xref: /openbmc/linux/mm/ksm.c (revision 261a9af6)
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hash.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 
40 #include <asm/tlbflush.h>
41 #include "internal.h"
42 
43 /*
44  * A few notes about the KSM scanning process,
45  * to make it easier to understand the data structures below:
46  *
47  * In order to reduce excessive scanning, KSM sorts the memory pages by their
48  * contents into a data structure that holds pointers to the pages' locations.
49  *
50  * Since the contents of the pages may change at any moment, KSM cannot just
51  * insert the pages into a normal sorted tree and expect it to find anything.
52  * Therefore KSM uses two data structures - the stable and the unstable tree.
53  *
54  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
55  * by their contents.  Because each such page is write-protected, searching on
56  * this tree is fully assured to be working (except when pages are unmapped),
57  * and therefore this tree is called the stable tree.
58  *
59  * In addition to the stable tree, KSM uses a second data structure called the
60  * unstable tree: this tree holds pointers to pages which have been found to
61  * be "unchanged for a period of time".  The unstable tree sorts these pages
62  * by their contents, but since they are not write-protected, KSM cannot rely
63  * upon the unstable tree to work correctly - the unstable tree is liable to
64  * be corrupted as its contents are modified, and so it is called unstable.
65  *
66  * KSM solves this problem by several techniques:
67  *
68  * 1) The unstable tree is flushed every time KSM completes scanning all
69  *    memory areas, and then the tree is rebuilt again from the beginning.
70  * 2) KSM will only insert into the unstable tree, pages whose hash value
71  *    has not changed since the previous scan of all memory areas.
72  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
73  *    colors of the nodes and not on their contents, assuring that even when
74  *    the tree gets "corrupted" it won't get out of balance, so scanning time
75  *    remains the same (also, searching and inserting nodes in an rbtree uses
76  *    the same algorithm, so we have no overhead when we flush and rebuild).
77  * 4) KSM never flushes the stable tree, which means that even if it were to
78  *    take 10 attempts to find a page in the unstable tree, once it is found,
79  *    it is secured in the stable tree.  (When we scan a new page, we first
80  *    compare it against the stable tree, and then against the unstable tree.)
81  */
82 
83 /**
84  * struct mm_slot - ksm information per mm that is being scanned
85  * @link: link to the mm_slots hash list
86  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
87  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
88  * @mm: the mm that this information is valid for
89  */
90 struct mm_slot {
91 	struct hlist_node link;
92 	struct list_head mm_list;
93 	struct rmap_item *rmap_list;
94 	struct mm_struct *mm;
95 };
96 
97 /**
98  * struct ksm_scan - cursor for scanning
99  * @mm_slot: the current mm_slot we are scanning
100  * @address: the next address inside that to be scanned
101  * @rmap_list: link to the next rmap to be scanned in the rmap_list
102  * @seqnr: count of completed full scans (needed when removing unstable node)
103  *
104  * There is only the one ksm_scan instance of this cursor structure.
105  */
106 struct ksm_scan {
107 	struct mm_slot *mm_slot;
108 	unsigned long address;
109 	struct rmap_item **rmap_list;
110 	unsigned long seqnr;
111 };
112 
113 /**
114  * struct stable_node - node of the stable rbtree
115  * @node: rb node of this ksm page in the stable tree
116  * @hlist: hlist head of rmap_items using this ksm page
117  * @kpfn: page frame number of this ksm page
118  */
119 struct stable_node {
120 	struct rb_node node;
121 	struct hlist_head hlist;
122 	unsigned long kpfn;
123 };
124 
125 /**
126  * struct rmap_item - reverse mapping item for virtual addresses
127  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
128  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
129  * @mm: the memory structure this rmap_item is pointing into
130  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
131  * @oldchecksum: previous checksum of the page at that virtual address
132  * @node: rb node of this rmap_item in the unstable tree
133  * @head: pointer to stable_node heading this list in the stable tree
134  * @hlist: link into hlist of rmap_items hanging off that stable_node
135  */
136 struct rmap_item {
137 	struct rmap_item *rmap_list;
138 	struct anon_vma *anon_vma;	/* when stable */
139 	struct mm_struct *mm;
140 	unsigned long address;		/* + low bits used for flags below */
141 	unsigned int oldchecksum;	/* when unstable */
142 	union {
143 		struct rb_node node;	/* when node of unstable tree */
144 		struct {		/* when listed from stable tree */
145 			struct stable_node *head;
146 			struct hlist_node hlist;
147 		};
148 	};
149 };
150 
151 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
152 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
153 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
154 
155 /* The stable and unstable tree heads */
156 static struct rb_root root_stable_tree = RB_ROOT;
157 static struct rb_root root_unstable_tree = RB_ROOT;
158 
159 #define MM_SLOTS_HASH_SHIFT 10
160 #define MM_SLOTS_HASH_HEADS (1 << MM_SLOTS_HASH_SHIFT)
161 static struct hlist_head mm_slots_hash[MM_SLOTS_HASH_HEADS];
162 
163 static struct mm_slot ksm_mm_head = {
164 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
165 };
166 static struct ksm_scan ksm_scan = {
167 	.mm_slot = &ksm_mm_head,
168 };
169 
170 static struct kmem_cache *rmap_item_cache;
171 static struct kmem_cache *stable_node_cache;
172 static struct kmem_cache *mm_slot_cache;
173 
174 /* The number of nodes in the stable tree */
175 static unsigned long ksm_pages_shared;
176 
177 /* The number of page slots additionally sharing those nodes */
178 static unsigned long ksm_pages_sharing;
179 
180 /* The number of nodes in the unstable tree */
181 static unsigned long ksm_pages_unshared;
182 
183 /* The number of rmap_items in use: to calculate pages_volatile */
184 static unsigned long ksm_rmap_items;
185 
186 /* Number of pages ksmd should scan in one batch */
187 static unsigned int ksm_thread_pages_to_scan = 100;
188 
189 /* Milliseconds ksmd should sleep between batches */
190 static unsigned int ksm_thread_sleep_millisecs = 20;
191 
192 #define KSM_RUN_STOP	0
193 #define KSM_RUN_MERGE	1
194 #define KSM_RUN_UNMERGE	2
195 static unsigned int ksm_run = KSM_RUN_STOP;
196 
197 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
198 static DEFINE_MUTEX(ksm_thread_mutex);
199 static DEFINE_SPINLOCK(ksm_mmlist_lock);
200 
201 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
202 		sizeof(struct __struct), __alignof__(struct __struct),\
203 		(__flags), NULL)
204 
205 static int __init ksm_slab_init(void)
206 {
207 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
208 	if (!rmap_item_cache)
209 		goto out;
210 
211 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
212 	if (!stable_node_cache)
213 		goto out_free1;
214 
215 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
216 	if (!mm_slot_cache)
217 		goto out_free2;
218 
219 	return 0;
220 
221 out_free2:
222 	kmem_cache_destroy(stable_node_cache);
223 out_free1:
224 	kmem_cache_destroy(rmap_item_cache);
225 out:
226 	return -ENOMEM;
227 }
228 
229 static void __init ksm_slab_free(void)
230 {
231 	kmem_cache_destroy(mm_slot_cache);
232 	kmem_cache_destroy(stable_node_cache);
233 	kmem_cache_destroy(rmap_item_cache);
234 	mm_slot_cache = NULL;
235 }
236 
237 static inline struct rmap_item *alloc_rmap_item(void)
238 {
239 	struct rmap_item *rmap_item;
240 
241 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
242 	if (rmap_item)
243 		ksm_rmap_items++;
244 	return rmap_item;
245 }
246 
247 static inline void free_rmap_item(struct rmap_item *rmap_item)
248 {
249 	ksm_rmap_items--;
250 	rmap_item->mm = NULL;	/* debug safety */
251 	kmem_cache_free(rmap_item_cache, rmap_item);
252 }
253 
254 static inline struct stable_node *alloc_stable_node(void)
255 {
256 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
257 }
258 
259 static inline void free_stable_node(struct stable_node *stable_node)
260 {
261 	kmem_cache_free(stable_node_cache, stable_node);
262 }
263 
264 static inline struct mm_slot *alloc_mm_slot(void)
265 {
266 	if (!mm_slot_cache)	/* initialization failed */
267 		return NULL;
268 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
269 }
270 
271 static inline void free_mm_slot(struct mm_slot *mm_slot)
272 {
273 	kmem_cache_free(mm_slot_cache, mm_slot);
274 }
275 
276 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
277 {
278 	struct mm_slot *mm_slot;
279 	struct hlist_head *bucket;
280 	struct hlist_node *node;
281 
282 	bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
283 	hlist_for_each_entry(mm_slot, node, bucket, link) {
284 		if (mm == mm_slot->mm)
285 			return mm_slot;
286 	}
287 	return NULL;
288 }
289 
290 static void insert_to_mm_slots_hash(struct mm_struct *mm,
291 				    struct mm_slot *mm_slot)
292 {
293 	struct hlist_head *bucket;
294 
295 	bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
296 	mm_slot->mm = mm;
297 	hlist_add_head(&mm_slot->link, bucket);
298 }
299 
300 static inline int in_stable_tree(struct rmap_item *rmap_item)
301 {
302 	return rmap_item->address & STABLE_FLAG;
303 }
304 
305 /*
306  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
307  * page tables after it has passed through ksm_exit() - which, if necessary,
308  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
309  * a special flag: they can just back out as soon as mm_users goes to zero.
310  * ksm_test_exit() is used throughout to make this test for exit: in some
311  * places for correctness, in some places just to avoid unnecessary work.
312  */
313 static inline bool ksm_test_exit(struct mm_struct *mm)
314 {
315 	return atomic_read(&mm->mm_users) == 0;
316 }
317 
318 /*
319  * We use break_ksm to break COW on a ksm page: it's a stripped down
320  *
321  *	if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
322  *		put_page(page);
323  *
324  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
325  * in case the application has unmapped and remapped mm,addr meanwhile.
326  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
327  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
328  */
329 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
330 {
331 	struct page *page;
332 	int ret = 0;
333 
334 	do {
335 		cond_resched();
336 		page = follow_page(vma, addr, FOLL_GET);
337 		if (IS_ERR_OR_NULL(page))
338 			break;
339 		if (PageKsm(page))
340 			ret = handle_mm_fault(vma->vm_mm, vma, addr,
341 							FAULT_FLAG_WRITE);
342 		else
343 			ret = VM_FAULT_WRITE;
344 		put_page(page);
345 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
346 	/*
347 	 * We must loop because handle_mm_fault() may back out if there's
348 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
349 	 *
350 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
351 	 * COW has been broken, even if the vma does not permit VM_WRITE;
352 	 * but note that a concurrent fault might break PageKsm for us.
353 	 *
354 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
355 	 * backing file, which also invalidates anonymous pages: that's
356 	 * okay, that truncation will have unmapped the PageKsm for us.
357 	 *
358 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
359 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
360 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
361 	 * to user; and ksmd, having no mm, would never be chosen for that.
362 	 *
363 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
364 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
365 	 * even ksmd can fail in this way - though it's usually breaking ksm
366 	 * just to undo a merge it made a moment before, so unlikely to oom.
367 	 *
368 	 * That's a pity: we might therefore have more kernel pages allocated
369 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
370 	 * will retry to break_cow on each pass, so should recover the page
371 	 * in due course.  The important thing is to not let VM_MERGEABLE
372 	 * be cleared while any such pages might remain in the area.
373 	 */
374 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
375 }
376 
377 static void break_cow(struct rmap_item *rmap_item)
378 {
379 	struct mm_struct *mm = rmap_item->mm;
380 	unsigned long addr = rmap_item->address;
381 	struct vm_area_struct *vma;
382 
383 	/*
384 	 * It is not an accident that whenever we want to break COW
385 	 * to undo, we also need to drop a reference to the anon_vma.
386 	 */
387 	put_anon_vma(rmap_item->anon_vma);
388 
389 	down_read(&mm->mmap_sem);
390 	if (ksm_test_exit(mm))
391 		goto out;
392 	vma = find_vma(mm, addr);
393 	if (!vma || vma->vm_start > addr)
394 		goto out;
395 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
396 		goto out;
397 	break_ksm(vma, addr);
398 out:
399 	up_read(&mm->mmap_sem);
400 }
401 
402 static struct page *page_trans_compound_anon(struct page *page)
403 {
404 	if (PageTransCompound(page)) {
405 		struct page *head = compound_trans_head(page);
406 		/*
407 		 * head may actually be splitted and freed from under
408 		 * us but it's ok here.
409 		 */
410 		if (PageAnon(head))
411 			return head;
412 	}
413 	return NULL;
414 }
415 
416 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
417 {
418 	struct mm_struct *mm = rmap_item->mm;
419 	unsigned long addr = rmap_item->address;
420 	struct vm_area_struct *vma;
421 	struct page *page;
422 
423 	down_read(&mm->mmap_sem);
424 	if (ksm_test_exit(mm))
425 		goto out;
426 	vma = find_vma(mm, addr);
427 	if (!vma || vma->vm_start > addr)
428 		goto out;
429 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
430 		goto out;
431 
432 	page = follow_page(vma, addr, FOLL_GET);
433 	if (IS_ERR_OR_NULL(page))
434 		goto out;
435 	if (PageAnon(page) || page_trans_compound_anon(page)) {
436 		flush_anon_page(vma, page, addr);
437 		flush_dcache_page(page);
438 	} else {
439 		put_page(page);
440 out:		page = NULL;
441 	}
442 	up_read(&mm->mmap_sem);
443 	return page;
444 }
445 
446 static void remove_node_from_stable_tree(struct stable_node *stable_node)
447 {
448 	struct rmap_item *rmap_item;
449 	struct hlist_node *hlist;
450 
451 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
452 		if (rmap_item->hlist.next)
453 			ksm_pages_sharing--;
454 		else
455 			ksm_pages_shared--;
456 		put_anon_vma(rmap_item->anon_vma);
457 		rmap_item->address &= PAGE_MASK;
458 		cond_resched();
459 	}
460 
461 	rb_erase(&stable_node->node, &root_stable_tree);
462 	free_stable_node(stable_node);
463 }
464 
465 /*
466  * get_ksm_page: checks if the page indicated by the stable node
467  * is still its ksm page, despite having held no reference to it.
468  * In which case we can trust the content of the page, and it
469  * returns the gotten page; but if the page has now been zapped,
470  * remove the stale node from the stable tree and return NULL.
471  *
472  * You would expect the stable_node to hold a reference to the ksm page.
473  * But if it increments the page's count, swapping out has to wait for
474  * ksmd to come around again before it can free the page, which may take
475  * seconds or even minutes: much too unresponsive.  So instead we use a
476  * "keyhole reference": access to the ksm page from the stable node peeps
477  * out through its keyhole to see if that page still holds the right key,
478  * pointing back to this stable node.  This relies on freeing a PageAnon
479  * page to reset its page->mapping to NULL, and relies on no other use of
480  * a page to put something that might look like our key in page->mapping.
481  *
482  * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
483  * but this is different - made simpler by ksm_thread_mutex being held, but
484  * interesting for assuming that no other use of the struct page could ever
485  * put our expected_mapping into page->mapping (or a field of the union which
486  * coincides with page->mapping).  The RCU calls are not for KSM at all, but
487  * to keep the page_count protocol described with page_cache_get_speculative.
488  *
489  * Note: it is possible that get_ksm_page() will return NULL one moment,
490  * then page the next, if the page is in between page_freeze_refs() and
491  * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
492  * is on its way to being freed; but it is an anomaly to bear in mind.
493  */
494 static struct page *get_ksm_page(struct stable_node *stable_node)
495 {
496 	struct page *page;
497 	void *expected_mapping;
498 
499 	page = pfn_to_page(stable_node->kpfn);
500 	expected_mapping = (void *)stable_node +
501 				(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
502 	rcu_read_lock();
503 	if (page->mapping != expected_mapping)
504 		goto stale;
505 	if (!get_page_unless_zero(page))
506 		goto stale;
507 	if (page->mapping != expected_mapping) {
508 		put_page(page);
509 		goto stale;
510 	}
511 	rcu_read_unlock();
512 	return page;
513 stale:
514 	rcu_read_unlock();
515 	remove_node_from_stable_tree(stable_node);
516 	return NULL;
517 }
518 
519 /*
520  * Removing rmap_item from stable or unstable tree.
521  * This function will clean the information from the stable/unstable tree.
522  */
523 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
524 {
525 	if (rmap_item->address & STABLE_FLAG) {
526 		struct stable_node *stable_node;
527 		struct page *page;
528 
529 		stable_node = rmap_item->head;
530 		page = get_ksm_page(stable_node);
531 		if (!page)
532 			goto out;
533 
534 		lock_page(page);
535 		hlist_del(&rmap_item->hlist);
536 		unlock_page(page);
537 		put_page(page);
538 
539 		if (stable_node->hlist.first)
540 			ksm_pages_sharing--;
541 		else
542 			ksm_pages_shared--;
543 
544 		put_anon_vma(rmap_item->anon_vma);
545 		rmap_item->address &= PAGE_MASK;
546 
547 	} else if (rmap_item->address & UNSTABLE_FLAG) {
548 		unsigned char age;
549 		/*
550 		 * Usually ksmd can and must skip the rb_erase, because
551 		 * root_unstable_tree was already reset to RB_ROOT.
552 		 * But be careful when an mm is exiting: do the rb_erase
553 		 * if this rmap_item was inserted by this scan, rather
554 		 * than left over from before.
555 		 */
556 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
557 		BUG_ON(age > 1);
558 		if (!age)
559 			rb_erase(&rmap_item->node, &root_unstable_tree);
560 
561 		ksm_pages_unshared--;
562 		rmap_item->address &= PAGE_MASK;
563 	}
564 out:
565 	cond_resched();		/* we're called from many long loops */
566 }
567 
568 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
569 				       struct rmap_item **rmap_list)
570 {
571 	while (*rmap_list) {
572 		struct rmap_item *rmap_item = *rmap_list;
573 		*rmap_list = rmap_item->rmap_list;
574 		remove_rmap_item_from_tree(rmap_item);
575 		free_rmap_item(rmap_item);
576 	}
577 }
578 
579 /*
580  * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
581  * than check every pte of a given vma, the locking doesn't quite work for
582  * that - an rmap_item is assigned to the stable tree after inserting ksm
583  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
584  * rmap_items from parent to child at fork time (so as not to waste time
585  * if exit comes before the next scan reaches it).
586  *
587  * Similarly, although we'd like to remove rmap_items (so updating counts
588  * and freeing memory) when unmerging an area, it's easier to leave that
589  * to the next pass of ksmd - consider, for example, how ksmd might be
590  * in cmp_and_merge_page on one of the rmap_items we would be removing.
591  */
592 static int unmerge_ksm_pages(struct vm_area_struct *vma,
593 			     unsigned long start, unsigned long end)
594 {
595 	unsigned long addr;
596 	int err = 0;
597 
598 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
599 		if (ksm_test_exit(vma->vm_mm))
600 			break;
601 		if (signal_pending(current))
602 			err = -ERESTARTSYS;
603 		else
604 			err = break_ksm(vma, addr);
605 	}
606 	return err;
607 }
608 
609 #ifdef CONFIG_SYSFS
610 /*
611  * Only called through the sysfs control interface:
612  */
613 static int unmerge_and_remove_all_rmap_items(void)
614 {
615 	struct mm_slot *mm_slot;
616 	struct mm_struct *mm;
617 	struct vm_area_struct *vma;
618 	int err = 0;
619 
620 	spin_lock(&ksm_mmlist_lock);
621 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
622 						struct mm_slot, mm_list);
623 	spin_unlock(&ksm_mmlist_lock);
624 
625 	for (mm_slot = ksm_scan.mm_slot;
626 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
627 		mm = mm_slot->mm;
628 		down_read(&mm->mmap_sem);
629 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
630 			if (ksm_test_exit(mm))
631 				break;
632 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
633 				continue;
634 			err = unmerge_ksm_pages(vma,
635 						vma->vm_start, vma->vm_end);
636 			if (err)
637 				goto error;
638 		}
639 
640 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
641 
642 		spin_lock(&ksm_mmlist_lock);
643 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
644 						struct mm_slot, mm_list);
645 		if (ksm_test_exit(mm)) {
646 			hlist_del(&mm_slot->link);
647 			list_del(&mm_slot->mm_list);
648 			spin_unlock(&ksm_mmlist_lock);
649 
650 			free_mm_slot(mm_slot);
651 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
652 			up_read(&mm->mmap_sem);
653 			mmdrop(mm);
654 		} else {
655 			spin_unlock(&ksm_mmlist_lock);
656 			up_read(&mm->mmap_sem);
657 		}
658 	}
659 
660 	ksm_scan.seqnr = 0;
661 	return 0;
662 
663 error:
664 	up_read(&mm->mmap_sem);
665 	spin_lock(&ksm_mmlist_lock);
666 	ksm_scan.mm_slot = &ksm_mm_head;
667 	spin_unlock(&ksm_mmlist_lock);
668 	return err;
669 }
670 #endif /* CONFIG_SYSFS */
671 
672 static u32 calc_checksum(struct page *page)
673 {
674 	u32 checksum;
675 	void *addr = kmap_atomic(page, KM_USER0);
676 	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
677 	kunmap_atomic(addr, KM_USER0);
678 	return checksum;
679 }
680 
681 static int memcmp_pages(struct page *page1, struct page *page2)
682 {
683 	char *addr1, *addr2;
684 	int ret;
685 
686 	addr1 = kmap_atomic(page1, KM_USER0);
687 	addr2 = kmap_atomic(page2, KM_USER1);
688 	ret = memcmp(addr1, addr2, PAGE_SIZE);
689 	kunmap_atomic(addr2, KM_USER1);
690 	kunmap_atomic(addr1, KM_USER0);
691 	return ret;
692 }
693 
694 static inline int pages_identical(struct page *page1, struct page *page2)
695 {
696 	return !memcmp_pages(page1, page2);
697 }
698 
699 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
700 			      pte_t *orig_pte)
701 {
702 	struct mm_struct *mm = vma->vm_mm;
703 	unsigned long addr;
704 	pte_t *ptep;
705 	spinlock_t *ptl;
706 	int swapped;
707 	int err = -EFAULT;
708 
709 	addr = page_address_in_vma(page, vma);
710 	if (addr == -EFAULT)
711 		goto out;
712 
713 	BUG_ON(PageTransCompound(page));
714 	ptep = page_check_address(page, mm, addr, &ptl, 0);
715 	if (!ptep)
716 		goto out;
717 
718 	if (pte_write(*ptep) || pte_dirty(*ptep)) {
719 		pte_t entry;
720 
721 		swapped = PageSwapCache(page);
722 		flush_cache_page(vma, addr, page_to_pfn(page));
723 		/*
724 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
725 		 * take any lock, therefore the check that we are going to make
726 		 * with the pagecount against the mapcount is racey and
727 		 * O_DIRECT can happen right after the check.
728 		 * So we clear the pte and flush the tlb before the check
729 		 * this assure us that no O_DIRECT can happen after the check
730 		 * or in the middle of the check.
731 		 */
732 		entry = ptep_clear_flush(vma, addr, ptep);
733 		/*
734 		 * Check that no O_DIRECT or similar I/O is in progress on the
735 		 * page
736 		 */
737 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
738 			set_pte_at(mm, addr, ptep, entry);
739 			goto out_unlock;
740 		}
741 		if (pte_dirty(entry))
742 			set_page_dirty(page);
743 		entry = pte_mkclean(pte_wrprotect(entry));
744 		set_pte_at_notify(mm, addr, ptep, entry);
745 	}
746 	*orig_pte = *ptep;
747 	err = 0;
748 
749 out_unlock:
750 	pte_unmap_unlock(ptep, ptl);
751 out:
752 	return err;
753 }
754 
755 /**
756  * replace_page - replace page in vma by new ksm page
757  * @vma:      vma that holds the pte pointing to page
758  * @page:     the page we are replacing by kpage
759  * @kpage:    the ksm page we replace page by
760  * @orig_pte: the original value of the pte
761  *
762  * Returns 0 on success, -EFAULT on failure.
763  */
764 static int replace_page(struct vm_area_struct *vma, struct page *page,
765 			struct page *kpage, pte_t orig_pte)
766 {
767 	struct mm_struct *mm = vma->vm_mm;
768 	pgd_t *pgd;
769 	pud_t *pud;
770 	pmd_t *pmd;
771 	pte_t *ptep;
772 	spinlock_t *ptl;
773 	unsigned long addr;
774 	int err = -EFAULT;
775 
776 	addr = page_address_in_vma(page, vma);
777 	if (addr == -EFAULT)
778 		goto out;
779 
780 	pgd = pgd_offset(mm, addr);
781 	if (!pgd_present(*pgd))
782 		goto out;
783 
784 	pud = pud_offset(pgd, addr);
785 	if (!pud_present(*pud))
786 		goto out;
787 
788 	pmd = pmd_offset(pud, addr);
789 	BUG_ON(pmd_trans_huge(*pmd));
790 	if (!pmd_present(*pmd))
791 		goto out;
792 
793 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
794 	if (!pte_same(*ptep, orig_pte)) {
795 		pte_unmap_unlock(ptep, ptl);
796 		goto out;
797 	}
798 
799 	get_page(kpage);
800 	page_add_anon_rmap(kpage, vma, addr);
801 
802 	flush_cache_page(vma, addr, pte_pfn(*ptep));
803 	ptep_clear_flush(vma, addr, ptep);
804 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
805 
806 	page_remove_rmap(page);
807 	if (!page_mapped(page))
808 		try_to_free_swap(page);
809 	put_page(page);
810 
811 	pte_unmap_unlock(ptep, ptl);
812 	err = 0;
813 out:
814 	return err;
815 }
816 
817 static int page_trans_compound_anon_split(struct page *page)
818 {
819 	int ret = 0;
820 	struct page *transhuge_head = page_trans_compound_anon(page);
821 	if (transhuge_head) {
822 		/* Get the reference on the head to split it. */
823 		if (get_page_unless_zero(transhuge_head)) {
824 			/*
825 			 * Recheck we got the reference while the head
826 			 * was still anonymous.
827 			 */
828 			if (PageAnon(transhuge_head))
829 				ret = split_huge_page(transhuge_head);
830 			else
831 				/*
832 				 * Retry later if split_huge_page run
833 				 * from under us.
834 				 */
835 				ret = 1;
836 			put_page(transhuge_head);
837 		} else
838 			/* Retry later if split_huge_page run from under us. */
839 			ret = 1;
840 	}
841 	return ret;
842 }
843 
844 /*
845  * try_to_merge_one_page - take two pages and merge them into one
846  * @vma: the vma that holds the pte pointing to page
847  * @page: the PageAnon page that we want to replace with kpage
848  * @kpage: the PageKsm page that we want to map instead of page,
849  *         or NULL the first time when we want to use page as kpage.
850  *
851  * This function returns 0 if the pages were merged, -EFAULT otherwise.
852  */
853 static int try_to_merge_one_page(struct vm_area_struct *vma,
854 				 struct page *page, struct page *kpage)
855 {
856 	pte_t orig_pte = __pte(0);
857 	int err = -EFAULT;
858 
859 	if (page == kpage)			/* ksm page forked */
860 		return 0;
861 
862 	if (!(vma->vm_flags & VM_MERGEABLE))
863 		goto out;
864 	if (PageTransCompound(page) && page_trans_compound_anon_split(page))
865 		goto out;
866 	BUG_ON(PageTransCompound(page));
867 	if (!PageAnon(page))
868 		goto out;
869 
870 	/*
871 	 * We need the page lock to read a stable PageSwapCache in
872 	 * write_protect_page().  We use trylock_page() instead of
873 	 * lock_page() because we don't want to wait here - we
874 	 * prefer to continue scanning and merging different pages,
875 	 * then come back to this page when it is unlocked.
876 	 */
877 	if (!trylock_page(page))
878 		goto out;
879 	/*
880 	 * If this anonymous page is mapped only here, its pte may need
881 	 * to be write-protected.  If it's mapped elsewhere, all of its
882 	 * ptes are necessarily already write-protected.  But in either
883 	 * case, we need to lock and check page_count is not raised.
884 	 */
885 	if (write_protect_page(vma, page, &orig_pte) == 0) {
886 		if (!kpage) {
887 			/*
888 			 * While we hold page lock, upgrade page from
889 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
890 			 * stable_tree_insert() will update stable_node.
891 			 */
892 			set_page_stable_node(page, NULL);
893 			mark_page_accessed(page);
894 			err = 0;
895 		} else if (pages_identical(page, kpage))
896 			err = replace_page(vma, page, kpage, orig_pte);
897 	}
898 
899 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
900 		munlock_vma_page(page);
901 		if (!PageMlocked(kpage)) {
902 			unlock_page(page);
903 			lock_page(kpage);
904 			mlock_vma_page(kpage);
905 			page = kpage;		/* for final unlock */
906 		}
907 	}
908 
909 	unlock_page(page);
910 out:
911 	return err;
912 }
913 
914 /*
915  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
916  * but no new kernel page is allocated: kpage must already be a ksm page.
917  *
918  * This function returns 0 if the pages were merged, -EFAULT otherwise.
919  */
920 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
921 				      struct page *page, struct page *kpage)
922 {
923 	struct mm_struct *mm = rmap_item->mm;
924 	struct vm_area_struct *vma;
925 	int err = -EFAULT;
926 
927 	down_read(&mm->mmap_sem);
928 	if (ksm_test_exit(mm))
929 		goto out;
930 	vma = find_vma(mm, rmap_item->address);
931 	if (!vma || vma->vm_start > rmap_item->address)
932 		goto out;
933 
934 	err = try_to_merge_one_page(vma, page, kpage);
935 	if (err)
936 		goto out;
937 
938 	/* Must get reference to anon_vma while still holding mmap_sem */
939 	rmap_item->anon_vma = vma->anon_vma;
940 	get_anon_vma(vma->anon_vma);
941 out:
942 	up_read(&mm->mmap_sem);
943 	return err;
944 }
945 
946 /*
947  * try_to_merge_two_pages - take two identical pages and prepare them
948  * to be merged into one page.
949  *
950  * This function returns the kpage if we successfully merged two identical
951  * pages into one ksm page, NULL otherwise.
952  *
953  * Note that this function upgrades page to ksm page: if one of the pages
954  * is already a ksm page, try_to_merge_with_ksm_page should be used.
955  */
956 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
957 					   struct page *page,
958 					   struct rmap_item *tree_rmap_item,
959 					   struct page *tree_page)
960 {
961 	int err;
962 
963 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
964 	if (!err) {
965 		err = try_to_merge_with_ksm_page(tree_rmap_item,
966 							tree_page, page);
967 		/*
968 		 * If that fails, we have a ksm page with only one pte
969 		 * pointing to it: so break it.
970 		 */
971 		if (err)
972 			break_cow(rmap_item);
973 	}
974 	return err ? NULL : page;
975 }
976 
977 /*
978  * stable_tree_search - search for page inside the stable tree
979  *
980  * This function checks if there is a page inside the stable tree
981  * with identical content to the page that we are scanning right now.
982  *
983  * This function returns the stable tree node of identical content if found,
984  * NULL otherwise.
985  */
986 static struct page *stable_tree_search(struct page *page)
987 {
988 	struct rb_node *node = root_stable_tree.rb_node;
989 	struct stable_node *stable_node;
990 
991 	stable_node = page_stable_node(page);
992 	if (stable_node) {			/* ksm page forked */
993 		get_page(page);
994 		return page;
995 	}
996 
997 	while (node) {
998 		struct page *tree_page;
999 		int ret;
1000 
1001 		cond_resched();
1002 		stable_node = rb_entry(node, struct stable_node, node);
1003 		tree_page = get_ksm_page(stable_node);
1004 		if (!tree_page)
1005 			return NULL;
1006 
1007 		ret = memcmp_pages(page, tree_page);
1008 
1009 		if (ret < 0) {
1010 			put_page(tree_page);
1011 			node = node->rb_left;
1012 		} else if (ret > 0) {
1013 			put_page(tree_page);
1014 			node = node->rb_right;
1015 		} else
1016 			return tree_page;
1017 	}
1018 
1019 	return NULL;
1020 }
1021 
1022 /*
1023  * stable_tree_insert - insert rmap_item pointing to new ksm page
1024  * into the stable tree.
1025  *
1026  * This function returns the stable tree node just allocated on success,
1027  * NULL otherwise.
1028  */
1029 static struct stable_node *stable_tree_insert(struct page *kpage)
1030 {
1031 	struct rb_node **new = &root_stable_tree.rb_node;
1032 	struct rb_node *parent = NULL;
1033 	struct stable_node *stable_node;
1034 
1035 	while (*new) {
1036 		struct page *tree_page;
1037 		int ret;
1038 
1039 		cond_resched();
1040 		stable_node = rb_entry(*new, struct stable_node, node);
1041 		tree_page = get_ksm_page(stable_node);
1042 		if (!tree_page)
1043 			return NULL;
1044 
1045 		ret = memcmp_pages(kpage, tree_page);
1046 		put_page(tree_page);
1047 
1048 		parent = *new;
1049 		if (ret < 0)
1050 			new = &parent->rb_left;
1051 		else if (ret > 0)
1052 			new = &parent->rb_right;
1053 		else {
1054 			/*
1055 			 * It is not a bug that stable_tree_search() didn't
1056 			 * find this node: because at that time our page was
1057 			 * not yet write-protected, so may have changed since.
1058 			 */
1059 			return NULL;
1060 		}
1061 	}
1062 
1063 	stable_node = alloc_stable_node();
1064 	if (!stable_node)
1065 		return NULL;
1066 
1067 	rb_link_node(&stable_node->node, parent, new);
1068 	rb_insert_color(&stable_node->node, &root_stable_tree);
1069 
1070 	INIT_HLIST_HEAD(&stable_node->hlist);
1071 
1072 	stable_node->kpfn = page_to_pfn(kpage);
1073 	set_page_stable_node(kpage, stable_node);
1074 
1075 	return stable_node;
1076 }
1077 
1078 /*
1079  * unstable_tree_search_insert - search for identical page,
1080  * else insert rmap_item into the unstable tree.
1081  *
1082  * This function searches for a page in the unstable tree identical to the
1083  * page currently being scanned; and if no identical page is found in the
1084  * tree, we insert rmap_item as a new object into the unstable tree.
1085  *
1086  * This function returns pointer to rmap_item found to be identical
1087  * to the currently scanned page, NULL otherwise.
1088  *
1089  * This function does both searching and inserting, because they share
1090  * the same walking algorithm in an rbtree.
1091  */
1092 static
1093 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1094 					      struct page *page,
1095 					      struct page **tree_pagep)
1096 
1097 {
1098 	struct rb_node **new = &root_unstable_tree.rb_node;
1099 	struct rb_node *parent = NULL;
1100 
1101 	while (*new) {
1102 		struct rmap_item *tree_rmap_item;
1103 		struct page *tree_page;
1104 		int ret;
1105 
1106 		cond_resched();
1107 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1108 		tree_page = get_mergeable_page(tree_rmap_item);
1109 		if (IS_ERR_OR_NULL(tree_page))
1110 			return NULL;
1111 
1112 		/*
1113 		 * Don't substitute a ksm page for a forked page.
1114 		 */
1115 		if (page == tree_page) {
1116 			put_page(tree_page);
1117 			return NULL;
1118 		}
1119 
1120 		ret = memcmp_pages(page, tree_page);
1121 
1122 		parent = *new;
1123 		if (ret < 0) {
1124 			put_page(tree_page);
1125 			new = &parent->rb_left;
1126 		} else if (ret > 0) {
1127 			put_page(tree_page);
1128 			new = &parent->rb_right;
1129 		} else {
1130 			*tree_pagep = tree_page;
1131 			return tree_rmap_item;
1132 		}
1133 	}
1134 
1135 	rmap_item->address |= UNSTABLE_FLAG;
1136 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1137 	rb_link_node(&rmap_item->node, parent, new);
1138 	rb_insert_color(&rmap_item->node, &root_unstable_tree);
1139 
1140 	ksm_pages_unshared++;
1141 	return NULL;
1142 }
1143 
1144 /*
1145  * stable_tree_append - add another rmap_item to the linked list of
1146  * rmap_items hanging off a given node of the stable tree, all sharing
1147  * the same ksm page.
1148  */
1149 static void stable_tree_append(struct rmap_item *rmap_item,
1150 			       struct stable_node *stable_node)
1151 {
1152 	rmap_item->head = stable_node;
1153 	rmap_item->address |= STABLE_FLAG;
1154 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1155 
1156 	if (rmap_item->hlist.next)
1157 		ksm_pages_sharing++;
1158 	else
1159 		ksm_pages_shared++;
1160 }
1161 
1162 /*
1163  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1164  * if not, compare checksum to previous and if it's the same, see if page can
1165  * be inserted into the unstable tree, or merged with a page already there and
1166  * both transferred to the stable tree.
1167  *
1168  * @page: the page that we are searching identical page to.
1169  * @rmap_item: the reverse mapping into the virtual address of this page
1170  */
1171 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1172 {
1173 	struct rmap_item *tree_rmap_item;
1174 	struct page *tree_page = NULL;
1175 	struct stable_node *stable_node;
1176 	struct page *kpage;
1177 	unsigned int checksum;
1178 	int err;
1179 
1180 	remove_rmap_item_from_tree(rmap_item);
1181 
1182 	/* We first start with searching the page inside the stable tree */
1183 	kpage = stable_tree_search(page);
1184 	if (kpage) {
1185 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1186 		if (!err) {
1187 			/*
1188 			 * The page was successfully merged:
1189 			 * add its rmap_item to the stable tree.
1190 			 */
1191 			lock_page(kpage);
1192 			stable_tree_append(rmap_item, page_stable_node(kpage));
1193 			unlock_page(kpage);
1194 		}
1195 		put_page(kpage);
1196 		return;
1197 	}
1198 
1199 	/*
1200 	 * If the hash value of the page has changed from the last time
1201 	 * we calculated it, this page is changing frequently: therefore we
1202 	 * don't want to insert it in the unstable tree, and we don't want
1203 	 * to waste our time searching for something identical to it there.
1204 	 */
1205 	checksum = calc_checksum(page);
1206 	if (rmap_item->oldchecksum != checksum) {
1207 		rmap_item->oldchecksum = checksum;
1208 		return;
1209 	}
1210 
1211 	tree_rmap_item =
1212 		unstable_tree_search_insert(rmap_item, page, &tree_page);
1213 	if (tree_rmap_item) {
1214 		kpage = try_to_merge_two_pages(rmap_item, page,
1215 						tree_rmap_item, tree_page);
1216 		put_page(tree_page);
1217 		/*
1218 		 * As soon as we merge this page, we want to remove the
1219 		 * rmap_item of the page we have merged with from the unstable
1220 		 * tree, and insert it instead as new node in the stable tree.
1221 		 */
1222 		if (kpage) {
1223 			remove_rmap_item_from_tree(tree_rmap_item);
1224 
1225 			lock_page(kpage);
1226 			stable_node = stable_tree_insert(kpage);
1227 			if (stable_node) {
1228 				stable_tree_append(tree_rmap_item, stable_node);
1229 				stable_tree_append(rmap_item, stable_node);
1230 			}
1231 			unlock_page(kpage);
1232 
1233 			/*
1234 			 * If we fail to insert the page into the stable tree,
1235 			 * we will have 2 virtual addresses that are pointing
1236 			 * to a ksm page left outside the stable tree,
1237 			 * in which case we need to break_cow on both.
1238 			 */
1239 			if (!stable_node) {
1240 				break_cow(tree_rmap_item);
1241 				break_cow(rmap_item);
1242 			}
1243 		}
1244 	}
1245 }
1246 
1247 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1248 					    struct rmap_item **rmap_list,
1249 					    unsigned long addr)
1250 {
1251 	struct rmap_item *rmap_item;
1252 
1253 	while (*rmap_list) {
1254 		rmap_item = *rmap_list;
1255 		if ((rmap_item->address & PAGE_MASK) == addr)
1256 			return rmap_item;
1257 		if (rmap_item->address > addr)
1258 			break;
1259 		*rmap_list = rmap_item->rmap_list;
1260 		remove_rmap_item_from_tree(rmap_item);
1261 		free_rmap_item(rmap_item);
1262 	}
1263 
1264 	rmap_item = alloc_rmap_item();
1265 	if (rmap_item) {
1266 		/* It has already been zeroed */
1267 		rmap_item->mm = mm_slot->mm;
1268 		rmap_item->address = addr;
1269 		rmap_item->rmap_list = *rmap_list;
1270 		*rmap_list = rmap_item;
1271 	}
1272 	return rmap_item;
1273 }
1274 
1275 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1276 {
1277 	struct mm_struct *mm;
1278 	struct mm_slot *slot;
1279 	struct vm_area_struct *vma;
1280 	struct rmap_item *rmap_item;
1281 
1282 	if (list_empty(&ksm_mm_head.mm_list))
1283 		return NULL;
1284 
1285 	slot = ksm_scan.mm_slot;
1286 	if (slot == &ksm_mm_head) {
1287 		/*
1288 		 * A number of pages can hang around indefinitely on per-cpu
1289 		 * pagevecs, raised page count preventing write_protect_page
1290 		 * from merging them.  Though it doesn't really matter much,
1291 		 * it is puzzling to see some stuck in pages_volatile until
1292 		 * other activity jostles them out, and they also prevented
1293 		 * LTP's KSM test from succeeding deterministically; so drain
1294 		 * them here (here rather than on entry to ksm_do_scan(),
1295 		 * so we don't IPI too often when pages_to_scan is set low).
1296 		 */
1297 		lru_add_drain_all();
1298 
1299 		root_unstable_tree = RB_ROOT;
1300 
1301 		spin_lock(&ksm_mmlist_lock);
1302 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1303 		ksm_scan.mm_slot = slot;
1304 		spin_unlock(&ksm_mmlist_lock);
1305 next_mm:
1306 		ksm_scan.address = 0;
1307 		ksm_scan.rmap_list = &slot->rmap_list;
1308 	}
1309 
1310 	mm = slot->mm;
1311 	down_read(&mm->mmap_sem);
1312 	if (ksm_test_exit(mm))
1313 		vma = NULL;
1314 	else
1315 		vma = find_vma(mm, ksm_scan.address);
1316 
1317 	for (; vma; vma = vma->vm_next) {
1318 		if (!(vma->vm_flags & VM_MERGEABLE))
1319 			continue;
1320 		if (ksm_scan.address < vma->vm_start)
1321 			ksm_scan.address = vma->vm_start;
1322 		if (!vma->anon_vma)
1323 			ksm_scan.address = vma->vm_end;
1324 
1325 		while (ksm_scan.address < vma->vm_end) {
1326 			if (ksm_test_exit(mm))
1327 				break;
1328 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1329 			if (IS_ERR_OR_NULL(*page)) {
1330 				ksm_scan.address += PAGE_SIZE;
1331 				cond_resched();
1332 				continue;
1333 			}
1334 			if (PageAnon(*page) ||
1335 			    page_trans_compound_anon(*page)) {
1336 				flush_anon_page(vma, *page, ksm_scan.address);
1337 				flush_dcache_page(*page);
1338 				rmap_item = get_next_rmap_item(slot,
1339 					ksm_scan.rmap_list, ksm_scan.address);
1340 				if (rmap_item) {
1341 					ksm_scan.rmap_list =
1342 							&rmap_item->rmap_list;
1343 					ksm_scan.address += PAGE_SIZE;
1344 				} else
1345 					put_page(*page);
1346 				up_read(&mm->mmap_sem);
1347 				return rmap_item;
1348 			}
1349 			put_page(*page);
1350 			ksm_scan.address += PAGE_SIZE;
1351 			cond_resched();
1352 		}
1353 	}
1354 
1355 	if (ksm_test_exit(mm)) {
1356 		ksm_scan.address = 0;
1357 		ksm_scan.rmap_list = &slot->rmap_list;
1358 	}
1359 	/*
1360 	 * Nuke all the rmap_items that are above this current rmap:
1361 	 * because there were no VM_MERGEABLE vmas with such addresses.
1362 	 */
1363 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1364 
1365 	spin_lock(&ksm_mmlist_lock);
1366 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1367 						struct mm_slot, mm_list);
1368 	if (ksm_scan.address == 0) {
1369 		/*
1370 		 * We've completed a full scan of all vmas, holding mmap_sem
1371 		 * throughout, and found no VM_MERGEABLE: so do the same as
1372 		 * __ksm_exit does to remove this mm from all our lists now.
1373 		 * This applies either when cleaning up after __ksm_exit
1374 		 * (but beware: we can reach here even before __ksm_exit),
1375 		 * or when all VM_MERGEABLE areas have been unmapped (and
1376 		 * mmap_sem then protects against race with MADV_MERGEABLE).
1377 		 */
1378 		hlist_del(&slot->link);
1379 		list_del(&slot->mm_list);
1380 		spin_unlock(&ksm_mmlist_lock);
1381 
1382 		free_mm_slot(slot);
1383 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1384 		up_read(&mm->mmap_sem);
1385 		mmdrop(mm);
1386 	} else {
1387 		spin_unlock(&ksm_mmlist_lock);
1388 		up_read(&mm->mmap_sem);
1389 	}
1390 
1391 	/* Repeat until we've completed scanning the whole list */
1392 	slot = ksm_scan.mm_slot;
1393 	if (slot != &ksm_mm_head)
1394 		goto next_mm;
1395 
1396 	ksm_scan.seqnr++;
1397 	return NULL;
1398 }
1399 
1400 /**
1401  * ksm_do_scan  - the ksm scanner main worker function.
1402  * @scan_npages - number of pages we want to scan before we return.
1403  */
1404 static void ksm_do_scan(unsigned int scan_npages)
1405 {
1406 	struct rmap_item *rmap_item;
1407 	struct page *uninitialized_var(page);
1408 
1409 	while (scan_npages-- && likely(!freezing(current))) {
1410 		cond_resched();
1411 		rmap_item = scan_get_next_rmap_item(&page);
1412 		if (!rmap_item)
1413 			return;
1414 		if (!PageKsm(page) || !in_stable_tree(rmap_item))
1415 			cmp_and_merge_page(page, rmap_item);
1416 		put_page(page);
1417 	}
1418 }
1419 
1420 static int ksmd_should_run(void)
1421 {
1422 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1423 }
1424 
1425 static int ksm_scan_thread(void *nothing)
1426 {
1427 	set_freezable();
1428 	set_user_nice(current, 5);
1429 
1430 	while (!kthread_should_stop()) {
1431 		mutex_lock(&ksm_thread_mutex);
1432 		if (ksmd_should_run())
1433 			ksm_do_scan(ksm_thread_pages_to_scan);
1434 		mutex_unlock(&ksm_thread_mutex);
1435 
1436 		try_to_freeze();
1437 
1438 		if (ksmd_should_run()) {
1439 			schedule_timeout_interruptible(
1440 				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1441 		} else {
1442 			wait_event_freezable(ksm_thread_wait,
1443 				ksmd_should_run() || kthread_should_stop());
1444 		}
1445 	}
1446 	return 0;
1447 }
1448 
1449 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1450 		unsigned long end, int advice, unsigned long *vm_flags)
1451 {
1452 	struct mm_struct *mm = vma->vm_mm;
1453 	int err;
1454 
1455 	switch (advice) {
1456 	case MADV_MERGEABLE:
1457 		/*
1458 		 * Be somewhat over-protective for now!
1459 		 */
1460 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1461 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1462 				 VM_RESERVED  | VM_HUGETLB | VM_INSERTPAGE |
1463 				 VM_NONLINEAR | VM_MIXEDMAP | VM_SAO))
1464 			return 0;		/* just ignore the advice */
1465 
1466 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1467 			err = __ksm_enter(mm);
1468 			if (err)
1469 				return err;
1470 		}
1471 
1472 		*vm_flags |= VM_MERGEABLE;
1473 		break;
1474 
1475 	case MADV_UNMERGEABLE:
1476 		if (!(*vm_flags & VM_MERGEABLE))
1477 			return 0;		/* just ignore the advice */
1478 
1479 		if (vma->anon_vma) {
1480 			err = unmerge_ksm_pages(vma, start, end);
1481 			if (err)
1482 				return err;
1483 		}
1484 
1485 		*vm_flags &= ~VM_MERGEABLE;
1486 		break;
1487 	}
1488 
1489 	return 0;
1490 }
1491 
1492 int __ksm_enter(struct mm_struct *mm)
1493 {
1494 	struct mm_slot *mm_slot;
1495 	int needs_wakeup;
1496 
1497 	mm_slot = alloc_mm_slot();
1498 	if (!mm_slot)
1499 		return -ENOMEM;
1500 
1501 	/* Check ksm_run too?  Would need tighter locking */
1502 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1503 
1504 	spin_lock(&ksm_mmlist_lock);
1505 	insert_to_mm_slots_hash(mm, mm_slot);
1506 	/*
1507 	 * Insert just behind the scanning cursor, to let the area settle
1508 	 * down a little; when fork is followed by immediate exec, we don't
1509 	 * want ksmd to waste time setting up and tearing down an rmap_list.
1510 	 */
1511 	list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1512 	spin_unlock(&ksm_mmlist_lock);
1513 
1514 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1515 	atomic_inc(&mm->mm_count);
1516 
1517 	if (needs_wakeup)
1518 		wake_up_interruptible(&ksm_thread_wait);
1519 
1520 	return 0;
1521 }
1522 
1523 void __ksm_exit(struct mm_struct *mm)
1524 {
1525 	struct mm_slot *mm_slot;
1526 	int easy_to_free = 0;
1527 
1528 	/*
1529 	 * This process is exiting: if it's straightforward (as is the
1530 	 * case when ksmd was never running), free mm_slot immediately.
1531 	 * But if it's at the cursor or has rmap_items linked to it, use
1532 	 * mmap_sem to synchronize with any break_cows before pagetables
1533 	 * are freed, and leave the mm_slot on the list for ksmd to free.
1534 	 * Beware: ksm may already have noticed it exiting and freed the slot.
1535 	 */
1536 
1537 	spin_lock(&ksm_mmlist_lock);
1538 	mm_slot = get_mm_slot(mm);
1539 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1540 		if (!mm_slot->rmap_list) {
1541 			hlist_del(&mm_slot->link);
1542 			list_del(&mm_slot->mm_list);
1543 			easy_to_free = 1;
1544 		} else {
1545 			list_move(&mm_slot->mm_list,
1546 				  &ksm_scan.mm_slot->mm_list);
1547 		}
1548 	}
1549 	spin_unlock(&ksm_mmlist_lock);
1550 
1551 	if (easy_to_free) {
1552 		free_mm_slot(mm_slot);
1553 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1554 		mmdrop(mm);
1555 	} else if (mm_slot) {
1556 		down_write(&mm->mmap_sem);
1557 		up_write(&mm->mmap_sem);
1558 	}
1559 }
1560 
1561 struct page *ksm_does_need_to_copy(struct page *page,
1562 			struct vm_area_struct *vma, unsigned long address)
1563 {
1564 	struct page *new_page;
1565 
1566 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1567 	if (new_page) {
1568 		copy_user_highpage(new_page, page, address, vma);
1569 
1570 		SetPageDirty(new_page);
1571 		__SetPageUptodate(new_page);
1572 		SetPageSwapBacked(new_page);
1573 		__set_page_locked(new_page);
1574 
1575 		if (page_evictable(new_page, vma))
1576 			lru_cache_add_lru(new_page, LRU_ACTIVE_ANON);
1577 		else
1578 			add_page_to_unevictable_list(new_page);
1579 	}
1580 
1581 	return new_page;
1582 }
1583 
1584 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1585 			unsigned long *vm_flags)
1586 {
1587 	struct stable_node *stable_node;
1588 	struct rmap_item *rmap_item;
1589 	struct hlist_node *hlist;
1590 	unsigned int mapcount = page_mapcount(page);
1591 	int referenced = 0;
1592 	int search_new_forks = 0;
1593 
1594 	VM_BUG_ON(!PageKsm(page));
1595 	VM_BUG_ON(!PageLocked(page));
1596 
1597 	stable_node = page_stable_node(page);
1598 	if (!stable_node)
1599 		return 0;
1600 again:
1601 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1602 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1603 		struct anon_vma_chain *vmac;
1604 		struct vm_area_struct *vma;
1605 
1606 		anon_vma_lock(anon_vma);
1607 		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1608 			vma = vmac->vma;
1609 			if (rmap_item->address < vma->vm_start ||
1610 			    rmap_item->address >= vma->vm_end)
1611 				continue;
1612 			/*
1613 			 * Initially we examine only the vma which covers this
1614 			 * rmap_item; but later, if there is still work to do,
1615 			 * we examine covering vmas in other mms: in case they
1616 			 * were forked from the original since ksmd passed.
1617 			 */
1618 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1619 				continue;
1620 
1621 			if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1622 				continue;
1623 
1624 			referenced += page_referenced_one(page, vma,
1625 				rmap_item->address, &mapcount, vm_flags);
1626 			if (!search_new_forks || !mapcount)
1627 				break;
1628 		}
1629 		anon_vma_unlock(anon_vma);
1630 		if (!mapcount)
1631 			goto out;
1632 	}
1633 	if (!search_new_forks++)
1634 		goto again;
1635 out:
1636 	return referenced;
1637 }
1638 
1639 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1640 {
1641 	struct stable_node *stable_node;
1642 	struct hlist_node *hlist;
1643 	struct rmap_item *rmap_item;
1644 	int ret = SWAP_AGAIN;
1645 	int search_new_forks = 0;
1646 
1647 	VM_BUG_ON(!PageKsm(page));
1648 	VM_BUG_ON(!PageLocked(page));
1649 
1650 	stable_node = page_stable_node(page);
1651 	if (!stable_node)
1652 		return SWAP_FAIL;
1653 again:
1654 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1655 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1656 		struct anon_vma_chain *vmac;
1657 		struct vm_area_struct *vma;
1658 
1659 		anon_vma_lock(anon_vma);
1660 		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1661 			vma = vmac->vma;
1662 			if (rmap_item->address < vma->vm_start ||
1663 			    rmap_item->address >= vma->vm_end)
1664 				continue;
1665 			/*
1666 			 * Initially we examine only the vma which covers this
1667 			 * rmap_item; but later, if there is still work to do,
1668 			 * we examine covering vmas in other mms: in case they
1669 			 * were forked from the original since ksmd passed.
1670 			 */
1671 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1672 				continue;
1673 
1674 			ret = try_to_unmap_one(page, vma,
1675 					rmap_item->address, flags);
1676 			if (ret != SWAP_AGAIN || !page_mapped(page)) {
1677 				anon_vma_unlock(anon_vma);
1678 				goto out;
1679 			}
1680 		}
1681 		anon_vma_unlock(anon_vma);
1682 	}
1683 	if (!search_new_forks++)
1684 		goto again;
1685 out:
1686 	return ret;
1687 }
1688 
1689 #ifdef CONFIG_MIGRATION
1690 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1691 		  struct vm_area_struct *, unsigned long, void *), void *arg)
1692 {
1693 	struct stable_node *stable_node;
1694 	struct hlist_node *hlist;
1695 	struct rmap_item *rmap_item;
1696 	int ret = SWAP_AGAIN;
1697 	int search_new_forks = 0;
1698 
1699 	VM_BUG_ON(!PageKsm(page));
1700 	VM_BUG_ON(!PageLocked(page));
1701 
1702 	stable_node = page_stable_node(page);
1703 	if (!stable_node)
1704 		return ret;
1705 again:
1706 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1707 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1708 		struct anon_vma_chain *vmac;
1709 		struct vm_area_struct *vma;
1710 
1711 		anon_vma_lock(anon_vma);
1712 		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1713 			vma = vmac->vma;
1714 			if (rmap_item->address < vma->vm_start ||
1715 			    rmap_item->address >= vma->vm_end)
1716 				continue;
1717 			/*
1718 			 * Initially we examine only the vma which covers this
1719 			 * rmap_item; but later, if there is still work to do,
1720 			 * we examine covering vmas in other mms: in case they
1721 			 * were forked from the original since ksmd passed.
1722 			 */
1723 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1724 				continue;
1725 
1726 			ret = rmap_one(page, vma, rmap_item->address, arg);
1727 			if (ret != SWAP_AGAIN) {
1728 				anon_vma_unlock(anon_vma);
1729 				goto out;
1730 			}
1731 		}
1732 		anon_vma_unlock(anon_vma);
1733 	}
1734 	if (!search_new_forks++)
1735 		goto again;
1736 out:
1737 	return ret;
1738 }
1739 
1740 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1741 {
1742 	struct stable_node *stable_node;
1743 
1744 	VM_BUG_ON(!PageLocked(oldpage));
1745 	VM_BUG_ON(!PageLocked(newpage));
1746 	VM_BUG_ON(newpage->mapping != oldpage->mapping);
1747 
1748 	stable_node = page_stable_node(newpage);
1749 	if (stable_node) {
1750 		VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
1751 		stable_node->kpfn = page_to_pfn(newpage);
1752 	}
1753 }
1754 #endif /* CONFIG_MIGRATION */
1755 
1756 #ifdef CONFIG_MEMORY_HOTREMOVE
1757 static struct stable_node *ksm_check_stable_tree(unsigned long start_pfn,
1758 						 unsigned long end_pfn)
1759 {
1760 	struct rb_node *node;
1761 
1762 	for (node = rb_first(&root_stable_tree); node; node = rb_next(node)) {
1763 		struct stable_node *stable_node;
1764 
1765 		stable_node = rb_entry(node, struct stable_node, node);
1766 		if (stable_node->kpfn >= start_pfn &&
1767 		    stable_node->kpfn < end_pfn)
1768 			return stable_node;
1769 	}
1770 	return NULL;
1771 }
1772 
1773 static int ksm_memory_callback(struct notifier_block *self,
1774 			       unsigned long action, void *arg)
1775 {
1776 	struct memory_notify *mn = arg;
1777 	struct stable_node *stable_node;
1778 
1779 	switch (action) {
1780 	case MEM_GOING_OFFLINE:
1781 		/*
1782 		 * Keep it very simple for now: just lock out ksmd and
1783 		 * MADV_UNMERGEABLE while any memory is going offline.
1784 		 * mutex_lock_nested() is necessary because lockdep was alarmed
1785 		 * that here we take ksm_thread_mutex inside notifier chain
1786 		 * mutex, and later take notifier chain mutex inside
1787 		 * ksm_thread_mutex to unlock it.   But that's safe because both
1788 		 * are inside mem_hotplug_mutex.
1789 		 */
1790 		mutex_lock_nested(&ksm_thread_mutex, SINGLE_DEPTH_NESTING);
1791 		break;
1792 
1793 	case MEM_OFFLINE:
1794 		/*
1795 		 * Most of the work is done by page migration; but there might
1796 		 * be a few stable_nodes left over, still pointing to struct
1797 		 * pages which have been offlined: prune those from the tree.
1798 		 */
1799 		while ((stable_node = ksm_check_stable_tree(mn->start_pfn,
1800 					mn->start_pfn + mn->nr_pages)) != NULL)
1801 			remove_node_from_stable_tree(stable_node);
1802 		/* fallthrough */
1803 
1804 	case MEM_CANCEL_OFFLINE:
1805 		mutex_unlock(&ksm_thread_mutex);
1806 		break;
1807 	}
1808 	return NOTIFY_OK;
1809 }
1810 #endif /* CONFIG_MEMORY_HOTREMOVE */
1811 
1812 #ifdef CONFIG_SYSFS
1813 /*
1814  * This all compiles without CONFIG_SYSFS, but is a waste of space.
1815  */
1816 
1817 #define KSM_ATTR_RO(_name) \
1818 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1819 #define KSM_ATTR(_name) \
1820 	static struct kobj_attribute _name##_attr = \
1821 		__ATTR(_name, 0644, _name##_show, _name##_store)
1822 
1823 static ssize_t sleep_millisecs_show(struct kobject *kobj,
1824 				    struct kobj_attribute *attr, char *buf)
1825 {
1826 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1827 }
1828 
1829 static ssize_t sleep_millisecs_store(struct kobject *kobj,
1830 				     struct kobj_attribute *attr,
1831 				     const char *buf, size_t count)
1832 {
1833 	unsigned long msecs;
1834 	int err;
1835 
1836 	err = strict_strtoul(buf, 10, &msecs);
1837 	if (err || msecs > UINT_MAX)
1838 		return -EINVAL;
1839 
1840 	ksm_thread_sleep_millisecs = msecs;
1841 
1842 	return count;
1843 }
1844 KSM_ATTR(sleep_millisecs);
1845 
1846 static ssize_t pages_to_scan_show(struct kobject *kobj,
1847 				  struct kobj_attribute *attr, char *buf)
1848 {
1849 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1850 }
1851 
1852 static ssize_t pages_to_scan_store(struct kobject *kobj,
1853 				   struct kobj_attribute *attr,
1854 				   const char *buf, size_t count)
1855 {
1856 	int err;
1857 	unsigned long nr_pages;
1858 
1859 	err = strict_strtoul(buf, 10, &nr_pages);
1860 	if (err || nr_pages > UINT_MAX)
1861 		return -EINVAL;
1862 
1863 	ksm_thread_pages_to_scan = nr_pages;
1864 
1865 	return count;
1866 }
1867 KSM_ATTR(pages_to_scan);
1868 
1869 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1870 			char *buf)
1871 {
1872 	return sprintf(buf, "%u\n", ksm_run);
1873 }
1874 
1875 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1876 			 const char *buf, size_t count)
1877 {
1878 	int err;
1879 	unsigned long flags;
1880 
1881 	err = strict_strtoul(buf, 10, &flags);
1882 	if (err || flags > UINT_MAX)
1883 		return -EINVAL;
1884 	if (flags > KSM_RUN_UNMERGE)
1885 		return -EINVAL;
1886 
1887 	/*
1888 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1889 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1890 	 * breaking COW to free the pages_shared (but leaves mm_slots
1891 	 * on the list for when ksmd may be set running again).
1892 	 */
1893 
1894 	mutex_lock(&ksm_thread_mutex);
1895 	if (ksm_run != flags) {
1896 		ksm_run = flags;
1897 		if (flags & KSM_RUN_UNMERGE) {
1898 			int oom_score_adj;
1899 
1900 			oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
1901 			err = unmerge_and_remove_all_rmap_items();
1902 			test_set_oom_score_adj(oom_score_adj);
1903 			if (err) {
1904 				ksm_run = KSM_RUN_STOP;
1905 				count = err;
1906 			}
1907 		}
1908 	}
1909 	mutex_unlock(&ksm_thread_mutex);
1910 
1911 	if (flags & KSM_RUN_MERGE)
1912 		wake_up_interruptible(&ksm_thread_wait);
1913 
1914 	return count;
1915 }
1916 KSM_ATTR(run);
1917 
1918 static ssize_t pages_shared_show(struct kobject *kobj,
1919 				 struct kobj_attribute *attr, char *buf)
1920 {
1921 	return sprintf(buf, "%lu\n", ksm_pages_shared);
1922 }
1923 KSM_ATTR_RO(pages_shared);
1924 
1925 static ssize_t pages_sharing_show(struct kobject *kobj,
1926 				  struct kobj_attribute *attr, char *buf)
1927 {
1928 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
1929 }
1930 KSM_ATTR_RO(pages_sharing);
1931 
1932 static ssize_t pages_unshared_show(struct kobject *kobj,
1933 				   struct kobj_attribute *attr, char *buf)
1934 {
1935 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
1936 }
1937 KSM_ATTR_RO(pages_unshared);
1938 
1939 static ssize_t pages_volatile_show(struct kobject *kobj,
1940 				   struct kobj_attribute *attr, char *buf)
1941 {
1942 	long ksm_pages_volatile;
1943 
1944 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1945 				- ksm_pages_sharing - ksm_pages_unshared;
1946 	/*
1947 	 * It was not worth any locking to calculate that statistic,
1948 	 * but it might therefore sometimes be negative: conceal that.
1949 	 */
1950 	if (ksm_pages_volatile < 0)
1951 		ksm_pages_volatile = 0;
1952 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
1953 }
1954 KSM_ATTR_RO(pages_volatile);
1955 
1956 static ssize_t full_scans_show(struct kobject *kobj,
1957 			       struct kobj_attribute *attr, char *buf)
1958 {
1959 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1960 }
1961 KSM_ATTR_RO(full_scans);
1962 
1963 static struct attribute *ksm_attrs[] = {
1964 	&sleep_millisecs_attr.attr,
1965 	&pages_to_scan_attr.attr,
1966 	&run_attr.attr,
1967 	&pages_shared_attr.attr,
1968 	&pages_sharing_attr.attr,
1969 	&pages_unshared_attr.attr,
1970 	&pages_volatile_attr.attr,
1971 	&full_scans_attr.attr,
1972 	NULL,
1973 };
1974 
1975 static struct attribute_group ksm_attr_group = {
1976 	.attrs = ksm_attrs,
1977 	.name = "ksm",
1978 };
1979 #endif /* CONFIG_SYSFS */
1980 
1981 static int __init ksm_init(void)
1982 {
1983 	struct task_struct *ksm_thread;
1984 	int err;
1985 
1986 	err = ksm_slab_init();
1987 	if (err)
1988 		goto out;
1989 
1990 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1991 	if (IS_ERR(ksm_thread)) {
1992 		printk(KERN_ERR "ksm: creating kthread failed\n");
1993 		err = PTR_ERR(ksm_thread);
1994 		goto out_free;
1995 	}
1996 
1997 #ifdef CONFIG_SYSFS
1998 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1999 	if (err) {
2000 		printk(KERN_ERR "ksm: register sysfs failed\n");
2001 		kthread_stop(ksm_thread);
2002 		goto out_free;
2003 	}
2004 #else
2005 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
2006 
2007 #endif /* CONFIG_SYSFS */
2008 
2009 #ifdef CONFIG_MEMORY_HOTREMOVE
2010 	/*
2011 	 * Choose a high priority since the callback takes ksm_thread_mutex:
2012 	 * later callbacks could only be taking locks which nest within that.
2013 	 */
2014 	hotplug_memory_notifier(ksm_memory_callback, 100);
2015 #endif
2016 	return 0;
2017 
2018 out_free:
2019 	ksm_slab_free();
2020 out:
2021 	return err;
2022 }
2023 module_init(ksm_init)
2024