1 /* 2 * Memory merging support. 3 * 4 * This code enables dynamic sharing of identical pages found in different 5 * memory areas, even if they are not shared by fork() 6 * 7 * Copyright (C) 2008-2009 Red Hat, Inc. 8 * Authors: 9 * Izik Eidus 10 * Andrea Arcangeli 11 * Chris Wright 12 * Hugh Dickins 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/coredump.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/xxhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 43 #include <asm/tlbflush.h> 44 #include "internal.h" 45 46 #ifdef CONFIG_NUMA 47 #define NUMA(x) (x) 48 #define DO_NUMA(x) do { (x); } while (0) 49 #else 50 #define NUMA(x) (0) 51 #define DO_NUMA(x) do { } while (0) 52 #endif 53 54 /** 55 * DOC: Overview 56 * 57 * A few notes about the KSM scanning process, 58 * to make it easier to understand the data structures below: 59 * 60 * In order to reduce excessive scanning, KSM sorts the memory pages by their 61 * contents into a data structure that holds pointers to the pages' locations. 62 * 63 * Since the contents of the pages may change at any moment, KSM cannot just 64 * insert the pages into a normal sorted tree and expect it to find anything. 65 * Therefore KSM uses two data structures - the stable and the unstable tree. 66 * 67 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 68 * by their contents. Because each such page is write-protected, searching on 69 * this tree is fully assured to be working (except when pages are unmapped), 70 * and therefore this tree is called the stable tree. 71 * 72 * The stable tree node includes information required for reverse 73 * mapping from a KSM page to virtual addresses that map this page. 74 * 75 * In order to avoid large latencies of the rmap walks on KSM pages, 76 * KSM maintains two types of nodes in the stable tree: 77 * 78 * * the regular nodes that keep the reverse mapping structures in a 79 * linked list 80 * * the "chains" that link nodes ("dups") that represent the same 81 * write protected memory content, but each "dup" corresponds to a 82 * different KSM page copy of that content 83 * 84 * Internally, the regular nodes, "dups" and "chains" are represented 85 * using the same :c:type:`struct stable_node` structure. 86 * 87 * In addition to the stable tree, KSM uses a second data structure called the 88 * unstable tree: this tree holds pointers to pages which have been found to 89 * be "unchanged for a period of time". The unstable tree sorts these pages 90 * by their contents, but since they are not write-protected, KSM cannot rely 91 * upon the unstable tree to work correctly - the unstable tree is liable to 92 * be corrupted as its contents are modified, and so it is called unstable. 93 * 94 * KSM solves this problem by several techniques: 95 * 96 * 1) The unstable tree is flushed every time KSM completes scanning all 97 * memory areas, and then the tree is rebuilt again from the beginning. 98 * 2) KSM will only insert into the unstable tree, pages whose hash value 99 * has not changed since the previous scan of all memory areas. 100 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 101 * colors of the nodes and not on their contents, assuring that even when 102 * the tree gets "corrupted" it won't get out of balance, so scanning time 103 * remains the same (also, searching and inserting nodes in an rbtree uses 104 * the same algorithm, so we have no overhead when we flush and rebuild). 105 * 4) KSM never flushes the stable tree, which means that even if it were to 106 * take 10 attempts to find a page in the unstable tree, once it is found, 107 * it is secured in the stable tree. (When we scan a new page, we first 108 * compare it against the stable tree, and then against the unstable tree.) 109 * 110 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 111 * stable trees and multiple unstable trees: one of each for each NUMA node. 112 */ 113 114 /** 115 * struct mm_slot - ksm information per mm that is being scanned 116 * @link: link to the mm_slots hash list 117 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 119 * @mm: the mm that this information is valid for 120 */ 121 struct mm_slot { 122 struct hlist_node link; 123 struct list_head mm_list; 124 struct rmap_item *rmap_list; 125 struct mm_struct *mm; 126 }; 127 128 /** 129 * struct ksm_scan - cursor for scanning 130 * @mm_slot: the current mm_slot we are scanning 131 * @address: the next address inside that to be scanned 132 * @rmap_list: link to the next rmap to be scanned in the rmap_list 133 * @seqnr: count of completed full scans (needed when removing unstable node) 134 * 135 * There is only the one ksm_scan instance of this cursor structure. 136 */ 137 struct ksm_scan { 138 struct mm_slot *mm_slot; 139 unsigned long address; 140 struct rmap_item **rmap_list; 141 unsigned long seqnr; 142 }; 143 144 /** 145 * struct stable_node - node of the stable rbtree 146 * @node: rb node of this ksm page in the stable tree 147 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 148 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 149 * @list: linked into migrate_nodes, pending placement in the proper node tree 150 * @hlist: hlist head of rmap_items using this ksm page 151 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 152 * @chain_prune_time: time of the last full garbage collection 153 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 154 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 155 */ 156 struct stable_node { 157 union { 158 struct rb_node node; /* when node of stable tree */ 159 struct { /* when listed for migration */ 160 struct list_head *head; 161 struct { 162 struct hlist_node hlist_dup; 163 struct list_head list; 164 }; 165 }; 166 }; 167 struct hlist_head hlist; 168 union { 169 unsigned long kpfn; 170 unsigned long chain_prune_time; 171 }; 172 /* 173 * STABLE_NODE_CHAIN can be any negative number in 174 * rmap_hlist_len negative range, but better not -1 to be able 175 * to reliably detect underflows. 176 */ 177 #define STABLE_NODE_CHAIN -1024 178 int rmap_hlist_len; 179 #ifdef CONFIG_NUMA 180 int nid; 181 #endif 182 }; 183 184 /** 185 * struct rmap_item - reverse mapping item for virtual addresses 186 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 187 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 188 * @nid: NUMA node id of unstable tree in which linked (may not match page) 189 * @mm: the memory structure this rmap_item is pointing into 190 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 191 * @oldchecksum: previous checksum of the page at that virtual address 192 * @node: rb node of this rmap_item in the unstable tree 193 * @head: pointer to stable_node heading this list in the stable tree 194 * @hlist: link into hlist of rmap_items hanging off that stable_node 195 */ 196 struct rmap_item { 197 struct rmap_item *rmap_list; 198 union { 199 struct anon_vma *anon_vma; /* when stable */ 200 #ifdef CONFIG_NUMA 201 int nid; /* when node of unstable tree */ 202 #endif 203 }; 204 struct mm_struct *mm; 205 unsigned long address; /* + low bits used for flags below */ 206 unsigned int oldchecksum; /* when unstable */ 207 union { 208 struct rb_node node; /* when node of unstable tree */ 209 struct { /* when listed from stable tree */ 210 struct stable_node *head; 211 struct hlist_node hlist; 212 }; 213 }; 214 }; 215 216 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 217 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 218 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 219 #define KSM_FLAG_MASK (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG) 220 /* to mask all the flags */ 221 222 /* The stable and unstable tree heads */ 223 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 224 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 225 static struct rb_root *root_stable_tree = one_stable_tree; 226 static struct rb_root *root_unstable_tree = one_unstable_tree; 227 228 /* Recently migrated nodes of stable tree, pending proper placement */ 229 static LIST_HEAD(migrate_nodes); 230 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 231 232 #define MM_SLOTS_HASH_BITS 10 233 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 234 235 static struct mm_slot ksm_mm_head = { 236 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 237 }; 238 static struct ksm_scan ksm_scan = { 239 .mm_slot = &ksm_mm_head, 240 }; 241 242 static struct kmem_cache *rmap_item_cache; 243 static struct kmem_cache *stable_node_cache; 244 static struct kmem_cache *mm_slot_cache; 245 246 /* The number of nodes in the stable tree */ 247 static unsigned long ksm_pages_shared; 248 249 /* The number of page slots additionally sharing those nodes */ 250 static unsigned long ksm_pages_sharing; 251 252 /* The number of nodes in the unstable tree */ 253 static unsigned long ksm_pages_unshared; 254 255 /* The number of rmap_items in use: to calculate pages_volatile */ 256 static unsigned long ksm_rmap_items; 257 258 /* The number of stable_node chains */ 259 static unsigned long ksm_stable_node_chains; 260 261 /* The number of stable_node dups linked to the stable_node chains */ 262 static unsigned long ksm_stable_node_dups; 263 264 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 265 static int ksm_stable_node_chains_prune_millisecs = 2000; 266 267 /* Maximum number of page slots sharing a stable node */ 268 static int ksm_max_page_sharing = 256; 269 270 /* Number of pages ksmd should scan in one batch */ 271 static unsigned int ksm_thread_pages_to_scan = 100; 272 273 /* Milliseconds ksmd should sleep between batches */ 274 static unsigned int ksm_thread_sleep_millisecs = 20; 275 276 /* Checksum of an empty (zeroed) page */ 277 static unsigned int zero_checksum __read_mostly; 278 279 /* Whether to merge empty (zeroed) pages with actual zero pages */ 280 static bool ksm_use_zero_pages __read_mostly; 281 282 #ifdef CONFIG_NUMA 283 /* Zeroed when merging across nodes is not allowed */ 284 static unsigned int ksm_merge_across_nodes = 1; 285 static int ksm_nr_node_ids = 1; 286 #else 287 #define ksm_merge_across_nodes 1U 288 #define ksm_nr_node_ids 1 289 #endif 290 291 #define KSM_RUN_STOP 0 292 #define KSM_RUN_MERGE 1 293 #define KSM_RUN_UNMERGE 2 294 #define KSM_RUN_OFFLINE 4 295 static unsigned long ksm_run = KSM_RUN_STOP; 296 static void wait_while_offlining(void); 297 298 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 299 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 300 static DEFINE_MUTEX(ksm_thread_mutex); 301 static DEFINE_SPINLOCK(ksm_mmlist_lock); 302 303 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 304 sizeof(struct __struct), __alignof__(struct __struct),\ 305 (__flags), NULL) 306 307 static int __init ksm_slab_init(void) 308 { 309 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 310 if (!rmap_item_cache) 311 goto out; 312 313 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 314 if (!stable_node_cache) 315 goto out_free1; 316 317 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 318 if (!mm_slot_cache) 319 goto out_free2; 320 321 return 0; 322 323 out_free2: 324 kmem_cache_destroy(stable_node_cache); 325 out_free1: 326 kmem_cache_destroy(rmap_item_cache); 327 out: 328 return -ENOMEM; 329 } 330 331 static void __init ksm_slab_free(void) 332 { 333 kmem_cache_destroy(mm_slot_cache); 334 kmem_cache_destroy(stable_node_cache); 335 kmem_cache_destroy(rmap_item_cache); 336 mm_slot_cache = NULL; 337 } 338 339 static __always_inline bool is_stable_node_chain(struct stable_node *chain) 340 { 341 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 342 } 343 344 static __always_inline bool is_stable_node_dup(struct stable_node *dup) 345 { 346 return dup->head == STABLE_NODE_DUP_HEAD; 347 } 348 349 static inline void stable_node_chain_add_dup(struct stable_node *dup, 350 struct stable_node *chain) 351 { 352 VM_BUG_ON(is_stable_node_dup(dup)); 353 dup->head = STABLE_NODE_DUP_HEAD; 354 VM_BUG_ON(!is_stable_node_chain(chain)); 355 hlist_add_head(&dup->hlist_dup, &chain->hlist); 356 ksm_stable_node_dups++; 357 } 358 359 static inline void __stable_node_dup_del(struct stable_node *dup) 360 { 361 VM_BUG_ON(!is_stable_node_dup(dup)); 362 hlist_del(&dup->hlist_dup); 363 ksm_stable_node_dups--; 364 } 365 366 static inline void stable_node_dup_del(struct stable_node *dup) 367 { 368 VM_BUG_ON(is_stable_node_chain(dup)); 369 if (is_stable_node_dup(dup)) 370 __stable_node_dup_del(dup); 371 else 372 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 373 #ifdef CONFIG_DEBUG_VM 374 dup->head = NULL; 375 #endif 376 } 377 378 static inline struct rmap_item *alloc_rmap_item(void) 379 { 380 struct rmap_item *rmap_item; 381 382 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 383 __GFP_NORETRY | __GFP_NOWARN); 384 if (rmap_item) 385 ksm_rmap_items++; 386 return rmap_item; 387 } 388 389 static inline void free_rmap_item(struct rmap_item *rmap_item) 390 { 391 ksm_rmap_items--; 392 rmap_item->mm = NULL; /* debug safety */ 393 kmem_cache_free(rmap_item_cache, rmap_item); 394 } 395 396 static inline struct stable_node *alloc_stable_node(void) 397 { 398 /* 399 * The allocation can take too long with GFP_KERNEL when memory is under 400 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 401 * grants access to memory reserves, helping to avoid this problem. 402 */ 403 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 404 } 405 406 static inline void free_stable_node(struct stable_node *stable_node) 407 { 408 VM_BUG_ON(stable_node->rmap_hlist_len && 409 !is_stable_node_chain(stable_node)); 410 kmem_cache_free(stable_node_cache, stable_node); 411 } 412 413 static inline struct mm_slot *alloc_mm_slot(void) 414 { 415 if (!mm_slot_cache) /* initialization failed */ 416 return NULL; 417 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 418 } 419 420 static inline void free_mm_slot(struct mm_slot *mm_slot) 421 { 422 kmem_cache_free(mm_slot_cache, mm_slot); 423 } 424 425 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 426 { 427 struct mm_slot *slot; 428 429 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 430 if (slot->mm == mm) 431 return slot; 432 433 return NULL; 434 } 435 436 static void insert_to_mm_slots_hash(struct mm_struct *mm, 437 struct mm_slot *mm_slot) 438 { 439 mm_slot->mm = mm; 440 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 441 } 442 443 /* 444 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 445 * page tables after it has passed through ksm_exit() - which, if necessary, 446 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set 447 * a special flag: they can just back out as soon as mm_users goes to zero. 448 * ksm_test_exit() is used throughout to make this test for exit: in some 449 * places for correctness, in some places just to avoid unnecessary work. 450 */ 451 static inline bool ksm_test_exit(struct mm_struct *mm) 452 { 453 return atomic_read(&mm->mm_users) == 0; 454 } 455 456 /* 457 * We use break_ksm to break COW on a ksm page: it's a stripped down 458 * 459 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1) 460 * put_page(page); 461 * 462 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 463 * in case the application has unmapped and remapped mm,addr meanwhile. 464 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 465 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. 466 * 467 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 468 * of the process that owns 'vma'. We also do not want to enforce 469 * protection keys here anyway. 470 */ 471 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 472 { 473 struct page *page; 474 vm_fault_t ret = 0; 475 476 do { 477 cond_resched(); 478 page = follow_page(vma, addr, 479 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 480 if (IS_ERR_OR_NULL(page)) 481 break; 482 if (PageKsm(page)) 483 ret = handle_mm_fault(vma, addr, 484 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE); 485 else 486 ret = VM_FAULT_WRITE; 487 put_page(page); 488 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 489 /* 490 * We must loop because handle_mm_fault() may back out if there's 491 * any difficulty e.g. if pte accessed bit gets updated concurrently. 492 * 493 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 494 * COW has been broken, even if the vma does not permit VM_WRITE; 495 * but note that a concurrent fault might break PageKsm for us. 496 * 497 * VM_FAULT_SIGBUS could occur if we race with truncation of the 498 * backing file, which also invalidates anonymous pages: that's 499 * okay, that truncation will have unmapped the PageKsm for us. 500 * 501 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 502 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 503 * current task has TIF_MEMDIE set, and will be OOM killed on return 504 * to user; and ksmd, having no mm, would never be chosen for that. 505 * 506 * But if the mm is in a limited mem_cgroup, then the fault may fail 507 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 508 * even ksmd can fail in this way - though it's usually breaking ksm 509 * just to undo a merge it made a moment before, so unlikely to oom. 510 * 511 * That's a pity: we might therefore have more kernel pages allocated 512 * than we're counting as nodes in the stable tree; but ksm_do_scan 513 * will retry to break_cow on each pass, so should recover the page 514 * in due course. The important thing is to not let VM_MERGEABLE 515 * be cleared while any such pages might remain in the area. 516 */ 517 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 518 } 519 520 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 521 unsigned long addr) 522 { 523 struct vm_area_struct *vma; 524 if (ksm_test_exit(mm)) 525 return NULL; 526 vma = find_vma(mm, addr); 527 if (!vma || vma->vm_start > addr) 528 return NULL; 529 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 530 return NULL; 531 return vma; 532 } 533 534 static void break_cow(struct rmap_item *rmap_item) 535 { 536 struct mm_struct *mm = rmap_item->mm; 537 unsigned long addr = rmap_item->address; 538 struct vm_area_struct *vma; 539 540 /* 541 * It is not an accident that whenever we want to break COW 542 * to undo, we also need to drop a reference to the anon_vma. 543 */ 544 put_anon_vma(rmap_item->anon_vma); 545 546 down_read(&mm->mmap_sem); 547 vma = find_mergeable_vma(mm, addr); 548 if (vma) 549 break_ksm(vma, addr); 550 up_read(&mm->mmap_sem); 551 } 552 553 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 554 { 555 struct mm_struct *mm = rmap_item->mm; 556 unsigned long addr = rmap_item->address; 557 struct vm_area_struct *vma; 558 struct page *page; 559 560 down_read(&mm->mmap_sem); 561 vma = find_mergeable_vma(mm, addr); 562 if (!vma) 563 goto out; 564 565 page = follow_page(vma, addr, FOLL_GET); 566 if (IS_ERR_OR_NULL(page)) 567 goto out; 568 if (PageAnon(page)) { 569 flush_anon_page(vma, page, addr); 570 flush_dcache_page(page); 571 } else { 572 put_page(page); 573 out: 574 page = NULL; 575 } 576 up_read(&mm->mmap_sem); 577 return page; 578 } 579 580 /* 581 * This helper is used for getting right index into array of tree roots. 582 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 583 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 584 * every node has its own stable and unstable tree. 585 */ 586 static inline int get_kpfn_nid(unsigned long kpfn) 587 { 588 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 589 } 590 591 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup, 592 struct rb_root *root) 593 { 594 struct stable_node *chain = alloc_stable_node(); 595 VM_BUG_ON(is_stable_node_chain(dup)); 596 if (likely(chain)) { 597 INIT_HLIST_HEAD(&chain->hlist); 598 chain->chain_prune_time = jiffies; 599 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 600 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 601 chain->nid = NUMA_NO_NODE; /* debug */ 602 #endif 603 ksm_stable_node_chains++; 604 605 /* 606 * Put the stable node chain in the first dimension of 607 * the stable tree and at the same time remove the old 608 * stable node. 609 */ 610 rb_replace_node(&dup->node, &chain->node, root); 611 612 /* 613 * Move the old stable node to the second dimension 614 * queued in the hlist_dup. The invariant is that all 615 * dup stable_nodes in the chain->hlist point to pages 616 * that are wrprotected and have the exact same 617 * content. 618 */ 619 stable_node_chain_add_dup(dup, chain); 620 } 621 return chain; 622 } 623 624 static inline void free_stable_node_chain(struct stable_node *chain, 625 struct rb_root *root) 626 { 627 rb_erase(&chain->node, root); 628 free_stable_node(chain); 629 ksm_stable_node_chains--; 630 } 631 632 static void remove_node_from_stable_tree(struct stable_node *stable_node) 633 { 634 struct rmap_item *rmap_item; 635 636 /* check it's not STABLE_NODE_CHAIN or negative */ 637 BUG_ON(stable_node->rmap_hlist_len < 0); 638 639 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 640 if (rmap_item->hlist.next) 641 ksm_pages_sharing--; 642 else 643 ksm_pages_shared--; 644 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 645 stable_node->rmap_hlist_len--; 646 put_anon_vma(rmap_item->anon_vma); 647 rmap_item->address &= PAGE_MASK; 648 cond_resched(); 649 } 650 651 /* 652 * We need the second aligned pointer of the migrate_nodes 653 * list_head to stay clear from the rb_parent_color union 654 * (aligned and different than any node) and also different 655 * from &migrate_nodes. This will verify that future list.h changes 656 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 657 */ 658 #if defined(GCC_VERSION) && GCC_VERSION >= 40903 659 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 660 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 661 #endif 662 663 if (stable_node->head == &migrate_nodes) 664 list_del(&stable_node->list); 665 else 666 stable_node_dup_del(stable_node); 667 free_stable_node(stable_node); 668 } 669 670 enum get_ksm_page_flags { 671 GET_KSM_PAGE_NOLOCK, 672 GET_KSM_PAGE_LOCK, 673 GET_KSM_PAGE_TRYLOCK 674 }; 675 676 /* 677 * get_ksm_page: checks if the page indicated by the stable node 678 * is still its ksm page, despite having held no reference to it. 679 * In which case we can trust the content of the page, and it 680 * returns the gotten page; but if the page has now been zapped, 681 * remove the stale node from the stable tree and return NULL. 682 * But beware, the stable node's page might be being migrated. 683 * 684 * You would expect the stable_node to hold a reference to the ksm page. 685 * But if it increments the page's count, swapping out has to wait for 686 * ksmd to come around again before it can free the page, which may take 687 * seconds or even minutes: much too unresponsive. So instead we use a 688 * "keyhole reference": access to the ksm page from the stable node peeps 689 * out through its keyhole to see if that page still holds the right key, 690 * pointing back to this stable node. This relies on freeing a PageAnon 691 * page to reset its page->mapping to NULL, and relies on no other use of 692 * a page to put something that might look like our key in page->mapping. 693 * is on its way to being freed; but it is an anomaly to bear in mind. 694 */ 695 static struct page *get_ksm_page(struct stable_node *stable_node, 696 enum get_ksm_page_flags flags) 697 { 698 struct page *page; 699 void *expected_mapping; 700 unsigned long kpfn; 701 702 expected_mapping = (void *)((unsigned long)stable_node | 703 PAGE_MAPPING_KSM); 704 again: 705 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 706 page = pfn_to_page(kpfn); 707 if (READ_ONCE(page->mapping) != expected_mapping) 708 goto stale; 709 710 /* 711 * We cannot do anything with the page while its refcount is 0. 712 * Usually 0 means free, or tail of a higher-order page: in which 713 * case this node is no longer referenced, and should be freed; 714 * however, it might mean that the page is under page_ref_freeze(). 715 * The __remove_mapping() case is easy, again the node is now stale; 716 * the same is in reuse_ksm_page() case; but if page is swapcache 717 * in migrate_page_move_mapping(), it might still be our page, 718 * in which case it's essential to keep the node. 719 */ 720 while (!get_page_unless_zero(page)) { 721 /* 722 * Another check for page->mapping != expected_mapping would 723 * work here too. We have chosen the !PageSwapCache test to 724 * optimize the common case, when the page is or is about to 725 * be freed: PageSwapCache is cleared (under spin_lock_irq) 726 * in the ref_freeze section of __remove_mapping(); but Anon 727 * page->mapping reset to NULL later, in free_pages_prepare(). 728 */ 729 if (!PageSwapCache(page)) 730 goto stale; 731 cpu_relax(); 732 } 733 734 if (READ_ONCE(page->mapping) != expected_mapping) { 735 put_page(page); 736 goto stale; 737 } 738 739 if (flags == GET_KSM_PAGE_TRYLOCK) { 740 if (!trylock_page(page)) { 741 put_page(page); 742 return ERR_PTR(-EBUSY); 743 } 744 } else if (flags == GET_KSM_PAGE_LOCK) 745 lock_page(page); 746 747 if (flags != GET_KSM_PAGE_NOLOCK) { 748 if (READ_ONCE(page->mapping) != expected_mapping) { 749 unlock_page(page); 750 put_page(page); 751 goto stale; 752 } 753 } 754 return page; 755 756 stale: 757 /* 758 * We come here from above when page->mapping or !PageSwapCache 759 * suggests that the node is stale; but it might be under migration. 760 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), 761 * before checking whether node->kpfn has been changed. 762 */ 763 smp_rmb(); 764 if (READ_ONCE(stable_node->kpfn) != kpfn) 765 goto again; 766 remove_node_from_stable_tree(stable_node); 767 return NULL; 768 } 769 770 /* 771 * Removing rmap_item from stable or unstable tree. 772 * This function will clean the information from the stable/unstable tree. 773 */ 774 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 775 { 776 if (rmap_item->address & STABLE_FLAG) { 777 struct stable_node *stable_node; 778 struct page *page; 779 780 stable_node = rmap_item->head; 781 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 782 if (!page) 783 goto out; 784 785 hlist_del(&rmap_item->hlist); 786 unlock_page(page); 787 put_page(page); 788 789 if (!hlist_empty(&stable_node->hlist)) 790 ksm_pages_sharing--; 791 else 792 ksm_pages_shared--; 793 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 794 stable_node->rmap_hlist_len--; 795 796 put_anon_vma(rmap_item->anon_vma); 797 rmap_item->address &= PAGE_MASK; 798 799 } else if (rmap_item->address & UNSTABLE_FLAG) { 800 unsigned char age; 801 /* 802 * Usually ksmd can and must skip the rb_erase, because 803 * root_unstable_tree was already reset to RB_ROOT. 804 * But be careful when an mm is exiting: do the rb_erase 805 * if this rmap_item was inserted by this scan, rather 806 * than left over from before. 807 */ 808 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 809 BUG_ON(age > 1); 810 if (!age) 811 rb_erase(&rmap_item->node, 812 root_unstable_tree + NUMA(rmap_item->nid)); 813 ksm_pages_unshared--; 814 rmap_item->address &= PAGE_MASK; 815 } 816 out: 817 cond_resched(); /* we're called from many long loops */ 818 } 819 820 static void remove_trailing_rmap_items(struct mm_slot *mm_slot, 821 struct rmap_item **rmap_list) 822 { 823 while (*rmap_list) { 824 struct rmap_item *rmap_item = *rmap_list; 825 *rmap_list = rmap_item->rmap_list; 826 remove_rmap_item_from_tree(rmap_item); 827 free_rmap_item(rmap_item); 828 } 829 } 830 831 /* 832 * Though it's very tempting to unmerge rmap_items from stable tree rather 833 * than check every pte of a given vma, the locking doesn't quite work for 834 * that - an rmap_item is assigned to the stable tree after inserting ksm 835 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing 836 * rmap_items from parent to child at fork time (so as not to waste time 837 * if exit comes before the next scan reaches it). 838 * 839 * Similarly, although we'd like to remove rmap_items (so updating counts 840 * and freeing memory) when unmerging an area, it's easier to leave that 841 * to the next pass of ksmd - consider, for example, how ksmd might be 842 * in cmp_and_merge_page on one of the rmap_items we would be removing. 843 */ 844 static int unmerge_ksm_pages(struct vm_area_struct *vma, 845 unsigned long start, unsigned long end) 846 { 847 unsigned long addr; 848 int err = 0; 849 850 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 851 if (ksm_test_exit(vma->vm_mm)) 852 break; 853 if (signal_pending(current)) 854 err = -ERESTARTSYS; 855 else 856 err = break_ksm(vma, addr); 857 } 858 return err; 859 } 860 861 static inline struct stable_node *page_stable_node(struct page *page) 862 { 863 return PageKsm(page) ? page_rmapping(page) : NULL; 864 } 865 866 static inline void set_page_stable_node(struct page *page, 867 struct stable_node *stable_node) 868 { 869 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 870 } 871 872 #ifdef CONFIG_SYSFS 873 /* 874 * Only called through the sysfs control interface: 875 */ 876 static int remove_stable_node(struct stable_node *stable_node) 877 { 878 struct page *page; 879 int err; 880 881 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 882 if (!page) { 883 /* 884 * get_ksm_page did remove_node_from_stable_tree itself. 885 */ 886 return 0; 887 } 888 889 if (WARN_ON_ONCE(page_mapped(page))) { 890 /* 891 * This should not happen: but if it does, just refuse to let 892 * merge_across_nodes be switched - there is no need to panic. 893 */ 894 err = -EBUSY; 895 } else { 896 /* 897 * The stable node did not yet appear stale to get_ksm_page(), 898 * since that allows for an unmapped ksm page to be recognized 899 * right up until it is freed; but the node is safe to remove. 900 * This page might be in a pagevec waiting to be freed, 901 * or it might be PageSwapCache (perhaps under writeback), 902 * or it might have been removed from swapcache a moment ago. 903 */ 904 set_page_stable_node(page, NULL); 905 remove_node_from_stable_tree(stable_node); 906 err = 0; 907 } 908 909 unlock_page(page); 910 put_page(page); 911 return err; 912 } 913 914 static int remove_stable_node_chain(struct stable_node *stable_node, 915 struct rb_root *root) 916 { 917 struct stable_node *dup; 918 struct hlist_node *hlist_safe; 919 920 if (!is_stable_node_chain(stable_node)) { 921 VM_BUG_ON(is_stable_node_dup(stable_node)); 922 if (remove_stable_node(stable_node)) 923 return true; 924 else 925 return false; 926 } 927 928 hlist_for_each_entry_safe(dup, hlist_safe, 929 &stable_node->hlist, hlist_dup) { 930 VM_BUG_ON(!is_stable_node_dup(dup)); 931 if (remove_stable_node(dup)) 932 return true; 933 } 934 BUG_ON(!hlist_empty(&stable_node->hlist)); 935 free_stable_node_chain(stable_node, root); 936 return false; 937 } 938 939 static int remove_all_stable_nodes(void) 940 { 941 struct stable_node *stable_node, *next; 942 int nid; 943 int err = 0; 944 945 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 946 while (root_stable_tree[nid].rb_node) { 947 stable_node = rb_entry(root_stable_tree[nid].rb_node, 948 struct stable_node, node); 949 if (remove_stable_node_chain(stable_node, 950 root_stable_tree + nid)) { 951 err = -EBUSY; 952 break; /* proceed to next nid */ 953 } 954 cond_resched(); 955 } 956 } 957 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 958 if (remove_stable_node(stable_node)) 959 err = -EBUSY; 960 cond_resched(); 961 } 962 return err; 963 } 964 965 static int unmerge_and_remove_all_rmap_items(void) 966 { 967 struct mm_slot *mm_slot; 968 struct mm_struct *mm; 969 struct vm_area_struct *vma; 970 int err = 0; 971 972 spin_lock(&ksm_mmlist_lock); 973 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 974 struct mm_slot, mm_list); 975 spin_unlock(&ksm_mmlist_lock); 976 977 for (mm_slot = ksm_scan.mm_slot; 978 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 979 mm = mm_slot->mm; 980 down_read(&mm->mmap_sem); 981 for (vma = mm->mmap; vma; vma = vma->vm_next) { 982 if (ksm_test_exit(mm)) 983 break; 984 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 985 continue; 986 err = unmerge_ksm_pages(vma, 987 vma->vm_start, vma->vm_end); 988 if (err) 989 goto error; 990 } 991 992 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); 993 up_read(&mm->mmap_sem); 994 995 spin_lock(&ksm_mmlist_lock); 996 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 997 struct mm_slot, mm_list); 998 if (ksm_test_exit(mm)) { 999 hash_del(&mm_slot->link); 1000 list_del(&mm_slot->mm_list); 1001 spin_unlock(&ksm_mmlist_lock); 1002 1003 free_mm_slot(mm_slot); 1004 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1005 mmdrop(mm); 1006 } else 1007 spin_unlock(&ksm_mmlist_lock); 1008 } 1009 1010 /* Clean up stable nodes, but don't worry if some are still busy */ 1011 remove_all_stable_nodes(); 1012 ksm_scan.seqnr = 0; 1013 return 0; 1014 1015 error: 1016 up_read(&mm->mmap_sem); 1017 spin_lock(&ksm_mmlist_lock); 1018 ksm_scan.mm_slot = &ksm_mm_head; 1019 spin_unlock(&ksm_mmlist_lock); 1020 return err; 1021 } 1022 #endif /* CONFIG_SYSFS */ 1023 1024 static u32 calc_checksum(struct page *page) 1025 { 1026 u32 checksum; 1027 void *addr = kmap_atomic(page); 1028 checksum = xxhash(addr, PAGE_SIZE, 0); 1029 kunmap_atomic(addr); 1030 return checksum; 1031 } 1032 1033 static int memcmp_pages(struct page *page1, struct page *page2) 1034 { 1035 char *addr1, *addr2; 1036 int ret; 1037 1038 addr1 = kmap_atomic(page1); 1039 addr2 = kmap_atomic(page2); 1040 ret = memcmp(addr1, addr2, PAGE_SIZE); 1041 kunmap_atomic(addr2); 1042 kunmap_atomic(addr1); 1043 return ret; 1044 } 1045 1046 static inline int pages_identical(struct page *page1, struct page *page2) 1047 { 1048 return !memcmp_pages(page1, page2); 1049 } 1050 1051 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1052 pte_t *orig_pte) 1053 { 1054 struct mm_struct *mm = vma->vm_mm; 1055 struct page_vma_mapped_walk pvmw = { 1056 .page = page, 1057 .vma = vma, 1058 }; 1059 int swapped; 1060 int err = -EFAULT; 1061 struct mmu_notifier_range range; 1062 1063 pvmw.address = page_address_in_vma(page, vma); 1064 if (pvmw.address == -EFAULT) 1065 goto out; 1066 1067 BUG_ON(PageTransCompound(page)); 1068 1069 mmu_notifier_range_init(&range, mm, pvmw.address, 1070 pvmw.address + PAGE_SIZE); 1071 mmu_notifier_invalidate_range_start(&range); 1072 1073 if (!page_vma_mapped_walk(&pvmw)) 1074 goto out_mn; 1075 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1076 goto out_unlock; 1077 1078 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1079 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) || 1080 mm_tlb_flush_pending(mm)) { 1081 pte_t entry; 1082 1083 swapped = PageSwapCache(page); 1084 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1085 /* 1086 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1087 * take any lock, therefore the check that we are going to make 1088 * with the pagecount against the mapcount is racey and 1089 * O_DIRECT can happen right after the check. 1090 * So we clear the pte and flush the tlb before the check 1091 * this assure us that no O_DIRECT can happen after the check 1092 * or in the middle of the check. 1093 * 1094 * No need to notify as we are downgrading page table to read 1095 * only not changing it to point to a new page. 1096 * 1097 * See Documentation/vm/mmu_notifier.rst 1098 */ 1099 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1100 /* 1101 * Check that no O_DIRECT or similar I/O is in progress on the 1102 * page 1103 */ 1104 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1105 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1106 goto out_unlock; 1107 } 1108 if (pte_dirty(entry)) 1109 set_page_dirty(page); 1110 1111 if (pte_protnone(entry)) 1112 entry = pte_mkclean(pte_clear_savedwrite(entry)); 1113 else 1114 entry = pte_mkclean(pte_wrprotect(entry)); 1115 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1116 } 1117 *orig_pte = *pvmw.pte; 1118 err = 0; 1119 1120 out_unlock: 1121 page_vma_mapped_walk_done(&pvmw); 1122 out_mn: 1123 mmu_notifier_invalidate_range_end(&range); 1124 out: 1125 return err; 1126 } 1127 1128 /** 1129 * replace_page - replace page in vma by new ksm page 1130 * @vma: vma that holds the pte pointing to page 1131 * @page: the page we are replacing by kpage 1132 * @kpage: the ksm page we replace page by 1133 * @orig_pte: the original value of the pte 1134 * 1135 * Returns 0 on success, -EFAULT on failure. 1136 */ 1137 static int replace_page(struct vm_area_struct *vma, struct page *page, 1138 struct page *kpage, pte_t orig_pte) 1139 { 1140 struct mm_struct *mm = vma->vm_mm; 1141 pmd_t *pmd; 1142 pte_t *ptep; 1143 pte_t newpte; 1144 spinlock_t *ptl; 1145 unsigned long addr; 1146 int err = -EFAULT; 1147 struct mmu_notifier_range range; 1148 1149 addr = page_address_in_vma(page, vma); 1150 if (addr == -EFAULT) 1151 goto out; 1152 1153 pmd = mm_find_pmd(mm, addr); 1154 if (!pmd) 1155 goto out; 1156 1157 mmu_notifier_range_init(&range, mm, addr, addr + PAGE_SIZE); 1158 mmu_notifier_invalidate_range_start(&range); 1159 1160 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1161 if (!pte_same(*ptep, orig_pte)) { 1162 pte_unmap_unlock(ptep, ptl); 1163 goto out_mn; 1164 } 1165 1166 /* 1167 * No need to check ksm_use_zero_pages here: we can only have a 1168 * zero_page here if ksm_use_zero_pages was enabled alreaady. 1169 */ 1170 if (!is_zero_pfn(page_to_pfn(kpage))) { 1171 get_page(kpage); 1172 page_add_anon_rmap(kpage, vma, addr, false); 1173 newpte = mk_pte(kpage, vma->vm_page_prot); 1174 } else { 1175 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1176 vma->vm_page_prot)); 1177 /* 1178 * We're replacing an anonymous page with a zero page, which is 1179 * not anonymous. We need to do proper accounting otherwise we 1180 * will get wrong values in /proc, and a BUG message in dmesg 1181 * when tearing down the mm. 1182 */ 1183 dec_mm_counter(mm, MM_ANONPAGES); 1184 } 1185 1186 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1187 /* 1188 * No need to notify as we are replacing a read only page with another 1189 * read only page with the same content. 1190 * 1191 * See Documentation/vm/mmu_notifier.rst 1192 */ 1193 ptep_clear_flush(vma, addr, ptep); 1194 set_pte_at_notify(mm, addr, ptep, newpte); 1195 1196 page_remove_rmap(page, false); 1197 if (!page_mapped(page)) 1198 try_to_free_swap(page); 1199 put_page(page); 1200 1201 pte_unmap_unlock(ptep, ptl); 1202 err = 0; 1203 out_mn: 1204 mmu_notifier_invalidate_range_end(&range); 1205 out: 1206 return err; 1207 } 1208 1209 /* 1210 * try_to_merge_one_page - take two pages and merge them into one 1211 * @vma: the vma that holds the pte pointing to page 1212 * @page: the PageAnon page that we want to replace with kpage 1213 * @kpage: the PageKsm page that we want to map instead of page, 1214 * or NULL the first time when we want to use page as kpage. 1215 * 1216 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1217 */ 1218 static int try_to_merge_one_page(struct vm_area_struct *vma, 1219 struct page *page, struct page *kpage) 1220 { 1221 pte_t orig_pte = __pte(0); 1222 int err = -EFAULT; 1223 1224 if (page == kpage) /* ksm page forked */ 1225 return 0; 1226 1227 if (!PageAnon(page)) 1228 goto out; 1229 1230 /* 1231 * We need the page lock to read a stable PageSwapCache in 1232 * write_protect_page(). We use trylock_page() instead of 1233 * lock_page() because we don't want to wait here - we 1234 * prefer to continue scanning and merging different pages, 1235 * then come back to this page when it is unlocked. 1236 */ 1237 if (!trylock_page(page)) 1238 goto out; 1239 1240 if (PageTransCompound(page)) { 1241 if (split_huge_page(page)) 1242 goto out_unlock; 1243 } 1244 1245 /* 1246 * If this anonymous page is mapped only here, its pte may need 1247 * to be write-protected. If it's mapped elsewhere, all of its 1248 * ptes are necessarily already write-protected. But in either 1249 * case, we need to lock and check page_count is not raised. 1250 */ 1251 if (write_protect_page(vma, page, &orig_pte) == 0) { 1252 if (!kpage) { 1253 /* 1254 * While we hold page lock, upgrade page from 1255 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1256 * stable_tree_insert() will update stable_node. 1257 */ 1258 set_page_stable_node(page, NULL); 1259 mark_page_accessed(page); 1260 /* 1261 * Page reclaim just frees a clean page with no dirty 1262 * ptes: make sure that the ksm page would be swapped. 1263 */ 1264 if (!PageDirty(page)) 1265 SetPageDirty(page); 1266 err = 0; 1267 } else if (pages_identical(page, kpage)) 1268 err = replace_page(vma, page, kpage, orig_pte); 1269 } 1270 1271 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1272 munlock_vma_page(page); 1273 if (!PageMlocked(kpage)) { 1274 unlock_page(page); 1275 lock_page(kpage); 1276 mlock_vma_page(kpage); 1277 page = kpage; /* for final unlock */ 1278 } 1279 } 1280 1281 out_unlock: 1282 unlock_page(page); 1283 out: 1284 return err; 1285 } 1286 1287 /* 1288 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1289 * but no new kernel page is allocated: kpage must already be a ksm page. 1290 * 1291 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1292 */ 1293 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1294 struct page *page, struct page *kpage) 1295 { 1296 struct mm_struct *mm = rmap_item->mm; 1297 struct vm_area_struct *vma; 1298 int err = -EFAULT; 1299 1300 down_read(&mm->mmap_sem); 1301 vma = find_mergeable_vma(mm, rmap_item->address); 1302 if (!vma) 1303 goto out; 1304 1305 err = try_to_merge_one_page(vma, page, kpage); 1306 if (err) 1307 goto out; 1308 1309 /* Unstable nid is in union with stable anon_vma: remove first */ 1310 remove_rmap_item_from_tree(rmap_item); 1311 1312 /* Must get reference to anon_vma while still holding mmap_sem */ 1313 rmap_item->anon_vma = vma->anon_vma; 1314 get_anon_vma(vma->anon_vma); 1315 out: 1316 up_read(&mm->mmap_sem); 1317 return err; 1318 } 1319 1320 /* 1321 * try_to_merge_two_pages - take two identical pages and prepare them 1322 * to be merged into one page. 1323 * 1324 * This function returns the kpage if we successfully merged two identical 1325 * pages into one ksm page, NULL otherwise. 1326 * 1327 * Note that this function upgrades page to ksm page: if one of the pages 1328 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1329 */ 1330 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1331 struct page *page, 1332 struct rmap_item *tree_rmap_item, 1333 struct page *tree_page) 1334 { 1335 int err; 1336 1337 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1338 if (!err) { 1339 err = try_to_merge_with_ksm_page(tree_rmap_item, 1340 tree_page, page); 1341 /* 1342 * If that fails, we have a ksm page with only one pte 1343 * pointing to it: so break it. 1344 */ 1345 if (err) 1346 break_cow(rmap_item); 1347 } 1348 return err ? NULL : page; 1349 } 1350 1351 static __always_inline 1352 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset) 1353 { 1354 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1355 /* 1356 * Check that at least one mapping still exists, otherwise 1357 * there's no much point to merge and share with this 1358 * stable_node, as the underlying tree_page of the other 1359 * sharer is going to be freed soon. 1360 */ 1361 return stable_node->rmap_hlist_len && 1362 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1363 } 1364 1365 static __always_inline 1366 bool is_page_sharing_candidate(struct stable_node *stable_node) 1367 { 1368 return __is_page_sharing_candidate(stable_node, 0); 1369 } 1370 1371 static struct page *stable_node_dup(struct stable_node **_stable_node_dup, 1372 struct stable_node **_stable_node, 1373 struct rb_root *root, 1374 bool prune_stale_stable_nodes) 1375 { 1376 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1377 struct hlist_node *hlist_safe; 1378 struct page *_tree_page, *tree_page = NULL; 1379 int nr = 0; 1380 int found_rmap_hlist_len; 1381 1382 if (!prune_stale_stable_nodes || 1383 time_before(jiffies, stable_node->chain_prune_time + 1384 msecs_to_jiffies( 1385 ksm_stable_node_chains_prune_millisecs))) 1386 prune_stale_stable_nodes = false; 1387 else 1388 stable_node->chain_prune_time = jiffies; 1389 1390 hlist_for_each_entry_safe(dup, hlist_safe, 1391 &stable_node->hlist, hlist_dup) { 1392 cond_resched(); 1393 /* 1394 * We must walk all stable_node_dup to prune the stale 1395 * stable nodes during lookup. 1396 * 1397 * get_ksm_page can drop the nodes from the 1398 * stable_node->hlist if they point to freed pages 1399 * (that's why we do a _safe walk). The "dup" 1400 * stable_node parameter itself will be freed from 1401 * under us if it returns NULL. 1402 */ 1403 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK); 1404 if (!_tree_page) 1405 continue; 1406 nr += 1; 1407 if (is_page_sharing_candidate(dup)) { 1408 if (!found || 1409 dup->rmap_hlist_len > found_rmap_hlist_len) { 1410 if (found) 1411 put_page(tree_page); 1412 found = dup; 1413 found_rmap_hlist_len = found->rmap_hlist_len; 1414 tree_page = _tree_page; 1415 1416 /* skip put_page for found dup */ 1417 if (!prune_stale_stable_nodes) 1418 break; 1419 continue; 1420 } 1421 } 1422 put_page(_tree_page); 1423 } 1424 1425 if (found) { 1426 /* 1427 * nr is counting all dups in the chain only if 1428 * prune_stale_stable_nodes is true, otherwise we may 1429 * break the loop at nr == 1 even if there are 1430 * multiple entries. 1431 */ 1432 if (prune_stale_stable_nodes && nr == 1) { 1433 /* 1434 * If there's not just one entry it would 1435 * corrupt memory, better BUG_ON. In KSM 1436 * context with no lock held it's not even 1437 * fatal. 1438 */ 1439 BUG_ON(stable_node->hlist.first->next); 1440 1441 /* 1442 * There's just one entry and it is below the 1443 * deduplication limit so drop the chain. 1444 */ 1445 rb_replace_node(&stable_node->node, &found->node, 1446 root); 1447 free_stable_node(stable_node); 1448 ksm_stable_node_chains--; 1449 ksm_stable_node_dups--; 1450 /* 1451 * NOTE: the caller depends on the stable_node 1452 * to be equal to stable_node_dup if the chain 1453 * was collapsed. 1454 */ 1455 *_stable_node = found; 1456 /* 1457 * Just for robustneess as stable_node is 1458 * otherwise left as a stable pointer, the 1459 * compiler shall optimize it away at build 1460 * time. 1461 */ 1462 stable_node = NULL; 1463 } else if (stable_node->hlist.first != &found->hlist_dup && 1464 __is_page_sharing_candidate(found, 1)) { 1465 /* 1466 * If the found stable_node dup can accept one 1467 * more future merge (in addition to the one 1468 * that is underway) and is not at the head of 1469 * the chain, put it there so next search will 1470 * be quicker in the !prune_stale_stable_nodes 1471 * case. 1472 * 1473 * NOTE: it would be inaccurate to use nr > 1 1474 * instead of checking the hlist.first pointer 1475 * directly, because in the 1476 * prune_stale_stable_nodes case "nr" isn't 1477 * the position of the found dup in the chain, 1478 * but the total number of dups in the chain. 1479 */ 1480 hlist_del(&found->hlist_dup); 1481 hlist_add_head(&found->hlist_dup, 1482 &stable_node->hlist); 1483 } 1484 } 1485 1486 *_stable_node_dup = found; 1487 return tree_page; 1488 } 1489 1490 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node, 1491 struct rb_root *root) 1492 { 1493 if (!is_stable_node_chain(stable_node)) 1494 return stable_node; 1495 if (hlist_empty(&stable_node->hlist)) { 1496 free_stable_node_chain(stable_node, root); 1497 return NULL; 1498 } 1499 return hlist_entry(stable_node->hlist.first, 1500 typeof(*stable_node), hlist_dup); 1501 } 1502 1503 /* 1504 * Like for get_ksm_page, this function can free the *_stable_node and 1505 * *_stable_node_dup if the returned tree_page is NULL. 1506 * 1507 * It can also free and overwrite *_stable_node with the found 1508 * stable_node_dup if the chain is collapsed (in which case 1509 * *_stable_node will be equal to *_stable_node_dup like if the chain 1510 * never existed). It's up to the caller to verify tree_page is not 1511 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1512 * 1513 * *_stable_node_dup is really a second output parameter of this 1514 * function and will be overwritten in all cases, the caller doesn't 1515 * need to initialize it. 1516 */ 1517 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup, 1518 struct stable_node **_stable_node, 1519 struct rb_root *root, 1520 bool prune_stale_stable_nodes) 1521 { 1522 struct stable_node *stable_node = *_stable_node; 1523 if (!is_stable_node_chain(stable_node)) { 1524 if (is_page_sharing_candidate(stable_node)) { 1525 *_stable_node_dup = stable_node; 1526 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); 1527 } 1528 /* 1529 * _stable_node_dup set to NULL means the stable_node 1530 * reached the ksm_max_page_sharing limit. 1531 */ 1532 *_stable_node_dup = NULL; 1533 return NULL; 1534 } 1535 return stable_node_dup(_stable_node_dup, _stable_node, root, 1536 prune_stale_stable_nodes); 1537 } 1538 1539 static __always_inline struct page *chain_prune(struct stable_node **s_n_d, 1540 struct stable_node **s_n, 1541 struct rb_root *root) 1542 { 1543 return __stable_node_chain(s_n_d, s_n, root, true); 1544 } 1545 1546 static __always_inline struct page *chain(struct stable_node **s_n_d, 1547 struct stable_node *s_n, 1548 struct rb_root *root) 1549 { 1550 struct stable_node *old_stable_node = s_n; 1551 struct page *tree_page; 1552 1553 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1554 /* not pruning dups so s_n cannot have changed */ 1555 VM_BUG_ON(s_n != old_stable_node); 1556 return tree_page; 1557 } 1558 1559 /* 1560 * stable_tree_search - search for page inside the stable tree 1561 * 1562 * This function checks if there is a page inside the stable tree 1563 * with identical content to the page that we are scanning right now. 1564 * 1565 * This function returns the stable tree node of identical content if found, 1566 * NULL otherwise. 1567 */ 1568 static struct page *stable_tree_search(struct page *page) 1569 { 1570 int nid; 1571 struct rb_root *root; 1572 struct rb_node **new; 1573 struct rb_node *parent; 1574 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1575 struct stable_node *page_node; 1576 1577 page_node = page_stable_node(page); 1578 if (page_node && page_node->head != &migrate_nodes) { 1579 /* ksm page forked */ 1580 get_page(page); 1581 return page; 1582 } 1583 1584 nid = get_kpfn_nid(page_to_pfn(page)); 1585 root = root_stable_tree + nid; 1586 again: 1587 new = &root->rb_node; 1588 parent = NULL; 1589 1590 while (*new) { 1591 struct page *tree_page; 1592 int ret; 1593 1594 cond_resched(); 1595 stable_node = rb_entry(*new, struct stable_node, node); 1596 stable_node_any = NULL; 1597 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1598 /* 1599 * NOTE: stable_node may have been freed by 1600 * chain_prune() if the returned stable_node_dup is 1601 * not NULL. stable_node_dup may have been inserted in 1602 * the rbtree instead as a regular stable_node (in 1603 * order to collapse the stable_node chain if a single 1604 * stable_node dup was found in it). In such case the 1605 * stable_node is overwritten by the calleee to point 1606 * to the stable_node_dup that was collapsed in the 1607 * stable rbtree and stable_node will be equal to 1608 * stable_node_dup like if the chain never existed. 1609 */ 1610 if (!stable_node_dup) { 1611 /* 1612 * Either all stable_node dups were full in 1613 * this stable_node chain, or this chain was 1614 * empty and should be rb_erased. 1615 */ 1616 stable_node_any = stable_node_dup_any(stable_node, 1617 root); 1618 if (!stable_node_any) { 1619 /* rb_erase just run */ 1620 goto again; 1621 } 1622 /* 1623 * Take any of the stable_node dups page of 1624 * this stable_node chain to let the tree walk 1625 * continue. All KSM pages belonging to the 1626 * stable_node dups in a stable_node chain 1627 * have the same content and they're 1628 * wrprotected at all times. Any will work 1629 * fine to continue the walk. 1630 */ 1631 tree_page = get_ksm_page(stable_node_any, 1632 GET_KSM_PAGE_NOLOCK); 1633 } 1634 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1635 if (!tree_page) { 1636 /* 1637 * If we walked over a stale stable_node, 1638 * get_ksm_page() will call rb_erase() and it 1639 * may rebalance the tree from under us. So 1640 * restart the search from scratch. Returning 1641 * NULL would be safe too, but we'd generate 1642 * false negative insertions just because some 1643 * stable_node was stale. 1644 */ 1645 goto again; 1646 } 1647 1648 ret = memcmp_pages(page, tree_page); 1649 put_page(tree_page); 1650 1651 parent = *new; 1652 if (ret < 0) 1653 new = &parent->rb_left; 1654 else if (ret > 0) 1655 new = &parent->rb_right; 1656 else { 1657 if (page_node) { 1658 VM_BUG_ON(page_node->head != &migrate_nodes); 1659 /* 1660 * Test if the migrated page should be merged 1661 * into a stable node dup. If the mapcount is 1662 * 1 we can migrate it with another KSM page 1663 * without adding it to the chain. 1664 */ 1665 if (page_mapcount(page) > 1) 1666 goto chain_append; 1667 } 1668 1669 if (!stable_node_dup) { 1670 /* 1671 * If the stable_node is a chain and 1672 * we got a payload match in memcmp 1673 * but we cannot merge the scanned 1674 * page in any of the existing 1675 * stable_node dups because they're 1676 * all full, we need to wait the 1677 * scanned page to find itself a match 1678 * in the unstable tree to create a 1679 * brand new KSM page to add later to 1680 * the dups of this stable_node. 1681 */ 1682 return NULL; 1683 } 1684 1685 /* 1686 * Lock and unlock the stable_node's page (which 1687 * might already have been migrated) so that page 1688 * migration is sure to notice its raised count. 1689 * It would be more elegant to return stable_node 1690 * than kpage, but that involves more changes. 1691 */ 1692 tree_page = get_ksm_page(stable_node_dup, 1693 GET_KSM_PAGE_TRYLOCK); 1694 1695 if (PTR_ERR(tree_page) == -EBUSY) 1696 return ERR_PTR(-EBUSY); 1697 1698 if (unlikely(!tree_page)) 1699 /* 1700 * The tree may have been rebalanced, 1701 * so re-evaluate parent and new. 1702 */ 1703 goto again; 1704 unlock_page(tree_page); 1705 1706 if (get_kpfn_nid(stable_node_dup->kpfn) != 1707 NUMA(stable_node_dup->nid)) { 1708 put_page(tree_page); 1709 goto replace; 1710 } 1711 return tree_page; 1712 } 1713 } 1714 1715 if (!page_node) 1716 return NULL; 1717 1718 list_del(&page_node->list); 1719 DO_NUMA(page_node->nid = nid); 1720 rb_link_node(&page_node->node, parent, new); 1721 rb_insert_color(&page_node->node, root); 1722 out: 1723 if (is_page_sharing_candidate(page_node)) { 1724 get_page(page); 1725 return page; 1726 } else 1727 return NULL; 1728 1729 replace: 1730 /* 1731 * If stable_node was a chain and chain_prune collapsed it, 1732 * stable_node has been updated to be the new regular 1733 * stable_node. A collapse of the chain is indistinguishable 1734 * from the case there was no chain in the stable 1735 * rbtree. Otherwise stable_node is the chain and 1736 * stable_node_dup is the dup to replace. 1737 */ 1738 if (stable_node_dup == stable_node) { 1739 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1740 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1741 /* there is no chain */ 1742 if (page_node) { 1743 VM_BUG_ON(page_node->head != &migrate_nodes); 1744 list_del(&page_node->list); 1745 DO_NUMA(page_node->nid = nid); 1746 rb_replace_node(&stable_node_dup->node, 1747 &page_node->node, 1748 root); 1749 if (is_page_sharing_candidate(page_node)) 1750 get_page(page); 1751 else 1752 page = NULL; 1753 } else { 1754 rb_erase(&stable_node_dup->node, root); 1755 page = NULL; 1756 } 1757 } else { 1758 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1759 __stable_node_dup_del(stable_node_dup); 1760 if (page_node) { 1761 VM_BUG_ON(page_node->head != &migrate_nodes); 1762 list_del(&page_node->list); 1763 DO_NUMA(page_node->nid = nid); 1764 stable_node_chain_add_dup(page_node, stable_node); 1765 if (is_page_sharing_candidate(page_node)) 1766 get_page(page); 1767 else 1768 page = NULL; 1769 } else { 1770 page = NULL; 1771 } 1772 } 1773 stable_node_dup->head = &migrate_nodes; 1774 list_add(&stable_node_dup->list, stable_node_dup->head); 1775 return page; 1776 1777 chain_append: 1778 /* stable_node_dup could be null if it reached the limit */ 1779 if (!stable_node_dup) 1780 stable_node_dup = stable_node_any; 1781 /* 1782 * If stable_node was a chain and chain_prune collapsed it, 1783 * stable_node has been updated to be the new regular 1784 * stable_node. A collapse of the chain is indistinguishable 1785 * from the case there was no chain in the stable 1786 * rbtree. Otherwise stable_node is the chain and 1787 * stable_node_dup is the dup to replace. 1788 */ 1789 if (stable_node_dup == stable_node) { 1790 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1791 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1792 /* chain is missing so create it */ 1793 stable_node = alloc_stable_node_chain(stable_node_dup, 1794 root); 1795 if (!stable_node) 1796 return NULL; 1797 } 1798 /* 1799 * Add this stable_node dup that was 1800 * migrated to the stable_node chain 1801 * of the current nid for this page 1802 * content. 1803 */ 1804 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1805 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1806 VM_BUG_ON(page_node->head != &migrate_nodes); 1807 list_del(&page_node->list); 1808 DO_NUMA(page_node->nid = nid); 1809 stable_node_chain_add_dup(page_node, stable_node); 1810 goto out; 1811 } 1812 1813 /* 1814 * stable_tree_insert - insert stable tree node pointing to new ksm page 1815 * into the stable tree. 1816 * 1817 * This function returns the stable tree node just allocated on success, 1818 * NULL otherwise. 1819 */ 1820 static struct stable_node *stable_tree_insert(struct page *kpage) 1821 { 1822 int nid; 1823 unsigned long kpfn; 1824 struct rb_root *root; 1825 struct rb_node **new; 1826 struct rb_node *parent; 1827 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1828 bool need_chain = false; 1829 1830 kpfn = page_to_pfn(kpage); 1831 nid = get_kpfn_nid(kpfn); 1832 root = root_stable_tree + nid; 1833 again: 1834 parent = NULL; 1835 new = &root->rb_node; 1836 1837 while (*new) { 1838 struct page *tree_page; 1839 int ret; 1840 1841 cond_resched(); 1842 stable_node = rb_entry(*new, struct stable_node, node); 1843 stable_node_any = NULL; 1844 tree_page = chain(&stable_node_dup, stable_node, root); 1845 if (!stable_node_dup) { 1846 /* 1847 * Either all stable_node dups were full in 1848 * this stable_node chain, or this chain was 1849 * empty and should be rb_erased. 1850 */ 1851 stable_node_any = stable_node_dup_any(stable_node, 1852 root); 1853 if (!stable_node_any) { 1854 /* rb_erase just run */ 1855 goto again; 1856 } 1857 /* 1858 * Take any of the stable_node dups page of 1859 * this stable_node chain to let the tree walk 1860 * continue. All KSM pages belonging to the 1861 * stable_node dups in a stable_node chain 1862 * have the same content and they're 1863 * wrprotected at all times. Any will work 1864 * fine to continue the walk. 1865 */ 1866 tree_page = get_ksm_page(stable_node_any, 1867 GET_KSM_PAGE_NOLOCK); 1868 } 1869 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1870 if (!tree_page) { 1871 /* 1872 * If we walked over a stale stable_node, 1873 * get_ksm_page() will call rb_erase() and it 1874 * may rebalance the tree from under us. So 1875 * restart the search from scratch. Returning 1876 * NULL would be safe too, but we'd generate 1877 * false negative insertions just because some 1878 * stable_node was stale. 1879 */ 1880 goto again; 1881 } 1882 1883 ret = memcmp_pages(kpage, tree_page); 1884 put_page(tree_page); 1885 1886 parent = *new; 1887 if (ret < 0) 1888 new = &parent->rb_left; 1889 else if (ret > 0) 1890 new = &parent->rb_right; 1891 else { 1892 need_chain = true; 1893 break; 1894 } 1895 } 1896 1897 stable_node_dup = alloc_stable_node(); 1898 if (!stable_node_dup) 1899 return NULL; 1900 1901 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1902 stable_node_dup->kpfn = kpfn; 1903 set_page_stable_node(kpage, stable_node_dup); 1904 stable_node_dup->rmap_hlist_len = 0; 1905 DO_NUMA(stable_node_dup->nid = nid); 1906 if (!need_chain) { 1907 rb_link_node(&stable_node_dup->node, parent, new); 1908 rb_insert_color(&stable_node_dup->node, root); 1909 } else { 1910 if (!is_stable_node_chain(stable_node)) { 1911 struct stable_node *orig = stable_node; 1912 /* chain is missing so create it */ 1913 stable_node = alloc_stable_node_chain(orig, root); 1914 if (!stable_node) { 1915 free_stable_node(stable_node_dup); 1916 return NULL; 1917 } 1918 } 1919 stable_node_chain_add_dup(stable_node_dup, stable_node); 1920 } 1921 1922 return stable_node_dup; 1923 } 1924 1925 /* 1926 * unstable_tree_search_insert - search for identical page, 1927 * else insert rmap_item into the unstable tree. 1928 * 1929 * This function searches for a page in the unstable tree identical to the 1930 * page currently being scanned; and if no identical page is found in the 1931 * tree, we insert rmap_item as a new object into the unstable tree. 1932 * 1933 * This function returns pointer to rmap_item found to be identical 1934 * to the currently scanned page, NULL otherwise. 1935 * 1936 * This function does both searching and inserting, because they share 1937 * the same walking algorithm in an rbtree. 1938 */ 1939 static 1940 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1941 struct page *page, 1942 struct page **tree_pagep) 1943 { 1944 struct rb_node **new; 1945 struct rb_root *root; 1946 struct rb_node *parent = NULL; 1947 int nid; 1948 1949 nid = get_kpfn_nid(page_to_pfn(page)); 1950 root = root_unstable_tree + nid; 1951 new = &root->rb_node; 1952 1953 while (*new) { 1954 struct rmap_item *tree_rmap_item; 1955 struct page *tree_page; 1956 int ret; 1957 1958 cond_resched(); 1959 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1960 tree_page = get_mergeable_page(tree_rmap_item); 1961 if (!tree_page) 1962 return NULL; 1963 1964 /* 1965 * Don't substitute a ksm page for a forked page. 1966 */ 1967 if (page == tree_page) { 1968 put_page(tree_page); 1969 return NULL; 1970 } 1971 1972 ret = memcmp_pages(page, tree_page); 1973 1974 parent = *new; 1975 if (ret < 0) { 1976 put_page(tree_page); 1977 new = &parent->rb_left; 1978 } else if (ret > 0) { 1979 put_page(tree_page); 1980 new = &parent->rb_right; 1981 } else if (!ksm_merge_across_nodes && 1982 page_to_nid(tree_page) != nid) { 1983 /* 1984 * If tree_page has been migrated to another NUMA node, 1985 * it will be flushed out and put in the right unstable 1986 * tree next time: only merge with it when across_nodes. 1987 */ 1988 put_page(tree_page); 1989 return NULL; 1990 } else { 1991 *tree_pagep = tree_page; 1992 return tree_rmap_item; 1993 } 1994 } 1995 1996 rmap_item->address |= UNSTABLE_FLAG; 1997 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1998 DO_NUMA(rmap_item->nid = nid); 1999 rb_link_node(&rmap_item->node, parent, new); 2000 rb_insert_color(&rmap_item->node, root); 2001 2002 ksm_pages_unshared++; 2003 return NULL; 2004 } 2005 2006 /* 2007 * stable_tree_append - add another rmap_item to the linked list of 2008 * rmap_items hanging off a given node of the stable tree, all sharing 2009 * the same ksm page. 2010 */ 2011 static void stable_tree_append(struct rmap_item *rmap_item, 2012 struct stable_node *stable_node, 2013 bool max_page_sharing_bypass) 2014 { 2015 /* 2016 * rmap won't find this mapping if we don't insert the 2017 * rmap_item in the right stable_node 2018 * duplicate. page_migration could break later if rmap breaks, 2019 * so we can as well crash here. We really need to check for 2020 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2021 * for other negative values as an undeflow if detected here 2022 * for the first time (and not when decreasing rmap_hlist_len) 2023 * would be sign of memory corruption in the stable_node. 2024 */ 2025 BUG_ON(stable_node->rmap_hlist_len < 0); 2026 2027 stable_node->rmap_hlist_len++; 2028 if (!max_page_sharing_bypass) 2029 /* possibly non fatal but unexpected overflow, only warn */ 2030 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2031 ksm_max_page_sharing); 2032 2033 rmap_item->head = stable_node; 2034 rmap_item->address |= STABLE_FLAG; 2035 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2036 2037 if (rmap_item->hlist.next) 2038 ksm_pages_sharing++; 2039 else 2040 ksm_pages_shared++; 2041 } 2042 2043 /* 2044 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2045 * if not, compare checksum to previous and if it's the same, see if page can 2046 * be inserted into the unstable tree, or merged with a page already there and 2047 * both transferred to the stable tree. 2048 * 2049 * @page: the page that we are searching identical page to. 2050 * @rmap_item: the reverse mapping into the virtual address of this page 2051 */ 2052 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 2053 { 2054 struct mm_struct *mm = rmap_item->mm; 2055 struct rmap_item *tree_rmap_item; 2056 struct page *tree_page = NULL; 2057 struct stable_node *stable_node; 2058 struct page *kpage; 2059 unsigned int checksum; 2060 int err; 2061 bool max_page_sharing_bypass = false; 2062 2063 stable_node = page_stable_node(page); 2064 if (stable_node) { 2065 if (stable_node->head != &migrate_nodes && 2066 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2067 NUMA(stable_node->nid)) { 2068 stable_node_dup_del(stable_node); 2069 stable_node->head = &migrate_nodes; 2070 list_add(&stable_node->list, stable_node->head); 2071 } 2072 if (stable_node->head != &migrate_nodes && 2073 rmap_item->head == stable_node) 2074 return; 2075 /* 2076 * If it's a KSM fork, allow it to go over the sharing limit 2077 * without warnings. 2078 */ 2079 if (!is_page_sharing_candidate(stable_node)) 2080 max_page_sharing_bypass = true; 2081 } 2082 2083 /* We first start with searching the page inside the stable tree */ 2084 kpage = stable_tree_search(page); 2085 if (kpage == page && rmap_item->head == stable_node) { 2086 put_page(kpage); 2087 return; 2088 } 2089 2090 remove_rmap_item_from_tree(rmap_item); 2091 2092 if (kpage) { 2093 if (PTR_ERR(kpage) == -EBUSY) 2094 return; 2095 2096 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2097 if (!err) { 2098 /* 2099 * The page was successfully merged: 2100 * add its rmap_item to the stable tree. 2101 */ 2102 lock_page(kpage); 2103 stable_tree_append(rmap_item, page_stable_node(kpage), 2104 max_page_sharing_bypass); 2105 unlock_page(kpage); 2106 } 2107 put_page(kpage); 2108 return; 2109 } 2110 2111 /* 2112 * If the hash value of the page has changed from the last time 2113 * we calculated it, this page is changing frequently: therefore we 2114 * don't want to insert it in the unstable tree, and we don't want 2115 * to waste our time searching for something identical to it there. 2116 */ 2117 checksum = calc_checksum(page); 2118 if (rmap_item->oldchecksum != checksum) { 2119 rmap_item->oldchecksum = checksum; 2120 return; 2121 } 2122 2123 /* 2124 * Same checksum as an empty page. We attempt to merge it with the 2125 * appropriate zero page if the user enabled this via sysfs. 2126 */ 2127 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2128 struct vm_area_struct *vma; 2129 2130 down_read(&mm->mmap_sem); 2131 vma = find_mergeable_vma(mm, rmap_item->address); 2132 err = try_to_merge_one_page(vma, page, 2133 ZERO_PAGE(rmap_item->address)); 2134 up_read(&mm->mmap_sem); 2135 /* 2136 * In case of failure, the page was not really empty, so we 2137 * need to continue. Otherwise we're done. 2138 */ 2139 if (!err) 2140 return; 2141 } 2142 tree_rmap_item = 2143 unstable_tree_search_insert(rmap_item, page, &tree_page); 2144 if (tree_rmap_item) { 2145 bool split; 2146 2147 kpage = try_to_merge_two_pages(rmap_item, page, 2148 tree_rmap_item, tree_page); 2149 /* 2150 * If both pages we tried to merge belong to the same compound 2151 * page, then we actually ended up increasing the reference 2152 * count of the same compound page twice, and split_huge_page 2153 * failed. 2154 * Here we set a flag if that happened, and we use it later to 2155 * try split_huge_page again. Since we call put_page right 2156 * afterwards, the reference count will be correct and 2157 * split_huge_page should succeed. 2158 */ 2159 split = PageTransCompound(page) 2160 && compound_head(page) == compound_head(tree_page); 2161 put_page(tree_page); 2162 if (kpage) { 2163 /* 2164 * The pages were successfully merged: insert new 2165 * node in the stable tree and add both rmap_items. 2166 */ 2167 lock_page(kpage); 2168 stable_node = stable_tree_insert(kpage); 2169 if (stable_node) { 2170 stable_tree_append(tree_rmap_item, stable_node, 2171 false); 2172 stable_tree_append(rmap_item, stable_node, 2173 false); 2174 } 2175 unlock_page(kpage); 2176 2177 /* 2178 * If we fail to insert the page into the stable tree, 2179 * we will have 2 virtual addresses that are pointing 2180 * to a ksm page left outside the stable tree, 2181 * in which case we need to break_cow on both. 2182 */ 2183 if (!stable_node) { 2184 break_cow(tree_rmap_item); 2185 break_cow(rmap_item); 2186 } 2187 } else if (split) { 2188 /* 2189 * We are here if we tried to merge two pages and 2190 * failed because they both belonged to the same 2191 * compound page. We will split the page now, but no 2192 * merging will take place. 2193 * We do not want to add the cost of a full lock; if 2194 * the page is locked, it is better to skip it and 2195 * perhaps try again later. 2196 */ 2197 if (!trylock_page(page)) 2198 return; 2199 split_huge_page(page); 2200 unlock_page(page); 2201 } 2202 } 2203 } 2204 2205 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 2206 struct rmap_item **rmap_list, 2207 unsigned long addr) 2208 { 2209 struct rmap_item *rmap_item; 2210 2211 while (*rmap_list) { 2212 rmap_item = *rmap_list; 2213 if ((rmap_item->address & PAGE_MASK) == addr) 2214 return rmap_item; 2215 if (rmap_item->address > addr) 2216 break; 2217 *rmap_list = rmap_item->rmap_list; 2218 remove_rmap_item_from_tree(rmap_item); 2219 free_rmap_item(rmap_item); 2220 } 2221 2222 rmap_item = alloc_rmap_item(); 2223 if (rmap_item) { 2224 /* It has already been zeroed */ 2225 rmap_item->mm = mm_slot->mm; 2226 rmap_item->address = addr; 2227 rmap_item->rmap_list = *rmap_list; 2228 *rmap_list = rmap_item; 2229 } 2230 return rmap_item; 2231 } 2232 2233 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 2234 { 2235 struct mm_struct *mm; 2236 struct mm_slot *slot; 2237 struct vm_area_struct *vma; 2238 struct rmap_item *rmap_item; 2239 int nid; 2240 2241 if (list_empty(&ksm_mm_head.mm_list)) 2242 return NULL; 2243 2244 slot = ksm_scan.mm_slot; 2245 if (slot == &ksm_mm_head) { 2246 /* 2247 * A number of pages can hang around indefinitely on per-cpu 2248 * pagevecs, raised page count preventing write_protect_page 2249 * from merging them. Though it doesn't really matter much, 2250 * it is puzzling to see some stuck in pages_volatile until 2251 * other activity jostles them out, and they also prevented 2252 * LTP's KSM test from succeeding deterministically; so drain 2253 * them here (here rather than on entry to ksm_do_scan(), 2254 * so we don't IPI too often when pages_to_scan is set low). 2255 */ 2256 lru_add_drain_all(); 2257 2258 /* 2259 * Whereas stale stable_nodes on the stable_tree itself 2260 * get pruned in the regular course of stable_tree_search(), 2261 * those moved out to the migrate_nodes list can accumulate: 2262 * so prune them once before each full scan. 2263 */ 2264 if (!ksm_merge_across_nodes) { 2265 struct stable_node *stable_node, *next; 2266 struct page *page; 2267 2268 list_for_each_entry_safe(stable_node, next, 2269 &migrate_nodes, list) { 2270 page = get_ksm_page(stable_node, 2271 GET_KSM_PAGE_NOLOCK); 2272 if (page) 2273 put_page(page); 2274 cond_resched(); 2275 } 2276 } 2277 2278 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2279 root_unstable_tree[nid] = RB_ROOT; 2280 2281 spin_lock(&ksm_mmlist_lock); 2282 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 2283 ksm_scan.mm_slot = slot; 2284 spin_unlock(&ksm_mmlist_lock); 2285 /* 2286 * Although we tested list_empty() above, a racing __ksm_exit 2287 * of the last mm on the list may have removed it since then. 2288 */ 2289 if (slot == &ksm_mm_head) 2290 return NULL; 2291 next_mm: 2292 ksm_scan.address = 0; 2293 ksm_scan.rmap_list = &slot->rmap_list; 2294 } 2295 2296 mm = slot->mm; 2297 down_read(&mm->mmap_sem); 2298 if (ksm_test_exit(mm)) 2299 vma = NULL; 2300 else 2301 vma = find_vma(mm, ksm_scan.address); 2302 2303 for (; vma; vma = vma->vm_next) { 2304 if (!(vma->vm_flags & VM_MERGEABLE)) 2305 continue; 2306 if (ksm_scan.address < vma->vm_start) 2307 ksm_scan.address = vma->vm_start; 2308 if (!vma->anon_vma) 2309 ksm_scan.address = vma->vm_end; 2310 2311 while (ksm_scan.address < vma->vm_end) { 2312 if (ksm_test_exit(mm)) 2313 break; 2314 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2315 if (IS_ERR_OR_NULL(*page)) { 2316 ksm_scan.address += PAGE_SIZE; 2317 cond_resched(); 2318 continue; 2319 } 2320 if (PageAnon(*page)) { 2321 flush_anon_page(vma, *page, ksm_scan.address); 2322 flush_dcache_page(*page); 2323 rmap_item = get_next_rmap_item(slot, 2324 ksm_scan.rmap_list, ksm_scan.address); 2325 if (rmap_item) { 2326 ksm_scan.rmap_list = 2327 &rmap_item->rmap_list; 2328 ksm_scan.address += PAGE_SIZE; 2329 } else 2330 put_page(*page); 2331 up_read(&mm->mmap_sem); 2332 return rmap_item; 2333 } 2334 put_page(*page); 2335 ksm_scan.address += PAGE_SIZE; 2336 cond_resched(); 2337 } 2338 } 2339 2340 if (ksm_test_exit(mm)) { 2341 ksm_scan.address = 0; 2342 ksm_scan.rmap_list = &slot->rmap_list; 2343 } 2344 /* 2345 * Nuke all the rmap_items that are above this current rmap: 2346 * because there were no VM_MERGEABLE vmas with such addresses. 2347 */ 2348 remove_trailing_rmap_items(slot, ksm_scan.rmap_list); 2349 2350 spin_lock(&ksm_mmlist_lock); 2351 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 2352 struct mm_slot, mm_list); 2353 if (ksm_scan.address == 0) { 2354 /* 2355 * We've completed a full scan of all vmas, holding mmap_sem 2356 * throughout, and found no VM_MERGEABLE: so do the same as 2357 * __ksm_exit does to remove this mm from all our lists now. 2358 * This applies either when cleaning up after __ksm_exit 2359 * (but beware: we can reach here even before __ksm_exit), 2360 * or when all VM_MERGEABLE areas have been unmapped (and 2361 * mmap_sem then protects against race with MADV_MERGEABLE). 2362 */ 2363 hash_del(&slot->link); 2364 list_del(&slot->mm_list); 2365 spin_unlock(&ksm_mmlist_lock); 2366 2367 free_mm_slot(slot); 2368 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2369 up_read(&mm->mmap_sem); 2370 mmdrop(mm); 2371 } else { 2372 up_read(&mm->mmap_sem); 2373 /* 2374 * up_read(&mm->mmap_sem) first because after 2375 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2376 * already have been freed under us by __ksm_exit() 2377 * because the "mm_slot" is still hashed and 2378 * ksm_scan.mm_slot doesn't point to it anymore. 2379 */ 2380 spin_unlock(&ksm_mmlist_lock); 2381 } 2382 2383 /* Repeat until we've completed scanning the whole list */ 2384 slot = ksm_scan.mm_slot; 2385 if (slot != &ksm_mm_head) 2386 goto next_mm; 2387 2388 ksm_scan.seqnr++; 2389 return NULL; 2390 } 2391 2392 /** 2393 * ksm_do_scan - the ksm scanner main worker function. 2394 * @scan_npages: number of pages we want to scan before we return. 2395 */ 2396 static void ksm_do_scan(unsigned int scan_npages) 2397 { 2398 struct rmap_item *rmap_item; 2399 struct page *uninitialized_var(page); 2400 2401 while (scan_npages-- && likely(!freezing(current))) { 2402 cond_resched(); 2403 rmap_item = scan_get_next_rmap_item(&page); 2404 if (!rmap_item) 2405 return; 2406 cmp_and_merge_page(page, rmap_item); 2407 put_page(page); 2408 } 2409 } 2410 2411 static int ksmd_should_run(void) 2412 { 2413 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 2414 } 2415 2416 static int ksm_scan_thread(void *nothing) 2417 { 2418 unsigned int sleep_ms; 2419 2420 set_freezable(); 2421 set_user_nice(current, 5); 2422 2423 while (!kthread_should_stop()) { 2424 mutex_lock(&ksm_thread_mutex); 2425 wait_while_offlining(); 2426 if (ksmd_should_run()) 2427 ksm_do_scan(ksm_thread_pages_to_scan); 2428 mutex_unlock(&ksm_thread_mutex); 2429 2430 try_to_freeze(); 2431 2432 if (ksmd_should_run()) { 2433 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2434 wait_event_interruptible_timeout(ksm_iter_wait, 2435 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2436 msecs_to_jiffies(sleep_ms)); 2437 } else { 2438 wait_event_freezable(ksm_thread_wait, 2439 ksmd_should_run() || kthread_should_stop()); 2440 } 2441 } 2442 return 0; 2443 } 2444 2445 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2446 unsigned long end, int advice, unsigned long *vm_flags) 2447 { 2448 struct mm_struct *mm = vma->vm_mm; 2449 int err; 2450 2451 switch (advice) { 2452 case MADV_MERGEABLE: 2453 /* 2454 * Be somewhat over-protective for now! 2455 */ 2456 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 2457 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 2458 VM_HUGETLB | VM_MIXEDMAP)) 2459 return 0; /* just ignore the advice */ 2460 2461 if (vma_is_dax(vma)) 2462 return 0; 2463 2464 #ifdef VM_SAO 2465 if (*vm_flags & VM_SAO) 2466 return 0; 2467 #endif 2468 #ifdef VM_SPARC_ADI 2469 if (*vm_flags & VM_SPARC_ADI) 2470 return 0; 2471 #endif 2472 2473 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2474 err = __ksm_enter(mm); 2475 if (err) 2476 return err; 2477 } 2478 2479 *vm_flags |= VM_MERGEABLE; 2480 break; 2481 2482 case MADV_UNMERGEABLE: 2483 if (!(*vm_flags & VM_MERGEABLE)) 2484 return 0; /* just ignore the advice */ 2485 2486 if (vma->anon_vma) { 2487 err = unmerge_ksm_pages(vma, start, end); 2488 if (err) 2489 return err; 2490 } 2491 2492 *vm_flags &= ~VM_MERGEABLE; 2493 break; 2494 } 2495 2496 return 0; 2497 } 2498 2499 int __ksm_enter(struct mm_struct *mm) 2500 { 2501 struct mm_slot *mm_slot; 2502 int needs_wakeup; 2503 2504 mm_slot = alloc_mm_slot(); 2505 if (!mm_slot) 2506 return -ENOMEM; 2507 2508 /* Check ksm_run too? Would need tighter locking */ 2509 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 2510 2511 spin_lock(&ksm_mmlist_lock); 2512 insert_to_mm_slots_hash(mm, mm_slot); 2513 /* 2514 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2515 * insert just behind the scanning cursor, to let the area settle 2516 * down a little; when fork is followed by immediate exec, we don't 2517 * want ksmd to waste time setting up and tearing down an rmap_list. 2518 * 2519 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2520 * scanning cursor, otherwise KSM pages in newly forked mms will be 2521 * missed: then we might as well insert at the end of the list. 2522 */ 2523 if (ksm_run & KSM_RUN_UNMERGE) 2524 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 2525 else 2526 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 2527 spin_unlock(&ksm_mmlist_lock); 2528 2529 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2530 mmgrab(mm); 2531 2532 if (needs_wakeup) 2533 wake_up_interruptible(&ksm_thread_wait); 2534 2535 return 0; 2536 } 2537 2538 void __ksm_exit(struct mm_struct *mm) 2539 { 2540 struct mm_slot *mm_slot; 2541 int easy_to_free = 0; 2542 2543 /* 2544 * This process is exiting: if it's straightforward (as is the 2545 * case when ksmd was never running), free mm_slot immediately. 2546 * But if it's at the cursor or has rmap_items linked to it, use 2547 * mmap_sem to synchronize with any break_cows before pagetables 2548 * are freed, and leave the mm_slot on the list for ksmd to free. 2549 * Beware: ksm may already have noticed it exiting and freed the slot. 2550 */ 2551 2552 spin_lock(&ksm_mmlist_lock); 2553 mm_slot = get_mm_slot(mm); 2554 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2555 if (!mm_slot->rmap_list) { 2556 hash_del(&mm_slot->link); 2557 list_del(&mm_slot->mm_list); 2558 easy_to_free = 1; 2559 } else { 2560 list_move(&mm_slot->mm_list, 2561 &ksm_scan.mm_slot->mm_list); 2562 } 2563 } 2564 spin_unlock(&ksm_mmlist_lock); 2565 2566 if (easy_to_free) { 2567 free_mm_slot(mm_slot); 2568 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2569 mmdrop(mm); 2570 } else if (mm_slot) { 2571 down_write(&mm->mmap_sem); 2572 up_write(&mm->mmap_sem); 2573 } 2574 } 2575 2576 struct page *ksm_might_need_to_copy(struct page *page, 2577 struct vm_area_struct *vma, unsigned long address) 2578 { 2579 struct anon_vma *anon_vma = page_anon_vma(page); 2580 struct page *new_page; 2581 2582 if (PageKsm(page)) { 2583 if (page_stable_node(page) && 2584 !(ksm_run & KSM_RUN_UNMERGE)) 2585 return page; /* no need to copy it */ 2586 } else if (!anon_vma) { 2587 return page; /* no need to copy it */ 2588 } else if (anon_vma->root == vma->anon_vma->root && 2589 page->index == linear_page_index(vma, address)) { 2590 return page; /* still no need to copy it */ 2591 } 2592 if (!PageUptodate(page)) 2593 return page; /* let do_swap_page report the error */ 2594 2595 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2596 if (new_page) { 2597 copy_user_highpage(new_page, page, address, vma); 2598 2599 SetPageDirty(new_page); 2600 __SetPageUptodate(new_page); 2601 __SetPageLocked(new_page); 2602 } 2603 2604 return new_page; 2605 } 2606 2607 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 2608 { 2609 struct stable_node *stable_node; 2610 struct rmap_item *rmap_item; 2611 int search_new_forks = 0; 2612 2613 VM_BUG_ON_PAGE(!PageKsm(page), page); 2614 2615 /* 2616 * Rely on the page lock to protect against concurrent modifications 2617 * to that page's node of the stable tree. 2618 */ 2619 VM_BUG_ON_PAGE(!PageLocked(page), page); 2620 2621 stable_node = page_stable_node(page); 2622 if (!stable_node) 2623 return; 2624 again: 2625 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2626 struct anon_vma *anon_vma = rmap_item->anon_vma; 2627 struct anon_vma_chain *vmac; 2628 struct vm_area_struct *vma; 2629 2630 cond_resched(); 2631 anon_vma_lock_read(anon_vma); 2632 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2633 0, ULONG_MAX) { 2634 unsigned long addr; 2635 2636 cond_resched(); 2637 vma = vmac->vma; 2638 2639 /* Ignore the stable/unstable/sqnr flags */ 2640 addr = rmap_item->address & ~KSM_FLAG_MASK; 2641 2642 if (addr < vma->vm_start || addr >= vma->vm_end) 2643 continue; 2644 /* 2645 * Initially we examine only the vma which covers this 2646 * rmap_item; but later, if there is still work to do, 2647 * we examine covering vmas in other mms: in case they 2648 * were forked from the original since ksmd passed. 2649 */ 2650 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2651 continue; 2652 2653 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2654 continue; 2655 2656 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) { 2657 anon_vma_unlock_read(anon_vma); 2658 return; 2659 } 2660 if (rwc->done && rwc->done(page)) { 2661 anon_vma_unlock_read(anon_vma); 2662 return; 2663 } 2664 } 2665 anon_vma_unlock_read(anon_vma); 2666 } 2667 if (!search_new_forks++) 2668 goto again; 2669 } 2670 2671 bool reuse_ksm_page(struct page *page, 2672 struct vm_area_struct *vma, 2673 unsigned long address) 2674 { 2675 #ifdef CONFIG_DEBUG_VM 2676 if (WARN_ON(is_zero_pfn(page_to_pfn(page))) || 2677 WARN_ON(!page_mapped(page)) || 2678 WARN_ON(!PageLocked(page))) { 2679 dump_page(page, "reuse_ksm_page"); 2680 return false; 2681 } 2682 #endif 2683 2684 if (PageSwapCache(page) || !page_stable_node(page)) 2685 return false; 2686 /* Prohibit parallel get_ksm_page() */ 2687 if (!page_ref_freeze(page, 1)) 2688 return false; 2689 2690 page_move_anon_rmap(page, vma); 2691 page->index = linear_page_index(vma, address); 2692 page_ref_unfreeze(page, 1); 2693 2694 return true; 2695 } 2696 #ifdef CONFIG_MIGRATION 2697 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 2698 { 2699 struct stable_node *stable_node; 2700 2701 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 2702 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 2703 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); 2704 2705 stable_node = page_stable_node(newpage); 2706 if (stable_node) { 2707 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); 2708 stable_node->kpfn = page_to_pfn(newpage); 2709 /* 2710 * newpage->mapping was set in advance; now we need smp_wmb() 2711 * to make sure that the new stable_node->kpfn is visible 2712 * to get_ksm_page() before it can see that oldpage->mapping 2713 * has gone stale (or that PageSwapCache has been cleared). 2714 */ 2715 smp_wmb(); 2716 set_page_stable_node(oldpage, NULL); 2717 } 2718 } 2719 #endif /* CONFIG_MIGRATION */ 2720 2721 #ifdef CONFIG_MEMORY_HOTREMOVE 2722 static void wait_while_offlining(void) 2723 { 2724 while (ksm_run & KSM_RUN_OFFLINE) { 2725 mutex_unlock(&ksm_thread_mutex); 2726 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2727 TASK_UNINTERRUPTIBLE); 2728 mutex_lock(&ksm_thread_mutex); 2729 } 2730 } 2731 2732 static bool stable_node_dup_remove_range(struct stable_node *stable_node, 2733 unsigned long start_pfn, 2734 unsigned long end_pfn) 2735 { 2736 if (stable_node->kpfn >= start_pfn && 2737 stable_node->kpfn < end_pfn) { 2738 /* 2739 * Don't get_ksm_page, page has already gone: 2740 * which is why we keep kpfn instead of page* 2741 */ 2742 remove_node_from_stable_tree(stable_node); 2743 return true; 2744 } 2745 return false; 2746 } 2747 2748 static bool stable_node_chain_remove_range(struct stable_node *stable_node, 2749 unsigned long start_pfn, 2750 unsigned long end_pfn, 2751 struct rb_root *root) 2752 { 2753 struct stable_node *dup; 2754 struct hlist_node *hlist_safe; 2755 2756 if (!is_stable_node_chain(stable_node)) { 2757 VM_BUG_ON(is_stable_node_dup(stable_node)); 2758 return stable_node_dup_remove_range(stable_node, start_pfn, 2759 end_pfn); 2760 } 2761 2762 hlist_for_each_entry_safe(dup, hlist_safe, 2763 &stable_node->hlist, hlist_dup) { 2764 VM_BUG_ON(!is_stable_node_dup(dup)); 2765 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2766 } 2767 if (hlist_empty(&stable_node->hlist)) { 2768 free_stable_node_chain(stable_node, root); 2769 return true; /* notify caller that tree was rebalanced */ 2770 } else 2771 return false; 2772 } 2773 2774 static void ksm_check_stable_tree(unsigned long start_pfn, 2775 unsigned long end_pfn) 2776 { 2777 struct stable_node *stable_node, *next; 2778 struct rb_node *node; 2779 int nid; 2780 2781 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2782 node = rb_first(root_stable_tree + nid); 2783 while (node) { 2784 stable_node = rb_entry(node, struct stable_node, node); 2785 if (stable_node_chain_remove_range(stable_node, 2786 start_pfn, end_pfn, 2787 root_stable_tree + 2788 nid)) 2789 node = rb_first(root_stable_tree + nid); 2790 else 2791 node = rb_next(node); 2792 cond_resched(); 2793 } 2794 } 2795 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2796 if (stable_node->kpfn >= start_pfn && 2797 stable_node->kpfn < end_pfn) 2798 remove_node_from_stable_tree(stable_node); 2799 cond_resched(); 2800 } 2801 } 2802 2803 static int ksm_memory_callback(struct notifier_block *self, 2804 unsigned long action, void *arg) 2805 { 2806 struct memory_notify *mn = arg; 2807 2808 switch (action) { 2809 case MEM_GOING_OFFLINE: 2810 /* 2811 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2812 * and remove_all_stable_nodes() while memory is going offline: 2813 * it is unsafe for them to touch the stable tree at this time. 2814 * But unmerge_ksm_pages(), rmap lookups and other entry points 2815 * which do not need the ksm_thread_mutex are all safe. 2816 */ 2817 mutex_lock(&ksm_thread_mutex); 2818 ksm_run |= KSM_RUN_OFFLINE; 2819 mutex_unlock(&ksm_thread_mutex); 2820 break; 2821 2822 case MEM_OFFLINE: 2823 /* 2824 * Most of the work is done by page migration; but there might 2825 * be a few stable_nodes left over, still pointing to struct 2826 * pages which have been offlined: prune those from the tree, 2827 * otherwise get_ksm_page() might later try to access a 2828 * non-existent struct page. 2829 */ 2830 ksm_check_stable_tree(mn->start_pfn, 2831 mn->start_pfn + mn->nr_pages); 2832 /* fallthrough */ 2833 2834 case MEM_CANCEL_OFFLINE: 2835 mutex_lock(&ksm_thread_mutex); 2836 ksm_run &= ~KSM_RUN_OFFLINE; 2837 mutex_unlock(&ksm_thread_mutex); 2838 2839 smp_mb(); /* wake_up_bit advises this */ 2840 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2841 break; 2842 } 2843 return NOTIFY_OK; 2844 } 2845 #else 2846 static void wait_while_offlining(void) 2847 { 2848 } 2849 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2850 2851 #ifdef CONFIG_SYSFS 2852 /* 2853 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2854 */ 2855 2856 #define KSM_ATTR_RO(_name) \ 2857 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2858 #define KSM_ATTR(_name) \ 2859 static struct kobj_attribute _name##_attr = \ 2860 __ATTR(_name, 0644, _name##_show, _name##_store) 2861 2862 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2863 struct kobj_attribute *attr, char *buf) 2864 { 2865 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); 2866 } 2867 2868 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2869 struct kobj_attribute *attr, 2870 const char *buf, size_t count) 2871 { 2872 unsigned long msecs; 2873 int err; 2874 2875 err = kstrtoul(buf, 10, &msecs); 2876 if (err || msecs > UINT_MAX) 2877 return -EINVAL; 2878 2879 ksm_thread_sleep_millisecs = msecs; 2880 wake_up_interruptible(&ksm_iter_wait); 2881 2882 return count; 2883 } 2884 KSM_ATTR(sleep_millisecs); 2885 2886 static ssize_t pages_to_scan_show(struct kobject *kobj, 2887 struct kobj_attribute *attr, char *buf) 2888 { 2889 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); 2890 } 2891 2892 static ssize_t pages_to_scan_store(struct kobject *kobj, 2893 struct kobj_attribute *attr, 2894 const char *buf, size_t count) 2895 { 2896 int err; 2897 unsigned long nr_pages; 2898 2899 err = kstrtoul(buf, 10, &nr_pages); 2900 if (err || nr_pages > UINT_MAX) 2901 return -EINVAL; 2902 2903 ksm_thread_pages_to_scan = nr_pages; 2904 2905 return count; 2906 } 2907 KSM_ATTR(pages_to_scan); 2908 2909 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2910 char *buf) 2911 { 2912 return sprintf(buf, "%lu\n", ksm_run); 2913 } 2914 2915 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2916 const char *buf, size_t count) 2917 { 2918 int err; 2919 unsigned long flags; 2920 2921 err = kstrtoul(buf, 10, &flags); 2922 if (err || flags > UINT_MAX) 2923 return -EINVAL; 2924 if (flags > KSM_RUN_UNMERGE) 2925 return -EINVAL; 2926 2927 /* 2928 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2929 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2930 * breaking COW to free the pages_shared (but leaves mm_slots 2931 * on the list for when ksmd may be set running again). 2932 */ 2933 2934 mutex_lock(&ksm_thread_mutex); 2935 wait_while_offlining(); 2936 if (ksm_run != flags) { 2937 ksm_run = flags; 2938 if (flags & KSM_RUN_UNMERGE) { 2939 set_current_oom_origin(); 2940 err = unmerge_and_remove_all_rmap_items(); 2941 clear_current_oom_origin(); 2942 if (err) { 2943 ksm_run = KSM_RUN_STOP; 2944 count = err; 2945 } 2946 } 2947 } 2948 mutex_unlock(&ksm_thread_mutex); 2949 2950 if (flags & KSM_RUN_MERGE) 2951 wake_up_interruptible(&ksm_thread_wait); 2952 2953 return count; 2954 } 2955 KSM_ATTR(run); 2956 2957 #ifdef CONFIG_NUMA 2958 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2959 struct kobj_attribute *attr, char *buf) 2960 { 2961 return sprintf(buf, "%u\n", ksm_merge_across_nodes); 2962 } 2963 2964 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2965 struct kobj_attribute *attr, 2966 const char *buf, size_t count) 2967 { 2968 int err; 2969 unsigned long knob; 2970 2971 err = kstrtoul(buf, 10, &knob); 2972 if (err) 2973 return err; 2974 if (knob > 1) 2975 return -EINVAL; 2976 2977 mutex_lock(&ksm_thread_mutex); 2978 wait_while_offlining(); 2979 if (ksm_merge_across_nodes != knob) { 2980 if (ksm_pages_shared || remove_all_stable_nodes()) 2981 err = -EBUSY; 2982 else if (root_stable_tree == one_stable_tree) { 2983 struct rb_root *buf; 2984 /* 2985 * This is the first time that we switch away from the 2986 * default of merging across nodes: must now allocate 2987 * a buffer to hold as many roots as may be needed. 2988 * Allocate stable and unstable together: 2989 * MAXSMP NODES_SHIFT 10 will use 16kB. 2990 */ 2991 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2992 GFP_KERNEL); 2993 /* Let us assume that RB_ROOT is NULL is zero */ 2994 if (!buf) 2995 err = -ENOMEM; 2996 else { 2997 root_stable_tree = buf; 2998 root_unstable_tree = buf + nr_node_ids; 2999 /* Stable tree is empty but not the unstable */ 3000 root_unstable_tree[0] = one_unstable_tree[0]; 3001 } 3002 } 3003 if (!err) { 3004 ksm_merge_across_nodes = knob; 3005 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 3006 } 3007 } 3008 mutex_unlock(&ksm_thread_mutex); 3009 3010 return err ? err : count; 3011 } 3012 KSM_ATTR(merge_across_nodes); 3013 #endif 3014 3015 static ssize_t use_zero_pages_show(struct kobject *kobj, 3016 struct kobj_attribute *attr, char *buf) 3017 { 3018 return sprintf(buf, "%u\n", ksm_use_zero_pages); 3019 } 3020 static ssize_t use_zero_pages_store(struct kobject *kobj, 3021 struct kobj_attribute *attr, 3022 const char *buf, size_t count) 3023 { 3024 int err; 3025 bool value; 3026 3027 err = kstrtobool(buf, &value); 3028 if (err) 3029 return -EINVAL; 3030 3031 ksm_use_zero_pages = value; 3032 3033 return count; 3034 } 3035 KSM_ATTR(use_zero_pages); 3036 3037 static ssize_t max_page_sharing_show(struct kobject *kobj, 3038 struct kobj_attribute *attr, char *buf) 3039 { 3040 return sprintf(buf, "%u\n", ksm_max_page_sharing); 3041 } 3042 3043 static ssize_t max_page_sharing_store(struct kobject *kobj, 3044 struct kobj_attribute *attr, 3045 const char *buf, size_t count) 3046 { 3047 int err; 3048 int knob; 3049 3050 err = kstrtoint(buf, 10, &knob); 3051 if (err) 3052 return err; 3053 /* 3054 * When a KSM page is created it is shared by 2 mappings. This 3055 * being a signed comparison, it implicitly verifies it's not 3056 * negative. 3057 */ 3058 if (knob < 2) 3059 return -EINVAL; 3060 3061 if (READ_ONCE(ksm_max_page_sharing) == knob) 3062 return count; 3063 3064 mutex_lock(&ksm_thread_mutex); 3065 wait_while_offlining(); 3066 if (ksm_max_page_sharing != knob) { 3067 if (ksm_pages_shared || remove_all_stable_nodes()) 3068 err = -EBUSY; 3069 else 3070 ksm_max_page_sharing = knob; 3071 } 3072 mutex_unlock(&ksm_thread_mutex); 3073 3074 return err ? err : count; 3075 } 3076 KSM_ATTR(max_page_sharing); 3077 3078 static ssize_t pages_shared_show(struct kobject *kobj, 3079 struct kobj_attribute *attr, char *buf) 3080 { 3081 return sprintf(buf, "%lu\n", ksm_pages_shared); 3082 } 3083 KSM_ATTR_RO(pages_shared); 3084 3085 static ssize_t pages_sharing_show(struct kobject *kobj, 3086 struct kobj_attribute *attr, char *buf) 3087 { 3088 return sprintf(buf, "%lu\n", ksm_pages_sharing); 3089 } 3090 KSM_ATTR_RO(pages_sharing); 3091 3092 static ssize_t pages_unshared_show(struct kobject *kobj, 3093 struct kobj_attribute *attr, char *buf) 3094 { 3095 return sprintf(buf, "%lu\n", ksm_pages_unshared); 3096 } 3097 KSM_ATTR_RO(pages_unshared); 3098 3099 static ssize_t pages_volatile_show(struct kobject *kobj, 3100 struct kobj_attribute *attr, char *buf) 3101 { 3102 long ksm_pages_volatile; 3103 3104 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3105 - ksm_pages_sharing - ksm_pages_unshared; 3106 /* 3107 * It was not worth any locking to calculate that statistic, 3108 * but it might therefore sometimes be negative: conceal that. 3109 */ 3110 if (ksm_pages_volatile < 0) 3111 ksm_pages_volatile = 0; 3112 return sprintf(buf, "%ld\n", ksm_pages_volatile); 3113 } 3114 KSM_ATTR_RO(pages_volatile); 3115 3116 static ssize_t stable_node_dups_show(struct kobject *kobj, 3117 struct kobj_attribute *attr, char *buf) 3118 { 3119 return sprintf(buf, "%lu\n", ksm_stable_node_dups); 3120 } 3121 KSM_ATTR_RO(stable_node_dups); 3122 3123 static ssize_t stable_node_chains_show(struct kobject *kobj, 3124 struct kobj_attribute *attr, char *buf) 3125 { 3126 return sprintf(buf, "%lu\n", ksm_stable_node_chains); 3127 } 3128 KSM_ATTR_RO(stable_node_chains); 3129 3130 static ssize_t 3131 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3132 struct kobj_attribute *attr, 3133 char *buf) 3134 { 3135 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3136 } 3137 3138 static ssize_t 3139 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3140 struct kobj_attribute *attr, 3141 const char *buf, size_t count) 3142 { 3143 unsigned long msecs; 3144 int err; 3145 3146 err = kstrtoul(buf, 10, &msecs); 3147 if (err || msecs > UINT_MAX) 3148 return -EINVAL; 3149 3150 ksm_stable_node_chains_prune_millisecs = msecs; 3151 3152 return count; 3153 } 3154 KSM_ATTR(stable_node_chains_prune_millisecs); 3155 3156 static ssize_t full_scans_show(struct kobject *kobj, 3157 struct kobj_attribute *attr, char *buf) 3158 { 3159 return sprintf(buf, "%lu\n", ksm_scan.seqnr); 3160 } 3161 KSM_ATTR_RO(full_scans); 3162 3163 static struct attribute *ksm_attrs[] = { 3164 &sleep_millisecs_attr.attr, 3165 &pages_to_scan_attr.attr, 3166 &run_attr.attr, 3167 &pages_shared_attr.attr, 3168 &pages_sharing_attr.attr, 3169 &pages_unshared_attr.attr, 3170 &pages_volatile_attr.attr, 3171 &full_scans_attr.attr, 3172 #ifdef CONFIG_NUMA 3173 &merge_across_nodes_attr.attr, 3174 #endif 3175 &max_page_sharing_attr.attr, 3176 &stable_node_chains_attr.attr, 3177 &stable_node_dups_attr.attr, 3178 &stable_node_chains_prune_millisecs_attr.attr, 3179 &use_zero_pages_attr.attr, 3180 NULL, 3181 }; 3182 3183 static const struct attribute_group ksm_attr_group = { 3184 .attrs = ksm_attrs, 3185 .name = "ksm", 3186 }; 3187 #endif /* CONFIG_SYSFS */ 3188 3189 static int __init ksm_init(void) 3190 { 3191 struct task_struct *ksm_thread; 3192 int err; 3193 3194 /* The correct value depends on page size and endianness */ 3195 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3196 /* Default to false for backwards compatibility */ 3197 ksm_use_zero_pages = false; 3198 3199 err = ksm_slab_init(); 3200 if (err) 3201 goto out; 3202 3203 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3204 if (IS_ERR(ksm_thread)) { 3205 pr_err("ksm: creating kthread failed\n"); 3206 err = PTR_ERR(ksm_thread); 3207 goto out_free; 3208 } 3209 3210 #ifdef CONFIG_SYSFS 3211 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3212 if (err) { 3213 pr_err("ksm: register sysfs failed\n"); 3214 kthread_stop(ksm_thread); 3215 goto out_free; 3216 } 3217 #else 3218 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3219 3220 #endif /* CONFIG_SYSFS */ 3221 3222 #ifdef CONFIG_MEMORY_HOTREMOVE 3223 /* There is no significance to this priority 100 */ 3224 hotplug_memory_notifier(ksm_memory_callback, 100); 3225 #endif 3226 return 0; 3227 3228 out_free: 3229 ksm_slab_free(); 3230 out: 3231 return err; 3232 } 3233 subsys_initcall(ksm_init); 3234