xref: /openbmc/linux/mm/ksm.c (revision 2bad466c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *	Izik Eidus
11  *	Andrea Arcangeli
12  *	Chris Wright
13  *	Hugh Dickins
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
43 
44 #include <asm/tlbflush.h>
45 #include "internal.h"
46 #include "mm_slot.h"
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/ksm.h>
50 
51 #ifdef CONFIG_NUMA
52 #define NUMA(x)		(x)
53 #define DO_NUMA(x)	do { (x); } while (0)
54 #else
55 #define NUMA(x)		(0)
56 #define DO_NUMA(x)	do { } while (0)
57 #endif
58 
59 /**
60  * DOC: Overview
61  *
62  * A few notes about the KSM scanning process,
63  * to make it easier to understand the data structures below:
64  *
65  * In order to reduce excessive scanning, KSM sorts the memory pages by their
66  * contents into a data structure that holds pointers to the pages' locations.
67  *
68  * Since the contents of the pages may change at any moment, KSM cannot just
69  * insert the pages into a normal sorted tree and expect it to find anything.
70  * Therefore KSM uses two data structures - the stable and the unstable tree.
71  *
72  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
73  * by their contents.  Because each such page is write-protected, searching on
74  * this tree is fully assured to be working (except when pages are unmapped),
75  * and therefore this tree is called the stable tree.
76  *
77  * The stable tree node includes information required for reverse
78  * mapping from a KSM page to virtual addresses that map this page.
79  *
80  * In order to avoid large latencies of the rmap walks on KSM pages,
81  * KSM maintains two types of nodes in the stable tree:
82  *
83  * * the regular nodes that keep the reverse mapping structures in a
84  *   linked list
85  * * the "chains" that link nodes ("dups") that represent the same
86  *   write protected memory content, but each "dup" corresponds to a
87  *   different KSM page copy of that content
88  *
89  * Internally, the regular nodes, "dups" and "chains" are represented
90  * using the same struct ksm_stable_node structure.
91  *
92  * In addition to the stable tree, KSM uses a second data structure called the
93  * unstable tree: this tree holds pointers to pages which have been found to
94  * be "unchanged for a period of time".  The unstable tree sorts these pages
95  * by their contents, but since they are not write-protected, KSM cannot rely
96  * upon the unstable tree to work correctly - the unstable tree is liable to
97  * be corrupted as its contents are modified, and so it is called unstable.
98  *
99  * KSM solves this problem by several techniques:
100  *
101  * 1) The unstable tree is flushed every time KSM completes scanning all
102  *    memory areas, and then the tree is rebuilt again from the beginning.
103  * 2) KSM will only insert into the unstable tree, pages whose hash value
104  *    has not changed since the previous scan of all memory areas.
105  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
106  *    colors of the nodes and not on their contents, assuring that even when
107  *    the tree gets "corrupted" it won't get out of balance, so scanning time
108  *    remains the same (also, searching and inserting nodes in an rbtree uses
109  *    the same algorithm, so we have no overhead when we flush and rebuild).
110  * 4) KSM never flushes the stable tree, which means that even if it were to
111  *    take 10 attempts to find a page in the unstable tree, once it is found,
112  *    it is secured in the stable tree.  (When we scan a new page, we first
113  *    compare it against the stable tree, and then against the unstable tree.)
114  *
115  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
116  * stable trees and multiple unstable trees: one of each for each NUMA node.
117  */
118 
119 /**
120  * struct ksm_mm_slot - ksm information per mm that is being scanned
121  * @slot: hash lookup from mm to mm_slot
122  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
123  */
124 struct ksm_mm_slot {
125 	struct mm_slot slot;
126 	struct ksm_rmap_item *rmap_list;
127 };
128 
129 /**
130  * struct ksm_scan - cursor for scanning
131  * @mm_slot: the current mm_slot we are scanning
132  * @address: the next address inside that to be scanned
133  * @rmap_list: link to the next rmap to be scanned in the rmap_list
134  * @seqnr: count of completed full scans (needed when removing unstable node)
135  *
136  * There is only the one ksm_scan instance of this cursor structure.
137  */
138 struct ksm_scan {
139 	struct ksm_mm_slot *mm_slot;
140 	unsigned long address;
141 	struct ksm_rmap_item **rmap_list;
142 	unsigned long seqnr;
143 };
144 
145 /**
146  * struct ksm_stable_node - node of the stable rbtree
147  * @node: rb node of this ksm page in the stable tree
148  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
149  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
150  * @list: linked into migrate_nodes, pending placement in the proper node tree
151  * @hlist: hlist head of rmap_items using this ksm page
152  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
153  * @chain_prune_time: time of the last full garbage collection
154  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
155  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
156  */
157 struct ksm_stable_node {
158 	union {
159 		struct rb_node node;	/* when node of stable tree */
160 		struct {		/* when listed for migration */
161 			struct list_head *head;
162 			struct {
163 				struct hlist_node hlist_dup;
164 				struct list_head list;
165 			};
166 		};
167 	};
168 	struct hlist_head hlist;
169 	union {
170 		unsigned long kpfn;
171 		unsigned long chain_prune_time;
172 	};
173 	/*
174 	 * STABLE_NODE_CHAIN can be any negative number in
175 	 * rmap_hlist_len negative range, but better not -1 to be able
176 	 * to reliably detect underflows.
177 	 */
178 #define STABLE_NODE_CHAIN -1024
179 	int rmap_hlist_len;
180 #ifdef CONFIG_NUMA
181 	int nid;
182 #endif
183 };
184 
185 /**
186  * struct ksm_rmap_item - reverse mapping item for virtual addresses
187  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
188  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
189  * @nid: NUMA node id of unstable tree in which linked (may not match page)
190  * @mm: the memory structure this rmap_item is pointing into
191  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
192  * @oldchecksum: previous checksum of the page at that virtual address
193  * @node: rb node of this rmap_item in the unstable tree
194  * @head: pointer to stable_node heading this list in the stable tree
195  * @hlist: link into hlist of rmap_items hanging off that stable_node
196  */
197 struct ksm_rmap_item {
198 	struct ksm_rmap_item *rmap_list;
199 	union {
200 		struct anon_vma *anon_vma;	/* when stable */
201 #ifdef CONFIG_NUMA
202 		int nid;		/* when node of unstable tree */
203 #endif
204 	};
205 	struct mm_struct *mm;
206 	unsigned long address;		/* + low bits used for flags below */
207 	unsigned int oldchecksum;	/* when unstable */
208 	union {
209 		struct rb_node node;	/* when node of unstable tree */
210 		struct {		/* when listed from stable tree */
211 			struct ksm_stable_node *head;
212 			struct hlist_node hlist;
213 		};
214 	};
215 };
216 
217 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
218 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
219 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
220 
221 /* The stable and unstable tree heads */
222 static struct rb_root one_stable_tree[1] = { RB_ROOT };
223 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224 static struct rb_root *root_stable_tree = one_stable_tree;
225 static struct rb_root *root_unstable_tree = one_unstable_tree;
226 
227 /* Recently migrated nodes of stable tree, pending proper placement */
228 static LIST_HEAD(migrate_nodes);
229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
230 
231 #define MM_SLOTS_HASH_BITS 10
232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
233 
234 static struct ksm_mm_slot ksm_mm_head = {
235 	.slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
236 };
237 static struct ksm_scan ksm_scan = {
238 	.mm_slot = &ksm_mm_head,
239 };
240 
241 static struct kmem_cache *rmap_item_cache;
242 static struct kmem_cache *stable_node_cache;
243 static struct kmem_cache *mm_slot_cache;
244 
245 /* The number of nodes in the stable tree */
246 static unsigned long ksm_pages_shared;
247 
248 /* The number of page slots additionally sharing those nodes */
249 static unsigned long ksm_pages_sharing;
250 
251 /* The number of nodes in the unstable tree */
252 static unsigned long ksm_pages_unshared;
253 
254 /* The number of rmap_items in use: to calculate pages_volatile */
255 static unsigned long ksm_rmap_items;
256 
257 /* The number of stable_node chains */
258 static unsigned long ksm_stable_node_chains;
259 
260 /* The number of stable_node dups linked to the stable_node chains */
261 static unsigned long ksm_stable_node_dups;
262 
263 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
264 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
265 
266 /* Maximum number of page slots sharing a stable node */
267 static int ksm_max_page_sharing = 256;
268 
269 /* Number of pages ksmd should scan in one batch */
270 static unsigned int ksm_thread_pages_to_scan = 100;
271 
272 /* Milliseconds ksmd should sleep between batches */
273 static unsigned int ksm_thread_sleep_millisecs = 20;
274 
275 /* Checksum of an empty (zeroed) page */
276 static unsigned int zero_checksum __read_mostly;
277 
278 /* Whether to merge empty (zeroed) pages with actual zero pages */
279 static bool ksm_use_zero_pages __read_mostly;
280 
281 #ifdef CONFIG_NUMA
282 /* Zeroed when merging across nodes is not allowed */
283 static unsigned int ksm_merge_across_nodes = 1;
284 static int ksm_nr_node_ids = 1;
285 #else
286 #define ksm_merge_across_nodes	1U
287 #define ksm_nr_node_ids		1
288 #endif
289 
290 #define KSM_RUN_STOP	0
291 #define KSM_RUN_MERGE	1
292 #define KSM_RUN_UNMERGE	2
293 #define KSM_RUN_OFFLINE	4
294 static unsigned long ksm_run = KSM_RUN_STOP;
295 static void wait_while_offlining(void);
296 
297 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
299 static DEFINE_MUTEX(ksm_thread_mutex);
300 static DEFINE_SPINLOCK(ksm_mmlist_lock);
301 
302 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
303 		sizeof(struct __struct), __alignof__(struct __struct),\
304 		(__flags), NULL)
305 
306 static int __init ksm_slab_init(void)
307 {
308 	rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
309 	if (!rmap_item_cache)
310 		goto out;
311 
312 	stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
313 	if (!stable_node_cache)
314 		goto out_free1;
315 
316 	mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
317 	if (!mm_slot_cache)
318 		goto out_free2;
319 
320 	return 0;
321 
322 out_free2:
323 	kmem_cache_destroy(stable_node_cache);
324 out_free1:
325 	kmem_cache_destroy(rmap_item_cache);
326 out:
327 	return -ENOMEM;
328 }
329 
330 static void __init ksm_slab_free(void)
331 {
332 	kmem_cache_destroy(mm_slot_cache);
333 	kmem_cache_destroy(stable_node_cache);
334 	kmem_cache_destroy(rmap_item_cache);
335 	mm_slot_cache = NULL;
336 }
337 
338 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
339 {
340 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
341 }
342 
343 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
344 {
345 	return dup->head == STABLE_NODE_DUP_HEAD;
346 }
347 
348 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
349 					     struct ksm_stable_node *chain)
350 {
351 	VM_BUG_ON(is_stable_node_dup(dup));
352 	dup->head = STABLE_NODE_DUP_HEAD;
353 	VM_BUG_ON(!is_stable_node_chain(chain));
354 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
355 	ksm_stable_node_dups++;
356 }
357 
358 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
359 {
360 	VM_BUG_ON(!is_stable_node_dup(dup));
361 	hlist_del(&dup->hlist_dup);
362 	ksm_stable_node_dups--;
363 }
364 
365 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
366 {
367 	VM_BUG_ON(is_stable_node_chain(dup));
368 	if (is_stable_node_dup(dup))
369 		__stable_node_dup_del(dup);
370 	else
371 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
372 #ifdef CONFIG_DEBUG_VM
373 	dup->head = NULL;
374 #endif
375 }
376 
377 static inline struct ksm_rmap_item *alloc_rmap_item(void)
378 {
379 	struct ksm_rmap_item *rmap_item;
380 
381 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
382 						__GFP_NORETRY | __GFP_NOWARN);
383 	if (rmap_item)
384 		ksm_rmap_items++;
385 	return rmap_item;
386 }
387 
388 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
389 {
390 	ksm_rmap_items--;
391 	rmap_item->mm->ksm_rmap_items--;
392 	rmap_item->mm = NULL;	/* debug safety */
393 	kmem_cache_free(rmap_item_cache, rmap_item);
394 }
395 
396 static inline struct ksm_stable_node *alloc_stable_node(void)
397 {
398 	/*
399 	 * The allocation can take too long with GFP_KERNEL when memory is under
400 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
401 	 * grants access to memory reserves, helping to avoid this problem.
402 	 */
403 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
404 }
405 
406 static inline void free_stable_node(struct ksm_stable_node *stable_node)
407 {
408 	VM_BUG_ON(stable_node->rmap_hlist_len &&
409 		  !is_stable_node_chain(stable_node));
410 	kmem_cache_free(stable_node_cache, stable_node);
411 }
412 
413 /*
414  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
415  * page tables after it has passed through ksm_exit() - which, if necessary,
416  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
417  * a special flag: they can just back out as soon as mm_users goes to zero.
418  * ksm_test_exit() is used throughout to make this test for exit: in some
419  * places for correctness, in some places just to avoid unnecessary work.
420  */
421 static inline bool ksm_test_exit(struct mm_struct *mm)
422 {
423 	return atomic_read(&mm->mm_users) == 0;
424 }
425 
426 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
427 			struct mm_walk *walk)
428 {
429 	struct page *page = NULL;
430 	spinlock_t *ptl;
431 	pte_t *pte;
432 	int ret;
433 
434 	if (pmd_leaf(*pmd) || !pmd_present(*pmd))
435 		return 0;
436 
437 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
438 	if (pte_present(*pte)) {
439 		page = vm_normal_page(walk->vma, addr, *pte);
440 	} else if (!pte_none(*pte)) {
441 		swp_entry_t entry = pte_to_swp_entry(*pte);
442 
443 		/*
444 		 * As KSM pages remain KSM pages until freed, no need to wait
445 		 * here for migration to end.
446 		 */
447 		if (is_migration_entry(entry))
448 			page = pfn_swap_entry_to_page(entry);
449 	}
450 	ret = page && PageKsm(page);
451 	pte_unmap_unlock(pte, ptl);
452 	return ret;
453 }
454 
455 static const struct mm_walk_ops break_ksm_ops = {
456 	.pmd_entry = break_ksm_pmd_entry,
457 };
458 
459 /*
460  * We use break_ksm to break COW on a ksm page by triggering unsharing,
461  * such that the ksm page will get replaced by an exclusive anonymous page.
462  *
463  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
464  * in case the application has unmapped and remapped mm,addr meanwhile.
465  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
466  * mmap of /dev/mem, where we would not want to touch it.
467  *
468  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
469  * of the process that owns 'vma'.  We also do not want to enforce
470  * protection keys here anyway.
471  */
472 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
473 {
474 	vm_fault_t ret = 0;
475 
476 	do {
477 		int ksm_page;
478 
479 		cond_resched();
480 		ksm_page = walk_page_range_vma(vma, addr, addr + 1,
481 					       &break_ksm_ops, NULL);
482 		if (WARN_ON_ONCE(ksm_page < 0))
483 			return ksm_page;
484 		if (!ksm_page)
485 			return 0;
486 		ret = handle_mm_fault(vma, addr,
487 				      FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
488 				      NULL);
489 	} while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
490 	/*
491 	 * We must loop until we no longer find a KSM page because
492 	 * handle_mm_fault() may back out if there's any difficulty e.g. if
493 	 * pte accessed bit gets updated concurrently.
494 	 *
495 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
496 	 * backing file, which also invalidates anonymous pages: that's
497 	 * okay, that truncation will have unmapped the PageKsm for us.
498 	 *
499 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
500 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
501 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
502 	 * to user; and ksmd, having no mm, would never be chosen for that.
503 	 *
504 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
505 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
506 	 * even ksmd can fail in this way - though it's usually breaking ksm
507 	 * just to undo a merge it made a moment before, so unlikely to oom.
508 	 *
509 	 * That's a pity: we might therefore have more kernel pages allocated
510 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
511 	 * will retry to break_cow on each pass, so should recover the page
512 	 * in due course.  The important thing is to not let VM_MERGEABLE
513 	 * be cleared while any such pages might remain in the area.
514 	 */
515 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
516 }
517 
518 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
519 		unsigned long addr)
520 {
521 	struct vm_area_struct *vma;
522 	if (ksm_test_exit(mm))
523 		return NULL;
524 	vma = vma_lookup(mm, addr);
525 	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
526 		return NULL;
527 	return vma;
528 }
529 
530 static void break_cow(struct ksm_rmap_item *rmap_item)
531 {
532 	struct mm_struct *mm = rmap_item->mm;
533 	unsigned long addr = rmap_item->address;
534 	struct vm_area_struct *vma;
535 
536 	/*
537 	 * It is not an accident that whenever we want to break COW
538 	 * to undo, we also need to drop a reference to the anon_vma.
539 	 */
540 	put_anon_vma(rmap_item->anon_vma);
541 
542 	mmap_read_lock(mm);
543 	vma = find_mergeable_vma(mm, addr);
544 	if (vma)
545 		break_ksm(vma, addr);
546 	mmap_read_unlock(mm);
547 }
548 
549 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
550 {
551 	struct mm_struct *mm = rmap_item->mm;
552 	unsigned long addr = rmap_item->address;
553 	struct vm_area_struct *vma;
554 	struct page *page;
555 
556 	mmap_read_lock(mm);
557 	vma = find_mergeable_vma(mm, addr);
558 	if (!vma)
559 		goto out;
560 
561 	page = follow_page(vma, addr, FOLL_GET);
562 	if (IS_ERR_OR_NULL(page))
563 		goto out;
564 	if (is_zone_device_page(page))
565 		goto out_putpage;
566 	if (PageAnon(page)) {
567 		flush_anon_page(vma, page, addr);
568 		flush_dcache_page(page);
569 	} else {
570 out_putpage:
571 		put_page(page);
572 out:
573 		page = NULL;
574 	}
575 	mmap_read_unlock(mm);
576 	return page;
577 }
578 
579 /*
580  * This helper is used for getting right index into array of tree roots.
581  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
582  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
583  * every node has its own stable and unstable tree.
584  */
585 static inline int get_kpfn_nid(unsigned long kpfn)
586 {
587 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
588 }
589 
590 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
591 						   struct rb_root *root)
592 {
593 	struct ksm_stable_node *chain = alloc_stable_node();
594 	VM_BUG_ON(is_stable_node_chain(dup));
595 	if (likely(chain)) {
596 		INIT_HLIST_HEAD(&chain->hlist);
597 		chain->chain_prune_time = jiffies;
598 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
599 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
600 		chain->nid = NUMA_NO_NODE; /* debug */
601 #endif
602 		ksm_stable_node_chains++;
603 
604 		/*
605 		 * Put the stable node chain in the first dimension of
606 		 * the stable tree and at the same time remove the old
607 		 * stable node.
608 		 */
609 		rb_replace_node(&dup->node, &chain->node, root);
610 
611 		/*
612 		 * Move the old stable node to the second dimension
613 		 * queued in the hlist_dup. The invariant is that all
614 		 * dup stable_nodes in the chain->hlist point to pages
615 		 * that are write protected and have the exact same
616 		 * content.
617 		 */
618 		stable_node_chain_add_dup(dup, chain);
619 	}
620 	return chain;
621 }
622 
623 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
624 					  struct rb_root *root)
625 {
626 	rb_erase(&chain->node, root);
627 	free_stable_node(chain);
628 	ksm_stable_node_chains--;
629 }
630 
631 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
632 {
633 	struct ksm_rmap_item *rmap_item;
634 
635 	/* check it's not STABLE_NODE_CHAIN or negative */
636 	BUG_ON(stable_node->rmap_hlist_len < 0);
637 
638 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
639 		if (rmap_item->hlist.next) {
640 			ksm_pages_sharing--;
641 			trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
642 		} else {
643 			ksm_pages_shared--;
644 		}
645 
646 		rmap_item->mm->ksm_merging_pages--;
647 
648 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
649 		stable_node->rmap_hlist_len--;
650 		put_anon_vma(rmap_item->anon_vma);
651 		rmap_item->address &= PAGE_MASK;
652 		cond_resched();
653 	}
654 
655 	/*
656 	 * We need the second aligned pointer of the migrate_nodes
657 	 * list_head to stay clear from the rb_parent_color union
658 	 * (aligned and different than any node) and also different
659 	 * from &migrate_nodes. This will verify that future list.h changes
660 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
661 	 */
662 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
663 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
664 
665 	trace_ksm_remove_ksm_page(stable_node->kpfn);
666 	if (stable_node->head == &migrate_nodes)
667 		list_del(&stable_node->list);
668 	else
669 		stable_node_dup_del(stable_node);
670 	free_stable_node(stable_node);
671 }
672 
673 enum get_ksm_page_flags {
674 	GET_KSM_PAGE_NOLOCK,
675 	GET_KSM_PAGE_LOCK,
676 	GET_KSM_PAGE_TRYLOCK
677 };
678 
679 /*
680  * get_ksm_page: checks if the page indicated by the stable node
681  * is still its ksm page, despite having held no reference to it.
682  * In which case we can trust the content of the page, and it
683  * returns the gotten page; but if the page has now been zapped,
684  * remove the stale node from the stable tree and return NULL.
685  * But beware, the stable node's page might be being migrated.
686  *
687  * You would expect the stable_node to hold a reference to the ksm page.
688  * But if it increments the page's count, swapping out has to wait for
689  * ksmd to come around again before it can free the page, which may take
690  * seconds or even minutes: much too unresponsive.  So instead we use a
691  * "keyhole reference": access to the ksm page from the stable node peeps
692  * out through its keyhole to see if that page still holds the right key,
693  * pointing back to this stable node.  This relies on freeing a PageAnon
694  * page to reset its page->mapping to NULL, and relies on no other use of
695  * a page to put something that might look like our key in page->mapping.
696  * is on its way to being freed; but it is an anomaly to bear in mind.
697  */
698 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
699 				 enum get_ksm_page_flags flags)
700 {
701 	struct page *page;
702 	void *expected_mapping;
703 	unsigned long kpfn;
704 
705 	expected_mapping = (void *)((unsigned long)stable_node |
706 					PAGE_MAPPING_KSM);
707 again:
708 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
709 	page = pfn_to_page(kpfn);
710 	if (READ_ONCE(page->mapping) != expected_mapping)
711 		goto stale;
712 
713 	/*
714 	 * We cannot do anything with the page while its refcount is 0.
715 	 * Usually 0 means free, or tail of a higher-order page: in which
716 	 * case this node is no longer referenced, and should be freed;
717 	 * however, it might mean that the page is under page_ref_freeze().
718 	 * The __remove_mapping() case is easy, again the node is now stale;
719 	 * the same is in reuse_ksm_page() case; but if page is swapcache
720 	 * in folio_migrate_mapping(), it might still be our page,
721 	 * in which case it's essential to keep the node.
722 	 */
723 	while (!get_page_unless_zero(page)) {
724 		/*
725 		 * Another check for page->mapping != expected_mapping would
726 		 * work here too.  We have chosen the !PageSwapCache test to
727 		 * optimize the common case, when the page is or is about to
728 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
729 		 * in the ref_freeze section of __remove_mapping(); but Anon
730 		 * page->mapping reset to NULL later, in free_pages_prepare().
731 		 */
732 		if (!PageSwapCache(page))
733 			goto stale;
734 		cpu_relax();
735 	}
736 
737 	if (READ_ONCE(page->mapping) != expected_mapping) {
738 		put_page(page);
739 		goto stale;
740 	}
741 
742 	if (flags == GET_KSM_PAGE_TRYLOCK) {
743 		if (!trylock_page(page)) {
744 			put_page(page);
745 			return ERR_PTR(-EBUSY);
746 		}
747 	} else if (flags == GET_KSM_PAGE_LOCK)
748 		lock_page(page);
749 
750 	if (flags != GET_KSM_PAGE_NOLOCK) {
751 		if (READ_ONCE(page->mapping) != expected_mapping) {
752 			unlock_page(page);
753 			put_page(page);
754 			goto stale;
755 		}
756 	}
757 	return page;
758 
759 stale:
760 	/*
761 	 * We come here from above when page->mapping or !PageSwapCache
762 	 * suggests that the node is stale; but it might be under migration.
763 	 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
764 	 * before checking whether node->kpfn has been changed.
765 	 */
766 	smp_rmb();
767 	if (READ_ONCE(stable_node->kpfn) != kpfn)
768 		goto again;
769 	remove_node_from_stable_tree(stable_node);
770 	return NULL;
771 }
772 
773 /*
774  * Removing rmap_item from stable or unstable tree.
775  * This function will clean the information from the stable/unstable tree.
776  */
777 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
778 {
779 	if (rmap_item->address & STABLE_FLAG) {
780 		struct ksm_stable_node *stable_node;
781 		struct page *page;
782 
783 		stable_node = rmap_item->head;
784 		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
785 		if (!page)
786 			goto out;
787 
788 		hlist_del(&rmap_item->hlist);
789 		unlock_page(page);
790 		put_page(page);
791 
792 		if (!hlist_empty(&stable_node->hlist))
793 			ksm_pages_sharing--;
794 		else
795 			ksm_pages_shared--;
796 
797 		rmap_item->mm->ksm_merging_pages--;
798 
799 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
800 		stable_node->rmap_hlist_len--;
801 
802 		put_anon_vma(rmap_item->anon_vma);
803 		rmap_item->head = NULL;
804 		rmap_item->address &= PAGE_MASK;
805 
806 	} else if (rmap_item->address & UNSTABLE_FLAG) {
807 		unsigned char age;
808 		/*
809 		 * Usually ksmd can and must skip the rb_erase, because
810 		 * root_unstable_tree was already reset to RB_ROOT.
811 		 * But be careful when an mm is exiting: do the rb_erase
812 		 * if this rmap_item was inserted by this scan, rather
813 		 * than left over from before.
814 		 */
815 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
816 		BUG_ON(age > 1);
817 		if (!age)
818 			rb_erase(&rmap_item->node,
819 				 root_unstable_tree + NUMA(rmap_item->nid));
820 		ksm_pages_unshared--;
821 		rmap_item->address &= PAGE_MASK;
822 	}
823 out:
824 	cond_resched();		/* we're called from many long loops */
825 }
826 
827 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
828 {
829 	while (*rmap_list) {
830 		struct ksm_rmap_item *rmap_item = *rmap_list;
831 		*rmap_list = rmap_item->rmap_list;
832 		remove_rmap_item_from_tree(rmap_item);
833 		free_rmap_item(rmap_item);
834 	}
835 }
836 
837 /*
838  * Though it's very tempting to unmerge rmap_items from stable tree rather
839  * than check every pte of a given vma, the locking doesn't quite work for
840  * that - an rmap_item is assigned to the stable tree after inserting ksm
841  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
842  * rmap_items from parent to child at fork time (so as not to waste time
843  * if exit comes before the next scan reaches it).
844  *
845  * Similarly, although we'd like to remove rmap_items (so updating counts
846  * and freeing memory) when unmerging an area, it's easier to leave that
847  * to the next pass of ksmd - consider, for example, how ksmd might be
848  * in cmp_and_merge_page on one of the rmap_items we would be removing.
849  */
850 static int unmerge_ksm_pages(struct vm_area_struct *vma,
851 			     unsigned long start, unsigned long end)
852 {
853 	unsigned long addr;
854 	int err = 0;
855 
856 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
857 		if (ksm_test_exit(vma->vm_mm))
858 			break;
859 		if (signal_pending(current))
860 			err = -ERESTARTSYS;
861 		else
862 			err = break_ksm(vma, addr);
863 	}
864 	return err;
865 }
866 
867 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
868 {
869 	return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
870 }
871 
872 static inline struct ksm_stable_node *page_stable_node(struct page *page)
873 {
874 	return folio_stable_node(page_folio(page));
875 }
876 
877 static inline void set_page_stable_node(struct page *page,
878 					struct ksm_stable_node *stable_node)
879 {
880 	VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
881 	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
882 }
883 
884 #ifdef CONFIG_SYSFS
885 /*
886  * Only called through the sysfs control interface:
887  */
888 static int remove_stable_node(struct ksm_stable_node *stable_node)
889 {
890 	struct page *page;
891 	int err;
892 
893 	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
894 	if (!page) {
895 		/*
896 		 * get_ksm_page did remove_node_from_stable_tree itself.
897 		 */
898 		return 0;
899 	}
900 
901 	/*
902 	 * Page could be still mapped if this races with __mmput() running in
903 	 * between ksm_exit() and exit_mmap(). Just refuse to let
904 	 * merge_across_nodes/max_page_sharing be switched.
905 	 */
906 	err = -EBUSY;
907 	if (!page_mapped(page)) {
908 		/*
909 		 * The stable node did not yet appear stale to get_ksm_page(),
910 		 * since that allows for an unmapped ksm page to be recognized
911 		 * right up until it is freed; but the node is safe to remove.
912 		 * This page might be in a pagevec waiting to be freed,
913 		 * or it might be PageSwapCache (perhaps under writeback),
914 		 * or it might have been removed from swapcache a moment ago.
915 		 */
916 		set_page_stable_node(page, NULL);
917 		remove_node_from_stable_tree(stable_node);
918 		err = 0;
919 	}
920 
921 	unlock_page(page);
922 	put_page(page);
923 	return err;
924 }
925 
926 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
927 				    struct rb_root *root)
928 {
929 	struct ksm_stable_node *dup;
930 	struct hlist_node *hlist_safe;
931 
932 	if (!is_stable_node_chain(stable_node)) {
933 		VM_BUG_ON(is_stable_node_dup(stable_node));
934 		if (remove_stable_node(stable_node))
935 			return true;
936 		else
937 			return false;
938 	}
939 
940 	hlist_for_each_entry_safe(dup, hlist_safe,
941 				  &stable_node->hlist, hlist_dup) {
942 		VM_BUG_ON(!is_stable_node_dup(dup));
943 		if (remove_stable_node(dup))
944 			return true;
945 	}
946 	BUG_ON(!hlist_empty(&stable_node->hlist));
947 	free_stable_node_chain(stable_node, root);
948 	return false;
949 }
950 
951 static int remove_all_stable_nodes(void)
952 {
953 	struct ksm_stable_node *stable_node, *next;
954 	int nid;
955 	int err = 0;
956 
957 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
958 		while (root_stable_tree[nid].rb_node) {
959 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
960 						struct ksm_stable_node, node);
961 			if (remove_stable_node_chain(stable_node,
962 						     root_stable_tree + nid)) {
963 				err = -EBUSY;
964 				break;	/* proceed to next nid */
965 			}
966 			cond_resched();
967 		}
968 	}
969 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
970 		if (remove_stable_node(stable_node))
971 			err = -EBUSY;
972 		cond_resched();
973 	}
974 	return err;
975 }
976 
977 static int unmerge_and_remove_all_rmap_items(void)
978 {
979 	struct ksm_mm_slot *mm_slot;
980 	struct mm_slot *slot;
981 	struct mm_struct *mm;
982 	struct vm_area_struct *vma;
983 	int err = 0;
984 
985 	spin_lock(&ksm_mmlist_lock);
986 	slot = list_entry(ksm_mm_head.slot.mm_node.next,
987 			  struct mm_slot, mm_node);
988 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
989 	spin_unlock(&ksm_mmlist_lock);
990 
991 	for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
992 	     mm_slot = ksm_scan.mm_slot) {
993 		VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
994 
995 		mm = mm_slot->slot.mm;
996 		mmap_read_lock(mm);
997 
998 		/*
999 		 * Exit right away if mm is exiting to avoid lockdep issue in
1000 		 * the maple tree
1001 		 */
1002 		if (ksm_test_exit(mm))
1003 			goto mm_exiting;
1004 
1005 		for_each_vma(vmi, vma) {
1006 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1007 				continue;
1008 			err = unmerge_ksm_pages(vma,
1009 						vma->vm_start, vma->vm_end);
1010 			if (err)
1011 				goto error;
1012 		}
1013 
1014 mm_exiting:
1015 		remove_trailing_rmap_items(&mm_slot->rmap_list);
1016 		mmap_read_unlock(mm);
1017 
1018 		spin_lock(&ksm_mmlist_lock);
1019 		slot = list_entry(mm_slot->slot.mm_node.next,
1020 				  struct mm_slot, mm_node);
1021 		ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1022 		if (ksm_test_exit(mm)) {
1023 			hash_del(&mm_slot->slot.hash);
1024 			list_del(&mm_slot->slot.mm_node);
1025 			spin_unlock(&ksm_mmlist_lock);
1026 
1027 			mm_slot_free(mm_slot_cache, mm_slot);
1028 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1029 			mmdrop(mm);
1030 		} else
1031 			spin_unlock(&ksm_mmlist_lock);
1032 	}
1033 
1034 	/* Clean up stable nodes, but don't worry if some are still busy */
1035 	remove_all_stable_nodes();
1036 	ksm_scan.seqnr = 0;
1037 	return 0;
1038 
1039 error:
1040 	mmap_read_unlock(mm);
1041 	spin_lock(&ksm_mmlist_lock);
1042 	ksm_scan.mm_slot = &ksm_mm_head;
1043 	spin_unlock(&ksm_mmlist_lock);
1044 	return err;
1045 }
1046 #endif /* CONFIG_SYSFS */
1047 
1048 static u32 calc_checksum(struct page *page)
1049 {
1050 	u32 checksum;
1051 	void *addr = kmap_atomic(page);
1052 	checksum = xxhash(addr, PAGE_SIZE, 0);
1053 	kunmap_atomic(addr);
1054 	return checksum;
1055 }
1056 
1057 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1058 			      pte_t *orig_pte)
1059 {
1060 	struct mm_struct *mm = vma->vm_mm;
1061 	DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1062 	int swapped;
1063 	int err = -EFAULT;
1064 	struct mmu_notifier_range range;
1065 	bool anon_exclusive;
1066 
1067 	pvmw.address = page_address_in_vma(page, vma);
1068 	if (pvmw.address == -EFAULT)
1069 		goto out;
1070 
1071 	BUG_ON(PageTransCompound(page));
1072 
1073 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1074 				pvmw.address + PAGE_SIZE);
1075 	mmu_notifier_invalidate_range_start(&range);
1076 
1077 	if (!page_vma_mapped_walk(&pvmw))
1078 		goto out_mn;
1079 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1080 		goto out_unlock;
1081 
1082 	anon_exclusive = PageAnonExclusive(page);
1083 	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1084 	    anon_exclusive || mm_tlb_flush_pending(mm)) {
1085 		pte_t entry;
1086 
1087 		swapped = PageSwapCache(page);
1088 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1089 		/*
1090 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1091 		 * take any lock, therefore the check that we are going to make
1092 		 * with the pagecount against the mapcount is racy and
1093 		 * O_DIRECT can happen right after the check.
1094 		 * So we clear the pte and flush the tlb before the check
1095 		 * this assure us that no O_DIRECT can happen after the check
1096 		 * or in the middle of the check.
1097 		 *
1098 		 * No need to notify as we are downgrading page table to read
1099 		 * only not changing it to point to a new page.
1100 		 *
1101 		 * See Documentation/mm/mmu_notifier.rst
1102 		 */
1103 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1104 		/*
1105 		 * Check that no O_DIRECT or similar I/O is in progress on the
1106 		 * page
1107 		 */
1108 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1109 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1110 			goto out_unlock;
1111 		}
1112 
1113 		/* See page_try_share_anon_rmap(): clear PTE first. */
1114 		if (anon_exclusive && page_try_share_anon_rmap(page)) {
1115 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1116 			goto out_unlock;
1117 		}
1118 
1119 		if (pte_dirty(entry))
1120 			set_page_dirty(page);
1121 		entry = pte_mkclean(entry);
1122 
1123 		if (pte_write(entry))
1124 			entry = pte_wrprotect(entry);
1125 
1126 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1127 	}
1128 	*orig_pte = *pvmw.pte;
1129 	err = 0;
1130 
1131 out_unlock:
1132 	page_vma_mapped_walk_done(&pvmw);
1133 out_mn:
1134 	mmu_notifier_invalidate_range_end(&range);
1135 out:
1136 	return err;
1137 }
1138 
1139 /**
1140  * replace_page - replace page in vma by new ksm page
1141  * @vma:      vma that holds the pte pointing to page
1142  * @page:     the page we are replacing by kpage
1143  * @kpage:    the ksm page we replace page by
1144  * @orig_pte: the original value of the pte
1145  *
1146  * Returns 0 on success, -EFAULT on failure.
1147  */
1148 static int replace_page(struct vm_area_struct *vma, struct page *page,
1149 			struct page *kpage, pte_t orig_pte)
1150 {
1151 	struct mm_struct *mm = vma->vm_mm;
1152 	struct folio *folio;
1153 	pmd_t *pmd;
1154 	pmd_t pmde;
1155 	pte_t *ptep;
1156 	pte_t newpte;
1157 	spinlock_t *ptl;
1158 	unsigned long addr;
1159 	int err = -EFAULT;
1160 	struct mmu_notifier_range range;
1161 
1162 	addr = page_address_in_vma(page, vma);
1163 	if (addr == -EFAULT)
1164 		goto out;
1165 
1166 	pmd = mm_find_pmd(mm, addr);
1167 	if (!pmd)
1168 		goto out;
1169 	/*
1170 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1171 	 * without holding anon_vma lock for write.  So when looking for a
1172 	 * genuine pmde (in which to find pte), test present and !THP together.
1173 	 */
1174 	pmde = *pmd;
1175 	barrier();
1176 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1177 		goto out;
1178 
1179 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1180 				addr + PAGE_SIZE);
1181 	mmu_notifier_invalidate_range_start(&range);
1182 
1183 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1184 	if (!pte_same(*ptep, orig_pte)) {
1185 		pte_unmap_unlock(ptep, ptl);
1186 		goto out_mn;
1187 	}
1188 	VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1189 	VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1190 
1191 	/*
1192 	 * No need to check ksm_use_zero_pages here: we can only have a
1193 	 * zero_page here if ksm_use_zero_pages was enabled already.
1194 	 */
1195 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1196 		get_page(kpage);
1197 		page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1198 		newpte = mk_pte(kpage, vma->vm_page_prot);
1199 	} else {
1200 		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1201 					       vma->vm_page_prot));
1202 		/*
1203 		 * We're replacing an anonymous page with a zero page, which is
1204 		 * not anonymous. We need to do proper accounting otherwise we
1205 		 * will get wrong values in /proc, and a BUG message in dmesg
1206 		 * when tearing down the mm.
1207 		 */
1208 		dec_mm_counter(mm, MM_ANONPAGES);
1209 	}
1210 
1211 	flush_cache_page(vma, addr, pte_pfn(*ptep));
1212 	/*
1213 	 * No need to notify as we are replacing a read only page with another
1214 	 * read only page with the same content.
1215 	 *
1216 	 * See Documentation/mm/mmu_notifier.rst
1217 	 */
1218 	ptep_clear_flush(vma, addr, ptep);
1219 	set_pte_at_notify(mm, addr, ptep, newpte);
1220 
1221 	folio = page_folio(page);
1222 	page_remove_rmap(page, vma, false);
1223 	if (!folio_mapped(folio))
1224 		folio_free_swap(folio);
1225 	folio_put(folio);
1226 
1227 	pte_unmap_unlock(ptep, ptl);
1228 	err = 0;
1229 out_mn:
1230 	mmu_notifier_invalidate_range_end(&range);
1231 out:
1232 	return err;
1233 }
1234 
1235 /*
1236  * try_to_merge_one_page - take two pages and merge them into one
1237  * @vma: the vma that holds the pte pointing to page
1238  * @page: the PageAnon page that we want to replace with kpage
1239  * @kpage: the PageKsm page that we want to map instead of page,
1240  *         or NULL the first time when we want to use page as kpage.
1241  *
1242  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1243  */
1244 static int try_to_merge_one_page(struct vm_area_struct *vma,
1245 				 struct page *page, struct page *kpage)
1246 {
1247 	pte_t orig_pte = __pte(0);
1248 	int err = -EFAULT;
1249 
1250 	if (page == kpage)			/* ksm page forked */
1251 		return 0;
1252 
1253 	if (!PageAnon(page))
1254 		goto out;
1255 
1256 	/*
1257 	 * We need the page lock to read a stable PageSwapCache in
1258 	 * write_protect_page().  We use trylock_page() instead of
1259 	 * lock_page() because we don't want to wait here - we
1260 	 * prefer to continue scanning and merging different pages,
1261 	 * then come back to this page when it is unlocked.
1262 	 */
1263 	if (!trylock_page(page))
1264 		goto out;
1265 
1266 	if (PageTransCompound(page)) {
1267 		if (split_huge_page(page))
1268 			goto out_unlock;
1269 	}
1270 
1271 	/*
1272 	 * If this anonymous page is mapped only here, its pte may need
1273 	 * to be write-protected.  If it's mapped elsewhere, all of its
1274 	 * ptes are necessarily already write-protected.  But in either
1275 	 * case, we need to lock and check page_count is not raised.
1276 	 */
1277 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1278 		if (!kpage) {
1279 			/*
1280 			 * While we hold page lock, upgrade page from
1281 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1282 			 * stable_tree_insert() will update stable_node.
1283 			 */
1284 			set_page_stable_node(page, NULL);
1285 			mark_page_accessed(page);
1286 			/*
1287 			 * Page reclaim just frees a clean page with no dirty
1288 			 * ptes: make sure that the ksm page would be swapped.
1289 			 */
1290 			if (!PageDirty(page))
1291 				SetPageDirty(page);
1292 			err = 0;
1293 		} else if (pages_identical(page, kpage))
1294 			err = replace_page(vma, page, kpage, orig_pte);
1295 	}
1296 
1297 out_unlock:
1298 	unlock_page(page);
1299 out:
1300 	return err;
1301 }
1302 
1303 /*
1304  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1305  * but no new kernel page is allocated: kpage must already be a ksm page.
1306  *
1307  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1308  */
1309 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1310 				      struct page *page, struct page *kpage)
1311 {
1312 	struct mm_struct *mm = rmap_item->mm;
1313 	struct vm_area_struct *vma;
1314 	int err = -EFAULT;
1315 
1316 	mmap_read_lock(mm);
1317 	vma = find_mergeable_vma(mm, rmap_item->address);
1318 	if (!vma)
1319 		goto out;
1320 
1321 	err = try_to_merge_one_page(vma, page, kpage);
1322 	if (err)
1323 		goto out;
1324 
1325 	/* Unstable nid is in union with stable anon_vma: remove first */
1326 	remove_rmap_item_from_tree(rmap_item);
1327 
1328 	/* Must get reference to anon_vma while still holding mmap_lock */
1329 	rmap_item->anon_vma = vma->anon_vma;
1330 	get_anon_vma(vma->anon_vma);
1331 out:
1332 	mmap_read_unlock(mm);
1333 	trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1334 				rmap_item, mm, err);
1335 	return err;
1336 }
1337 
1338 /*
1339  * try_to_merge_two_pages - take two identical pages and prepare them
1340  * to be merged into one page.
1341  *
1342  * This function returns the kpage if we successfully merged two identical
1343  * pages into one ksm page, NULL otherwise.
1344  *
1345  * Note that this function upgrades page to ksm page: if one of the pages
1346  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1347  */
1348 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1349 					   struct page *page,
1350 					   struct ksm_rmap_item *tree_rmap_item,
1351 					   struct page *tree_page)
1352 {
1353 	int err;
1354 
1355 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1356 	if (!err) {
1357 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1358 							tree_page, page);
1359 		/*
1360 		 * If that fails, we have a ksm page with only one pte
1361 		 * pointing to it: so break it.
1362 		 */
1363 		if (err)
1364 			break_cow(rmap_item);
1365 	}
1366 	return err ? NULL : page;
1367 }
1368 
1369 static __always_inline
1370 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1371 {
1372 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1373 	/*
1374 	 * Check that at least one mapping still exists, otherwise
1375 	 * there's no much point to merge and share with this
1376 	 * stable_node, as the underlying tree_page of the other
1377 	 * sharer is going to be freed soon.
1378 	 */
1379 	return stable_node->rmap_hlist_len &&
1380 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1381 }
1382 
1383 static __always_inline
1384 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1385 {
1386 	return __is_page_sharing_candidate(stable_node, 0);
1387 }
1388 
1389 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1390 				    struct ksm_stable_node **_stable_node,
1391 				    struct rb_root *root,
1392 				    bool prune_stale_stable_nodes)
1393 {
1394 	struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1395 	struct hlist_node *hlist_safe;
1396 	struct page *_tree_page, *tree_page = NULL;
1397 	int nr = 0;
1398 	int found_rmap_hlist_len;
1399 
1400 	if (!prune_stale_stable_nodes ||
1401 	    time_before(jiffies, stable_node->chain_prune_time +
1402 			msecs_to_jiffies(
1403 				ksm_stable_node_chains_prune_millisecs)))
1404 		prune_stale_stable_nodes = false;
1405 	else
1406 		stable_node->chain_prune_time = jiffies;
1407 
1408 	hlist_for_each_entry_safe(dup, hlist_safe,
1409 				  &stable_node->hlist, hlist_dup) {
1410 		cond_resched();
1411 		/*
1412 		 * We must walk all stable_node_dup to prune the stale
1413 		 * stable nodes during lookup.
1414 		 *
1415 		 * get_ksm_page can drop the nodes from the
1416 		 * stable_node->hlist if they point to freed pages
1417 		 * (that's why we do a _safe walk). The "dup"
1418 		 * stable_node parameter itself will be freed from
1419 		 * under us if it returns NULL.
1420 		 */
1421 		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1422 		if (!_tree_page)
1423 			continue;
1424 		nr += 1;
1425 		if (is_page_sharing_candidate(dup)) {
1426 			if (!found ||
1427 			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1428 				if (found)
1429 					put_page(tree_page);
1430 				found = dup;
1431 				found_rmap_hlist_len = found->rmap_hlist_len;
1432 				tree_page = _tree_page;
1433 
1434 				/* skip put_page for found dup */
1435 				if (!prune_stale_stable_nodes)
1436 					break;
1437 				continue;
1438 			}
1439 		}
1440 		put_page(_tree_page);
1441 	}
1442 
1443 	if (found) {
1444 		/*
1445 		 * nr is counting all dups in the chain only if
1446 		 * prune_stale_stable_nodes is true, otherwise we may
1447 		 * break the loop at nr == 1 even if there are
1448 		 * multiple entries.
1449 		 */
1450 		if (prune_stale_stable_nodes && nr == 1) {
1451 			/*
1452 			 * If there's not just one entry it would
1453 			 * corrupt memory, better BUG_ON. In KSM
1454 			 * context with no lock held it's not even
1455 			 * fatal.
1456 			 */
1457 			BUG_ON(stable_node->hlist.first->next);
1458 
1459 			/*
1460 			 * There's just one entry and it is below the
1461 			 * deduplication limit so drop the chain.
1462 			 */
1463 			rb_replace_node(&stable_node->node, &found->node,
1464 					root);
1465 			free_stable_node(stable_node);
1466 			ksm_stable_node_chains--;
1467 			ksm_stable_node_dups--;
1468 			/*
1469 			 * NOTE: the caller depends on the stable_node
1470 			 * to be equal to stable_node_dup if the chain
1471 			 * was collapsed.
1472 			 */
1473 			*_stable_node = found;
1474 			/*
1475 			 * Just for robustness, as stable_node is
1476 			 * otherwise left as a stable pointer, the
1477 			 * compiler shall optimize it away at build
1478 			 * time.
1479 			 */
1480 			stable_node = NULL;
1481 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1482 			   __is_page_sharing_candidate(found, 1)) {
1483 			/*
1484 			 * If the found stable_node dup can accept one
1485 			 * more future merge (in addition to the one
1486 			 * that is underway) and is not at the head of
1487 			 * the chain, put it there so next search will
1488 			 * be quicker in the !prune_stale_stable_nodes
1489 			 * case.
1490 			 *
1491 			 * NOTE: it would be inaccurate to use nr > 1
1492 			 * instead of checking the hlist.first pointer
1493 			 * directly, because in the
1494 			 * prune_stale_stable_nodes case "nr" isn't
1495 			 * the position of the found dup in the chain,
1496 			 * but the total number of dups in the chain.
1497 			 */
1498 			hlist_del(&found->hlist_dup);
1499 			hlist_add_head(&found->hlist_dup,
1500 				       &stable_node->hlist);
1501 		}
1502 	}
1503 
1504 	*_stable_node_dup = found;
1505 	return tree_page;
1506 }
1507 
1508 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1509 					       struct rb_root *root)
1510 {
1511 	if (!is_stable_node_chain(stable_node))
1512 		return stable_node;
1513 	if (hlist_empty(&stable_node->hlist)) {
1514 		free_stable_node_chain(stable_node, root);
1515 		return NULL;
1516 	}
1517 	return hlist_entry(stable_node->hlist.first,
1518 			   typeof(*stable_node), hlist_dup);
1519 }
1520 
1521 /*
1522  * Like for get_ksm_page, this function can free the *_stable_node and
1523  * *_stable_node_dup if the returned tree_page is NULL.
1524  *
1525  * It can also free and overwrite *_stable_node with the found
1526  * stable_node_dup if the chain is collapsed (in which case
1527  * *_stable_node will be equal to *_stable_node_dup like if the chain
1528  * never existed). It's up to the caller to verify tree_page is not
1529  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1530  *
1531  * *_stable_node_dup is really a second output parameter of this
1532  * function and will be overwritten in all cases, the caller doesn't
1533  * need to initialize it.
1534  */
1535 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1536 					struct ksm_stable_node **_stable_node,
1537 					struct rb_root *root,
1538 					bool prune_stale_stable_nodes)
1539 {
1540 	struct ksm_stable_node *stable_node = *_stable_node;
1541 	if (!is_stable_node_chain(stable_node)) {
1542 		if (is_page_sharing_candidate(stable_node)) {
1543 			*_stable_node_dup = stable_node;
1544 			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1545 		}
1546 		/*
1547 		 * _stable_node_dup set to NULL means the stable_node
1548 		 * reached the ksm_max_page_sharing limit.
1549 		 */
1550 		*_stable_node_dup = NULL;
1551 		return NULL;
1552 	}
1553 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1554 			       prune_stale_stable_nodes);
1555 }
1556 
1557 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1558 						struct ksm_stable_node **s_n,
1559 						struct rb_root *root)
1560 {
1561 	return __stable_node_chain(s_n_d, s_n, root, true);
1562 }
1563 
1564 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1565 					  struct ksm_stable_node *s_n,
1566 					  struct rb_root *root)
1567 {
1568 	struct ksm_stable_node *old_stable_node = s_n;
1569 	struct page *tree_page;
1570 
1571 	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1572 	/* not pruning dups so s_n cannot have changed */
1573 	VM_BUG_ON(s_n != old_stable_node);
1574 	return tree_page;
1575 }
1576 
1577 /*
1578  * stable_tree_search - search for page inside the stable tree
1579  *
1580  * This function checks if there is a page inside the stable tree
1581  * with identical content to the page that we are scanning right now.
1582  *
1583  * This function returns the stable tree node of identical content if found,
1584  * NULL otherwise.
1585  */
1586 static struct page *stable_tree_search(struct page *page)
1587 {
1588 	int nid;
1589 	struct rb_root *root;
1590 	struct rb_node **new;
1591 	struct rb_node *parent;
1592 	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1593 	struct ksm_stable_node *page_node;
1594 
1595 	page_node = page_stable_node(page);
1596 	if (page_node && page_node->head != &migrate_nodes) {
1597 		/* ksm page forked */
1598 		get_page(page);
1599 		return page;
1600 	}
1601 
1602 	nid = get_kpfn_nid(page_to_pfn(page));
1603 	root = root_stable_tree + nid;
1604 again:
1605 	new = &root->rb_node;
1606 	parent = NULL;
1607 
1608 	while (*new) {
1609 		struct page *tree_page;
1610 		int ret;
1611 
1612 		cond_resched();
1613 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1614 		stable_node_any = NULL;
1615 		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1616 		/*
1617 		 * NOTE: stable_node may have been freed by
1618 		 * chain_prune() if the returned stable_node_dup is
1619 		 * not NULL. stable_node_dup may have been inserted in
1620 		 * the rbtree instead as a regular stable_node (in
1621 		 * order to collapse the stable_node chain if a single
1622 		 * stable_node dup was found in it). In such case the
1623 		 * stable_node is overwritten by the callee to point
1624 		 * to the stable_node_dup that was collapsed in the
1625 		 * stable rbtree and stable_node will be equal to
1626 		 * stable_node_dup like if the chain never existed.
1627 		 */
1628 		if (!stable_node_dup) {
1629 			/*
1630 			 * Either all stable_node dups were full in
1631 			 * this stable_node chain, or this chain was
1632 			 * empty and should be rb_erased.
1633 			 */
1634 			stable_node_any = stable_node_dup_any(stable_node,
1635 							      root);
1636 			if (!stable_node_any) {
1637 				/* rb_erase just run */
1638 				goto again;
1639 			}
1640 			/*
1641 			 * Take any of the stable_node dups page of
1642 			 * this stable_node chain to let the tree walk
1643 			 * continue. All KSM pages belonging to the
1644 			 * stable_node dups in a stable_node chain
1645 			 * have the same content and they're
1646 			 * write protected at all times. Any will work
1647 			 * fine to continue the walk.
1648 			 */
1649 			tree_page = get_ksm_page(stable_node_any,
1650 						 GET_KSM_PAGE_NOLOCK);
1651 		}
1652 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1653 		if (!tree_page) {
1654 			/*
1655 			 * If we walked over a stale stable_node,
1656 			 * get_ksm_page() will call rb_erase() and it
1657 			 * may rebalance the tree from under us. So
1658 			 * restart the search from scratch. Returning
1659 			 * NULL would be safe too, but we'd generate
1660 			 * false negative insertions just because some
1661 			 * stable_node was stale.
1662 			 */
1663 			goto again;
1664 		}
1665 
1666 		ret = memcmp_pages(page, tree_page);
1667 		put_page(tree_page);
1668 
1669 		parent = *new;
1670 		if (ret < 0)
1671 			new = &parent->rb_left;
1672 		else if (ret > 0)
1673 			new = &parent->rb_right;
1674 		else {
1675 			if (page_node) {
1676 				VM_BUG_ON(page_node->head != &migrate_nodes);
1677 				/*
1678 				 * Test if the migrated page should be merged
1679 				 * into a stable node dup. If the mapcount is
1680 				 * 1 we can migrate it with another KSM page
1681 				 * without adding it to the chain.
1682 				 */
1683 				if (page_mapcount(page) > 1)
1684 					goto chain_append;
1685 			}
1686 
1687 			if (!stable_node_dup) {
1688 				/*
1689 				 * If the stable_node is a chain and
1690 				 * we got a payload match in memcmp
1691 				 * but we cannot merge the scanned
1692 				 * page in any of the existing
1693 				 * stable_node dups because they're
1694 				 * all full, we need to wait the
1695 				 * scanned page to find itself a match
1696 				 * in the unstable tree to create a
1697 				 * brand new KSM page to add later to
1698 				 * the dups of this stable_node.
1699 				 */
1700 				return NULL;
1701 			}
1702 
1703 			/*
1704 			 * Lock and unlock the stable_node's page (which
1705 			 * might already have been migrated) so that page
1706 			 * migration is sure to notice its raised count.
1707 			 * It would be more elegant to return stable_node
1708 			 * than kpage, but that involves more changes.
1709 			 */
1710 			tree_page = get_ksm_page(stable_node_dup,
1711 						 GET_KSM_PAGE_TRYLOCK);
1712 
1713 			if (PTR_ERR(tree_page) == -EBUSY)
1714 				return ERR_PTR(-EBUSY);
1715 
1716 			if (unlikely(!tree_page))
1717 				/*
1718 				 * The tree may have been rebalanced,
1719 				 * so re-evaluate parent and new.
1720 				 */
1721 				goto again;
1722 			unlock_page(tree_page);
1723 
1724 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1725 			    NUMA(stable_node_dup->nid)) {
1726 				put_page(tree_page);
1727 				goto replace;
1728 			}
1729 			return tree_page;
1730 		}
1731 	}
1732 
1733 	if (!page_node)
1734 		return NULL;
1735 
1736 	list_del(&page_node->list);
1737 	DO_NUMA(page_node->nid = nid);
1738 	rb_link_node(&page_node->node, parent, new);
1739 	rb_insert_color(&page_node->node, root);
1740 out:
1741 	if (is_page_sharing_candidate(page_node)) {
1742 		get_page(page);
1743 		return page;
1744 	} else
1745 		return NULL;
1746 
1747 replace:
1748 	/*
1749 	 * If stable_node was a chain and chain_prune collapsed it,
1750 	 * stable_node has been updated to be the new regular
1751 	 * stable_node. A collapse of the chain is indistinguishable
1752 	 * from the case there was no chain in the stable
1753 	 * rbtree. Otherwise stable_node is the chain and
1754 	 * stable_node_dup is the dup to replace.
1755 	 */
1756 	if (stable_node_dup == stable_node) {
1757 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1758 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1759 		/* there is no chain */
1760 		if (page_node) {
1761 			VM_BUG_ON(page_node->head != &migrate_nodes);
1762 			list_del(&page_node->list);
1763 			DO_NUMA(page_node->nid = nid);
1764 			rb_replace_node(&stable_node_dup->node,
1765 					&page_node->node,
1766 					root);
1767 			if (is_page_sharing_candidate(page_node))
1768 				get_page(page);
1769 			else
1770 				page = NULL;
1771 		} else {
1772 			rb_erase(&stable_node_dup->node, root);
1773 			page = NULL;
1774 		}
1775 	} else {
1776 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1777 		__stable_node_dup_del(stable_node_dup);
1778 		if (page_node) {
1779 			VM_BUG_ON(page_node->head != &migrate_nodes);
1780 			list_del(&page_node->list);
1781 			DO_NUMA(page_node->nid = nid);
1782 			stable_node_chain_add_dup(page_node, stable_node);
1783 			if (is_page_sharing_candidate(page_node))
1784 				get_page(page);
1785 			else
1786 				page = NULL;
1787 		} else {
1788 			page = NULL;
1789 		}
1790 	}
1791 	stable_node_dup->head = &migrate_nodes;
1792 	list_add(&stable_node_dup->list, stable_node_dup->head);
1793 	return page;
1794 
1795 chain_append:
1796 	/* stable_node_dup could be null if it reached the limit */
1797 	if (!stable_node_dup)
1798 		stable_node_dup = stable_node_any;
1799 	/*
1800 	 * If stable_node was a chain and chain_prune collapsed it,
1801 	 * stable_node has been updated to be the new regular
1802 	 * stable_node. A collapse of the chain is indistinguishable
1803 	 * from the case there was no chain in the stable
1804 	 * rbtree. Otherwise stable_node is the chain and
1805 	 * stable_node_dup is the dup to replace.
1806 	 */
1807 	if (stable_node_dup == stable_node) {
1808 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1809 		/* chain is missing so create it */
1810 		stable_node = alloc_stable_node_chain(stable_node_dup,
1811 						      root);
1812 		if (!stable_node)
1813 			return NULL;
1814 	}
1815 	/*
1816 	 * Add this stable_node dup that was
1817 	 * migrated to the stable_node chain
1818 	 * of the current nid for this page
1819 	 * content.
1820 	 */
1821 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1822 	VM_BUG_ON(page_node->head != &migrate_nodes);
1823 	list_del(&page_node->list);
1824 	DO_NUMA(page_node->nid = nid);
1825 	stable_node_chain_add_dup(page_node, stable_node);
1826 	goto out;
1827 }
1828 
1829 /*
1830  * stable_tree_insert - insert stable tree node pointing to new ksm page
1831  * into the stable tree.
1832  *
1833  * This function returns the stable tree node just allocated on success,
1834  * NULL otherwise.
1835  */
1836 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1837 {
1838 	int nid;
1839 	unsigned long kpfn;
1840 	struct rb_root *root;
1841 	struct rb_node **new;
1842 	struct rb_node *parent;
1843 	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1844 	bool need_chain = false;
1845 
1846 	kpfn = page_to_pfn(kpage);
1847 	nid = get_kpfn_nid(kpfn);
1848 	root = root_stable_tree + nid;
1849 again:
1850 	parent = NULL;
1851 	new = &root->rb_node;
1852 
1853 	while (*new) {
1854 		struct page *tree_page;
1855 		int ret;
1856 
1857 		cond_resched();
1858 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1859 		stable_node_any = NULL;
1860 		tree_page = chain(&stable_node_dup, stable_node, root);
1861 		if (!stable_node_dup) {
1862 			/*
1863 			 * Either all stable_node dups were full in
1864 			 * this stable_node chain, or this chain was
1865 			 * empty and should be rb_erased.
1866 			 */
1867 			stable_node_any = stable_node_dup_any(stable_node,
1868 							      root);
1869 			if (!stable_node_any) {
1870 				/* rb_erase just run */
1871 				goto again;
1872 			}
1873 			/*
1874 			 * Take any of the stable_node dups page of
1875 			 * this stable_node chain to let the tree walk
1876 			 * continue. All KSM pages belonging to the
1877 			 * stable_node dups in a stable_node chain
1878 			 * have the same content and they're
1879 			 * write protected at all times. Any will work
1880 			 * fine to continue the walk.
1881 			 */
1882 			tree_page = get_ksm_page(stable_node_any,
1883 						 GET_KSM_PAGE_NOLOCK);
1884 		}
1885 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1886 		if (!tree_page) {
1887 			/*
1888 			 * If we walked over a stale stable_node,
1889 			 * get_ksm_page() will call rb_erase() and it
1890 			 * may rebalance the tree from under us. So
1891 			 * restart the search from scratch. Returning
1892 			 * NULL would be safe too, but we'd generate
1893 			 * false negative insertions just because some
1894 			 * stable_node was stale.
1895 			 */
1896 			goto again;
1897 		}
1898 
1899 		ret = memcmp_pages(kpage, tree_page);
1900 		put_page(tree_page);
1901 
1902 		parent = *new;
1903 		if (ret < 0)
1904 			new = &parent->rb_left;
1905 		else if (ret > 0)
1906 			new = &parent->rb_right;
1907 		else {
1908 			need_chain = true;
1909 			break;
1910 		}
1911 	}
1912 
1913 	stable_node_dup = alloc_stable_node();
1914 	if (!stable_node_dup)
1915 		return NULL;
1916 
1917 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1918 	stable_node_dup->kpfn = kpfn;
1919 	set_page_stable_node(kpage, stable_node_dup);
1920 	stable_node_dup->rmap_hlist_len = 0;
1921 	DO_NUMA(stable_node_dup->nid = nid);
1922 	if (!need_chain) {
1923 		rb_link_node(&stable_node_dup->node, parent, new);
1924 		rb_insert_color(&stable_node_dup->node, root);
1925 	} else {
1926 		if (!is_stable_node_chain(stable_node)) {
1927 			struct ksm_stable_node *orig = stable_node;
1928 			/* chain is missing so create it */
1929 			stable_node = alloc_stable_node_chain(orig, root);
1930 			if (!stable_node) {
1931 				free_stable_node(stable_node_dup);
1932 				return NULL;
1933 			}
1934 		}
1935 		stable_node_chain_add_dup(stable_node_dup, stable_node);
1936 	}
1937 
1938 	return stable_node_dup;
1939 }
1940 
1941 /*
1942  * unstable_tree_search_insert - search for identical page,
1943  * else insert rmap_item into the unstable tree.
1944  *
1945  * This function searches for a page in the unstable tree identical to the
1946  * page currently being scanned; and if no identical page is found in the
1947  * tree, we insert rmap_item as a new object into the unstable tree.
1948  *
1949  * This function returns pointer to rmap_item found to be identical
1950  * to the currently scanned page, NULL otherwise.
1951  *
1952  * This function does both searching and inserting, because they share
1953  * the same walking algorithm in an rbtree.
1954  */
1955 static
1956 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
1957 					      struct page *page,
1958 					      struct page **tree_pagep)
1959 {
1960 	struct rb_node **new;
1961 	struct rb_root *root;
1962 	struct rb_node *parent = NULL;
1963 	int nid;
1964 
1965 	nid = get_kpfn_nid(page_to_pfn(page));
1966 	root = root_unstable_tree + nid;
1967 	new = &root->rb_node;
1968 
1969 	while (*new) {
1970 		struct ksm_rmap_item *tree_rmap_item;
1971 		struct page *tree_page;
1972 		int ret;
1973 
1974 		cond_resched();
1975 		tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
1976 		tree_page = get_mergeable_page(tree_rmap_item);
1977 		if (!tree_page)
1978 			return NULL;
1979 
1980 		/*
1981 		 * Don't substitute a ksm page for a forked page.
1982 		 */
1983 		if (page == tree_page) {
1984 			put_page(tree_page);
1985 			return NULL;
1986 		}
1987 
1988 		ret = memcmp_pages(page, tree_page);
1989 
1990 		parent = *new;
1991 		if (ret < 0) {
1992 			put_page(tree_page);
1993 			new = &parent->rb_left;
1994 		} else if (ret > 0) {
1995 			put_page(tree_page);
1996 			new = &parent->rb_right;
1997 		} else if (!ksm_merge_across_nodes &&
1998 			   page_to_nid(tree_page) != nid) {
1999 			/*
2000 			 * If tree_page has been migrated to another NUMA node,
2001 			 * it will be flushed out and put in the right unstable
2002 			 * tree next time: only merge with it when across_nodes.
2003 			 */
2004 			put_page(tree_page);
2005 			return NULL;
2006 		} else {
2007 			*tree_pagep = tree_page;
2008 			return tree_rmap_item;
2009 		}
2010 	}
2011 
2012 	rmap_item->address |= UNSTABLE_FLAG;
2013 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2014 	DO_NUMA(rmap_item->nid = nid);
2015 	rb_link_node(&rmap_item->node, parent, new);
2016 	rb_insert_color(&rmap_item->node, root);
2017 
2018 	ksm_pages_unshared++;
2019 	return NULL;
2020 }
2021 
2022 /*
2023  * stable_tree_append - add another rmap_item to the linked list of
2024  * rmap_items hanging off a given node of the stable tree, all sharing
2025  * the same ksm page.
2026  */
2027 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2028 			       struct ksm_stable_node *stable_node,
2029 			       bool max_page_sharing_bypass)
2030 {
2031 	/*
2032 	 * rmap won't find this mapping if we don't insert the
2033 	 * rmap_item in the right stable_node
2034 	 * duplicate. page_migration could break later if rmap breaks,
2035 	 * so we can as well crash here. We really need to check for
2036 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2037 	 * for other negative values as an underflow if detected here
2038 	 * for the first time (and not when decreasing rmap_hlist_len)
2039 	 * would be sign of memory corruption in the stable_node.
2040 	 */
2041 	BUG_ON(stable_node->rmap_hlist_len < 0);
2042 
2043 	stable_node->rmap_hlist_len++;
2044 	if (!max_page_sharing_bypass)
2045 		/* possibly non fatal but unexpected overflow, only warn */
2046 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2047 			     ksm_max_page_sharing);
2048 
2049 	rmap_item->head = stable_node;
2050 	rmap_item->address |= STABLE_FLAG;
2051 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2052 
2053 	if (rmap_item->hlist.next)
2054 		ksm_pages_sharing++;
2055 	else
2056 		ksm_pages_shared++;
2057 
2058 	rmap_item->mm->ksm_merging_pages++;
2059 }
2060 
2061 /*
2062  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2063  * if not, compare checksum to previous and if it's the same, see if page can
2064  * be inserted into the unstable tree, or merged with a page already there and
2065  * both transferred to the stable tree.
2066  *
2067  * @page: the page that we are searching identical page to.
2068  * @rmap_item: the reverse mapping into the virtual address of this page
2069  */
2070 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2071 {
2072 	struct mm_struct *mm = rmap_item->mm;
2073 	struct ksm_rmap_item *tree_rmap_item;
2074 	struct page *tree_page = NULL;
2075 	struct ksm_stable_node *stable_node;
2076 	struct page *kpage;
2077 	unsigned int checksum;
2078 	int err;
2079 	bool max_page_sharing_bypass = false;
2080 
2081 	stable_node = page_stable_node(page);
2082 	if (stable_node) {
2083 		if (stable_node->head != &migrate_nodes &&
2084 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2085 		    NUMA(stable_node->nid)) {
2086 			stable_node_dup_del(stable_node);
2087 			stable_node->head = &migrate_nodes;
2088 			list_add(&stable_node->list, stable_node->head);
2089 		}
2090 		if (stable_node->head != &migrate_nodes &&
2091 		    rmap_item->head == stable_node)
2092 			return;
2093 		/*
2094 		 * If it's a KSM fork, allow it to go over the sharing limit
2095 		 * without warnings.
2096 		 */
2097 		if (!is_page_sharing_candidate(stable_node))
2098 			max_page_sharing_bypass = true;
2099 	}
2100 
2101 	/* We first start with searching the page inside the stable tree */
2102 	kpage = stable_tree_search(page);
2103 	if (kpage == page && rmap_item->head == stable_node) {
2104 		put_page(kpage);
2105 		return;
2106 	}
2107 
2108 	remove_rmap_item_from_tree(rmap_item);
2109 
2110 	if (kpage) {
2111 		if (PTR_ERR(kpage) == -EBUSY)
2112 			return;
2113 
2114 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2115 		if (!err) {
2116 			/*
2117 			 * The page was successfully merged:
2118 			 * add its rmap_item to the stable tree.
2119 			 */
2120 			lock_page(kpage);
2121 			stable_tree_append(rmap_item, page_stable_node(kpage),
2122 					   max_page_sharing_bypass);
2123 			unlock_page(kpage);
2124 		}
2125 		put_page(kpage);
2126 		return;
2127 	}
2128 
2129 	/*
2130 	 * If the hash value of the page has changed from the last time
2131 	 * we calculated it, this page is changing frequently: therefore we
2132 	 * don't want to insert it in the unstable tree, and we don't want
2133 	 * to waste our time searching for something identical to it there.
2134 	 */
2135 	checksum = calc_checksum(page);
2136 	if (rmap_item->oldchecksum != checksum) {
2137 		rmap_item->oldchecksum = checksum;
2138 		return;
2139 	}
2140 
2141 	/*
2142 	 * Same checksum as an empty page. We attempt to merge it with the
2143 	 * appropriate zero page if the user enabled this via sysfs.
2144 	 */
2145 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2146 		struct vm_area_struct *vma;
2147 
2148 		mmap_read_lock(mm);
2149 		vma = find_mergeable_vma(mm, rmap_item->address);
2150 		if (vma) {
2151 			err = try_to_merge_one_page(vma, page,
2152 					ZERO_PAGE(rmap_item->address));
2153 			trace_ksm_merge_one_page(
2154 				page_to_pfn(ZERO_PAGE(rmap_item->address)),
2155 				rmap_item, mm, err);
2156 		} else {
2157 			/*
2158 			 * If the vma is out of date, we do not need to
2159 			 * continue.
2160 			 */
2161 			err = 0;
2162 		}
2163 		mmap_read_unlock(mm);
2164 		/*
2165 		 * In case of failure, the page was not really empty, so we
2166 		 * need to continue. Otherwise we're done.
2167 		 */
2168 		if (!err)
2169 			return;
2170 	}
2171 	tree_rmap_item =
2172 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2173 	if (tree_rmap_item) {
2174 		bool split;
2175 
2176 		kpage = try_to_merge_two_pages(rmap_item, page,
2177 						tree_rmap_item, tree_page);
2178 		/*
2179 		 * If both pages we tried to merge belong to the same compound
2180 		 * page, then we actually ended up increasing the reference
2181 		 * count of the same compound page twice, and split_huge_page
2182 		 * failed.
2183 		 * Here we set a flag if that happened, and we use it later to
2184 		 * try split_huge_page again. Since we call put_page right
2185 		 * afterwards, the reference count will be correct and
2186 		 * split_huge_page should succeed.
2187 		 */
2188 		split = PageTransCompound(page)
2189 			&& compound_head(page) == compound_head(tree_page);
2190 		put_page(tree_page);
2191 		if (kpage) {
2192 			/*
2193 			 * The pages were successfully merged: insert new
2194 			 * node in the stable tree and add both rmap_items.
2195 			 */
2196 			lock_page(kpage);
2197 			stable_node = stable_tree_insert(kpage);
2198 			if (stable_node) {
2199 				stable_tree_append(tree_rmap_item, stable_node,
2200 						   false);
2201 				stable_tree_append(rmap_item, stable_node,
2202 						   false);
2203 			}
2204 			unlock_page(kpage);
2205 
2206 			/*
2207 			 * If we fail to insert the page into the stable tree,
2208 			 * we will have 2 virtual addresses that are pointing
2209 			 * to a ksm page left outside the stable tree,
2210 			 * in which case we need to break_cow on both.
2211 			 */
2212 			if (!stable_node) {
2213 				break_cow(tree_rmap_item);
2214 				break_cow(rmap_item);
2215 			}
2216 		} else if (split) {
2217 			/*
2218 			 * We are here if we tried to merge two pages and
2219 			 * failed because they both belonged to the same
2220 			 * compound page. We will split the page now, but no
2221 			 * merging will take place.
2222 			 * We do not want to add the cost of a full lock; if
2223 			 * the page is locked, it is better to skip it and
2224 			 * perhaps try again later.
2225 			 */
2226 			if (!trylock_page(page))
2227 				return;
2228 			split_huge_page(page);
2229 			unlock_page(page);
2230 		}
2231 	}
2232 }
2233 
2234 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2235 					    struct ksm_rmap_item **rmap_list,
2236 					    unsigned long addr)
2237 {
2238 	struct ksm_rmap_item *rmap_item;
2239 
2240 	while (*rmap_list) {
2241 		rmap_item = *rmap_list;
2242 		if ((rmap_item->address & PAGE_MASK) == addr)
2243 			return rmap_item;
2244 		if (rmap_item->address > addr)
2245 			break;
2246 		*rmap_list = rmap_item->rmap_list;
2247 		remove_rmap_item_from_tree(rmap_item);
2248 		free_rmap_item(rmap_item);
2249 	}
2250 
2251 	rmap_item = alloc_rmap_item();
2252 	if (rmap_item) {
2253 		/* It has already been zeroed */
2254 		rmap_item->mm = mm_slot->slot.mm;
2255 		rmap_item->mm->ksm_rmap_items++;
2256 		rmap_item->address = addr;
2257 		rmap_item->rmap_list = *rmap_list;
2258 		*rmap_list = rmap_item;
2259 	}
2260 	return rmap_item;
2261 }
2262 
2263 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2264 {
2265 	struct mm_struct *mm;
2266 	struct ksm_mm_slot *mm_slot;
2267 	struct mm_slot *slot;
2268 	struct vm_area_struct *vma;
2269 	struct ksm_rmap_item *rmap_item;
2270 	struct vma_iterator vmi;
2271 	int nid;
2272 
2273 	if (list_empty(&ksm_mm_head.slot.mm_node))
2274 		return NULL;
2275 
2276 	mm_slot = ksm_scan.mm_slot;
2277 	if (mm_slot == &ksm_mm_head) {
2278 		trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2279 
2280 		/*
2281 		 * A number of pages can hang around indefinitely on per-cpu
2282 		 * pagevecs, raised page count preventing write_protect_page
2283 		 * from merging them.  Though it doesn't really matter much,
2284 		 * it is puzzling to see some stuck in pages_volatile until
2285 		 * other activity jostles them out, and they also prevented
2286 		 * LTP's KSM test from succeeding deterministically; so drain
2287 		 * them here (here rather than on entry to ksm_do_scan(),
2288 		 * so we don't IPI too often when pages_to_scan is set low).
2289 		 */
2290 		lru_add_drain_all();
2291 
2292 		/*
2293 		 * Whereas stale stable_nodes on the stable_tree itself
2294 		 * get pruned in the regular course of stable_tree_search(),
2295 		 * those moved out to the migrate_nodes list can accumulate:
2296 		 * so prune them once before each full scan.
2297 		 */
2298 		if (!ksm_merge_across_nodes) {
2299 			struct ksm_stable_node *stable_node, *next;
2300 			struct page *page;
2301 
2302 			list_for_each_entry_safe(stable_node, next,
2303 						 &migrate_nodes, list) {
2304 				page = get_ksm_page(stable_node,
2305 						    GET_KSM_PAGE_NOLOCK);
2306 				if (page)
2307 					put_page(page);
2308 				cond_resched();
2309 			}
2310 		}
2311 
2312 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2313 			root_unstable_tree[nid] = RB_ROOT;
2314 
2315 		spin_lock(&ksm_mmlist_lock);
2316 		slot = list_entry(mm_slot->slot.mm_node.next,
2317 				  struct mm_slot, mm_node);
2318 		mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2319 		ksm_scan.mm_slot = mm_slot;
2320 		spin_unlock(&ksm_mmlist_lock);
2321 		/*
2322 		 * Although we tested list_empty() above, a racing __ksm_exit
2323 		 * of the last mm on the list may have removed it since then.
2324 		 */
2325 		if (mm_slot == &ksm_mm_head)
2326 			return NULL;
2327 next_mm:
2328 		ksm_scan.address = 0;
2329 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2330 	}
2331 
2332 	slot = &mm_slot->slot;
2333 	mm = slot->mm;
2334 	vma_iter_init(&vmi, mm, ksm_scan.address);
2335 
2336 	mmap_read_lock(mm);
2337 	if (ksm_test_exit(mm))
2338 		goto no_vmas;
2339 
2340 	for_each_vma(vmi, vma) {
2341 		if (!(vma->vm_flags & VM_MERGEABLE))
2342 			continue;
2343 		if (ksm_scan.address < vma->vm_start)
2344 			ksm_scan.address = vma->vm_start;
2345 		if (!vma->anon_vma)
2346 			ksm_scan.address = vma->vm_end;
2347 
2348 		while (ksm_scan.address < vma->vm_end) {
2349 			if (ksm_test_exit(mm))
2350 				break;
2351 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2352 			if (IS_ERR_OR_NULL(*page)) {
2353 				ksm_scan.address += PAGE_SIZE;
2354 				cond_resched();
2355 				continue;
2356 			}
2357 			if (is_zone_device_page(*page))
2358 				goto next_page;
2359 			if (PageAnon(*page)) {
2360 				flush_anon_page(vma, *page, ksm_scan.address);
2361 				flush_dcache_page(*page);
2362 				rmap_item = get_next_rmap_item(mm_slot,
2363 					ksm_scan.rmap_list, ksm_scan.address);
2364 				if (rmap_item) {
2365 					ksm_scan.rmap_list =
2366 							&rmap_item->rmap_list;
2367 					ksm_scan.address += PAGE_SIZE;
2368 				} else
2369 					put_page(*page);
2370 				mmap_read_unlock(mm);
2371 				return rmap_item;
2372 			}
2373 next_page:
2374 			put_page(*page);
2375 			ksm_scan.address += PAGE_SIZE;
2376 			cond_resched();
2377 		}
2378 	}
2379 
2380 	if (ksm_test_exit(mm)) {
2381 no_vmas:
2382 		ksm_scan.address = 0;
2383 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2384 	}
2385 	/*
2386 	 * Nuke all the rmap_items that are above this current rmap:
2387 	 * because there were no VM_MERGEABLE vmas with such addresses.
2388 	 */
2389 	remove_trailing_rmap_items(ksm_scan.rmap_list);
2390 
2391 	spin_lock(&ksm_mmlist_lock);
2392 	slot = list_entry(mm_slot->slot.mm_node.next,
2393 			  struct mm_slot, mm_node);
2394 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2395 	if (ksm_scan.address == 0) {
2396 		/*
2397 		 * We've completed a full scan of all vmas, holding mmap_lock
2398 		 * throughout, and found no VM_MERGEABLE: so do the same as
2399 		 * __ksm_exit does to remove this mm from all our lists now.
2400 		 * This applies either when cleaning up after __ksm_exit
2401 		 * (but beware: we can reach here even before __ksm_exit),
2402 		 * or when all VM_MERGEABLE areas have been unmapped (and
2403 		 * mmap_lock then protects against race with MADV_MERGEABLE).
2404 		 */
2405 		hash_del(&mm_slot->slot.hash);
2406 		list_del(&mm_slot->slot.mm_node);
2407 		spin_unlock(&ksm_mmlist_lock);
2408 
2409 		mm_slot_free(mm_slot_cache, mm_slot);
2410 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2411 		mmap_read_unlock(mm);
2412 		mmdrop(mm);
2413 	} else {
2414 		mmap_read_unlock(mm);
2415 		/*
2416 		 * mmap_read_unlock(mm) first because after
2417 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2418 		 * already have been freed under us by __ksm_exit()
2419 		 * because the "mm_slot" is still hashed and
2420 		 * ksm_scan.mm_slot doesn't point to it anymore.
2421 		 */
2422 		spin_unlock(&ksm_mmlist_lock);
2423 	}
2424 
2425 	/* Repeat until we've completed scanning the whole list */
2426 	mm_slot = ksm_scan.mm_slot;
2427 	if (mm_slot != &ksm_mm_head)
2428 		goto next_mm;
2429 
2430 	trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2431 	ksm_scan.seqnr++;
2432 	return NULL;
2433 }
2434 
2435 /**
2436  * ksm_do_scan  - the ksm scanner main worker function.
2437  * @scan_npages:  number of pages we want to scan before we return.
2438  */
2439 static void ksm_do_scan(unsigned int scan_npages)
2440 {
2441 	struct ksm_rmap_item *rmap_item;
2442 	struct page *page;
2443 
2444 	while (scan_npages-- && likely(!freezing(current))) {
2445 		cond_resched();
2446 		rmap_item = scan_get_next_rmap_item(&page);
2447 		if (!rmap_item)
2448 			return;
2449 		cmp_and_merge_page(page, rmap_item);
2450 		put_page(page);
2451 	}
2452 }
2453 
2454 static int ksmd_should_run(void)
2455 {
2456 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2457 }
2458 
2459 static int ksm_scan_thread(void *nothing)
2460 {
2461 	unsigned int sleep_ms;
2462 
2463 	set_freezable();
2464 	set_user_nice(current, 5);
2465 
2466 	while (!kthread_should_stop()) {
2467 		mutex_lock(&ksm_thread_mutex);
2468 		wait_while_offlining();
2469 		if (ksmd_should_run())
2470 			ksm_do_scan(ksm_thread_pages_to_scan);
2471 		mutex_unlock(&ksm_thread_mutex);
2472 
2473 		try_to_freeze();
2474 
2475 		if (ksmd_should_run()) {
2476 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2477 			wait_event_interruptible_timeout(ksm_iter_wait,
2478 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2479 				msecs_to_jiffies(sleep_ms));
2480 		} else {
2481 			wait_event_freezable(ksm_thread_wait,
2482 				ksmd_should_run() || kthread_should_stop());
2483 		}
2484 	}
2485 	return 0;
2486 }
2487 
2488 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2489 		unsigned long end, int advice, unsigned long *vm_flags)
2490 {
2491 	struct mm_struct *mm = vma->vm_mm;
2492 	int err;
2493 
2494 	switch (advice) {
2495 	case MADV_MERGEABLE:
2496 		/*
2497 		 * Be somewhat over-protective for now!
2498 		 */
2499 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2500 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2501 				 VM_HUGETLB | VM_MIXEDMAP))
2502 			return 0;		/* just ignore the advice */
2503 
2504 		if (vma_is_dax(vma))
2505 			return 0;
2506 
2507 #ifdef VM_SAO
2508 		if (*vm_flags & VM_SAO)
2509 			return 0;
2510 #endif
2511 #ifdef VM_SPARC_ADI
2512 		if (*vm_flags & VM_SPARC_ADI)
2513 			return 0;
2514 #endif
2515 
2516 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2517 			err = __ksm_enter(mm);
2518 			if (err)
2519 				return err;
2520 		}
2521 
2522 		*vm_flags |= VM_MERGEABLE;
2523 		break;
2524 
2525 	case MADV_UNMERGEABLE:
2526 		if (!(*vm_flags & VM_MERGEABLE))
2527 			return 0;		/* just ignore the advice */
2528 
2529 		if (vma->anon_vma) {
2530 			err = unmerge_ksm_pages(vma, start, end);
2531 			if (err)
2532 				return err;
2533 		}
2534 
2535 		*vm_flags &= ~VM_MERGEABLE;
2536 		break;
2537 	}
2538 
2539 	return 0;
2540 }
2541 EXPORT_SYMBOL_GPL(ksm_madvise);
2542 
2543 int __ksm_enter(struct mm_struct *mm)
2544 {
2545 	struct ksm_mm_slot *mm_slot;
2546 	struct mm_slot *slot;
2547 	int needs_wakeup;
2548 
2549 	mm_slot = mm_slot_alloc(mm_slot_cache);
2550 	if (!mm_slot)
2551 		return -ENOMEM;
2552 
2553 	slot = &mm_slot->slot;
2554 
2555 	/* Check ksm_run too?  Would need tighter locking */
2556 	needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2557 
2558 	spin_lock(&ksm_mmlist_lock);
2559 	mm_slot_insert(mm_slots_hash, mm, slot);
2560 	/*
2561 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2562 	 * insert just behind the scanning cursor, to let the area settle
2563 	 * down a little; when fork is followed by immediate exec, we don't
2564 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2565 	 *
2566 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2567 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2568 	 * missed: then we might as well insert at the end of the list.
2569 	 */
2570 	if (ksm_run & KSM_RUN_UNMERGE)
2571 		list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2572 	else
2573 		list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2574 	spin_unlock(&ksm_mmlist_lock);
2575 
2576 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2577 	mmgrab(mm);
2578 
2579 	if (needs_wakeup)
2580 		wake_up_interruptible(&ksm_thread_wait);
2581 
2582 	trace_ksm_enter(mm);
2583 	return 0;
2584 }
2585 
2586 void __ksm_exit(struct mm_struct *mm)
2587 {
2588 	struct ksm_mm_slot *mm_slot;
2589 	struct mm_slot *slot;
2590 	int easy_to_free = 0;
2591 
2592 	/*
2593 	 * This process is exiting: if it's straightforward (as is the
2594 	 * case when ksmd was never running), free mm_slot immediately.
2595 	 * But if it's at the cursor or has rmap_items linked to it, use
2596 	 * mmap_lock to synchronize with any break_cows before pagetables
2597 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2598 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2599 	 */
2600 
2601 	spin_lock(&ksm_mmlist_lock);
2602 	slot = mm_slot_lookup(mm_slots_hash, mm);
2603 	mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2604 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2605 		if (!mm_slot->rmap_list) {
2606 			hash_del(&slot->hash);
2607 			list_del(&slot->mm_node);
2608 			easy_to_free = 1;
2609 		} else {
2610 			list_move(&slot->mm_node,
2611 				  &ksm_scan.mm_slot->slot.mm_node);
2612 		}
2613 	}
2614 	spin_unlock(&ksm_mmlist_lock);
2615 
2616 	if (easy_to_free) {
2617 		mm_slot_free(mm_slot_cache, mm_slot);
2618 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2619 		mmdrop(mm);
2620 	} else if (mm_slot) {
2621 		mmap_write_lock(mm);
2622 		mmap_write_unlock(mm);
2623 	}
2624 
2625 	trace_ksm_exit(mm);
2626 }
2627 
2628 struct page *ksm_might_need_to_copy(struct page *page,
2629 			struct vm_area_struct *vma, unsigned long address)
2630 {
2631 	struct folio *folio = page_folio(page);
2632 	struct anon_vma *anon_vma = folio_anon_vma(folio);
2633 	struct page *new_page;
2634 
2635 	if (PageKsm(page)) {
2636 		if (page_stable_node(page) &&
2637 		    !(ksm_run & KSM_RUN_UNMERGE))
2638 			return page;	/* no need to copy it */
2639 	} else if (!anon_vma) {
2640 		return page;		/* no need to copy it */
2641 	} else if (page->index == linear_page_index(vma, address) &&
2642 			anon_vma->root == vma->anon_vma->root) {
2643 		return page;		/* still no need to copy it */
2644 	}
2645 	if (!PageUptodate(page))
2646 		return page;		/* let do_swap_page report the error */
2647 
2648 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2649 	if (new_page &&
2650 	    mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2651 		put_page(new_page);
2652 		new_page = NULL;
2653 	}
2654 	if (new_page) {
2655 		if (copy_mc_user_highpage(new_page, page, address, vma)) {
2656 			put_page(new_page);
2657 			memory_failure_queue(page_to_pfn(page), 0);
2658 			return ERR_PTR(-EHWPOISON);
2659 		}
2660 		SetPageDirty(new_page);
2661 		__SetPageUptodate(new_page);
2662 		__SetPageLocked(new_page);
2663 #ifdef CONFIG_SWAP
2664 		count_vm_event(KSM_SWPIN_COPY);
2665 #endif
2666 	}
2667 
2668 	return new_page;
2669 }
2670 
2671 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2672 {
2673 	struct ksm_stable_node *stable_node;
2674 	struct ksm_rmap_item *rmap_item;
2675 	int search_new_forks = 0;
2676 
2677 	VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2678 
2679 	/*
2680 	 * Rely on the page lock to protect against concurrent modifications
2681 	 * to that page's node of the stable tree.
2682 	 */
2683 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2684 
2685 	stable_node = folio_stable_node(folio);
2686 	if (!stable_node)
2687 		return;
2688 again:
2689 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2690 		struct anon_vma *anon_vma = rmap_item->anon_vma;
2691 		struct anon_vma_chain *vmac;
2692 		struct vm_area_struct *vma;
2693 
2694 		cond_resched();
2695 		if (!anon_vma_trylock_read(anon_vma)) {
2696 			if (rwc->try_lock) {
2697 				rwc->contended = true;
2698 				return;
2699 			}
2700 			anon_vma_lock_read(anon_vma);
2701 		}
2702 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2703 					       0, ULONG_MAX) {
2704 			unsigned long addr;
2705 
2706 			cond_resched();
2707 			vma = vmac->vma;
2708 
2709 			/* Ignore the stable/unstable/sqnr flags */
2710 			addr = rmap_item->address & PAGE_MASK;
2711 
2712 			if (addr < vma->vm_start || addr >= vma->vm_end)
2713 				continue;
2714 			/*
2715 			 * Initially we examine only the vma which covers this
2716 			 * rmap_item; but later, if there is still work to do,
2717 			 * we examine covering vmas in other mms: in case they
2718 			 * were forked from the original since ksmd passed.
2719 			 */
2720 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2721 				continue;
2722 
2723 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2724 				continue;
2725 
2726 			if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2727 				anon_vma_unlock_read(anon_vma);
2728 				return;
2729 			}
2730 			if (rwc->done && rwc->done(folio)) {
2731 				anon_vma_unlock_read(anon_vma);
2732 				return;
2733 			}
2734 		}
2735 		anon_vma_unlock_read(anon_vma);
2736 	}
2737 	if (!search_new_forks++)
2738 		goto again;
2739 }
2740 
2741 #ifdef CONFIG_MIGRATION
2742 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2743 {
2744 	struct ksm_stable_node *stable_node;
2745 
2746 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2747 	VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2748 	VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2749 
2750 	stable_node = folio_stable_node(folio);
2751 	if (stable_node) {
2752 		VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2753 		stable_node->kpfn = folio_pfn(newfolio);
2754 		/*
2755 		 * newfolio->mapping was set in advance; now we need smp_wmb()
2756 		 * to make sure that the new stable_node->kpfn is visible
2757 		 * to get_ksm_page() before it can see that folio->mapping
2758 		 * has gone stale (or that folio_test_swapcache has been cleared).
2759 		 */
2760 		smp_wmb();
2761 		set_page_stable_node(&folio->page, NULL);
2762 	}
2763 }
2764 #endif /* CONFIG_MIGRATION */
2765 
2766 #ifdef CONFIG_MEMORY_HOTREMOVE
2767 static void wait_while_offlining(void)
2768 {
2769 	while (ksm_run & KSM_RUN_OFFLINE) {
2770 		mutex_unlock(&ksm_thread_mutex);
2771 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2772 			    TASK_UNINTERRUPTIBLE);
2773 		mutex_lock(&ksm_thread_mutex);
2774 	}
2775 }
2776 
2777 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2778 					 unsigned long start_pfn,
2779 					 unsigned long end_pfn)
2780 {
2781 	if (stable_node->kpfn >= start_pfn &&
2782 	    stable_node->kpfn < end_pfn) {
2783 		/*
2784 		 * Don't get_ksm_page, page has already gone:
2785 		 * which is why we keep kpfn instead of page*
2786 		 */
2787 		remove_node_from_stable_tree(stable_node);
2788 		return true;
2789 	}
2790 	return false;
2791 }
2792 
2793 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2794 					   unsigned long start_pfn,
2795 					   unsigned long end_pfn,
2796 					   struct rb_root *root)
2797 {
2798 	struct ksm_stable_node *dup;
2799 	struct hlist_node *hlist_safe;
2800 
2801 	if (!is_stable_node_chain(stable_node)) {
2802 		VM_BUG_ON(is_stable_node_dup(stable_node));
2803 		return stable_node_dup_remove_range(stable_node, start_pfn,
2804 						    end_pfn);
2805 	}
2806 
2807 	hlist_for_each_entry_safe(dup, hlist_safe,
2808 				  &stable_node->hlist, hlist_dup) {
2809 		VM_BUG_ON(!is_stable_node_dup(dup));
2810 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2811 	}
2812 	if (hlist_empty(&stable_node->hlist)) {
2813 		free_stable_node_chain(stable_node, root);
2814 		return true; /* notify caller that tree was rebalanced */
2815 	} else
2816 		return false;
2817 }
2818 
2819 static void ksm_check_stable_tree(unsigned long start_pfn,
2820 				  unsigned long end_pfn)
2821 {
2822 	struct ksm_stable_node *stable_node, *next;
2823 	struct rb_node *node;
2824 	int nid;
2825 
2826 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2827 		node = rb_first(root_stable_tree + nid);
2828 		while (node) {
2829 			stable_node = rb_entry(node, struct ksm_stable_node, node);
2830 			if (stable_node_chain_remove_range(stable_node,
2831 							   start_pfn, end_pfn,
2832 							   root_stable_tree +
2833 							   nid))
2834 				node = rb_first(root_stable_tree + nid);
2835 			else
2836 				node = rb_next(node);
2837 			cond_resched();
2838 		}
2839 	}
2840 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2841 		if (stable_node->kpfn >= start_pfn &&
2842 		    stable_node->kpfn < end_pfn)
2843 			remove_node_from_stable_tree(stable_node);
2844 		cond_resched();
2845 	}
2846 }
2847 
2848 static int ksm_memory_callback(struct notifier_block *self,
2849 			       unsigned long action, void *arg)
2850 {
2851 	struct memory_notify *mn = arg;
2852 
2853 	switch (action) {
2854 	case MEM_GOING_OFFLINE:
2855 		/*
2856 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2857 		 * and remove_all_stable_nodes() while memory is going offline:
2858 		 * it is unsafe for them to touch the stable tree at this time.
2859 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2860 		 * which do not need the ksm_thread_mutex are all safe.
2861 		 */
2862 		mutex_lock(&ksm_thread_mutex);
2863 		ksm_run |= KSM_RUN_OFFLINE;
2864 		mutex_unlock(&ksm_thread_mutex);
2865 		break;
2866 
2867 	case MEM_OFFLINE:
2868 		/*
2869 		 * Most of the work is done by page migration; but there might
2870 		 * be a few stable_nodes left over, still pointing to struct
2871 		 * pages which have been offlined: prune those from the tree,
2872 		 * otherwise get_ksm_page() might later try to access a
2873 		 * non-existent struct page.
2874 		 */
2875 		ksm_check_stable_tree(mn->start_pfn,
2876 				      mn->start_pfn + mn->nr_pages);
2877 		fallthrough;
2878 	case MEM_CANCEL_OFFLINE:
2879 		mutex_lock(&ksm_thread_mutex);
2880 		ksm_run &= ~KSM_RUN_OFFLINE;
2881 		mutex_unlock(&ksm_thread_mutex);
2882 
2883 		smp_mb();	/* wake_up_bit advises this */
2884 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2885 		break;
2886 	}
2887 	return NOTIFY_OK;
2888 }
2889 #else
2890 static void wait_while_offlining(void)
2891 {
2892 }
2893 #endif /* CONFIG_MEMORY_HOTREMOVE */
2894 
2895 #ifdef CONFIG_SYSFS
2896 /*
2897  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2898  */
2899 
2900 #define KSM_ATTR_RO(_name) \
2901 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2902 #define KSM_ATTR(_name) \
2903 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
2904 
2905 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2906 				    struct kobj_attribute *attr, char *buf)
2907 {
2908 	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2909 }
2910 
2911 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2912 				     struct kobj_attribute *attr,
2913 				     const char *buf, size_t count)
2914 {
2915 	unsigned int msecs;
2916 	int err;
2917 
2918 	err = kstrtouint(buf, 10, &msecs);
2919 	if (err)
2920 		return -EINVAL;
2921 
2922 	ksm_thread_sleep_millisecs = msecs;
2923 	wake_up_interruptible(&ksm_iter_wait);
2924 
2925 	return count;
2926 }
2927 KSM_ATTR(sleep_millisecs);
2928 
2929 static ssize_t pages_to_scan_show(struct kobject *kobj,
2930 				  struct kobj_attribute *attr, char *buf)
2931 {
2932 	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2933 }
2934 
2935 static ssize_t pages_to_scan_store(struct kobject *kobj,
2936 				   struct kobj_attribute *attr,
2937 				   const char *buf, size_t count)
2938 {
2939 	unsigned int nr_pages;
2940 	int err;
2941 
2942 	err = kstrtouint(buf, 10, &nr_pages);
2943 	if (err)
2944 		return -EINVAL;
2945 
2946 	ksm_thread_pages_to_scan = nr_pages;
2947 
2948 	return count;
2949 }
2950 KSM_ATTR(pages_to_scan);
2951 
2952 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2953 			char *buf)
2954 {
2955 	return sysfs_emit(buf, "%lu\n", ksm_run);
2956 }
2957 
2958 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2959 			 const char *buf, size_t count)
2960 {
2961 	unsigned int flags;
2962 	int err;
2963 
2964 	err = kstrtouint(buf, 10, &flags);
2965 	if (err)
2966 		return -EINVAL;
2967 	if (flags > KSM_RUN_UNMERGE)
2968 		return -EINVAL;
2969 
2970 	/*
2971 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2972 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2973 	 * breaking COW to free the pages_shared (but leaves mm_slots
2974 	 * on the list for when ksmd may be set running again).
2975 	 */
2976 
2977 	mutex_lock(&ksm_thread_mutex);
2978 	wait_while_offlining();
2979 	if (ksm_run != flags) {
2980 		ksm_run = flags;
2981 		if (flags & KSM_RUN_UNMERGE) {
2982 			set_current_oom_origin();
2983 			err = unmerge_and_remove_all_rmap_items();
2984 			clear_current_oom_origin();
2985 			if (err) {
2986 				ksm_run = KSM_RUN_STOP;
2987 				count = err;
2988 			}
2989 		}
2990 	}
2991 	mutex_unlock(&ksm_thread_mutex);
2992 
2993 	if (flags & KSM_RUN_MERGE)
2994 		wake_up_interruptible(&ksm_thread_wait);
2995 
2996 	return count;
2997 }
2998 KSM_ATTR(run);
2999 
3000 #ifdef CONFIG_NUMA
3001 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3002 				       struct kobj_attribute *attr, char *buf)
3003 {
3004 	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3005 }
3006 
3007 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3008 				   struct kobj_attribute *attr,
3009 				   const char *buf, size_t count)
3010 {
3011 	int err;
3012 	unsigned long knob;
3013 
3014 	err = kstrtoul(buf, 10, &knob);
3015 	if (err)
3016 		return err;
3017 	if (knob > 1)
3018 		return -EINVAL;
3019 
3020 	mutex_lock(&ksm_thread_mutex);
3021 	wait_while_offlining();
3022 	if (ksm_merge_across_nodes != knob) {
3023 		if (ksm_pages_shared || remove_all_stable_nodes())
3024 			err = -EBUSY;
3025 		else if (root_stable_tree == one_stable_tree) {
3026 			struct rb_root *buf;
3027 			/*
3028 			 * This is the first time that we switch away from the
3029 			 * default of merging across nodes: must now allocate
3030 			 * a buffer to hold as many roots as may be needed.
3031 			 * Allocate stable and unstable together:
3032 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
3033 			 */
3034 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3035 				      GFP_KERNEL);
3036 			/* Let us assume that RB_ROOT is NULL is zero */
3037 			if (!buf)
3038 				err = -ENOMEM;
3039 			else {
3040 				root_stable_tree = buf;
3041 				root_unstable_tree = buf + nr_node_ids;
3042 				/* Stable tree is empty but not the unstable */
3043 				root_unstable_tree[0] = one_unstable_tree[0];
3044 			}
3045 		}
3046 		if (!err) {
3047 			ksm_merge_across_nodes = knob;
3048 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3049 		}
3050 	}
3051 	mutex_unlock(&ksm_thread_mutex);
3052 
3053 	return err ? err : count;
3054 }
3055 KSM_ATTR(merge_across_nodes);
3056 #endif
3057 
3058 static ssize_t use_zero_pages_show(struct kobject *kobj,
3059 				   struct kobj_attribute *attr, char *buf)
3060 {
3061 	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3062 }
3063 static ssize_t use_zero_pages_store(struct kobject *kobj,
3064 				   struct kobj_attribute *attr,
3065 				   const char *buf, size_t count)
3066 {
3067 	int err;
3068 	bool value;
3069 
3070 	err = kstrtobool(buf, &value);
3071 	if (err)
3072 		return -EINVAL;
3073 
3074 	ksm_use_zero_pages = value;
3075 
3076 	return count;
3077 }
3078 KSM_ATTR(use_zero_pages);
3079 
3080 static ssize_t max_page_sharing_show(struct kobject *kobj,
3081 				     struct kobj_attribute *attr, char *buf)
3082 {
3083 	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3084 }
3085 
3086 static ssize_t max_page_sharing_store(struct kobject *kobj,
3087 				      struct kobj_attribute *attr,
3088 				      const char *buf, size_t count)
3089 {
3090 	int err;
3091 	int knob;
3092 
3093 	err = kstrtoint(buf, 10, &knob);
3094 	if (err)
3095 		return err;
3096 	/*
3097 	 * When a KSM page is created it is shared by 2 mappings. This
3098 	 * being a signed comparison, it implicitly verifies it's not
3099 	 * negative.
3100 	 */
3101 	if (knob < 2)
3102 		return -EINVAL;
3103 
3104 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3105 		return count;
3106 
3107 	mutex_lock(&ksm_thread_mutex);
3108 	wait_while_offlining();
3109 	if (ksm_max_page_sharing != knob) {
3110 		if (ksm_pages_shared || remove_all_stable_nodes())
3111 			err = -EBUSY;
3112 		else
3113 			ksm_max_page_sharing = knob;
3114 	}
3115 	mutex_unlock(&ksm_thread_mutex);
3116 
3117 	return err ? err : count;
3118 }
3119 KSM_ATTR(max_page_sharing);
3120 
3121 static ssize_t pages_shared_show(struct kobject *kobj,
3122 				 struct kobj_attribute *attr, char *buf)
3123 {
3124 	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3125 }
3126 KSM_ATTR_RO(pages_shared);
3127 
3128 static ssize_t pages_sharing_show(struct kobject *kobj,
3129 				  struct kobj_attribute *attr, char *buf)
3130 {
3131 	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3132 }
3133 KSM_ATTR_RO(pages_sharing);
3134 
3135 static ssize_t pages_unshared_show(struct kobject *kobj,
3136 				   struct kobj_attribute *attr, char *buf)
3137 {
3138 	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3139 }
3140 KSM_ATTR_RO(pages_unshared);
3141 
3142 static ssize_t pages_volatile_show(struct kobject *kobj,
3143 				   struct kobj_attribute *attr, char *buf)
3144 {
3145 	long ksm_pages_volatile;
3146 
3147 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3148 				- ksm_pages_sharing - ksm_pages_unshared;
3149 	/*
3150 	 * It was not worth any locking to calculate that statistic,
3151 	 * but it might therefore sometimes be negative: conceal that.
3152 	 */
3153 	if (ksm_pages_volatile < 0)
3154 		ksm_pages_volatile = 0;
3155 	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3156 }
3157 KSM_ATTR_RO(pages_volatile);
3158 
3159 static ssize_t stable_node_dups_show(struct kobject *kobj,
3160 				     struct kobj_attribute *attr, char *buf)
3161 {
3162 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3163 }
3164 KSM_ATTR_RO(stable_node_dups);
3165 
3166 static ssize_t stable_node_chains_show(struct kobject *kobj,
3167 				       struct kobj_attribute *attr, char *buf)
3168 {
3169 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3170 }
3171 KSM_ATTR_RO(stable_node_chains);
3172 
3173 static ssize_t
3174 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3175 					struct kobj_attribute *attr,
3176 					char *buf)
3177 {
3178 	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3179 }
3180 
3181 static ssize_t
3182 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3183 					 struct kobj_attribute *attr,
3184 					 const char *buf, size_t count)
3185 {
3186 	unsigned int msecs;
3187 	int err;
3188 
3189 	err = kstrtouint(buf, 10, &msecs);
3190 	if (err)
3191 		return -EINVAL;
3192 
3193 	ksm_stable_node_chains_prune_millisecs = msecs;
3194 
3195 	return count;
3196 }
3197 KSM_ATTR(stable_node_chains_prune_millisecs);
3198 
3199 static ssize_t full_scans_show(struct kobject *kobj,
3200 			       struct kobj_attribute *attr, char *buf)
3201 {
3202 	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3203 }
3204 KSM_ATTR_RO(full_scans);
3205 
3206 static struct attribute *ksm_attrs[] = {
3207 	&sleep_millisecs_attr.attr,
3208 	&pages_to_scan_attr.attr,
3209 	&run_attr.attr,
3210 	&pages_shared_attr.attr,
3211 	&pages_sharing_attr.attr,
3212 	&pages_unshared_attr.attr,
3213 	&pages_volatile_attr.attr,
3214 	&full_scans_attr.attr,
3215 #ifdef CONFIG_NUMA
3216 	&merge_across_nodes_attr.attr,
3217 #endif
3218 	&max_page_sharing_attr.attr,
3219 	&stable_node_chains_attr.attr,
3220 	&stable_node_dups_attr.attr,
3221 	&stable_node_chains_prune_millisecs_attr.attr,
3222 	&use_zero_pages_attr.attr,
3223 	NULL,
3224 };
3225 
3226 static const struct attribute_group ksm_attr_group = {
3227 	.attrs = ksm_attrs,
3228 	.name = "ksm",
3229 };
3230 #endif /* CONFIG_SYSFS */
3231 
3232 static int __init ksm_init(void)
3233 {
3234 	struct task_struct *ksm_thread;
3235 	int err;
3236 
3237 	/* The correct value depends on page size and endianness */
3238 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3239 	/* Default to false for backwards compatibility */
3240 	ksm_use_zero_pages = false;
3241 
3242 	err = ksm_slab_init();
3243 	if (err)
3244 		goto out;
3245 
3246 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3247 	if (IS_ERR(ksm_thread)) {
3248 		pr_err("ksm: creating kthread failed\n");
3249 		err = PTR_ERR(ksm_thread);
3250 		goto out_free;
3251 	}
3252 
3253 #ifdef CONFIG_SYSFS
3254 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3255 	if (err) {
3256 		pr_err("ksm: register sysfs failed\n");
3257 		kthread_stop(ksm_thread);
3258 		goto out_free;
3259 	}
3260 #else
3261 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3262 
3263 #endif /* CONFIG_SYSFS */
3264 
3265 #ifdef CONFIG_MEMORY_HOTREMOVE
3266 	/* There is no significance to this priority 100 */
3267 	hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3268 #endif
3269 	return 0;
3270 
3271 out_free:
3272 	ksm_slab_free();
3273 out:
3274 	return err;
3275 }
3276 subsys_initcall(ksm_init);
3277