set to NULL means the stable_node 1507 * reached the ksm_max_page_sharing limit. 1508 */ 1509 *_stable_node_dup = NULL; 1510 return NULL; 1511 } 1512 return stable_node_dup(_stable_node_dup, _stable_node, root, 1513 prune_stale_stable_nodes); 1514 } 1515 1516 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d, 1517 struct ksm_stable_node **s_n, 1518 struct rb_root *root) 1519 { 1520 return __stable_node_chain(s_n_d, s_n, root, true); 1521 } 1522 1523 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d, 1524 struct ksm_stable_node *s_n, 1525 struct rb_root *root) 1526 { 1527 struct ksm_stable_node *old_stable_node = s_n; 1528 struct page *tree_page; 1529 1530 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1531 /* not pruning dups so s_n cannot have changed */ 1532 VM_BUG_ON(s_n != old_stable_node); 1533 return tree_page; 1534 } 1535 1536 /* 1537 * stable_tree_search - search for page inside the stable tree 1538 * 1539 * This function checks if there is a page inside the stable tree 1540 * with identical content to the page that we are scanning right now. 1541 * 1542 * This function returns the stable tree node of identical content if found, 1543 * NULL otherwise. 1544 */ 1545 static struct page *stable_tree_search(struct page *page) 1546 { 1547 int nid; 1548 struct rb_root *root; 1549 struct rb_node **new; 1550 struct rb_node *parent; 1551 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any; 1552 struct ksm_stable_node *page_node; 1553 1554 page_node = page_stable_node(page); 1555 if (page_node && page_node->head != &migrate_nodes) { 1556 /* ksm page forked */ 1557 get_page(page); 1558 return page; 1559 } 1560 1561 nid = get_kpfn_nid(page_to_pfn(page)); 1562 root = root_stable_tree + nid; 1563 again: 1564 new = &root->rb_node; 1565 parent = NULL; 1566 1567 while (*new) { 1568 struct page *tree_page; 1569 int ret; 1570 1571 cond_resched(); 1572 stable_node = rb_entry(*new, struct ksm_stable_node, node); 1573 stable_node_any = NULL; 1574 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1575 /* 1576 * NOTE: stable_node may have been freed by 1577 * chain_prune() if the returned stable_node_dup is 1578 * not NULL. stable_node_dup may have been inserted in 1579 * the rbtree instead as a regular stable_node (in 1580 * order to collapse the stable_node chain if a single 1581 * stable_node dup was found in it). In such case the 1582 * stable_node is overwritten by the callee to point 1583 * to the stable_node_dup that was collapsed in the 1584 * stable rbtree and stable_node will be equal to 1585 * stable_node_dup like if the chain never existed. 1586 */ 1587 if (!stable_node_dup) { 1588 /* 1589 * Either all stable_node dups were full in 1590 * this stable_node chain, or this chain was 1591 * empty and should be rb_erased. 1592 */ 1593 stable_node_any = stable_node_dup_any(stable_node, 1594 root); 1595 if (!stable_node_any) { 1596 /* rb_erase just run */ 1597 goto again; 1598 } 1599 /* 1600 * Take any of the stable_node dups page of 1601 * this stable_node chain to let the tree walk 1602 * continue. All KSM pages belonging to the 1603 * stable_node dups in a stable_node chain 1604 * have the same content and they're 1605 * write protected at all times. Any will work 1606 * fine to continue the walk. 1607 */ 1608 tree_page = get_ksm_page(stable_node_any, 1609 GET_KSM_PAGE_NOLOCK); 1610 } 1611 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1612 if (!tree_page) { 1613 /* 1614 * If we walked over a stale stable_node, 1615 * get_ksm_page() will call rb_erase() and it 1616 * may rebalance the tree from under us. So 1617 * restart the search from scratch. Returning 1618 * NULL would be safe too, but we'd generate 1619 * false negative insertions just because some 1620 * stable_node was stale. 1621 */ 1622 goto again; 1623 } 1624 1625 ret = memcmp_pages(page, tree_page); 1626 put_page(tree_page); 1627 1628 parent = *new; 1629 if (ret < 0) 1630 new = &parent->rb_left; 1631 else if (ret > 0) 1632 new = &parent->rb_right; 1633 else { 1634 if (page_node) { 1635 VM_BUG_ON(page_node->head != &migrate_nodes); 1636 /* 1637 * Test if the migrated page should be merged 1638 * into a stable node dup. If the mapcount is 1639 * 1 we can migrate it with another KSM page 1640 * without adding it to the chain. 1641 */ 1642 if (page_mapcount(page) > 1) 1643 goto chain_append; 1644 } 1645 1646 if (!stable_node_dup) { 1647 /* 1648 * If the stable_node is a chain and 1649 * we got a payload match in memcmp 1650 * but we cannot merge the scanned 1651 * page in any of the existing 1652 * stable_node dups because they're 1653 * all full, we need to wait the 1654 * scanned page to find itself a match 1655 * in the unstable tree to create a 1656 * brand new KSM page to add later to 1657 * the dups of this stable_node. 1658 */ 1659 return NULL; 1660 } 1661 1662 /* 1663 * Lock and unlock the stable_node's page (which 1664 * might already have been migrated) so that page 1665 * migration is sure to notice its raised count. 1666 * It would be more elegant to return stable_node 1667 * than kpage, but that involves more changes. 1668 */ 1669 tree_page = get_ksm_page(stable_node_dup, 1670 GET_KSM_PAGE_TRYLOCK); 1671 1672 if (PTR_ERR(tree_page) == -EBUSY) 1673 return ERR_PTR(-EBUSY); 1674 1675 if (unlikely(!tree_page)) 1676 /* 1677 * The tree may have been rebalanced, 1678 * so re-evaluate parent and new. 1679 */ 1680 goto again; 1681 unlock_page(tree_page); 1682 1683 if (get_kpfn_nid(stable_node_dup->kpfn) != 1684 NUMA(stable_node_dup->nid)) { 1685 put_page(tree_page); 1686 goto replace; 1687 } 1688 return tree_page; 1689 } 1690 } 1691 1692 if (!page_node) 1693 return NULL; 1694 1695 list_del(&page_node->list); 1696 DO_NUMA(page_node->nid = nid); 1697 rb_link_node(&page_node->node, parent, new); 1698 rb_insert_color(&page_node->node, root); 1699 out: 1700 if (is_page_sharing_candidate(page_node)) { 1701 get_page(page); 1702 return page; 1703 } else 1704 return NULL; 1705 1706 replace: 1707 /* 1708 * If stable_node was a chain and chain_prune collapsed it, 1709 * stable_node has been updated to be the new regular 1710 * stable_node. A collapse of the chain is indistinguishable 1711 * from the case there was no chain in the stable 1712 * rbtree. Otherwise stable_node is the chain and 1713 * stable_node_dup is the dup to replace. 1714 */ 1715 if (stable_node_dup == stable_node) { 1716 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1717 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1718 /* there is no chain */ 1719 if (page_node) { 1720 VM_BUG_ON(page_node->head != &migrate_nodes); 1721 list_del(&page_node->list); 1722 DO_NUMA(page_node->nid = nid); 1723 rb_replace_node(&stable_node_dup->node, 1724 &page_node->node, 1725 root); 1726 if (is_page_sharing_candidate(page_node)) 1727 get_page(page); 1728 else 1729 page = NULL; 1730 } else { 1731 rb_erase(&stable_node_dup->node, root); 1732 page = NULL; 1733 } 1734 } else { 1735 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1736 __stable_node_dup_del(stable_node_dup); 1737 if (page_node) { 1738 VM_BUG_ON(page_node->head != &migrate_nodes); 1739 list_del(&page_node->list); 1740 DO_NUMA(page_node->nid = nid); 1741 stable_node_chain_add_dup(page_node, stable_node); 1742 if (is_page_sharing_candidate(page_node)) 1743 get_page(page); 1744 else 1745 page = NULL; 1746 } else { 1747 page = NULL; 1748 } 1749 } 1750 stable_node_dup->head = &migrate_nodes; 1751 list_add(&stable_node_dup->list, stable_node_dup->head); 1752 return page; 1753 1754 chain_append: 1755 /* stable_node_dup could be null if it reached the limit */ 1756 if (!stable_node_dup) 1757 stable_node_dup = stable_node_any; 1758 /* 1759 * If stable_node was a chain and chain_prune collapsed it, 1760 * stable_node has been updated to be the new regular 1761 * stable_node. A collapse of the chain is indistinguishable 1762 * from the case there was no chain in the stable 1763 * rbtree. Otherwise stable_node is the chain and 1764 * stable_node_dup is the dup to replace. 1765 */ 1766 if (stable_node_dup == stable_node) { 1767 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1768 /* chain is missing so create it */ 1769 stable_node = alloc_stable_node_chain(stable_node_dup, 1770 root); 1771 if (!stable_node) 1772 return NULL; 1773 } 1774 /* 1775 * Add this stable_node dup that was 1776 * migrated to the stable_node chain 1777 * of the current nid for this page 1778 * content. 1779 */ 1780 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1781 VM_BUG_ON(page_node->head != &migrate_nodes); 1782 list_del(&page_node->list); 1783 DO_NUMA(page_node->nid = nid); 1784 stable_node_chain_add_dup(page_node, stable_node); 1785 goto out; 1786 } 1787 1788 /* 1789 * stable_tree_insert - insert stable tree node pointing to new ksm page 1790 * into the stable tree. 1791 * 1792 * This function returns the stable tree node just allocated on success, 1793 * NULL otherwise. 1794 */ 1795 static struct ksm_stable_node *stable_tree_insert(struct page *kpage) 1796 { 1797 int nid; 1798 unsigned long kpfn; 1799 struct rb_root *root; 1800 struct rb_node **new; 1801 struct rb_node *parent; 1802 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any; 1803 bool need_chain = false; 1804 1805 kpfn = page_to_pfn(kpage); 1806 nid = get_kpfn_nid(kpfn); 1807 root = root_stable_tree + nid; 1808 again: 1809 parent = NULL; 1810 new = &root->rb_node; 1811 1812 while (*new) { 1813 struct page *tree_page; 1814 int ret; 1815 1816 cond_resched(); 1817 stable_node = rb_entry(*new, struct ksm_stable_node, node); 1818 stable_node_any = NULL; 1819 tree_page = chain(&stable_node_dup, stable_node, root); 1820 if (!stable_node_dup) { 1821 /* 1822 * Either all stable_node dups were full in 1823 * this stable_node chain, or this chain was 1824 * empty and should be rb_erased. 1825 */ 1826 stable_node_any = stable_node_dup_any(stable_node, 1827 root); 1828 if (!stable_node_any) { 1829 /* rb_erase just run */ 1830 goto again; 1831 } 1832 /* 1833 * Take any of the stable_node dups page of 1834 * this stable_node chain to let the tree walk 1835 * continue. All KSM pages belonging to the 1836 * stable_node dups in a stable_node chain 1837 * have the same content and they're 1838 * write protected at all times. Any will work 1839 * fine to continue the walk. 1840 */ 1841 tree_page = get_ksm_page(stable_node_any, 1842 GET_KSM_PAGE_NOLOCK); 1843 } 1844 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1845 if (!tree_page) { 1846 /* 1847 * If we walked over a stale stable_node, 1848 * get_ksm_page() will call rb_erase() and it 1849 * may rebalance the tree from under us. So 1850 * restart the search from scratch. Returning 1851 * NULL would be safe too, but we'd generate 1852 * false negative insertions just because some 1853 * stable_node was stale. 1854 */ 1855 goto again; 1856 } 1857 1858 ret = memcmp_pages(kpage, tree_page); 1859 put_page(tree_page); 1860 1861 parent = *new; 1862 if (ret < 0) 1863 new = &parent->rb_left; 1864 else if (ret > 0) 1865 new = &parent->rb_right; 1866 else { 1867 need_chain = true; 1868 break; 1869 } 1870 } 1871 1872 stable_node_dup = alloc_stable_node(); 1873 if (!stable_node_dup) 1874 return NULL; 1875 1876 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1877 stable_node_dup->kpfn = kpfn; 1878 set_page_stable_node(kpage, stable_node_dup); 1879 stable_node_dup->rmap_hlist_len = 0; 1880 DO_NUMA(stable_node_dup->nid = nid); 1881 if (!need_chain) { 1882 rb_link_node(&stable_node_dup->node, parent, new); 1883 rb_insert_color(&stable_node_dup->node, root); 1884 } else { 1885 if (!is_stable_node_chain(stable_node)) { 1886 struct ksm_stable_node *orig = stable_node; 1887 /* chain is missing so create it */ 1888 stable_node = alloc_stable_node_chain(orig, root); 1889 if (!stable_node) { 1890 free_stable_node(stable_node_dup); 1891 return NULL; 1892 } 1893 } 1894 stable_node_chain_add_dup(stable_node_dup, stable_node); 1895 } 1896 1897 return stable_node_dup; 1898 } 1899 1900 /* 1901 * unstable_tree_search_insert - search for identical page, 1902 * else insert rmap_item into the unstable tree. 1903 * 1904 * This function searches for a page in the unstable tree identical to the 1905 * page currently being scanned; and if no identical page is found in the 1906 * tree, we insert rmap_item as a new object into the unstable tree. 1907 * 1908 * This function returns pointer to rmap_item found to be identical 1909 * to the currently scanned page, NULL otherwise. 1910 * 1911 * This function does both searching and inserting, because they share 1912 * the same walking algorithm in an rbtree. 1913 */ 1914 static 1915 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item, 1916 struct page *page, 1917 struct page **tree_pagep) 1918 { 1919 struct rb_node **new; 1920 struct rb_root *root; 1921 struct rb_node *parent = NULL; 1922 int nid; 1923 1924 nid = get_kpfn_nid(page_to_pfn(page)); 1925 root = root_unstable_tree + nid; 1926 new = &root->rb_node; 1927 1928 while (*new) { 1929 struct ksm_rmap_item *tree_rmap_item; 1930 struct page *tree_page; 1931 int ret; 1932 1933 cond_resched(); 1934 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node); 1935 tree_page = get_mergeable_page(tree_rmap_item); 1936 if (!tree_page) 1937 return NULL; 1938 1939 /* 1940 * Don't substitute a ksm page for a forked page. 1941 */ 1942 if (page == tree_page) { 1943 put_page(tree_page); 1944 return NULL; 1945 } 1946 1947 ret = memcmp_pages(page, tree_page); 1948 1949 parent = *new; 1950 if (ret < 0) { 1951 put_page(tree_page); 1952 new = &parent->rb_left; 1953 } else if (ret > 0) { 1954 put_page(tree_page); 1955 new = &parent->rb_right; 1956 } else if (!ksm_merge_across_nodes && 1957 page_to_nid(tree_page) != nid) { 1958 /* 1959 * If tree_page has been migrated to another NUMA node, 1960 * it will be flushed out and put in the right unstable 1961 * tree next time: only merge with it when across_nodes. 1962 */ 1963 put_page(tree_page); 1964 return NULL; 1965 } else { 1966 *tree_pagep = tree_page; 1967 return tree_rmap_item; 1968 } 1969 } 1970 1971 rmap_item->address |= UNSTABLE_FLAG; 1972 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1973 DO_NUMA(rmap_item->nid = nid); 1974 rb_link_node(&rmap_item->node, parent, new); 1975 rb_insert_color(&rmap_item->node, root); 1976 1977 ksm_pages_unshared++; 1978 return NULL; 1979 } 1980 1981 /* 1982 * stable_tree_append - add another rmap_item to the linked list of 1983 * rmap_items hanging off a given node of the stable tree, all sharing 1984 * the same ksm page. 1985 */ 1986 static void stable_tree_append(struct ksm_rmap_item *rmap_item, 1987 struct ksm_stable_node *stable_node, 1988 bool max_page_sharing_bypass) 1989 { 1990 /* 1991 * rmap won't find this mapping if we don't insert the 1992 * rmap_item in the right stable_node 1993 * duplicate. page_migration could break later if rmap breaks, 1994 * so we can as well crash here. We really need to check for 1995 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 1996 * for other negative values as an underflow if detected here 1997 * for the first time (and not when decreasing rmap_hlist_len) 1998 * would be sign of memory corruption in the stable_node. 1999 */ 2000 BUG_ON(stable_node->rmap_hlist_len < 0); 2001 2002 stable_node->rmap_hlist_len++; 2003 if (!max_page_sharing_bypass) 2004 /* possibly non fatal but unexpected overflow, only warn */ 2005 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2006 ksm_max_page_sharing); 2007 2008 rmap_item->head = stable_node; 2009 rmap_item->address |= STABLE_FLAG; 2010 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2011 2012 if (rmap_item->hlist.next) 2013 ksm_pages_sharing++; 2014 else 2015 ksm_pages_shared++; 2016 2017 rmap_item->mm->ksm_merging_pages++; 2018 } 2019 2020 /* 2021 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2022 * if not, compare checksum to previous and if it's the same, see if page can 2023 * be inserted into the unstable tree, or merged with a page already there and 2024 * both transferred to the stable tree. 2025 * 2026 * @page: the page that we are searching identical page to. 2027 * @rmap_item: the reverse mapping into the virtual address of this page 2028 */ 2029 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item) 2030 { 2031 struct mm_struct *mm = rmap_item->mm; 2032 struct ksm_rmap_item *tree_rmap_item; 2033 struct page *tree_page = NULL; 2034 struct ksm_stable_node *stable_node; 2035 struct page *kpage; 2036 unsigned int checksum; 2037 int err; 2038 bool max_page_sharing_bypass = false; 2039 2040 stable_node = page_stable_node(page); 2041 if (stable_node) { 2042 if (stable_node->head != &migrate_nodes && 2043 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2044 NUMA(stable_node->nid)) { 2045 stable_node_dup_del(stable_node); 2046 stable_node->head = &migrate_nodes; 2047 list_add(&stable_node->list, stable_node->head); 2048 } 2049 if (stable_node->head != &migrate_nodes && 2050 rmap_item->head == stable_node) 2051 return; 2052 /* 2053 * If it's a KSM fork, allow it to go over the sharing limit 2054 * without warnings. 2055 */ 2056 if (!is_page_sharing_candidate(stable_node)) 2057 max_page_sharing_bypass = true; 2058 } 2059 2060 /* We first start with searching the page inside the stable tree */ 2061 kpage = stable_tree_search(page); 2062 if (kpage == page && rmap_item->head == stable_node) { 2063 put_page(kpage); 2064 return; 2065 } 2066 2067 remove_rmap_item_from_tree(rmap_item); 2068 2069 if (kpage) { 2070 if (PTR_ERR(kpage) == -EBUSY) 2071 return; 2072 2073 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2074 if (!err) { 2075 /* 2076 * The page was successfully merged: 2077 * add its rmap_item to the stable tree. 2078 */ 2079 lock_page(kpage); 2080 stable_tree_append(rmap_item, page_stable_node(kpage), 2081 max_page_sharing_bypass); 2082 unlock_page(kpage); 2083 } 2084 put_page(kpage); 2085 return; 2086 } 2087 2088 /* 2089 * If the hash value of the page has changed from the last time 2090 * we calculated it, this page is changing frequently: therefore we 2091 * don't want to insert it in the unstable tree, and we don't want 2092 * to waste our time searching for something identical to it there. 2093 */ 2094 checksum = calc_checksum(page); 2095 if (rmap_item->oldchecksum != checksum) { 2096 rmap_item->oldchecksum = checksum; 2097 return; 2098 } 2099 2100 /* 2101 * Same checksum as an empty page. We attempt to merge it with the 2102 * appropriate zero page if the user enabled this via sysfs. 2103 */ 2104 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2105 struct vm_area_struct *vma; 2106 2107 mmap_read_lock(mm); 2108 vma = find_mergeable_vma(mm, rmap_item->address); 2109 if (vma) { 2110 err = try_to_merge_one_page(vma, page, 2111 ZERO_PAGE(rmap_item->address)); 2112 } else { 2113 /* 2114 * If the vma is out of date, we do not need to 2115 * continue. 2116 */ 2117 err = 0; 2118 } 2119 mmap_read_unlock(mm); 2120 /* 2121 * In case of failure, the page was not really empty, so we 2122 * need to continue. Otherwise we're done. 2123 */ 2124 if (!err) 2125 return; 2126 } 2127 tree_rmap_item = 2128 unstable_tree_search_insert(rmap_item, page, &tree_page); 2129 if (tree_rmap_item) { 2130 bool split; 2131 2132 kpage = try_to_merge_two_pages(rmap_item, page, 2133 tree_rmap_item, tree_page); 2134 /* 2135 * If both pages we tried to merge belong to the same compound 2136 * page, then we actually ended up increasing the reference 2137 * count of the same compound page twice, and split_huge_page 2138 * failed. 2139 * Here we set a flag if that happened, and we use it later to 2140 * try split_huge_page again. Since we call put_page right 2141 * afterwards, the reference count will be correct and 2142 * split_huge_page should succeed. 2143 */ 2144 split = PageTransCompound(page) 2145 && compound_head(page) == compound_head(tree_page); 2146 put_page(tree_page); 2147 if (kpage) { 2148 /* 2149 * The pages were successfully merged: insert new 2150 * node in the stable tree and add both rmap_items. 2151 */ 2152 lock_page(kpage); 2153 stable_node = stable_tree_insert(kpage); 2154 if (stable_node) { 2155 stable_tree_append(tree_rmap_item, stable_node, 2156 false); 2157 stable_tree_append(rmap_item, stable_node, 2158 false); 2159 } 2160 unlock_page(kpage); 2161 2162 /* 2163 * If we fail to insert the page into the stable tree, 2164 * we will have 2 virtual addresses that are pointing 2165 * to a ksm page left outside the stable tree, 2166 * in which case we need to break_cow on both. 2167 */ 2168 if (!stable_node) { 2169 break_cow(tree_rmap_item); 2170 break_cow(rmap_item); 2171 } 2172 } else if (split) { 2173 /* 2174 * We are here if we tried to merge two pages and 2175 * failed because they both belonged to the same 2176 * compound page. We will split the page now, but no 2177 * merging will take place. 2178 * We do not want to add the cost of a full lock; if 2179 * the page is locked, it is better to skip it and 2180 * perhaps try again later. 2181 */ 2182 if (!trylock_page(page)) 2183 return; 2184 split_huge_page(page); 2185 unlock_page(page); 2186 } 2187 } 2188 } 2189 2190 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot, 2191 struct ksm_rmap_item **rmap_list, 2192 unsigned long addr) 2193 { 2194 struct ksm_rmap_item *rmap_item; 2195 2196 while (*rmap_list) { 2197 rmap_item = *rmap_list; 2198 if ((rmap_item->address & PAGE_MASK) == addr) 2199 return rmap_item; 2200 if (rmap_item->address > addr) 2201 break; 2202 *rmap_list = rmap_item->rmap_list; 2203 remove_rmap_item_from_tree(rmap_item); 2204 free_rmap_item(rmap_item); 2205 } 2206 2207 rmap_item = alloc_rmap_item(); 2208 if (rmap_item) { 2209 /* It has already been zeroed */ 2210 rmap_item->mm = mm_slot->slot.mm; 2211 rmap_item->mm->ksm_rmap_items++; 2212 rmap_item->address = addr; 2213 rmap_item->rmap_list = *rmap_list; 2214 *rmap_list = rmap_item; 2215 } 2216 return rmap_item; 2217 } 2218 2219 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page) 2220 { 2221 struct mm_struct *mm; 2222 struct ksm_mm_slot *mm_slot; 2223 struct mm_slot *slot; 2224 struct vm_area_struct *vma; 2225 struct ksm_rmap_item *rmap_item; 2226 struct vma_iterator vmi; 2227 int nid; 2228 2229 if (list_empty(&ksm_mm_head.slot.mm_node)) 2230 return NULL; 2231 2232 mm_slot = ksm_scan.mm_slot; 2233 if (mm_slot == &ksm_mm_head) { 2234 /* 2235 * A number of pages can hang around indefinitely on per-cpu 2236 * pagevecs, raised page count preventing write_protect_page 2237 * from merging them. Though it doesn't really matter much, 2238 * it is puzzling to see some stuck in pages_volatile until 2239 * other activity jostles them out, and they also prevented 2240 * LTP's KSM test from succeeding deterministically; so drain 2241 * them here (here rather than on entry to ksm_do_scan(), 2242 * so we don't IPI too often when pages_to_scan is set low). 2243 */ 2244 lru_add_drain_all(); 2245 2246 /* 2247 * Whereas stale stable_nodes on the stable_tree itself 2248 * get pruned in the regular course of stable_tree_search(), 2249 * those moved out to the migrate_nodes list can accumulate: 2250 * so prune them once before each full scan. 2251 */ 2252 if (!ksm_merge_across_nodes) { 2253 struct ksm_stable_node *stable_node, *next; 2254 struct page *page; 2255 2256 list_for_each_entry_safe(stable_node, next, 2257 &migrate_nodes, list) { 2258 page = get_ksm_page(stable_node, 2259 GET_KSM_PAGE_NOLOCK); 2260 if (page) 2261 put_page(page); 2262 cond_resched(); 2263 } 2264 } 2265 2266 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2267 root_unstable_tree[nid] = RB_ROOT; 2268 2269 spin_lock(&ksm_mmlist_lock); 2270 slot = list_entry(mm_slot->slot.mm_node.next, 2271 struct mm_slot, mm_node); 2272 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2273 ksm_scan.mm_slot = mm_slot; 2274 spin_unlock(&ksm_mmlist_lock); 2275 /* 2276 * Although we tested list_empty() above, a racing __ksm_exit 2277 * of the last mm on the list may have removed it since then. 2278 */ 2279 if (mm_slot == &ksm_mm_head) 2280 return NULL; 2281 next_mm: 2282 ksm_scan.address = 0; 2283 ksm_scan.rmap_list = &mm_slot->rmap_list; 2284 } 2285 2286 slot = &mm_slot->slot; 2287 mm = slot->mm; 2288 vma_iter_init(&vmi, mm, ksm_scan.address); 2289 2290 mmap_read_lock(mm); 2291 if (ksm_test_exit(mm)) 2292 goto no_vmas; 2293 2294 for_each_vma(vmi, vma) { 2295 if (!(vma->vm_flags & VM_MERGEABLE)) 2296 continue; 2297 if (ksm_scan.address < vma->vm_start) 2298 ksm_scan.address = vma->vm_start; 2299 if (!vma->anon_vma) 2300 ksm_scan.address = vma->vm_end; 2301 2302 while (ksm_scan.address < vma->vm_end) { 2303 if (ksm_test_exit(mm)) 2304 break; 2305 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2306 if (IS_ERR_OR_NULL(*page)) { 2307 ksm_scan.address += PAGE_SIZE; 2308 cond_resched(); 2309 continue; 2310 } 2311 if (is_zone_device_page(*page)) 2312 goto next_page; 2313 if (PageAnon(*page)) { 2314 flush_anon_page(vma, *page, ksm_scan.address); 2315 flush_dcache_page(*page); 2316 rmap_item = get_next_rmap_item(mm_slot, 2317 ksm_scan.rmap_list, ksm_scan.address); 2318 if (rmap_item) { 2319 ksm_scan.rmap_list = 2320 &rmap_item->rmap_list; 2321 ksm_scan.address += PAGE_SIZE; 2322 } else 2323 put_page(*page); 2324 mmap_read_unlock(mm); 2325 return rmap_item; 2326 } 2327 next_page: 2328 put_page(*page); 2329 ksm_scan.address += PAGE_SIZE; 2330 cond_resched(); 2331 } 2332 } 2333 2334 if (ksm_test_exit(mm)) { 2335 no_vmas: 2336 ksm_scan.address = 0; 2337 ksm_scan.rmap_list = &mm_slot->rmap_list; 2338 } 2339 /* 2340 * Nuke all the rmap_items that are above this current rmap: 2341 * because there were no VM_MERGEABLE vmas with such addresses. 2342 */ 2343 remove_trailing_rmap_items(ksm_scan.rmap_list); 2344 2345 spin_lock(&ksm_mmlist_lock); 2346 slot = list_entry(mm_slot->slot.mm_node.next, 2347 struct mm_slot, mm_node); 2348 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2349 if (ksm_scan.address == 0) { 2350 /* 2351 * We've completed a full scan of all vmas, holding mmap_lock 2352 * throughout, and found no VM_MERGEABLE: so do the same as 2353 * __ksm_exit does to remove this mm from all our lists now. 2354 * This applies either when cleaning up after __ksm_exit 2355 * (but beware: we can reach here even before __ksm_exit), 2356 * or when all VM_MERGEABLE areas have been unmapped (and 2357 * mmap_lock then protects against race with MADV_MERGEABLE). 2358 */ 2359 hash_del(&mm_slot->slot.hash); 2360 list_del(&mm_slot->slot.mm_node); 2361 spin_unlock(&ksm_mmlist_lock); 2362 2363 mm_slot_free(mm_slot_cache, mm_slot); 2364 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2365 mmap_read_unlock(mm); 2366 mmdrop(mm); 2367 } else { 2368 mmap_read_unlock(mm); 2369 /* 2370 * mmap_read_unlock(mm) first because after 2371 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2372 * already have been freed under us by __ksm_exit() 2373 * because the "mm_slot" is still hashed and 2374 * ksm_scan.mm_slot doesn't point to it anymore. 2375 */ 2376 spin_unlock(&ksm_mmlist_lock); 2377 } 2378 2379 /* Repeat until we've completed scanning the whole list */ 2380 mm_slot = ksm_scan.mm_slot; 2381 if (mm_slot != &ksm_mm_head) 2382 goto next_mm; 2383 2384 ksm_scan.seqnr++; 2385 return NULL; 2386 } 2387 2388 /** 2389 * ksm_do_scan - the ksm scanner main worker function. 2390 * @scan_npages: number of pages we want to scan before we return. 2391 */ 2392 static void ksm_do_scan(unsigned int scan_npages) 2393 { 2394 struct ksm_rmap_item *rmap_item; 2395 struct page *page; 2396 2397 while (scan_npages-- && likely(!freezing(current))) { 2398 cond_resched(); 2399 rmap_item = scan_get_next_rmap_item(&page); 2400 if (!rmap_item) 2401 return; 2402 cmp_and_merge_page(page, rmap_item); 2403 put_page(page); 2404 } 2405 } 2406 2407 static int ksmd_should_run(void) 2408 { 2409 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node); 2410 } 2411 2412 static int ksm_scan_thread(void *nothing) 2413 { 2414 unsigned int sleep_ms; 2415 2416 set_freezable(); 2417 set_user_nice(current, 5); 2418 2419 while (!kthread_should_stop()) { 2420 mutex_lock(&ksm_thread_mutex); 2421 wait_while_offlining(); 2422 if (ksmd_should_run()) 2423 ksm_do_scan(ksm_thread_pages_to_scan); 2424 mutex_unlock(&ksm_thread_mutex); 2425 2426 try_to_freeze(); 2427 2428 if (ksmd_should_run()) { 2429 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2430 wait_event_interruptible_timeout(ksm_iter_wait, 2431 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2432 msecs_to_jiffies(sleep_ms)); 2433 } else { 2434 wait_event_freezable(ksm_thread_wait, 2435 ksmd_should_run() || kthread_should_stop()); 2436 } 2437 } 2438 return 0; 2439 } 2440 2441 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2442 unsigned long end, int advice, unsigned long *vm_flags) 2443 { 2444 struct mm_struct *mm = vma->vm_mm; 2445 int err; 2446 2447 switch (advice) { 2448 case MADV_MERGEABLE: 2449 /* 2450 * Be somewhat over-protective for now! 2451 */ 2452 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 2453 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 2454 VM_HUGETLB | VM_MIXEDMAP)) 2455 return 0; /* just ignore the advice */ 2456 2457 if (vma_is_dax(vma)) 2458 return 0; 2459 2460 #ifdef VM_SAO 2461 if (*vm_flags & VM_SAO) 2462 return 0; 2463 #endif 2464 #ifdef VM_SPARC_ADI 2465 if (*vm_flags & VM_SPARC_ADI) 2466 return 0; 2467 #endif 2468 2469 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2470 err = __ksm_enter(mm); 2471 if (err) 2472 return err; 2473 } 2474 2475 *vm_flags |= VM_MERGEABLE; 2476 break; 2477 2478 case MADV_UNMERGEABLE: 2479 if (!(*vm_flags & VM_MERGEABLE)) 2480 return 0; /* just ignore the advice */ 2481 2482 if (vma->anon_vma) { 2483 err = unmerge_ksm_pages(vma, start, end); 2484 if (err) 2485 return err; 2486 } 2487 2488 *vm_flags &= ~VM_MERGEABLE; 2489 break; 2490 } 2491 2492 return 0; 2493 } 2494 EXPORT_SYMBOL_GPL(ksm_madvise); 2495 2496 int __ksm_enter(struct mm_struct *mm) 2497 { 2498 struct ksm_mm_slot *mm_slot; 2499 struct mm_slot *slot; 2500 int needs_wakeup; 2501 2502 mm_slot = mm_slot_alloc(mm_slot_cache); 2503 if (!mm_slot) 2504 return -ENOMEM; 2505 2506 slot = &mm_slot->slot; 2507 2508 /* Check ksm_run too? Would need tighter locking */ 2509 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node); 2510 2511 spin_lock(&ksm_mmlist_lock); 2512 mm_slot_insert(mm_slots_hash, mm, slot); 2513 /* 2514 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2515 * insert just behind the scanning cursor, to let the area settle 2516 * down a little; when fork is followed by immediate exec, we don't 2517 * want ksmd to waste time setting up and tearing down an rmap_list. 2518 * 2519 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2520 * scanning cursor, otherwise KSM pages in newly forked mms will be 2521 * missed: then we might as well insert at the end of the list. 2522 */ 2523 if (ksm_run & KSM_RUN_UNMERGE) 2524 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node); 2525 else 2526 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node); 2527 spin_unlock(&ksm_mmlist_lock); 2528 2529 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2530 mmgrab(mm); 2531 2532 if (needs_wakeup) 2533 wake_up_interruptible(&ksm_thread_wait); 2534 2535 return 0; 2536 } 2537 2538 void __ksm_exit(struct mm_struct *mm) 2539 { 2540 struct ksm_mm_slot *mm_slot; 2541 struct mm_slot *slot; 2542 int easy_to_free = 0; 2543 2544 /* 2545 * This process is exiting: if it's straightforward (as is the 2546 * case when ksmd was never running), free mm_slot immediately. 2547 * But if it's at the cursor or has rmap_items linked to it, use 2548 * mmap_lock to synchronize with any break_cows before pagetables 2549 * are freed, and leave the mm_slot on the list for ksmd to free. 2550 * Beware: ksm may already have noticed it exiting and freed the slot. 2551 */ 2552 2553 spin_lock(&ksm_mmlist_lock); 2554 slot = mm_slot_lookup(mm_slots_hash, mm); 2555 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2556 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2557 if (!mm_slot->rmap_list) { 2558 hash_del(&slot->hash); 2559 list_del(&slot->mm_node); 2560 easy_to_free = 1; 2561 } else { 2562 list_move(&slot->mm_node, 2563 &ksm_scan.mm_slot->slot.mm_node); 2564 } 2565 } 2566 spin_unlock(&ksm_mmlist_lock); 2567 2568 if (easy_to_free) { 2569 mm_slot_free(mm_slot_cache, mm_slot); 2570 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2571 mmdrop(mm); 2572 } else if (mm_slot) { 2573 mmap_write_lock(mm); 2574 mmap_write_unlock(mm); 2575 } 2576 } 2577 2578 struct page *ksm_might_need_to_copy(struct page *page, 2579 struct vm_area_struct *vma, unsigned long address) 2580 { 2581 struct folio *folio = page_folio(page); 2582 struct anon_vma *anon_vma = folio_anon_vma(folio); 2583 struct page *new_page; 2584 2585 if (PageKsm(page)) { 2586 if (page_stable_node(page) && 2587 !(ksm_run & KSM_RUN_UNMERGE)) 2588 return page; /* no need to copy it */ 2589 } else if (!anon_vma) { 2590 return page; /* no need to copy it */ 2591 } else if (page->index == linear_page_index(vma, address) && 2592 anon_vma->root == vma->anon_vma->root) { 2593 return page; /* still no need to copy it */ 2594 } 2595 if (!PageUptodate(page)) 2596 return page; /* let do_swap_page report the error */ 2597 2598 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2599 if (new_page && 2600 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) { 2601 put_page(new_page); 2602 new_page = NULL; 2603 } 2604 if (new_page) { 2605 copy_user_highpage(new_page, page, address, vma); 2606 2607 SetPageDirty(new_page); 2608 __SetPageUptodate(new_page); 2609 __SetPageLocked(new_page); 2610 #ifdef CONFIG_SWAP 2611 count_vm_event(KSM_SWPIN_COPY); 2612 #endif 2613 } 2614 2615 return new_page; 2616 } 2617 2618 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc) 2619 { 2620 struct ksm_stable_node *stable_node; 2621 struct ksm_rmap_item *rmap_item; 2622 int search_new_forks = 0; 2623 2624 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio); 2625 2626 /* 2627 * Rely on the page lock to protect against concurrent modifications 2628 * to that page's node of the stable tree. 2629 */ 2630 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2631 2632 stable_node = folio_stable_node(folio); 2633 if (!stable_node) 2634 return; 2635 again: 2636 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2637 struct anon_vma *anon_vma = rmap_item->anon_vma; 2638 struct anon_vma_chain *vmac; 2639 struct vm_area_struct *vma; 2640 2641 cond_resched(); 2642 if (!anon_vma_trylock_read(anon_vma)) { 2643 if (rwc->try_lock) { 2644 rwc->contended = true; 2645 return; 2646 } 2647 anon_vma_lock_read(anon_vma); 2648 } 2649 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2650 0, ULONG_MAX) { 2651 unsigned long addr; 2652 2653 cond_resched(); 2654 vma = vmac->vma; 2655 2656 /* Ignore the stable/unstable/sqnr flags */ 2657 addr = rmap_item->address & PAGE_MASK; 2658 2659 if (addr < vma->vm_start || addr >= vma->vm_end) 2660 continue; 2661 /* 2662 * Initially we examine only the vma which covers this 2663 * rmap_item; but later, if there is still work to do, 2664 * we examine covering vmas in other mms: in case they 2665 * were forked from the original since ksmd passed. 2666 */ 2667 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2668 continue; 2669 2670 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2671 continue; 2672 2673 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) { 2674 anon_vma_unlock_read(anon_vma); 2675 return; 2676 } 2677 if (rwc->done && rwc->done(folio)) { 2678 anon_vma_unlock_read(anon_vma); 2679 return; 2680 } 2681 } 2682 anon_vma_unlock_read(anon_vma); 2683 } 2684 if (!search_new_forks++) 2685 goto again; 2686 } 2687 2688 #ifdef CONFIG_MIGRATION 2689 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio) 2690 { 2691 struct ksm_stable_node *stable_node; 2692 2693 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2694 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio); 2695 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio); 2696 2697 stable_node = folio_stable_node(folio); 2698 if (stable_node) { 2699 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio); 2700 stable_node->kpfn = folio_pfn(newfolio); 2701 /* 2702 * newfolio->mapping was set in advance; now we need smp_wmb() 2703 * to make sure that the new stable_node->kpfn is visible 2704 * to get_ksm_page() before it can see that folio->mapping 2705 * has gone stale (or that folio_test_swapcache has been cleared). 2706 */ 2707 smp_wmb(); 2708 set_page_stable_node(&folio->page, NULL); 2709 } 2710 } 2711 #endif /* CONFIG_MIGRATION */ 2712 2713 #ifdef CONFIG_MEMORY_HOTREMOVE 2714 static void wait_while_offlining(void) 2715 { 2716 while (ksm_run & KSM_RUN_OFFLINE) { 2717 mutex_unlock(&ksm_thread_mutex); 2718 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2719 TASK_UNINTERRUPTIBLE); 2720 mutex_lock(&ksm_thread_mutex); 2721 } 2722 } 2723 2724 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node, 2725 unsigned long start_pfn, 2726 unsigned long end_pfn) 2727 { 2728 if (stable_node->kpfn >= start_pfn && 2729 stable_node->kpfn < end_pfn) { 2730 /* 2731 * Don't get_ksm_page, page has already gone: 2732 * which is why we keep kpfn instead of page* 2733 */ 2734 remove_node_from_stable_tree(stable_node); 2735 return true; 2736 } 2737 return false; 2738 } 2739 2740 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node, 2741 unsigned long start_pfn, 2742 unsigned long end_pfn, 2743 struct rb_root *root) 2744 { 2745 struct ksm_stable_node *dup; 2746 struct hlist_node *hlist_safe; 2747 2748 if (!is_stable_node_chain(stable_node)) { 2749 VM_BUG_ON(is_stable_node_dup(stable_node)); 2750 return stable_node_dup_remove_range(stable_node, start_pfn, 2751 end_pfn); 2752 } 2753 2754 hlist_for_each_entry_safe(dup, hlist_safe, 2755 &stable_node->hlist, hlist_dup) { 2756 VM_BUG_ON(!is_stable_node_dup(dup)); 2757 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2758 } 2759 if (hlist_empty(&stable_node->hlist)) { 2760 free_stable_node_chain(stable_node, root); 2761 return true; /* notify caller that tree was rebalanced */ 2762 } else 2763 return false; 2764 } 2765 2766 static void ksm_check_stable_tree(unsigned long start_pfn, 2767 unsigned long end_pfn) 2768 { 2769 struct ksm_stable_node *stable_node, *next; 2770 struct rb_node *node; 2771 int nid; 2772 2773 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2774 node = rb_first(root_stable_tree + nid); 2775 while (node) { 2776 stable_node = rb_entry(node, struct ksm_stable_node, node); 2777 if (stable_node_chain_remove_range(stable_node, 2778 start_pfn, end_pfn, 2779 root_stable_tree + 2780 nid)) 2781 node = rb_first(root_stable_tree + nid); 2782 else 2783 node = rb_next(node); 2784 cond_resched(); 2785 } 2786 } 2787 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2788 if (stable_node->kpfn >= start_pfn && 2789 stable_node->kpfn < end_pfn) 2790 remove_node_from_stable_tree(stable_node); 2791 cond_resched(); 2792 } 2793 } 2794 2795 static int ksm_memory_callback(struct notifier_block *self, 2796 unsigned long action, void *arg) 2797 { 2798 struct memory_notify *mn = arg; 2799 2800 switch (action) { 2801 case MEM_GOING_OFFLINE: 2802 /* 2803 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2804 * and remove_all_stable_nodes() while memory is going offline: 2805 * it is unsafe for them to touch the stable tree at this time. 2806 * But unmerge_ksm_pages(), rmap lookups and other entry points 2807 * which do not need the ksm_thread_mutex are all safe. 2808 */ 2809 mutex_lock(&ksm_thread_mutex); 2810 ksm_run |= KSM_RUN_OFFLINE; 2811 mutex_unlock(&ksm_thread_mutex); 2812 break; 2813 2814 case MEM_OFFLINE: 2815 /* 2816 * Most of the work is done by page migration; but there might 2817 * be a few stable_nodes left over, still pointing to struct 2818 * pages which have been offlined: prune those from the tree, 2819 * otherwise get_ksm_page() might later try to access a 2820 * non-existent struct page. 2821 */ 2822 ksm_check_stable_tree(mn->start_pfn, 2823 mn->start_pfn + mn->nr_pages); 2824 fallthrough; 2825 case MEM_CANCEL_OFFLINE: 2826 mutex_lock(&ksm_thread_mutex); 2827 ksm_run &= ~KSM_RUN_OFFLINE; 2828 mutex_unlock(&ksm_thread_mutex); 2829 2830 smp_mb(); /* wake_up_bit advises this */ 2831 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2832 break; 2833 } 2834 return NOTIFY_OK; 2835 } 2836 #else 2837 static void wait_while_offlining(void) 2838 { 2839 } 2840 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2841 2842 #ifdef CONFIG_SYSFS 2843 /* 2844 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2845 */ 2846 2847 #define KSM_ATTR_RO(_name) \ 2848 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2849 #define KSM_ATTR(_name) \ 2850 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 2851 2852 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2853 struct kobj_attribute *attr, char *buf) 2854 { 2855 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs); 2856 } 2857 2858 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2859 struct kobj_attribute *attr, 2860 const char *buf, size_t count) 2861 { 2862 unsigned int msecs; 2863 int err; 2864 2865 err = kstrtouint(buf, 10, &msecs); 2866 if (err) 2867 return -EINVAL; 2868 2869 ksm_thread_sleep_millisecs = msecs; 2870 wake_up_interruptible(&ksm_iter_wait); 2871 2872 return count; 2873 } 2874 KSM_ATTR(sleep_millisecs); 2875 2876 static ssize_t pages_to_scan_show(struct kobject *kobj, 2877 struct kobj_attribute *attr, char *buf) 2878 { 2879 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan); 2880 } 2881 2882 static ssize_t pages_to_scan_store(struct kobject *kobj, 2883 struct kobj_attribute *attr, 2884 const char *buf, size_t count) 2885 { 2886 unsigned int nr_pages; 2887 int err; 2888 2889 err = kstrtouint(buf, 10, &nr_pages); 2890 if (err) 2891 return -EINVAL; 2892 2893 ksm_thread_pages_to_scan = nr_pages; 2894 2895 return count; 2896 } 2897 KSM_ATTR(pages_to_scan); 2898 2899 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2900 char *buf) 2901 { 2902 return sysfs_emit(buf, "%lu\n", ksm_run); 2903 } 2904 2905 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2906 const char *buf, size_t count) 2907 { 2908 unsigned int flags; 2909 int err; 2910 2911 err = kstrtouint(buf, 10, &flags); 2912 if (err) 2913 return -EINVAL; 2914 if (flags > KSM_RUN_UNMERGE) 2915 return -EINVAL; 2916 2917 /* 2918 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2919 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2920 * breaking COW to free the pages_shared (but leaves mm_slots 2921 * on the list for when ksmd may be set running again). 2922 */ 2923 2924 mutex_lock(&ksm_thread_mutex); 2925 wait_while_offlining(); 2926 if (ksm_run != flags) { 2927 ksm_run = flags; 2928 if (flags & KSM_RUN_UNMERGE) { 2929 set_current_oom_origin(); 2930 err = unmerge_and_remove_all_rmap_items(); 2931 clear_current_oom_origin(); 2932 if (err) { 2933 ksm_run = KSM_RUN_STOP; 2934 count = err; 2935 } 2936 } 2937 } 2938 mutex_unlock(&ksm_thread_mutex); 2939 2940 if (flags & KSM_RUN_MERGE) 2941 wake_up_interruptible(&ksm_thread_wait); 2942 2943 return count; 2944 } 2945 KSM_ATTR(run); 2946 2947 #ifdef CONFIG_NUMA 2948 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2949 struct kobj_attribute *attr, char *buf) 2950 { 2951 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes); 2952 } 2953 2954 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2955 struct kobj_attribute *attr, 2956 const char *buf, size_t count) 2957 { 2958 int err; 2959 unsigned long knob; 2960 2961 err = kstrtoul(buf, 10, &knob); 2962 if (err) 2963 return err; 2964 if (knob > 1) 2965 return -EINVAL; 2966 2967 mutex_lock(&ksm_thread_mutex); 2968 wait_while_offlining(); 2969 if (ksm_merge_across_nodes != knob) { 2970 if (ksm_pages_shared || remove_all_stable_nodes()) 2971 err = -EBUSY; 2972 else if (root_stable_tree == one_stable_tree) { 2973 struct rb_root *buf; 2974 /* 2975 * This is the first time that we switch away from the 2976 * default of merging across nodes: must now allocate 2977 * a buffer to hold as many roots as may be needed. 2978 * Allocate stable and unstable together: 2979 * MAXSMP NODES_SHIFT 10 will use 16kB. 2980 */ 2981 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2982 GFP_KERNEL); 2983 /* Let us assume that RB_ROOT is NULL is zero */ 2984 if (!buf) 2985 err = -ENOMEM; 2986 else { 2987 root_stable_tree = buf; 2988 root_unstable_tree = buf + nr_node_ids; 2989 /* Stable tree is empty but not the unstable */ 2990 root_unstable_tree[0] = one_unstable_tree[0]; 2991 } 2992 } 2993 if (!err) { 2994 ksm_merge_across_nodes = knob; 2995 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2996 } 2997 } 2998 mutex_unlock(&ksm_thread_mutex); 2999 3000 return err ? err : count; 3001 } 3002 KSM_ATTR(merge_across_nodes); 3003 #endif 3004 3005 static ssize_t use_zero_pages_show(struct kobject *kobj, 3006 struct kobj_attribute *attr, char *buf) 3007 { 3008 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages); 3009 } 3010 static ssize_t use_zero_pages_store(struct kobject *kobj, 3011 struct kobj_attribute *attr, 3012 const char *buf, size_t count) 3013 { 3014 int err; 3015 bool value; 3016 3017 err = kstrtobool(buf, &value); 3018 if (err) 3019 return -EINVAL; 3020 3021 ksm_use_zero_pages = value; 3022 3023 return count; 3024 } 3025 KSM_ATTR(use_zero_pages); 3026 3027 static ssize_t max_page_sharing_show(struct kobject *kobj, 3028 struct kobj_attribute *attr, char *buf) 3029 { 3030 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing); 3031 } 3032 3033 static ssize_t max_page_sharing_store(struct kobject *kobj, 3034 struct kobj_attribute *attr, 3035 const char *buf, size_t count) 3036 { 3037 int err; 3038 int knob; 3039 3040 err = kstrtoint(buf, 10, &knob); 3041 if (err) 3042 return err; 3043 /* 3044 * When a KSM page is created it is shared by 2 mappings. This 3045 * being a signed comparison, it implicitly verifies it's not 3046 * negative. 3047 */ 3048 if (knob < 2) 3049 return -EINVAL; 3050 3051 if (READ_ONCE(ksm_max_page_sharing) == knob) 3052 return count; 3053 3054 mutex_lock(&ksm_thread_mutex); 3055 wait_while_offlining(); 3056 if (ksm_max_page_sharing != knob) { 3057 if (ksm_pages_shared || remove_all_stable_nodes()) 3058 err = -EBUSY; 3059 else 3060 ksm_max_page_sharing = knob; 3061 } 3062 mutex_unlock(&ksm_thread_mutex); 3063 3064 return err ? err : count; 3065 } 3066 KSM_ATTR(max_page_sharing); 3067 3068 static ssize_t pages_shared_show(struct kobject *kobj, 3069 struct kobj_attribute *attr, char *buf) 3070 { 3071 return sysfs_emit(buf, "%lu\n", ksm_pages_shared); 3072 } 3073 KSM_ATTR_RO(pages_shared); 3074 3075 static ssize_t pages_sharing_show(struct kobject *kobj, 3076 struct kobj_attribute *attr, char *buf) 3077 { 3078 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing); 3079 } 3080 KSM_ATTR_RO(pages_sharing); 3081 3082 static ssize_t pages_unshared_show(struct kobject *kobj, 3083 struct kobj_attribute *attr, char *buf) 3084 { 3085 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared); 3086 } 3087 KSM_ATTR_RO(pages_unshared); 3088 3089 static ssize_t pages_volatile_show(struct kobject *kobj, 3090 struct kobj_attribute *attr, char *buf) 3091 { 3092 long ksm_pages_volatile; 3093 3094 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3095 - ksm_pages_sharing - ksm_pages_unshared; 3096 /* 3097 * It was not worth any locking to calculate that statistic, 3098 * but it might therefore sometimes be negative: conceal that. 3099 */ 3100 if (ksm_pages_volatile < 0) 3101 ksm_pages_volatile = 0; 3102 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile); 3103 } 3104 KSM_ATTR_RO(pages_volatile); 3105 3106 static ssize_t stable_node_dups_show(struct kobject *kobj, 3107 struct kobj_attribute *attr, char *buf) 3108 { 3109 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups); 3110 } 3111 KSM_ATTR_RO(stable_node_dups); 3112 3113 static ssize_t stable_node_chains_show(struct kobject *kobj, 3114 struct kobj_attribute *attr, char *buf) 3115 { 3116 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains); 3117 } 3118 KSM_ATTR_RO(stable_node_chains); 3119 3120 static ssize_t 3121 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3122 struct kobj_attribute *attr, 3123 char *buf) 3124 { 3125 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3126 } 3127 3128 static ssize_t 3129 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3130 struct kobj_attribute *attr, 3131 const char *buf, size_t count) 3132 { 3133 unsigned int msecs; 3134 int err; 3135 3136 err = kstrtouint(buf, 10, &msecs); 3137 if (err) 3138 return -EINVAL; 3139 3140 ksm_stable_node_chains_prune_millisecs = msecs; 3141 3142 return count; 3143 } 3144 KSM_ATTR(stable_node_chains_prune_millisecs); 3145 3146 static ssize_t full_scans_show(struct kobject *kobj, 3147 struct kobj_attribute *attr, char *buf) 3148 { 3149 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr); 3150 } 3151 KSM_ATTR_RO(full_scans); 3152 3153 static struct attribute *ksm_attrs[] = { 3154 &sleep_millisecs_attr.attr, 3155 &pages_to_scan_attr.attr, 3156 &run_attr.attr, 3157 &pages_shared_attr.attr, 3158 &pages_sharing_attr.attr, 3159 &pages_unshared_attr.attr, 3160 &pages_volatile_attr.attr, 3161 &full_scans_attr.attr, 3162 #ifdef CONFIG_NUMA 3163 &merge_across_nodes_attr.attr, 3164 #endif 3165 &max_page_sharing_attr.attr, 3166 &stable_node_chains_attr.attr, 3167 &stable_node_dups_attr.attr, 3168 &stable_node_chains_prune_millisecs_attr.attr, 3169 &use_zero_pages_attr.attr, 3170 NULL, 3171 }; 3172 3173 static const struct attribute_group ksm_attr_group = { 3174 .attrs = ksm_attrs, 3175 .name = "ksm", 3176 }; 3177 #endif /* CONFIG_SYSFS */ 3178 3179 static int __init ksm_init(void) 3180 { 3181 struct task_struct *ksm_thread; 3182 int err; 3183 3184 /* The correct value depends on page size and endianness */ 3185 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3186 /* Default to false for backwards compatibility */ 3187 ksm_use_zero_pages = false; 3188 3189 err = ksm_slab_init(); 3190 if (err) 3191 goto out; 3192 3193 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3194 if (IS_ERR(ksm_thread)) { 3195 pr_err("ksm: creating kthread failed\n"); 3196 err = PTR_ERR(ksm_thread); 3197 goto out_free; 3198 } 3199 3200 #ifdef CONFIG_SYSFS 3201 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3202 if (err) { 3203 pr_err("ksm: register sysfs failed\n"); 3204 kthread_stop(ksm_thread); 3205 goto out_free; 3206 } 3207 #else 3208 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3209 3210 #endif /* CONFIG_SYSFS */ 3211 3212 #ifdef CONFIG_MEMORY_HOTREMOVE 3213 /* There is no significance to this priority 100 */ 3214 hotplug_memory_notifier(ksm_memory_callback, 100); 3215 #endif 3216 return 0; 3217 3218 out_free: 3219 ksm_slab_free(); 3220 out: 3221 return err; 3222 } 3223 subsys_initcall(ksm_init); 3224