1 /* 2 * Memory merging support. 3 * 4 * This code enables dynamic sharing of identical pages found in different 5 * memory areas, even if they are not shared by fork() 6 * 7 * Copyright (C) 2008-2009 Red Hat, Inc. 8 * Authors: 9 * Izik Eidus 10 * Andrea Arcangeli 11 * Chris Wright 12 * Hugh Dickins 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/rwsem.h> 23 #include <linux/pagemap.h> 24 #include <linux/rmap.h> 25 #include <linux/spinlock.h> 26 #include <linux/jhash.h> 27 #include <linux/delay.h> 28 #include <linux/kthread.h> 29 #include <linux/wait.h> 30 #include <linux/slab.h> 31 #include <linux/rbtree.h> 32 #include <linux/memory.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/swap.h> 35 #include <linux/ksm.h> 36 #include <linux/hashtable.h> 37 #include <linux/freezer.h> 38 #include <linux/oom.h> 39 #include <linux/numa.h> 40 41 #include <asm/tlbflush.h> 42 #include "internal.h" 43 44 #ifdef CONFIG_NUMA 45 #define NUMA(x) (x) 46 #define DO_NUMA(x) do { (x); } while (0) 47 #else 48 #define NUMA(x) (0) 49 #define DO_NUMA(x) do { } while (0) 50 #endif 51 52 /* 53 * A few notes about the KSM scanning process, 54 * to make it easier to understand the data structures below: 55 * 56 * In order to reduce excessive scanning, KSM sorts the memory pages by their 57 * contents into a data structure that holds pointers to the pages' locations. 58 * 59 * Since the contents of the pages may change at any moment, KSM cannot just 60 * insert the pages into a normal sorted tree and expect it to find anything. 61 * Therefore KSM uses two data structures - the stable and the unstable tree. 62 * 63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 64 * by their contents. Because each such page is write-protected, searching on 65 * this tree is fully assured to be working (except when pages are unmapped), 66 * and therefore this tree is called the stable tree. 67 * 68 * In addition to the stable tree, KSM uses a second data structure called the 69 * unstable tree: this tree holds pointers to pages which have been found to 70 * be "unchanged for a period of time". The unstable tree sorts these pages 71 * by their contents, but since they are not write-protected, KSM cannot rely 72 * upon the unstable tree to work correctly - the unstable tree is liable to 73 * be corrupted as its contents are modified, and so it is called unstable. 74 * 75 * KSM solves this problem by several techniques: 76 * 77 * 1) The unstable tree is flushed every time KSM completes scanning all 78 * memory areas, and then the tree is rebuilt again from the beginning. 79 * 2) KSM will only insert into the unstable tree, pages whose hash value 80 * has not changed since the previous scan of all memory areas. 81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 82 * colors of the nodes and not on their contents, assuring that even when 83 * the tree gets "corrupted" it won't get out of balance, so scanning time 84 * remains the same (also, searching and inserting nodes in an rbtree uses 85 * the same algorithm, so we have no overhead when we flush and rebuild). 86 * 4) KSM never flushes the stable tree, which means that even if it were to 87 * take 10 attempts to find a page in the unstable tree, once it is found, 88 * it is secured in the stable tree. (When we scan a new page, we first 89 * compare it against the stable tree, and then against the unstable tree.) 90 * 91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 92 * stable trees and multiple unstable trees: one of each for each NUMA node. 93 */ 94 95 /** 96 * struct mm_slot - ksm information per mm that is being scanned 97 * @link: link to the mm_slots hash list 98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 100 * @mm: the mm that this information is valid for 101 */ 102 struct mm_slot { 103 struct hlist_node link; 104 struct list_head mm_list; 105 struct rmap_item *rmap_list; 106 struct mm_struct *mm; 107 }; 108 109 /** 110 * struct ksm_scan - cursor for scanning 111 * @mm_slot: the current mm_slot we are scanning 112 * @address: the next address inside that to be scanned 113 * @rmap_list: link to the next rmap to be scanned in the rmap_list 114 * @seqnr: count of completed full scans (needed when removing unstable node) 115 * 116 * There is only the one ksm_scan instance of this cursor structure. 117 */ 118 struct ksm_scan { 119 struct mm_slot *mm_slot; 120 unsigned long address; 121 struct rmap_item **rmap_list; 122 unsigned long seqnr; 123 }; 124 125 /** 126 * struct stable_node - node of the stable rbtree 127 * @node: rb node of this ksm page in the stable tree 128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 129 * @list: linked into migrate_nodes, pending placement in the proper node tree 130 * @hlist: hlist head of rmap_items using this ksm page 131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 133 */ 134 struct stable_node { 135 union { 136 struct rb_node node; /* when node of stable tree */ 137 struct { /* when listed for migration */ 138 struct list_head *head; 139 struct list_head list; 140 }; 141 }; 142 struct hlist_head hlist; 143 unsigned long kpfn; 144 #ifdef CONFIG_NUMA 145 int nid; 146 #endif 147 }; 148 149 /** 150 * struct rmap_item - reverse mapping item for virtual addresses 151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 153 * @nid: NUMA node id of unstable tree in which linked (may not match page) 154 * @mm: the memory structure this rmap_item is pointing into 155 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 156 * @oldchecksum: previous checksum of the page at that virtual address 157 * @node: rb node of this rmap_item in the unstable tree 158 * @head: pointer to stable_node heading this list in the stable tree 159 * @hlist: link into hlist of rmap_items hanging off that stable_node 160 */ 161 struct rmap_item { 162 struct rmap_item *rmap_list; 163 union { 164 struct anon_vma *anon_vma; /* when stable */ 165 #ifdef CONFIG_NUMA 166 int nid; /* when node of unstable tree */ 167 #endif 168 }; 169 struct mm_struct *mm; 170 unsigned long address; /* + low bits used for flags below */ 171 unsigned int oldchecksum; /* when unstable */ 172 union { 173 struct rb_node node; /* when node of unstable tree */ 174 struct { /* when listed from stable tree */ 175 struct stable_node *head; 176 struct hlist_node hlist; 177 }; 178 }; 179 }; 180 181 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 182 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 183 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 184 185 /* The stable and unstable tree heads */ 186 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 187 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 188 static struct rb_root *root_stable_tree = one_stable_tree; 189 static struct rb_root *root_unstable_tree = one_unstable_tree; 190 191 /* Recently migrated nodes of stable tree, pending proper placement */ 192 static LIST_HEAD(migrate_nodes); 193 194 #define MM_SLOTS_HASH_BITS 10 195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 196 197 static struct mm_slot ksm_mm_head = { 198 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 199 }; 200 static struct ksm_scan ksm_scan = { 201 .mm_slot = &ksm_mm_head, 202 }; 203 204 static struct kmem_cache *rmap_item_cache; 205 static struct kmem_cache *stable_node_cache; 206 static struct kmem_cache *mm_slot_cache; 207 208 /* The number of nodes in the stable tree */ 209 static unsigned long ksm_pages_shared; 210 211 /* The number of page slots additionally sharing those nodes */ 212 static unsigned long ksm_pages_sharing; 213 214 /* The number of nodes in the unstable tree */ 215 static unsigned long ksm_pages_unshared; 216 217 /* The number of rmap_items in use: to calculate pages_volatile */ 218 static unsigned long ksm_rmap_items; 219 220 /* Number of pages ksmd should scan in one batch */ 221 static unsigned int ksm_thread_pages_to_scan = 100; 222 223 /* Milliseconds ksmd should sleep between batches */ 224 static unsigned int ksm_thread_sleep_millisecs = 20; 225 226 #ifdef CONFIG_NUMA 227 /* Zeroed when merging across nodes is not allowed */ 228 static unsigned int ksm_merge_across_nodes = 1; 229 static int ksm_nr_node_ids = 1; 230 #else 231 #define ksm_merge_across_nodes 1U 232 #define ksm_nr_node_ids 1 233 #endif 234 235 #define KSM_RUN_STOP 0 236 #define KSM_RUN_MERGE 1 237 #define KSM_RUN_UNMERGE 2 238 #define KSM_RUN_OFFLINE 4 239 static unsigned long ksm_run = KSM_RUN_STOP; 240 static void wait_while_offlining(void); 241 242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 243 static DEFINE_MUTEX(ksm_thread_mutex); 244 static DEFINE_SPINLOCK(ksm_mmlist_lock); 245 246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 247 sizeof(struct __struct), __alignof__(struct __struct),\ 248 (__flags), NULL) 249 250 static int __init ksm_slab_init(void) 251 { 252 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 253 if (!rmap_item_cache) 254 goto out; 255 256 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 257 if (!stable_node_cache) 258 goto out_free1; 259 260 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 261 if (!mm_slot_cache) 262 goto out_free2; 263 264 return 0; 265 266 out_free2: 267 kmem_cache_destroy(stable_node_cache); 268 out_free1: 269 kmem_cache_destroy(rmap_item_cache); 270 out: 271 return -ENOMEM; 272 } 273 274 static void __init ksm_slab_free(void) 275 { 276 kmem_cache_destroy(mm_slot_cache); 277 kmem_cache_destroy(stable_node_cache); 278 kmem_cache_destroy(rmap_item_cache); 279 mm_slot_cache = NULL; 280 } 281 282 static inline struct rmap_item *alloc_rmap_item(void) 283 { 284 struct rmap_item *rmap_item; 285 286 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL); 287 if (rmap_item) 288 ksm_rmap_items++; 289 return rmap_item; 290 } 291 292 static inline void free_rmap_item(struct rmap_item *rmap_item) 293 { 294 ksm_rmap_items--; 295 rmap_item->mm = NULL; /* debug safety */ 296 kmem_cache_free(rmap_item_cache, rmap_item); 297 } 298 299 static inline struct stable_node *alloc_stable_node(void) 300 { 301 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL); 302 } 303 304 static inline void free_stable_node(struct stable_node *stable_node) 305 { 306 kmem_cache_free(stable_node_cache, stable_node); 307 } 308 309 static inline struct mm_slot *alloc_mm_slot(void) 310 { 311 if (!mm_slot_cache) /* initialization failed */ 312 return NULL; 313 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 314 } 315 316 static inline void free_mm_slot(struct mm_slot *mm_slot) 317 { 318 kmem_cache_free(mm_slot_cache, mm_slot); 319 } 320 321 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 322 { 323 struct mm_slot *slot; 324 325 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 326 if (slot->mm == mm) 327 return slot; 328 329 return NULL; 330 } 331 332 static void insert_to_mm_slots_hash(struct mm_struct *mm, 333 struct mm_slot *mm_slot) 334 { 335 mm_slot->mm = mm; 336 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 337 } 338 339 /* 340 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 341 * page tables after it has passed through ksm_exit() - which, if necessary, 342 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set 343 * a special flag: they can just back out as soon as mm_users goes to zero. 344 * ksm_test_exit() is used throughout to make this test for exit: in some 345 * places for correctness, in some places just to avoid unnecessary work. 346 */ 347 static inline bool ksm_test_exit(struct mm_struct *mm) 348 { 349 return atomic_read(&mm->mm_users) == 0; 350 } 351 352 /* 353 * We use break_ksm to break COW on a ksm page: it's a stripped down 354 * 355 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1) 356 * put_page(page); 357 * 358 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 359 * in case the application has unmapped and remapped mm,addr meanwhile. 360 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 361 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. 362 */ 363 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 364 { 365 struct page *page; 366 int ret = 0; 367 368 do { 369 cond_resched(); 370 page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION); 371 if (IS_ERR_OR_NULL(page)) 372 break; 373 if (PageKsm(page)) 374 ret = handle_mm_fault(vma->vm_mm, vma, addr, 375 FAULT_FLAG_WRITE); 376 else 377 ret = VM_FAULT_WRITE; 378 put_page(page); 379 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM))); 380 /* 381 * We must loop because handle_mm_fault() may back out if there's 382 * any difficulty e.g. if pte accessed bit gets updated concurrently. 383 * 384 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 385 * COW has been broken, even if the vma does not permit VM_WRITE; 386 * but note that a concurrent fault might break PageKsm for us. 387 * 388 * VM_FAULT_SIGBUS could occur if we race with truncation of the 389 * backing file, which also invalidates anonymous pages: that's 390 * okay, that truncation will have unmapped the PageKsm for us. 391 * 392 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 393 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 394 * current task has TIF_MEMDIE set, and will be OOM killed on return 395 * to user; and ksmd, having no mm, would never be chosen for that. 396 * 397 * But if the mm is in a limited mem_cgroup, then the fault may fail 398 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 399 * even ksmd can fail in this way - though it's usually breaking ksm 400 * just to undo a merge it made a moment before, so unlikely to oom. 401 * 402 * That's a pity: we might therefore have more kernel pages allocated 403 * than we're counting as nodes in the stable tree; but ksm_do_scan 404 * will retry to break_cow on each pass, so should recover the page 405 * in due course. The important thing is to not let VM_MERGEABLE 406 * be cleared while any such pages might remain in the area. 407 */ 408 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 409 } 410 411 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 412 unsigned long addr) 413 { 414 struct vm_area_struct *vma; 415 if (ksm_test_exit(mm)) 416 return NULL; 417 vma = find_vma(mm, addr); 418 if (!vma || vma->vm_start > addr) 419 return NULL; 420 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 421 return NULL; 422 return vma; 423 } 424 425 static void break_cow(struct rmap_item *rmap_item) 426 { 427 struct mm_struct *mm = rmap_item->mm; 428 unsigned long addr = rmap_item->address; 429 struct vm_area_struct *vma; 430 431 /* 432 * It is not an accident that whenever we want to break COW 433 * to undo, we also need to drop a reference to the anon_vma. 434 */ 435 put_anon_vma(rmap_item->anon_vma); 436 437 down_read(&mm->mmap_sem); 438 vma = find_mergeable_vma(mm, addr); 439 if (vma) 440 break_ksm(vma, addr); 441 up_read(&mm->mmap_sem); 442 } 443 444 static struct page *page_trans_compound_anon(struct page *page) 445 { 446 if (PageTransCompound(page)) { 447 struct page *head = compound_head(page); 448 /* 449 * head may actually be splitted and freed from under 450 * us but it's ok here. 451 */ 452 if (PageAnon(head)) 453 return head; 454 } 455 return NULL; 456 } 457 458 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 459 { 460 struct mm_struct *mm = rmap_item->mm; 461 unsigned long addr = rmap_item->address; 462 struct vm_area_struct *vma; 463 struct page *page; 464 465 down_read(&mm->mmap_sem); 466 vma = find_mergeable_vma(mm, addr); 467 if (!vma) 468 goto out; 469 470 page = follow_page(vma, addr, FOLL_GET); 471 if (IS_ERR_OR_NULL(page)) 472 goto out; 473 if (PageAnon(page) || page_trans_compound_anon(page)) { 474 flush_anon_page(vma, page, addr); 475 flush_dcache_page(page); 476 } else { 477 put_page(page); 478 out: page = NULL; 479 } 480 up_read(&mm->mmap_sem); 481 return page; 482 } 483 484 /* 485 * This helper is used for getting right index into array of tree roots. 486 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 487 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 488 * every node has its own stable and unstable tree. 489 */ 490 static inline int get_kpfn_nid(unsigned long kpfn) 491 { 492 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 493 } 494 495 static void remove_node_from_stable_tree(struct stable_node *stable_node) 496 { 497 struct rmap_item *rmap_item; 498 499 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 500 if (rmap_item->hlist.next) 501 ksm_pages_sharing--; 502 else 503 ksm_pages_shared--; 504 put_anon_vma(rmap_item->anon_vma); 505 rmap_item->address &= PAGE_MASK; 506 cond_resched(); 507 } 508 509 if (stable_node->head == &migrate_nodes) 510 list_del(&stable_node->list); 511 else 512 rb_erase(&stable_node->node, 513 root_stable_tree + NUMA(stable_node->nid)); 514 free_stable_node(stable_node); 515 } 516 517 /* 518 * get_ksm_page: checks if the page indicated by the stable node 519 * is still its ksm page, despite having held no reference to it. 520 * In which case we can trust the content of the page, and it 521 * returns the gotten page; but if the page has now been zapped, 522 * remove the stale node from the stable tree and return NULL. 523 * But beware, the stable node's page might be being migrated. 524 * 525 * You would expect the stable_node to hold a reference to the ksm page. 526 * But if it increments the page's count, swapping out has to wait for 527 * ksmd to come around again before it can free the page, which may take 528 * seconds or even minutes: much too unresponsive. So instead we use a 529 * "keyhole reference": access to the ksm page from the stable node peeps 530 * out through its keyhole to see if that page still holds the right key, 531 * pointing back to this stable node. This relies on freeing a PageAnon 532 * page to reset its page->mapping to NULL, and relies on no other use of 533 * a page to put something that might look like our key in page->mapping. 534 * is on its way to being freed; but it is an anomaly to bear in mind. 535 */ 536 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it) 537 { 538 struct page *page; 539 void *expected_mapping; 540 unsigned long kpfn; 541 542 expected_mapping = (void *)stable_node + 543 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM); 544 again: 545 kpfn = ACCESS_ONCE(stable_node->kpfn); 546 page = pfn_to_page(kpfn); 547 548 /* 549 * page is computed from kpfn, so on most architectures reading 550 * page->mapping is naturally ordered after reading node->kpfn, 551 * but on Alpha we need to be more careful. 552 */ 553 smp_read_barrier_depends(); 554 if (ACCESS_ONCE(page->mapping) != expected_mapping) 555 goto stale; 556 557 /* 558 * We cannot do anything with the page while its refcount is 0. 559 * Usually 0 means free, or tail of a higher-order page: in which 560 * case this node is no longer referenced, and should be freed; 561 * however, it might mean that the page is under page_freeze_refs(). 562 * The __remove_mapping() case is easy, again the node is now stale; 563 * but if page is swapcache in migrate_page_move_mapping(), it might 564 * still be our page, in which case it's essential to keep the node. 565 */ 566 while (!get_page_unless_zero(page)) { 567 /* 568 * Another check for page->mapping != expected_mapping would 569 * work here too. We have chosen the !PageSwapCache test to 570 * optimize the common case, when the page is or is about to 571 * be freed: PageSwapCache is cleared (under spin_lock_irq) 572 * in the freeze_refs section of __remove_mapping(); but Anon 573 * page->mapping reset to NULL later, in free_pages_prepare(). 574 */ 575 if (!PageSwapCache(page)) 576 goto stale; 577 cpu_relax(); 578 } 579 580 if (ACCESS_ONCE(page->mapping) != expected_mapping) { 581 put_page(page); 582 goto stale; 583 } 584 585 if (lock_it) { 586 lock_page(page); 587 if (ACCESS_ONCE(page->mapping) != expected_mapping) { 588 unlock_page(page); 589 put_page(page); 590 goto stale; 591 } 592 } 593 return page; 594 595 stale: 596 /* 597 * We come here from above when page->mapping or !PageSwapCache 598 * suggests that the node is stale; but it might be under migration. 599 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), 600 * before checking whether node->kpfn has been changed. 601 */ 602 smp_rmb(); 603 if (ACCESS_ONCE(stable_node->kpfn) != kpfn) 604 goto again; 605 remove_node_from_stable_tree(stable_node); 606 return NULL; 607 } 608 609 /* 610 * Removing rmap_item from stable or unstable tree. 611 * This function will clean the information from the stable/unstable tree. 612 */ 613 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 614 { 615 if (rmap_item->address & STABLE_FLAG) { 616 struct stable_node *stable_node; 617 struct page *page; 618 619 stable_node = rmap_item->head; 620 page = get_ksm_page(stable_node, true); 621 if (!page) 622 goto out; 623 624 hlist_del(&rmap_item->hlist); 625 unlock_page(page); 626 put_page(page); 627 628 if (stable_node->hlist.first) 629 ksm_pages_sharing--; 630 else 631 ksm_pages_shared--; 632 633 put_anon_vma(rmap_item->anon_vma); 634 rmap_item->address &= PAGE_MASK; 635 636 } else if (rmap_item->address & UNSTABLE_FLAG) { 637 unsigned char age; 638 /* 639 * Usually ksmd can and must skip the rb_erase, because 640 * root_unstable_tree was already reset to RB_ROOT. 641 * But be careful when an mm is exiting: do the rb_erase 642 * if this rmap_item was inserted by this scan, rather 643 * than left over from before. 644 */ 645 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 646 BUG_ON(age > 1); 647 if (!age) 648 rb_erase(&rmap_item->node, 649 root_unstable_tree + NUMA(rmap_item->nid)); 650 ksm_pages_unshared--; 651 rmap_item->address &= PAGE_MASK; 652 } 653 out: 654 cond_resched(); /* we're called from many long loops */ 655 } 656 657 static void remove_trailing_rmap_items(struct mm_slot *mm_slot, 658 struct rmap_item **rmap_list) 659 { 660 while (*rmap_list) { 661 struct rmap_item *rmap_item = *rmap_list; 662 *rmap_list = rmap_item->rmap_list; 663 remove_rmap_item_from_tree(rmap_item); 664 free_rmap_item(rmap_item); 665 } 666 } 667 668 /* 669 * Though it's very tempting to unmerge rmap_items from stable tree rather 670 * than check every pte of a given vma, the locking doesn't quite work for 671 * that - an rmap_item is assigned to the stable tree after inserting ksm 672 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing 673 * rmap_items from parent to child at fork time (so as not to waste time 674 * if exit comes before the next scan reaches it). 675 * 676 * Similarly, although we'd like to remove rmap_items (so updating counts 677 * and freeing memory) when unmerging an area, it's easier to leave that 678 * to the next pass of ksmd - consider, for example, how ksmd might be 679 * in cmp_and_merge_page on one of the rmap_items we would be removing. 680 */ 681 static int unmerge_ksm_pages(struct vm_area_struct *vma, 682 unsigned long start, unsigned long end) 683 { 684 unsigned long addr; 685 int err = 0; 686 687 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 688 if (ksm_test_exit(vma->vm_mm)) 689 break; 690 if (signal_pending(current)) 691 err = -ERESTARTSYS; 692 else 693 err = break_ksm(vma, addr); 694 } 695 return err; 696 } 697 698 #ifdef CONFIG_SYSFS 699 /* 700 * Only called through the sysfs control interface: 701 */ 702 static int remove_stable_node(struct stable_node *stable_node) 703 { 704 struct page *page; 705 int err; 706 707 page = get_ksm_page(stable_node, true); 708 if (!page) { 709 /* 710 * get_ksm_page did remove_node_from_stable_tree itself. 711 */ 712 return 0; 713 } 714 715 if (WARN_ON_ONCE(page_mapped(page))) { 716 /* 717 * This should not happen: but if it does, just refuse to let 718 * merge_across_nodes be switched - there is no need to panic. 719 */ 720 err = -EBUSY; 721 } else { 722 /* 723 * The stable node did not yet appear stale to get_ksm_page(), 724 * since that allows for an unmapped ksm page to be recognized 725 * right up until it is freed; but the node is safe to remove. 726 * This page might be in a pagevec waiting to be freed, 727 * or it might be PageSwapCache (perhaps under writeback), 728 * or it might have been removed from swapcache a moment ago. 729 */ 730 set_page_stable_node(page, NULL); 731 remove_node_from_stable_tree(stable_node); 732 err = 0; 733 } 734 735 unlock_page(page); 736 put_page(page); 737 return err; 738 } 739 740 static int remove_all_stable_nodes(void) 741 { 742 struct stable_node *stable_node; 743 struct list_head *this, *next; 744 int nid; 745 int err = 0; 746 747 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 748 while (root_stable_tree[nid].rb_node) { 749 stable_node = rb_entry(root_stable_tree[nid].rb_node, 750 struct stable_node, node); 751 if (remove_stable_node(stable_node)) { 752 err = -EBUSY; 753 break; /* proceed to next nid */ 754 } 755 cond_resched(); 756 } 757 } 758 list_for_each_safe(this, next, &migrate_nodes) { 759 stable_node = list_entry(this, struct stable_node, list); 760 if (remove_stable_node(stable_node)) 761 err = -EBUSY; 762 cond_resched(); 763 } 764 return err; 765 } 766 767 static int unmerge_and_remove_all_rmap_items(void) 768 { 769 struct mm_slot *mm_slot; 770 struct mm_struct *mm; 771 struct vm_area_struct *vma; 772 int err = 0; 773 774 spin_lock(&ksm_mmlist_lock); 775 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 776 struct mm_slot, mm_list); 777 spin_unlock(&ksm_mmlist_lock); 778 779 for (mm_slot = ksm_scan.mm_slot; 780 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 781 mm = mm_slot->mm; 782 down_read(&mm->mmap_sem); 783 for (vma = mm->mmap; vma; vma = vma->vm_next) { 784 if (ksm_test_exit(mm)) 785 break; 786 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 787 continue; 788 err = unmerge_ksm_pages(vma, 789 vma->vm_start, vma->vm_end); 790 if (err) 791 goto error; 792 } 793 794 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); 795 796 spin_lock(&ksm_mmlist_lock); 797 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 798 struct mm_slot, mm_list); 799 if (ksm_test_exit(mm)) { 800 hash_del(&mm_slot->link); 801 list_del(&mm_slot->mm_list); 802 spin_unlock(&ksm_mmlist_lock); 803 804 free_mm_slot(mm_slot); 805 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 806 up_read(&mm->mmap_sem); 807 mmdrop(mm); 808 } else { 809 spin_unlock(&ksm_mmlist_lock); 810 up_read(&mm->mmap_sem); 811 } 812 } 813 814 /* Clean up stable nodes, but don't worry if some are still busy */ 815 remove_all_stable_nodes(); 816 ksm_scan.seqnr = 0; 817 return 0; 818 819 error: 820 up_read(&mm->mmap_sem); 821 spin_lock(&ksm_mmlist_lock); 822 ksm_scan.mm_slot = &ksm_mm_head; 823 spin_unlock(&ksm_mmlist_lock); 824 return err; 825 } 826 #endif /* CONFIG_SYSFS */ 827 828 static u32 calc_checksum(struct page *page) 829 { 830 u32 checksum; 831 void *addr = kmap_atomic(page); 832 checksum = jhash2(addr, PAGE_SIZE / 4, 17); 833 kunmap_atomic(addr); 834 return checksum; 835 } 836 837 static int memcmp_pages(struct page *page1, struct page *page2) 838 { 839 char *addr1, *addr2; 840 int ret; 841 842 addr1 = kmap_atomic(page1); 843 addr2 = kmap_atomic(page2); 844 ret = memcmp(addr1, addr2, PAGE_SIZE); 845 kunmap_atomic(addr2); 846 kunmap_atomic(addr1); 847 return ret; 848 } 849 850 static inline int pages_identical(struct page *page1, struct page *page2) 851 { 852 return !memcmp_pages(page1, page2); 853 } 854 855 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 856 pte_t *orig_pte) 857 { 858 struct mm_struct *mm = vma->vm_mm; 859 unsigned long addr; 860 pte_t *ptep; 861 spinlock_t *ptl; 862 int swapped; 863 int err = -EFAULT; 864 unsigned long mmun_start; /* For mmu_notifiers */ 865 unsigned long mmun_end; /* For mmu_notifiers */ 866 867 addr = page_address_in_vma(page, vma); 868 if (addr == -EFAULT) 869 goto out; 870 871 BUG_ON(PageTransCompound(page)); 872 873 mmun_start = addr; 874 mmun_end = addr + PAGE_SIZE; 875 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 876 877 ptep = page_check_address(page, mm, addr, &ptl, 0); 878 if (!ptep) 879 goto out_mn; 880 881 if (pte_write(*ptep) || pte_dirty(*ptep)) { 882 pte_t entry; 883 884 swapped = PageSwapCache(page); 885 flush_cache_page(vma, addr, page_to_pfn(page)); 886 /* 887 * Ok this is tricky, when get_user_pages_fast() run it doesn't 888 * take any lock, therefore the check that we are going to make 889 * with the pagecount against the mapcount is racey and 890 * O_DIRECT can happen right after the check. 891 * So we clear the pte and flush the tlb before the check 892 * this assure us that no O_DIRECT can happen after the check 893 * or in the middle of the check. 894 */ 895 entry = ptep_clear_flush(vma, addr, ptep); 896 /* 897 * Check that no O_DIRECT or similar I/O is in progress on the 898 * page 899 */ 900 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 901 set_pte_at(mm, addr, ptep, entry); 902 goto out_unlock; 903 } 904 if (pte_dirty(entry)) 905 set_page_dirty(page); 906 entry = pte_mkclean(pte_wrprotect(entry)); 907 set_pte_at_notify(mm, addr, ptep, entry); 908 } 909 *orig_pte = *ptep; 910 err = 0; 911 912 out_unlock: 913 pte_unmap_unlock(ptep, ptl); 914 out_mn: 915 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 916 out: 917 return err; 918 } 919 920 /** 921 * replace_page - replace page in vma by new ksm page 922 * @vma: vma that holds the pte pointing to page 923 * @page: the page we are replacing by kpage 924 * @kpage: the ksm page we replace page by 925 * @orig_pte: the original value of the pte 926 * 927 * Returns 0 on success, -EFAULT on failure. 928 */ 929 static int replace_page(struct vm_area_struct *vma, struct page *page, 930 struct page *kpage, pte_t orig_pte) 931 { 932 struct mm_struct *mm = vma->vm_mm; 933 pmd_t *pmd; 934 pte_t *ptep; 935 spinlock_t *ptl; 936 unsigned long addr; 937 int err = -EFAULT; 938 unsigned long mmun_start; /* For mmu_notifiers */ 939 unsigned long mmun_end; /* For mmu_notifiers */ 940 941 addr = page_address_in_vma(page, vma); 942 if (addr == -EFAULT) 943 goto out; 944 945 pmd = mm_find_pmd(mm, addr); 946 if (!pmd) 947 goto out; 948 949 mmun_start = addr; 950 mmun_end = addr + PAGE_SIZE; 951 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 952 953 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 954 if (!pte_same(*ptep, orig_pte)) { 955 pte_unmap_unlock(ptep, ptl); 956 goto out_mn; 957 } 958 959 get_page(kpage); 960 page_add_anon_rmap(kpage, vma, addr); 961 962 flush_cache_page(vma, addr, pte_pfn(*ptep)); 963 ptep_clear_flush(vma, addr, ptep); 964 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot)); 965 966 page_remove_rmap(page); 967 if (!page_mapped(page)) 968 try_to_free_swap(page); 969 put_page(page); 970 971 pte_unmap_unlock(ptep, ptl); 972 err = 0; 973 out_mn: 974 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 975 out: 976 return err; 977 } 978 979 static int page_trans_compound_anon_split(struct page *page) 980 { 981 int ret = 0; 982 struct page *transhuge_head = page_trans_compound_anon(page); 983 if (transhuge_head) { 984 /* Get the reference on the head to split it. */ 985 if (get_page_unless_zero(transhuge_head)) { 986 /* 987 * Recheck we got the reference while the head 988 * was still anonymous. 989 */ 990 if (PageAnon(transhuge_head)) 991 ret = split_huge_page(transhuge_head); 992 else 993 /* 994 * Retry later if split_huge_page run 995 * from under us. 996 */ 997 ret = 1; 998 put_page(transhuge_head); 999 } else 1000 /* Retry later if split_huge_page run from under us. */ 1001 ret = 1; 1002 } 1003 return ret; 1004 } 1005 1006 /* 1007 * try_to_merge_one_page - take two pages and merge them into one 1008 * @vma: the vma that holds the pte pointing to page 1009 * @page: the PageAnon page that we want to replace with kpage 1010 * @kpage: the PageKsm page that we want to map instead of page, 1011 * or NULL the first time when we want to use page as kpage. 1012 * 1013 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1014 */ 1015 static int try_to_merge_one_page(struct vm_area_struct *vma, 1016 struct page *page, struct page *kpage) 1017 { 1018 pte_t orig_pte = __pte(0); 1019 int err = -EFAULT; 1020 1021 if (page == kpage) /* ksm page forked */ 1022 return 0; 1023 1024 if (!(vma->vm_flags & VM_MERGEABLE)) 1025 goto out; 1026 if (PageTransCompound(page) && page_trans_compound_anon_split(page)) 1027 goto out; 1028 BUG_ON(PageTransCompound(page)); 1029 if (!PageAnon(page)) 1030 goto out; 1031 1032 /* 1033 * We need the page lock to read a stable PageSwapCache in 1034 * write_protect_page(). We use trylock_page() instead of 1035 * lock_page() because we don't want to wait here - we 1036 * prefer to continue scanning and merging different pages, 1037 * then come back to this page when it is unlocked. 1038 */ 1039 if (!trylock_page(page)) 1040 goto out; 1041 /* 1042 * If this anonymous page is mapped only here, its pte may need 1043 * to be write-protected. If it's mapped elsewhere, all of its 1044 * ptes are necessarily already write-protected. But in either 1045 * case, we need to lock and check page_count is not raised. 1046 */ 1047 if (write_protect_page(vma, page, &orig_pte) == 0) { 1048 if (!kpage) { 1049 /* 1050 * While we hold page lock, upgrade page from 1051 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1052 * stable_tree_insert() will update stable_node. 1053 */ 1054 set_page_stable_node(page, NULL); 1055 mark_page_accessed(page); 1056 err = 0; 1057 } else if (pages_identical(page, kpage)) 1058 err = replace_page(vma, page, kpage, orig_pte); 1059 } 1060 1061 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1062 munlock_vma_page(page); 1063 if (!PageMlocked(kpage)) { 1064 unlock_page(page); 1065 lock_page(kpage); 1066 mlock_vma_page(kpage); 1067 page = kpage; /* for final unlock */ 1068 } 1069 } 1070 1071 unlock_page(page); 1072 out: 1073 return err; 1074 } 1075 1076 /* 1077 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1078 * but no new kernel page is allocated: kpage must already be a ksm page. 1079 * 1080 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1081 */ 1082 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1083 struct page *page, struct page *kpage) 1084 { 1085 struct mm_struct *mm = rmap_item->mm; 1086 struct vm_area_struct *vma; 1087 int err = -EFAULT; 1088 1089 down_read(&mm->mmap_sem); 1090 if (ksm_test_exit(mm)) 1091 goto out; 1092 vma = find_vma(mm, rmap_item->address); 1093 if (!vma || vma->vm_start > rmap_item->address) 1094 goto out; 1095 1096 err = try_to_merge_one_page(vma, page, kpage); 1097 if (err) 1098 goto out; 1099 1100 /* Unstable nid is in union with stable anon_vma: remove first */ 1101 remove_rmap_item_from_tree(rmap_item); 1102 1103 /* Must get reference to anon_vma while still holding mmap_sem */ 1104 rmap_item->anon_vma = vma->anon_vma; 1105 get_anon_vma(vma->anon_vma); 1106 out: 1107 up_read(&mm->mmap_sem); 1108 return err; 1109 } 1110 1111 /* 1112 * try_to_merge_two_pages - take two identical pages and prepare them 1113 * to be merged into one page. 1114 * 1115 * This function returns the kpage if we successfully merged two identical 1116 * pages into one ksm page, NULL otherwise. 1117 * 1118 * Note that this function upgrades page to ksm page: if one of the pages 1119 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1120 */ 1121 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1122 struct page *page, 1123 struct rmap_item *tree_rmap_item, 1124 struct page *tree_page) 1125 { 1126 int err; 1127 1128 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1129 if (!err) { 1130 err = try_to_merge_with_ksm_page(tree_rmap_item, 1131 tree_page, page); 1132 /* 1133 * If that fails, we have a ksm page with only one pte 1134 * pointing to it: so break it. 1135 */ 1136 if (err) 1137 break_cow(rmap_item); 1138 } 1139 return err ? NULL : page; 1140 } 1141 1142 /* 1143 * stable_tree_search - search for page inside the stable tree 1144 * 1145 * This function checks if there is a page inside the stable tree 1146 * with identical content to the page that we are scanning right now. 1147 * 1148 * This function returns the stable tree node of identical content if found, 1149 * NULL otherwise. 1150 */ 1151 static struct page *stable_tree_search(struct page *page) 1152 { 1153 int nid; 1154 struct rb_root *root; 1155 struct rb_node **new; 1156 struct rb_node *parent; 1157 struct stable_node *stable_node; 1158 struct stable_node *page_node; 1159 1160 page_node = page_stable_node(page); 1161 if (page_node && page_node->head != &migrate_nodes) { 1162 /* ksm page forked */ 1163 get_page(page); 1164 return page; 1165 } 1166 1167 nid = get_kpfn_nid(page_to_pfn(page)); 1168 root = root_stable_tree + nid; 1169 again: 1170 new = &root->rb_node; 1171 parent = NULL; 1172 1173 while (*new) { 1174 struct page *tree_page; 1175 int ret; 1176 1177 cond_resched(); 1178 stable_node = rb_entry(*new, struct stable_node, node); 1179 tree_page = get_ksm_page(stable_node, false); 1180 if (!tree_page) 1181 return NULL; 1182 1183 ret = memcmp_pages(page, tree_page); 1184 put_page(tree_page); 1185 1186 parent = *new; 1187 if (ret < 0) 1188 new = &parent->rb_left; 1189 else if (ret > 0) 1190 new = &parent->rb_right; 1191 else { 1192 /* 1193 * Lock and unlock the stable_node's page (which 1194 * might already have been migrated) so that page 1195 * migration is sure to notice its raised count. 1196 * It would be more elegant to return stable_node 1197 * than kpage, but that involves more changes. 1198 */ 1199 tree_page = get_ksm_page(stable_node, true); 1200 if (tree_page) { 1201 unlock_page(tree_page); 1202 if (get_kpfn_nid(stable_node->kpfn) != 1203 NUMA(stable_node->nid)) { 1204 put_page(tree_page); 1205 goto replace; 1206 } 1207 return tree_page; 1208 } 1209 /* 1210 * There is now a place for page_node, but the tree may 1211 * have been rebalanced, so re-evaluate parent and new. 1212 */ 1213 if (page_node) 1214 goto again; 1215 return NULL; 1216 } 1217 } 1218 1219 if (!page_node) 1220 return NULL; 1221 1222 list_del(&page_node->list); 1223 DO_NUMA(page_node->nid = nid); 1224 rb_link_node(&page_node->node, parent, new); 1225 rb_insert_color(&page_node->node, root); 1226 get_page(page); 1227 return page; 1228 1229 replace: 1230 if (page_node) { 1231 list_del(&page_node->list); 1232 DO_NUMA(page_node->nid = nid); 1233 rb_replace_node(&stable_node->node, &page_node->node, root); 1234 get_page(page); 1235 } else { 1236 rb_erase(&stable_node->node, root); 1237 page = NULL; 1238 } 1239 stable_node->head = &migrate_nodes; 1240 list_add(&stable_node->list, stable_node->head); 1241 return page; 1242 } 1243 1244 /* 1245 * stable_tree_insert - insert stable tree node pointing to new ksm page 1246 * into the stable tree. 1247 * 1248 * This function returns the stable tree node just allocated on success, 1249 * NULL otherwise. 1250 */ 1251 static struct stable_node *stable_tree_insert(struct page *kpage) 1252 { 1253 int nid; 1254 unsigned long kpfn; 1255 struct rb_root *root; 1256 struct rb_node **new; 1257 struct rb_node *parent = NULL; 1258 struct stable_node *stable_node; 1259 1260 kpfn = page_to_pfn(kpage); 1261 nid = get_kpfn_nid(kpfn); 1262 root = root_stable_tree + nid; 1263 new = &root->rb_node; 1264 1265 while (*new) { 1266 struct page *tree_page; 1267 int ret; 1268 1269 cond_resched(); 1270 stable_node = rb_entry(*new, struct stable_node, node); 1271 tree_page = get_ksm_page(stable_node, false); 1272 if (!tree_page) 1273 return NULL; 1274 1275 ret = memcmp_pages(kpage, tree_page); 1276 put_page(tree_page); 1277 1278 parent = *new; 1279 if (ret < 0) 1280 new = &parent->rb_left; 1281 else if (ret > 0) 1282 new = &parent->rb_right; 1283 else { 1284 /* 1285 * It is not a bug that stable_tree_search() didn't 1286 * find this node: because at that time our page was 1287 * not yet write-protected, so may have changed since. 1288 */ 1289 return NULL; 1290 } 1291 } 1292 1293 stable_node = alloc_stable_node(); 1294 if (!stable_node) 1295 return NULL; 1296 1297 INIT_HLIST_HEAD(&stable_node->hlist); 1298 stable_node->kpfn = kpfn; 1299 set_page_stable_node(kpage, stable_node); 1300 DO_NUMA(stable_node->nid = nid); 1301 rb_link_node(&stable_node->node, parent, new); 1302 rb_insert_color(&stable_node->node, root); 1303 1304 return stable_node; 1305 } 1306 1307 /* 1308 * unstable_tree_search_insert - search for identical page, 1309 * else insert rmap_item into the unstable tree. 1310 * 1311 * This function searches for a page in the unstable tree identical to the 1312 * page currently being scanned; and if no identical page is found in the 1313 * tree, we insert rmap_item as a new object into the unstable tree. 1314 * 1315 * This function returns pointer to rmap_item found to be identical 1316 * to the currently scanned page, NULL otherwise. 1317 * 1318 * This function does both searching and inserting, because they share 1319 * the same walking algorithm in an rbtree. 1320 */ 1321 static 1322 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1323 struct page *page, 1324 struct page **tree_pagep) 1325 { 1326 struct rb_node **new; 1327 struct rb_root *root; 1328 struct rb_node *parent = NULL; 1329 int nid; 1330 1331 nid = get_kpfn_nid(page_to_pfn(page)); 1332 root = root_unstable_tree + nid; 1333 new = &root->rb_node; 1334 1335 while (*new) { 1336 struct rmap_item *tree_rmap_item; 1337 struct page *tree_page; 1338 int ret; 1339 1340 cond_resched(); 1341 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1342 tree_page = get_mergeable_page(tree_rmap_item); 1343 if (IS_ERR_OR_NULL(tree_page)) 1344 return NULL; 1345 1346 /* 1347 * Don't substitute a ksm page for a forked page. 1348 */ 1349 if (page == tree_page) { 1350 put_page(tree_page); 1351 return NULL; 1352 } 1353 1354 ret = memcmp_pages(page, tree_page); 1355 1356 parent = *new; 1357 if (ret < 0) { 1358 put_page(tree_page); 1359 new = &parent->rb_left; 1360 } else if (ret > 0) { 1361 put_page(tree_page); 1362 new = &parent->rb_right; 1363 } else if (!ksm_merge_across_nodes && 1364 page_to_nid(tree_page) != nid) { 1365 /* 1366 * If tree_page has been migrated to another NUMA node, 1367 * it will be flushed out and put in the right unstable 1368 * tree next time: only merge with it when across_nodes. 1369 */ 1370 put_page(tree_page); 1371 return NULL; 1372 } else { 1373 *tree_pagep = tree_page; 1374 return tree_rmap_item; 1375 } 1376 } 1377 1378 rmap_item->address |= UNSTABLE_FLAG; 1379 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1380 DO_NUMA(rmap_item->nid = nid); 1381 rb_link_node(&rmap_item->node, parent, new); 1382 rb_insert_color(&rmap_item->node, root); 1383 1384 ksm_pages_unshared++; 1385 return NULL; 1386 } 1387 1388 /* 1389 * stable_tree_append - add another rmap_item to the linked list of 1390 * rmap_items hanging off a given node of the stable tree, all sharing 1391 * the same ksm page. 1392 */ 1393 static void stable_tree_append(struct rmap_item *rmap_item, 1394 struct stable_node *stable_node) 1395 { 1396 rmap_item->head = stable_node; 1397 rmap_item->address |= STABLE_FLAG; 1398 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 1399 1400 if (rmap_item->hlist.next) 1401 ksm_pages_sharing++; 1402 else 1403 ksm_pages_shared++; 1404 } 1405 1406 /* 1407 * cmp_and_merge_page - first see if page can be merged into the stable tree; 1408 * if not, compare checksum to previous and if it's the same, see if page can 1409 * be inserted into the unstable tree, or merged with a page already there and 1410 * both transferred to the stable tree. 1411 * 1412 * @page: the page that we are searching identical page to. 1413 * @rmap_item: the reverse mapping into the virtual address of this page 1414 */ 1415 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 1416 { 1417 struct rmap_item *tree_rmap_item; 1418 struct page *tree_page = NULL; 1419 struct stable_node *stable_node; 1420 struct page *kpage; 1421 unsigned int checksum; 1422 int err; 1423 1424 stable_node = page_stable_node(page); 1425 if (stable_node) { 1426 if (stable_node->head != &migrate_nodes && 1427 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) { 1428 rb_erase(&stable_node->node, 1429 root_stable_tree + NUMA(stable_node->nid)); 1430 stable_node->head = &migrate_nodes; 1431 list_add(&stable_node->list, stable_node->head); 1432 } 1433 if (stable_node->head != &migrate_nodes && 1434 rmap_item->head == stable_node) 1435 return; 1436 } 1437 1438 /* We first start with searching the page inside the stable tree */ 1439 kpage = stable_tree_search(page); 1440 if (kpage == page && rmap_item->head == stable_node) { 1441 put_page(kpage); 1442 return; 1443 } 1444 1445 remove_rmap_item_from_tree(rmap_item); 1446 1447 if (kpage) { 1448 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 1449 if (!err) { 1450 /* 1451 * The page was successfully merged: 1452 * add its rmap_item to the stable tree. 1453 */ 1454 lock_page(kpage); 1455 stable_tree_append(rmap_item, page_stable_node(kpage)); 1456 unlock_page(kpage); 1457 } 1458 put_page(kpage); 1459 return; 1460 } 1461 1462 /* 1463 * If the hash value of the page has changed from the last time 1464 * we calculated it, this page is changing frequently: therefore we 1465 * don't want to insert it in the unstable tree, and we don't want 1466 * to waste our time searching for something identical to it there. 1467 */ 1468 checksum = calc_checksum(page); 1469 if (rmap_item->oldchecksum != checksum) { 1470 rmap_item->oldchecksum = checksum; 1471 return; 1472 } 1473 1474 tree_rmap_item = 1475 unstable_tree_search_insert(rmap_item, page, &tree_page); 1476 if (tree_rmap_item) { 1477 kpage = try_to_merge_two_pages(rmap_item, page, 1478 tree_rmap_item, tree_page); 1479 put_page(tree_page); 1480 if (kpage) { 1481 /* 1482 * The pages were successfully merged: insert new 1483 * node in the stable tree and add both rmap_items. 1484 */ 1485 lock_page(kpage); 1486 stable_node = stable_tree_insert(kpage); 1487 if (stable_node) { 1488 stable_tree_append(tree_rmap_item, stable_node); 1489 stable_tree_append(rmap_item, stable_node); 1490 } 1491 unlock_page(kpage); 1492 1493 /* 1494 * If we fail to insert the page into the stable tree, 1495 * we will have 2 virtual addresses that are pointing 1496 * to a ksm page left outside the stable tree, 1497 * in which case we need to break_cow on both. 1498 */ 1499 if (!stable_node) { 1500 break_cow(tree_rmap_item); 1501 break_cow(rmap_item); 1502 } 1503 } 1504 } 1505 } 1506 1507 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 1508 struct rmap_item **rmap_list, 1509 unsigned long addr) 1510 { 1511 struct rmap_item *rmap_item; 1512 1513 while (*rmap_list) { 1514 rmap_item = *rmap_list; 1515 if ((rmap_item->address & PAGE_MASK) == addr) 1516 return rmap_item; 1517 if (rmap_item->address > addr) 1518 break; 1519 *rmap_list = rmap_item->rmap_list; 1520 remove_rmap_item_from_tree(rmap_item); 1521 free_rmap_item(rmap_item); 1522 } 1523 1524 rmap_item = alloc_rmap_item(); 1525 if (rmap_item) { 1526 /* It has already been zeroed */ 1527 rmap_item->mm = mm_slot->mm; 1528 rmap_item->address = addr; 1529 rmap_item->rmap_list = *rmap_list; 1530 *rmap_list = rmap_item; 1531 } 1532 return rmap_item; 1533 } 1534 1535 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 1536 { 1537 struct mm_struct *mm; 1538 struct mm_slot *slot; 1539 struct vm_area_struct *vma; 1540 struct rmap_item *rmap_item; 1541 int nid; 1542 1543 if (list_empty(&ksm_mm_head.mm_list)) 1544 return NULL; 1545 1546 slot = ksm_scan.mm_slot; 1547 if (slot == &ksm_mm_head) { 1548 /* 1549 * A number of pages can hang around indefinitely on per-cpu 1550 * pagevecs, raised page count preventing write_protect_page 1551 * from merging them. Though it doesn't really matter much, 1552 * it is puzzling to see some stuck in pages_volatile until 1553 * other activity jostles them out, and they also prevented 1554 * LTP's KSM test from succeeding deterministically; so drain 1555 * them here (here rather than on entry to ksm_do_scan(), 1556 * so we don't IPI too often when pages_to_scan is set low). 1557 */ 1558 lru_add_drain_all(); 1559 1560 /* 1561 * Whereas stale stable_nodes on the stable_tree itself 1562 * get pruned in the regular course of stable_tree_search(), 1563 * those moved out to the migrate_nodes list can accumulate: 1564 * so prune them once before each full scan. 1565 */ 1566 if (!ksm_merge_across_nodes) { 1567 struct stable_node *stable_node; 1568 struct list_head *this, *next; 1569 struct page *page; 1570 1571 list_for_each_safe(this, next, &migrate_nodes) { 1572 stable_node = list_entry(this, 1573 struct stable_node, list); 1574 page = get_ksm_page(stable_node, false); 1575 if (page) 1576 put_page(page); 1577 cond_resched(); 1578 } 1579 } 1580 1581 for (nid = 0; nid < ksm_nr_node_ids; nid++) 1582 root_unstable_tree[nid] = RB_ROOT; 1583 1584 spin_lock(&ksm_mmlist_lock); 1585 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 1586 ksm_scan.mm_slot = slot; 1587 spin_unlock(&ksm_mmlist_lock); 1588 /* 1589 * Although we tested list_empty() above, a racing __ksm_exit 1590 * of the last mm on the list may have removed it since then. 1591 */ 1592 if (slot == &ksm_mm_head) 1593 return NULL; 1594 next_mm: 1595 ksm_scan.address = 0; 1596 ksm_scan.rmap_list = &slot->rmap_list; 1597 } 1598 1599 mm = slot->mm; 1600 down_read(&mm->mmap_sem); 1601 if (ksm_test_exit(mm)) 1602 vma = NULL; 1603 else 1604 vma = find_vma(mm, ksm_scan.address); 1605 1606 for (; vma; vma = vma->vm_next) { 1607 if (!(vma->vm_flags & VM_MERGEABLE)) 1608 continue; 1609 if (ksm_scan.address < vma->vm_start) 1610 ksm_scan.address = vma->vm_start; 1611 if (!vma->anon_vma) 1612 ksm_scan.address = vma->vm_end; 1613 1614 while (ksm_scan.address < vma->vm_end) { 1615 if (ksm_test_exit(mm)) 1616 break; 1617 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 1618 if (IS_ERR_OR_NULL(*page)) { 1619 ksm_scan.address += PAGE_SIZE; 1620 cond_resched(); 1621 continue; 1622 } 1623 if (PageAnon(*page) || 1624 page_trans_compound_anon(*page)) { 1625 flush_anon_page(vma, *page, ksm_scan.address); 1626 flush_dcache_page(*page); 1627 rmap_item = get_next_rmap_item(slot, 1628 ksm_scan.rmap_list, ksm_scan.address); 1629 if (rmap_item) { 1630 ksm_scan.rmap_list = 1631 &rmap_item->rmap_list; 1632 ksm_scan.address += PAGE_SIZE; 1633 } else 1634 put_page(*page); 1635 up_read(&mm->mmap_sem); 1636 return rmap_item; 1637 } 1638 put_page(*page); 1639 ksm_scan.address += PAGE_SIZE; 1640 cond_resched(); 1641 } 1642 } 1643 1644 if (ksm_test_exit(mm)) { 1645 ksm_scan.address = 0; 1646 ksm_scan.rmap_list = &slot->rmap_list; 1647 } 1648 /* 1649 * Nuke all the rmap_items that are above this current rmap: 1650 * because there were no VM_MERGEABLE vmas with such addresses. 1651 */ 1652 remove_trailing_rmap_items(slot, ksm_scan.rmap_list); 1653 1654 spin_lock(&ksm_mmlist_lock); 1655 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 1656 struct mm_slot, mm_list); 1657 if (ksm_scan.address == 0) { 1658 /* 1659 * We've completed a full scan of all vmas, holding mmap_sem 1660 * throughout, and found no VM_MERGEABLE: so do the same as 1661 * __ksm_exit does to remove this mm from all our lists now. 1662 * This applies either when cleaning up after __ksm_exit 1663 * (but beware: we can reach here even before __ksm_exit), 1664 * or when all VM_MERGEABLE areas have been unmapped (and 1665 * mmap_sem then protects against race with MADV_MERGEABLE). 1666 */ 1667 hash_del(&slot->link); 1668 list_del(&slot->mm_list); 1669 spin_unlock(&ksm_mmlist_lock); 1670 1671 free_mm_slot(slot); 1672 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1673 up_read(&mm->mmap_sem); 1674 mmdrop(mm); 1675 } else { 1676 spin_unlock(&ksm_mmlist_lock); 1677 up_read(&mm->mmap_sem); 1678 } 1679 1680 /* Repeat until we've completed scanning the whole list */ 1681 slot = ksm_scan.mm_slot; 1682 if (slot != &ksm_mm_head) 1683 goto next_mm; 1684 1685 ksm_scan.seqnr++; 1686 return NULL; 1687 } 1688 1689 /** 1690 * ksm_do_scan - the ksm scanner main worker function. 1691 * @scan_npages - number of pages we want to scan before we return. 1692 */ 1693 static void ksm_do_scan(unsigned int scan_npages) 1694 { 1695 struct rmap_item *rmap_item; 1696 struct page *uninitialized_var(page); 1697 1698 while (scan_npages-- && likely(!freezing(current))) { 1699 cond_resched(); 1700 rmap_item = scan_get_next_rmap_item(&page); 1701 if (!rmap_item) 1702 return; 1703 cmp_and_merge_page(page, rmap_item); 1704 put_page(page); 1705 } 1706 } 1707 1708 static int ksmd_should_run(void) 1709 { 1710 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 1711 } 1712 1713 static int ksm_scan_thread(void *nothing) 1714 { 1715 set_freezable(); 1716 set_user_nice(current, 5); 1717 1718 while (!kthread_should_stop()) { 1719 mutex_lock(&ksm_thread_mutex); 1720 wait_while_offlining(); 1721 if (ksmd_should_run()) 1722 ksm_do_scan(ksm_thread_pages_to_scan); 1723 mutex_unlock(&ksm_thread_mutex); 1724 1725 try_to_freeze(); 1726 1727 if (ksmd_should_run()) { 1728 schedule_timeout_interruptible( 1729 msecs_to_jiffies(ksm_thread_sleep_millisecs)); 1730 } else { 1731 wait_event_freezable(ksm_thread_wait, 1732 ksmd_should_run() || kthread_should_stop()); 1733 } 1734 } 1735 return 0; 1736 } 1737 1738 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 1739 unsigned long end, int advice, unsigned long *vm_flags) 1740 { 1741 struct mm_struct *mm = vma->vm_mm; 1742 int err; 1743 1744 switch (advice) { 1745 case MADV_MERGEABLE: 1746 /* 1747 * Be somewhat over-protective for now! 1748 */ 1749 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 1750 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 1751 VM_HUGETLB | VM_NONLINEAR | VM_MIXEDMAP)) 1752 return 0; /* just ignore the advice */ 1753 1754 #ifdef VM_SAO 1755 if (*vm_flags & VM_SAO) 1756 return 0; 1757 #endif 1758 1759 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 1760 err = __ksm_enter(mm); 1761 if (err) 1762 return err; 1763 } 1764 1765 *vm_flags |= VM_MERGEABLE; 1766 break; 1767 1768 case MADV_UNMERGEABLE: 1769 if (!(*vm_flags & VM_MERGEABLE)) 1770 return 0; /* just ignore the advice */ 1771 1772 if (vma->anon_vma) { 1773 err = unmerge_ksm_pages(vma, start, end); 1774 if (err) 1775 return err; 1776 } 1777 1778 *vm_flags &= ~VM_MERGEABLE; 1779 break; 1780 } 1781 1782 return 0; 1783 } 1784 1785 int __ksm_enter(struct mm_struct *mm) 1786 { 1787 struct mm_slot *mm_slot; 1788 int needs_wakeup; 1789 1790 mm_slot = alloc_mm_slot(); 1791 if (!mm_slot) 1792 return -ENOMEM; 1793 1794 /* Check ksm_run too? Would need tighter locking */ 1795 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 1796 1797 spin_lock(&ksm_mmlist_lock); 1798 insert_to_mm_slots_hash(mm, mm_slot); 1799 /* 1800 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 1801 * insert just behind the scanning cursor, to let the area settle 1802 * down a little; when fork is followed by immediate exec, we don't 1803 * want ksmd to waste time setting up and tearing down an rmap_list. 1804 * 1805 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 1806 * scanning cursor, otherwise KSM pages in newly forked mms will be 1807 * missed: then we might as well insert at the end of the list. 1808 */ 1809 if (ksm_run & KSM_RUN_UNMERGE) 1810 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 1811 else 1812 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 1813 spin_unlock(&ksm_mmlist_lock); 1814 1815 set_bit(MMF_VM_MERGEABLE, &mm->flags); 1816 atomic_inc(&mm->mm_count); 1817 1818 if (needs_wakeup) 1819 wake_up_interruptible(&ksm_thread_wait); 1820 1821 return 0; 1822 } 1823 1824 void __ksm_exit(struct mm_struct *mm) 1825 { 1826 struct mm_slot *mm_slot; 1827 int easy_to_free = 0; 1828 1829 /* 1830 * This process is exiting: if it's straightforward (as is the 1831 * case when ksmd was never running), free mm_slot immediately. 1832 * But if it's at the cursor or has rmap_items linked to it, use 1833 * mmap_sem to synchronize with any break_cows before pagetables 1834 * are freed, and leave the mm_slot on the list for ksmd to free. 1835 * Beware: ksm may already have noticed it exiting and freed the slot. 1836 */ 1837 1838 spin_lock(&ksm_mmlist_lock); 1839 mm_slot = get_mm_slot(mm); 1840 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 1841 if (!mm_slot->rmap_list) { 1842 hash_del(&mm_slot->link); 1843 list_del(&mm_slot->mm_list); 1844 easy_to_free = 1; 1845 } else { 1846 list_move(&mm_slot->mm_list, 1847 &ksm_scan.mm_slot->mm_list); 1848 } 1849 } 1850 spin_unlock(&ksm_mmlist_lock); 1851 1852 if (easy_to_free) { 1853 free_mm_slot(mm_slot); 1854 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1855 mmdrop(mm); 1856 } else if (mm_slot) { 1857 down_write(&mm->mmap_sem); 1858 up_write(&mm->mmap_sem); 1859 } 1860 } 1861 1862 struct page *ksm_might_need_to_copy(struct page *page, 1863 struct vm_area_struct *vma, unsigned long address) 1864 { 1865 struct anon_vma *anon_vma = page_anon_vma(page); 1866 struct page *new_page; 1867 1868 if (PageKsm(page)) { 1869 if (page_stable_node(page) && 1870 !(ksm_run & KSM_RUN_UNMERGE)) 1871 return page; /* no need to copy it */ 1872 } else if (!anon_vma) { 1873 return page; /* no need to copy it */ 1874 } else if (anon_vma->root == vma->anon_vma->root && 1875 page->index == linear_page_index(vma, address)) { 1876 return page; /* still no need to copy it */ 1877 } 1878 if (!PageUptodate(page)) 1879 return page; /* let do_swap_page report the error */ 1880 1881 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1882 if (new_page) { 1883 copy_user_highpage(new_page, page, address, vma); 1884 1885 SetPageDirty(new_page); 1886 __SetPageUptodate(new_page); 1887 __set_page_locked(new_page); 1888 } 1889 1890 return new_page; 1891 } 1892 1893 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 1894 { 1895 struct stable_node *stable_node; 1896 struct rmap_item *rmap_item; 1897 int ret = SWAP_AGAIN; 1898 int search_new_forks = 0; 1899 1900 VM_BUG_ON_PAGE(!PageKsm(page), page); 1901 1902 /* 1903 * Rely on the page lock to protect against concurrent modifications 1904 * to that page's node of the stable tree. 1905 */ 1906 VM_BUG_ON_PAGE(!PageLocked(page), page); 1907 1908 stable_node = page_stable_node(page); 1909 if (!stable_node) 1910 return ret; 1911 again: 1912 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 1913 struct anon_vma *anon_vma = rmap_item->anon_vma; 1914 struct anon_vma_chain *vmac; 1915 struct vm_area_struct *vma; 1916 1917 anon_vma_lock_read(anon_vma); 1918 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 1919 0, ULONG_MAX) { 1920 vma = vmac->vma; 1921 if (rmap_item->address < vma->vm_start || 1922 rmap_item->address >= vma->vm_end) 1923 continue; 1924 /* 1925 * Initially we examine only the vma which covers this 1926 * rmap_item; but later, if there is still work to do, 1927 * we examine covering vmas in other mms: in case they 1928 * were forked from the original since ksmd passed. 1929 */ 1930 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 1931 continue; 1932 1933 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1934 continue; 1935 1936 ret = rwc->rmap_one(page, vma, 1937 rmap_item->address, rwc->arg); 1938 if (ret != SWAP_AGAIN) { 1939 anon_vma_unlock_read(anon_vma); 1940 goto out; 1941 } 1942 if (rwc->done && rwc->done(page)) { 1943 anon_vma_unlock_read(anon_vma); 1944 goto out; 1945 } 1946 } 1947 anon_vma_unlock_read(anon_vma); 1948 } 1949 if (!search_new_forks++) 1950 goto again; 1951 out: 1952 return ret; 1953 } 1954 1955 #ifdef CONFIG_MIGRATION 1956 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 1957 { 1958 struct stable_node *stable_node; 1959 1960 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 1961 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 1962 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); 1963 1964 stable_node = page_stable_node(newpage); 1965 if (stable_node) { 1966 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); 1967 stable_node->kpfn = page_to_pfn(newpage); 1968 /* 1969 * newpage->mapping was set in advance; now we need smp_wmb() 1970 * to make sure that the new stable_node->kpfn is visible 1971 * to get_ksm_page() before it can see that oldpage->mapping 1972 * has gone stale (or that PageSwapCache has been cleared). 1973 */ 1974 smp_wmb(); 1975 set_page_stable_node(oldpage, NULL); 1976 } 1977 } 1978 #endif /* CONFIG_MIGRATION */ 1979 1980 #ifdef CONFIG_MEMORY_HOTREMOVE 1981 static void wait_while_offlining(void) 1982 { 1983 while (ksm_run & KSM_RUN_OFFLINE) { 1984 mutex_unlock(&ksm_thread_mutex); 1985 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 1986 TASK_UNINTERRUPTIBLE); 1987 mutex_lock(&ksm_thread_mutex); 1988 } 1989 } 1990 1991 static void ksm_check_stable_tree(unsigned long start_pfn, 1992 unsigned long end_pfn) 1993 { 1994 struct stable_node *stable_node; 1995 struct list_head *this, *next; 1996 struct rb_node *node; 1997 int nid; 1998 1999 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2000 node = rb_first(root_stable_tree + nid); 2001 while (node) { 2002 stable_node = rb_entry(node, struct stable_node, node); 2003 if (stable_node->kpfn >= start_pfn && 2004 stable_node->kpfn < end_pfn) { 2005 /* 2006 * Don't get_ksm_page, page has already gone: 2007 * which is why we keep kpfn instead of page* 2008 */ 2009 remove_node_from_stable_tree(stable_node); 2010 node = rb_first(root_stable_tree + nid); 2011 } else 2012 node = rb_next(node); 2013 cond_resched(); 2014 } 2015 } 2016 list_for_each_safe(this, next, &migrate_nodes) { 2017 stable_node = list_entry(this, struct stable_node, list); 2018 if (stable_node->kpfn >= start_pfn && 2019 stable_node->kpfn < end_pfn) 2020 remove_node_from_stable_tree(stable_node); 2021 cond_resched(); 2022 } 2023 } 2024 2025 static int ksm_memory_callback(struct notifier_block *self, 2026 unsigned long action, void *arg) 2027 { 2028 struct memory_notify *mn = arg; 2029 2030 switch (action) { 2031 case MEM_GOING_OFFLINE: 2032 /* 2033 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2034 * and remove_all_stable_nodes() while memory is going offline: 2035 * it is unsafe for them to touch the stable tree at this time. 2036 * But unmerge_ksm_pages(), rmap lookups and other entry points 2037 * which do not need the ksm_thread_mutex are all safe. 2038 */ 2039 mutex_lock(&ksm_thread_mutex); 2040 ksm_run |= KSM_RUN_OFFLINE; 2041 mutex_unlock(&ksm_thread_mutex); 2042 break; 2043 2044 case MEM_OFFLINE: 2045 /* 2046 * Most of the work is done by page migration; but there might 2047 * be a few stable_nodes left over, still pointing to struct 2048 * pages which have been offlined: prune those from the tree, 2049 * otherwise get_ksm_page() might later try to access a 2050 * non-existent struct page. 2051 */ 2052 ksm_check_stable_tree(mn->start_pfn, 2053 mn->start_pfn + mn->nr_pages); 2054 /* fallthrough */ 2055 2056 case MEM_CANCEL_OFFLINE: 2057 mutex_lock(&ksm_thread_mutex); 2058 ksm_run &= ~KSM_RUN_OFFLINE; 2059 mutex_unlock(&ksm_thread_mutex); 2060 2061 smp_mb(); /* wake_up_bit advises this */ 2062 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2063 break; 2064 } 2065 return NOTIFY_OK; 2066 } 2067 #else 2068 static void wait_while_offlining(void) 2069 { 2070 } 2071 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2072 2073 #ifdef CONFIG_SYSFS 2074 /* 2075 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2076 */ 2077 2078 #define KSM_ATTR_RO(_name) \ 2079 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2080 #define KSM_ATTR(_name) \ 2081 static struct kobj_attribute _name##_attr = \ 2082 __ATTR(_name, 0644, _name##_show, _name##_store) 2083 2084 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2085 struct kobj_attribute *attr, char *buf) 2086 { 2087 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); 2088 } 2089 2090 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2091 struct kobj_attribute *attr, 2092 const char *buf, size_t count) 2093 { 2094 unsigned long msecs; 2095 int err; 2096 2097 err = kstrtoul(buf, 10, &msecs); 2098 if (err || msecs > UINT_MAX) 2099 return -EINVAL; 2100 2101 ksm_thread_sleep_millisecs = msecs; 2102 2103 return count; 2104 } 2105 KSM_ATTR(sleep_millisecs); 2106 2107 static ssize_t pages_to_scan_show(struct kobject *kobj, 2108 struct kobj_attribute *attr, char *buf) 2109 { 2110 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); 2111 } 2112 2113 static ssize_t pages_to_scan_store(struct kobject *kobj, 2114 struct kobj_attribute *attr, 2115 const char *buf, size_t count) 2116 { 2117 int err; 2118 unsigned long nr_pages; 2119 2120 err = kstrtoul(buf, 10, &nr_pages); 2121 if (err || nr_pages > UINT_MAX) 2122 return -EINVAL; 2123 2124 ksm_thread_pages_to_scan = nr_pages; 2125 2126 return count; 2127 } 2128 KSM_ATTR(pages_to_scan); 2129 2130 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2131 char *buf) 2132 { 2133 return sprintf(buf, "%lu\n", ksm_run); 2134 } 2135 2136 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2137 const char *buf, size_t count) 2138 { 2139 int err; 2140 unsigned long flags; 2141 2142 err = kstrtoul(buf, 10, &flags); 2143 if (err || flags > UINT_MAX) 2144 return -EINVAL; 2145 if (flags > KSM_RUN_UNMERGE) 2146 return -EINVAL; 2147 2148 /* 2149 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2150 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2151 * breaking COW to free the pages_shared (but leaves mm_slots 2152 * on the list for when ksmd may be set running again). 2153 */ 2154 2155 mutex_lock(&ksm_thread_mutex); 2156 wait_while_offlining(); 2157 if (ksm_run != flags) { 2158 ksm_run = flags; 2159 if (flags & KSM_RUN_UNMERGE) { 2160 set_current_oom_origin(); 2161 err = unmerge_and_remove_all_rmap_items(); 2162 clear_current_oom_origin(); 2163 if (err) { 2164 ksm_run = KSM_RUN_STOP; 2165 count = err; 2166 } 2167 } 2168 } 2169 mutex_unlock(&ksm_thread_mutex); 2170 2171 if (flags & KSM_RUN_MERGE) 2172 wake_up_interruptible(&ksm_thread_wait); 2173 2174 return count; 2175 } 2176 KSM_ATTR(run); 2177 2178 #ifdef CONFIG_NUMA 2179 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2180 struct kobj_attribute *attr, char *buf) 2181 { 2182 return sprintf(buf, "%u\n", ksm_merge_across_nodes); 2183 } 2184 2185 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2186 struct kobj_attribute *attr, 2187 const char *buf, size_t count) 2188 { 2189 int err; 2190 unsigned long knob; 2191 2192 err = kstrtoul(buf, 10, &knob); 2193 if (err) 2194 return err; 2195 if (knob > 1) 2196 return -EINVAL; 2197 2198 mutex_lock(&ksm_thread_mutex); 2199 wait_while_offlining(); 2200 if (ksm_merge_across_nodes != knob) { 2201 if (ksm_pages_shared || remove_all_stable_nodes()) 2202 err = -EBUSY; 2203 else if (root_stable_tree == one_stable_tree) { 2204 struct rb_root *buf; 2205 /* 2206 * This is the first time that we switch away from the 2207 * default of merging across nodes: must now allocate 2208 * a buffer to hold as many roots as may be needed. 2209 * Allocate stable and unstable together: 2210 * MAXSMP NODES_SHIFT 10 will use 16kB. 2211 */ 2212 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2213 GFP_KERNEL); 2214 /* Let us assume that RB_ROOT is NULL is zero */ 2215 if (!buf) 2216 err = -ENOMEM; 2217 else { 2218 root_stable_tree = buf; 2219 root_unstable_tree = buf + nr_node_ids; 2220 /* Stable tree is empty but not the unstable */ 2221 root_unstable_tree[0] = one_unstable_tree[0]; 2222 } 2223 } 2224 if (!err) { 2225 ksm_merge_across_nodes = knob; 2226 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2227 } 2228 } 2229 mutex_unlock(&ksm_thread_mutex); 2230 2231 return err ? err : count; 2232 } 2233 KSM_ATTR(merge_across_nodes); 2234 #endif 2235 2236 static ssize_t pages_shared_show(struct kobject *kobj, 2237 struct kobj_attribute *attr, char *buf) 2238 { 2239 return sprintf(buf, "%lu\n", ksm_pages_shared); 2240 } 2241 KSM_ATTR_RO(pages_shared); 2242 2243 static ssize_t pages_sharing_show(struct kobject *kobj, 2244 struct kobj_attribute *attr, char *buf) 2245 { 2246 return sprintf(buf, "%lu\n", ksm_pages_sharing); 2247 } 2248 KSM_ATTR_RO(pages_sharing); 2249 2250 static ssize_t pages_unshared_show(struct kobject *kobj, 2251 struct kobj_attribute *attr, char *buf) 2252 { 2253 return sprintf(buf, "%lu\n", ksm_pages_unshared); 2254 } 2255 KSM_ATTR_RO(pages_unshared); 2256 2257 static ssize_t pages_volatile_show(struct kobject *kobj, 2258 struct kobj_attribute *attr, char *buf) 2259 { 2260 long ksm_pages_volatile; 2261 2262 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 2263 - ksm_pages_sharing - ksm_pages_unshared; 2264 /* 2265 * It was not worth any locking to calculate that statistic, 2266 * but it might therefore sometimes be negative: conceal that. 2267 */ 2268 if (ksm_pages_volatile < 0) 2269 ksm_pages_volatile = 0; 2270 return sprintf(buf, "%ld\n", ksm_pages_volatile); 2271 } 2272 KSM_ATTR_RO(pages_volatile); 2273 2274 static ssize_t full_scans_show(struct kobject *kobj, 2275 struct kobj_attribute *attr, char *buf) 2276 { 2277 return sprintf(buf, "%lu\n", ksm_scan.seqnr); 2278 } 2279 KSM_ATTR_RO(full_scans); 2280 2281 static struct attribute *ksm_attrs[] = { 2282 &sleep_millisecs_attr.attr, 2283 &pages_to_scan_attr.attr, 2284 &run_attr.attr, 2285 &pages_shared_attr.attr, 2286 &pages_sharing_attr.attr, 2287 &pages_unshared_attr.attr, 2288 &pages_volatile_attr.attr, 2289 &full_scans_attr.attr, 2290 #ifdef CONFIG_NUMA 2291 &merge_across_nodes_attr.attr, 2292 #endif 2293 NULL, 2294 }; 2295 2296 static struct attribute_group ksm_attr_group = { 2297 .attrs = ksm_attrs, 2298 .name = "ksm", 2299 }; 2300 #endif /* CONFIG_SYSFS */ 2301 2302 static int __init ksm_init(void) 2303 { 2304 struct task_struct *ksm_thread; 2305 int err; 2306 2307 err = ksm_slab_init(); 2308 if (err) 2309 goto out; 2310 2311 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 2312 if (IS_ERR(ksm_thread)) { 2313 printk(KERN_ERR "ksm: creating kthread failed\n"); 2314 err = PTR_ERR(ksm_thread); 2315 goto out_free; 2316 } 2317 2318 #ifdef CONFIG_SYSFS 2319 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 2320 if (err) { 2321 printk(KERN_ERR "ksm: register sysfs failed\n"); 2322 kthread_stop(ksm_thread); 2323 goto out_free; 2324 } 2325 #else 2326 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 2327 2328 #endif /* CONFIG_SYSFS */ 2329 2330 #ifdef CONFIG_MEMORY_HOTREMOVE 2331 /* There is no significance to this priority 100 */ 2332 hotplug_memory_notifier(ksm_memory_callback, 100); 2333 #endif 2334 return 0; 2335 2336 out_free: 2337 ksm_slab_free(); 2338 out: 2339 return err; 2340 } 2341 subsys_initcall(ksm_init); 2342