xref: /openbmc/linux/mm/ksm.c (revision 2504075d)
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hash.h>
37 
38 #include <asm/tlbflush.h>
39 #include "internal.h"
40 
41 /*
42  * A few notes about the KSM scanning process,
43  * to make it easier to understand the data structures below:
44  *
45  * In order to reduce excessive scanning, KSM sorts the memory pages by their
46  * contents into a data structure that holds pointers to the pages' locations.
47  *
48  * Since the contents of the pages may change at any moment, KSM cannot just
49  * insert the pages into a normal sorted tree and expect it to find anything.
50  * Therefore KSM uses two data structures - the stable and the unstable tree.
51  *
52  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
53  * by their contents.  Because each such page is write-protected, searching on
54  * this tree is fully assured to be working (except when pages are unmapped),
55  * and therefore this tree is called the stable tree.
56  *
57  * In addition to the stable tree, KSM uses a second data structure called the
58  * unstable tree: this tree holds pointers to pages which have been found to
59  * be "unchanged for a period of time".  The unstable tree sorts these pages
60  * by their contents, but since they are not write-protected, KSM cannot rely
61  * upon the unstable tree to work correctly - the unstable tree is liable to
62  * be corrupted as its contents are modified, and so it is called unstable.
63  *
64  * KSM solves this problem by several techniques:
65  *
66  * 1) The unstable tree is flushed every time KSM completes scanning all
67  *    memory areas, and then the tree is rebuilt again from the beginning.
68  * 2) KSM will only insert into the unstable tree, pages whose hash value
69  *    has not changed since the previous scan of all memory areas.
70  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
71  *    colors of the nodes and not on their contents, assuring that even when
72  *    the tree gets "corrupted" it won't get out of balance, so scanning time
73  *    remains the same (also, searching and inserting nodes in an rbtree uses
74  *    the same algorithm, so we have no overhead when we flush and rebuild).
75  * 4) KSM never flushes the stable tree, which means that even if it were to
76  *    take 10 attempts to find a page in the unstable tree, once it is found,
77  *    it is secured in the stable tree.  (When we scan a new page, we first
78  *    compare it against the stable tree, and then against the unstable tree.)
79  */
80 
81 /**
82  * struct mm_slot - ksm information per mm that is being scanned
83  * @link: link to the mm_slots hash list
84  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
85  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
86  * @mm: the mm that this information is valid for
87  */
88 struct mm_slot {
89 	struct hlist_node link;
90 	struct list_head mm_list;
91 	struct rmap_item *rmap_list;
92 	struct mm_struct *mm;
93 };
94 
95 /**
96  * struct ksm_scan - cursor for scanning
97  * @mm_slot: the current mm_slot we are scanning
98  * @address: the next address inside that to be scanned
99  * @rmap_list: link to the next rmap to be scanned in the rmap_list
100  * @seqnr: count of completed full scans (needed when removing unstable node)
101  *
102  * There is only the one ksm_scan instance of this cursor structure.
103  */
104 struct ksm_scan {
105 	struct mm_slot *mm_slot;
106 	unsigned long address;
107 	struct rmap_item **rmap_list;
108 	unsigned long seqnr;
109 };
110 
111 /**
112  * struct stable_node - node of the stable rbtree
113  * @node: rb node of this ksm page in the stable tree
114  * @hlist: hlist head of rmap_items using this ksm page
115  * @kpfn: page frame number of this ksm page
116  */
117 struct stable_node {
118 	struct rb_node node;
119 	struct hlist_head hlist;
120 	unsigned long kpfn;
121 };
122 
123 /**
124  * struct rmap_item - reverse mapping item for virtual addresses
125  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
126  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
127  * @mm: the memory structure this rmap_item is pointing into
128  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
129  * @oldchecksum: previous checksum of the page at that virtual address
130  * @node: rb node of this rmap_item in the unstable tree
131  * @head: pointer to stable_node heading this list in the stable tree
132  * @hlist: link into hlist of rmap_items hanging off that stable_node
133  */
134 struct rmap_item {
135 	struct rmap_item *rmap_list;
136 	struct anon_vma *anon_vma;	/* when stable */
137 	struct mm_struct *mm;
138 	unsigned long address;		/* + low bits used for flags below */
139 	unsigned int oldchecksum;	/* when unstable */
140 	union {
141 		struct rb_node node;	/* when node of unstable tree */
142 		struct {		/* when listed from stable tree */
143 			struct stable_node *head;
144 			struct hlist_node hlist;
145 		};
146 	};
147 };
148 
149 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
150 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
151 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
152 
153 /* The stable and unstable tree heads */
154 static struct rb_root root_stable_tree = RB_ROOT;
155 static struct rb_root root_unstable_tree = RB_ROOT;
156 
157 #define MM_SLOTS_HASH_SHIFT 10
158 #define MM_SLOTS_HASH_HEADS (1 << MM_SLOTS_HASH_SHIFT)
159 static struct hlist_head mm_slots_hash[MM_SLOTS_HASH_HEADS];
160 
161 static struct mm_slot ksm_mm_head = {
162 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
163 };
164 static struct ksm_scan ksm_scan = {
165 	.mm_slot = &ksm_mm_head,
166 };
167 
168 static struct kmem_cache *rmap_item_cache;
169 static struct kmem_cache *stable_node_cache;
170 static struct kmem_cache *mm_slot_cache;
171 
172 /* The number of nodes in the stable tree */
173 static unsigned long ksm_pages_shared;
174 
175 /* The number of page slots additionally sharing those nodes */
176 static unsigned long ksm_pages_sharing;
177 
178 /* The number of nodes in the unstable tree */
179 static unsigned long ksm_pages_unshared;
180 
181 /* The number of rmap_items in use: to calculate pages_volatile */
182 static unsigned long ksm_rmap_items;
183 
184 /* Number of pages ksmd should scan in one batch */
185 static unsigned int ksm_thread_pages_to_scan = 100;
186 
187 /* Milliseconds ksmd should sleep between batches */
188 static unsigned int ksm_thread_sleep_millisecs = 20;
189 
190 #define KSM_RUN_STOP	0
191 #define KSM_RUN_MERGE	1
192 #define KSM_RUN_UNMERGE	2
193 static unsigned int ksm_run = KSM_RUN_STOP;
194 
195 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
196 static DEFINE_MUTEX(ksm_thread_mutex);
197 static DEFINE_SPINLOCK(ksm_mmlist_lock);
198 
199 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
200 		sizeof(struct __struct), __alignof__(struct __struct),\
201 		(__flags), NULL)
202 
203 static int __init ksm_slab_init(void)
204 {
205 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
206 	if (!rmap_item_cache)
207 		goto out;
208 
209 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
210 	if (!stable_node_cache)
211 		goto out_free1;
212 
213 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
214 	if (!mm_slot_cache)
215 		goto out_free2;
216 
217 	return 0;
218 
219 out_free2:
220 	kmem_cache_destroy(stable_node_cache);
221 out_free1:
222 	kmem_cache_destroy(rmap_item_cache);
223 out:
224 	return -ENOMEM;
225 }
226 
227 static void __init ksm_slab_free(void)
228 {
229 	kmem_cache_destroy(mm_slot_cache);
230 	kmem_cache_destroy(stable_node_cache);
231 	kmem_cache_destroy(rmap_item_cache);
232 	mm_slot_cache = NULL;
233 }
234 
235 static inline struct rmap_item *alloc_rmap_item(void)
236 {
237 	struct rmap_item *rmap_item;
238 
239 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
240 	if (rmap_item)
241 		ksm_rmap_items++;
242 	return rmap_item;
243 }
244 
245 static inline void free_rmap_item(struct rmap_item *rmap_item)
246 {
247 	ksm_rmap_items--;
248 	rmap_item->mm = NULL;	/* debug safety */
249 	kmem_cache_free(rmap_item_cache, rmap_item);
250 }
251 
252 static inline struct stable_node *alloc_stable_node(void)
253 {
254 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
255 }
256 
257 static inline void free_stable_node(struct stable_node *stable_node)
258 {
259 	kmem_cache_free(stable_node_cache, stable_node);
260 }
261 
262 static inline struct mm_slot *alloc_mm_slot(void)
263 {
264 	if (!mm_slot_cache)	/* initialization failed */
265 		return NULL;
266 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
267 }
268 
269 static inline void free_mm_slot(struct mm_slot *mm_slot)
270 {
271 	kmem_cache_free(mm_slot_cache, mm_slot);
272 }
273 
274 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
275 {
276 	struct mm_slot *mm_slot;
277 	struct hlist_head *bucket;
278 	struct hlist_node *node;
279 
280 	bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
281 	hlist_for_each_entry(mm_slot, node, bucket, link) {
282 		if (mm == mm_slot->mm)
283 			return mm_slot;
284 	}
285 	return NULL;
286 }
287 
288 static void insert_to_mm_slots_hash(struct mm_struct *mm,
289 				    struct mm_slot *mm_slot)
290 {
291 	struct hlist_head *bucket;
292 
293 	bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
294 	mm_slot->mm = mm;
295 	hlist_add_head(&mm_slot->link, bucket);
296 }
297 
298 static inline int in_stable_tree(struct rmap_item *rmap_item)
299 {
300 	return rmap_item->address & STABLE_FLAG;
301 }
302 
303 static void hold_anon_vma(struct rmap_item *rmap_item,
304 			  struct anon_vma *anon_vma)
305 {
306 	rmap_item->anon_vma = anon_vma;
307 	get_anon_vma(anon_vma);
308 }
309 
310 static void ksm_drop_anon_vma(struct rmap_item *rmap_item)
311 {
312 	struct anon_vma *anon_vma = rmap_item->anon_vma;
313 
314 	drop_anon_vma(anon_vma);
315 }
316 
317 /*
318  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
319  * page tables after it has passed through ksm_exit() - which, if necessary,
320  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
321  * a special flag: they can just back out as soon as mm_users goes to zero.
322  * ksm_test_exit() is used throughout to make this test for exit: in some
323  * places for correctness, in some places just to avoid unnecessary work.
324  */
325 static inline bool ksm_test_exit(struct mm_struct *mm)
326 {
327 	return atomic_read(&mm->mm_users) == 0;
328 }
329 
330 /*
331  * We use break_ksm to break COW on a ksm page: it's a stripped down
332  *
333  *	if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
334  *		put_page(page);
335  *
336  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
337  * in case the application has unmapped and remapped mm,addr meanwhile.
338  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
339  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
340  */
341 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
342 {
343 	struct page *page;
344 	int ret = 0;
345 
346 	do {
347 		cond_resched();
348 		page = follow_page(vma, addr, FOLL_GET);
349 		if (IS_ERR_OR_NULL(page))
350 			break;
351 		if (PageKsm(page))
352 			ret = handle_mm_fault(vma->vm_mm, vma, addr,
353 							FAULT_FLAG_WRITE);
354 		else
355 			ret = VM_FAULT_WRITE;
356 		put_page(page);
357 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
358 	/*
359 	 * We must loop because handle_mm_fault() may back out if there's
360 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
361 	 *
362 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
363 	 * COW has been broken, even if the vma does not permit VM_WRITE;
364 	 * but note that a concurrent fault might break PageKsm for us.
365 	 *
366 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
367 	 * backing file, which also invalidates anonymous pages: that's
368 	 * okay, that truncation will have unmapped the PageKsm for us.
369 	 *
370 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
371 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
372 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
373 	 * to user; and ksmd, having no mm, would never be chosen for that.
374 	 *
375 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
376 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
377 	 * even ksmd can fail in this way - though it's usually breaking ksm
378 	 * just to undo a merge it made a moment before, so unlikely to oom.
379 	 *
380 	 * That's a pity: we might therefore have more kernel pages allocated
381 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
382 	 * will retry to break_cow on each pass, so should recover the page
383 	 * in due course.  The important thing is to not let VM_MERGEABLE
384 	 * be cleared while any such pages might remain in the area.
385 	 */
386 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
387 }
388 
389 static void break_cow(struct rmap_item *rmap_item)
390 {
391 	struct mm_struct *mm = rmap_item->mm;
392 	unsigned long addr = rmap_item->address;
393 	struct vm_area_struct *vma;
394 
395 	/*
396 	 * It is not an accident that whenever we want to break COW
397 	 * to undo, we also need to drop a reference to the anon_vma.
398 	 */
399 	ksm_drop_anon_vma(rmap_item);
400 
401 	down_read(&mm->mmap_sem);
402 	if (ksm_test_exit(mm))
403 		goto out;
404 	vma = find_vma(mm, addr);
405 	if (!vma || vma->vm_start > addr)
406 		goto out;
407 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
408 		goto out;
409 	break_ksm(vma, addr);
410 out:
411 	up_read(&mm->mmap_sem);
412 }
413 
414 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
415 {
416 	struct mm_struct *mm = rmap_item->mm;
417 	unsigned long addr = rmap_item->address;
418 	struct vm_area_struct *vma;
419 	struct page *page;
420 
421 	down_read(&mm->mmap_sem);
422 	if (ksm_test_exit(mm))
423 		goto out;
424 	vma = find_vma(mm, addr);
425 	if (!vma || vma->vm_start > addr)
426 		goto out;
427 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
428 		goto out;
429 
430 	page = follow_page(vma, addr, FOLL_GET);
431 	if (IS_ERR_OR_NULL(page))
432 		goto out;
433 	if (PageAnon(page)) {
434 		flush_anon_page(vma, page, addr);
435 		flush_dcache_page(page);
436 	} else {
437 		put_page(page);
438 out:		page = NULL;
439 	}
440 	up_read(&mm->mmap_sem);
441 	return page;
442 }
443 
444 static void remove_node_from_stable_tree(struct stable_node *stable_node)
445 {
446 	struct rmap_item *rmap_item;
447 	struct hlist_node *hlist;
448 
449 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
450 		if (rmap_item->hlist.next)
451 			ksm_pages_sharing--;
452 		else
453 			ksm_pages_shared--;
454 		ksm_drop_anon_vma(rmap_item);
455 		rmap_item->address &= PAGE_MASK;
456 		cond_resched();
457 	}
458 
459 	rb_erase(&stable_node->node, &root_stable_tree);
460 	free_stable_node(stable_node);
461 }
462 
463 /*
464  * get_ksm_page: checks if the page indicated by the stable node
465  * is still its ksm page, despite having held no reference to it.
466  * In which case we can trust the content of the page, and it
467  * returns the gotten page; but if the page has now been zapped,
468  * remove the stale node from the stable tree and return NULL.
469  *
470  * You would expect the stable_node to hold a reference to the ksm page.
471  * But if it increments the page's count, swapping out has to wait for
472  * ksmd to come around again before it can free the page, which may take
473  * seconds or even minutes: much too unresponsive.  So instead we use a
474  * "keyhole reference": access to the ksm page from the stable node peeps
475  * out through its keyhole to see if that page still holds the right key,
476  * pointing back to this stable node.  This relies on freeing a PageAnon
477  * page to reset its page->mapping to NULL, and relies on no other use of
478  * a page to put something that might look like our key in page->mapping.
479  *
480  * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
481  * but this is different - made simpler by ksm_thread_mutex being held, but
482  * interesting for assuming that no other use of the struct page could ever
483  * put our expected_mapping into page->mapping (or a field of the union which
484  * coincides with page->mapping).  The RCU calls are not for KSM at all, but
485  * to keep the page_count protocol described with page_cache_get_speculative.
486  *
487  * Note: it is possible that get_ksm_page() will return NULL one moment,
488  * then page the next, if the page is in between page_freeze_refs() and
489  * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
490  * is on its way to being freed; but it is an anomaly to bear in mind.
491  */
492 static struct page *get_ksm_page(struct stable_node *stable_node)
493 {
494 	struct page *page;
495 	void *expected_mapping;
496 
497 	page = pfn_to_page(stable_node->kpfn);
498 	expected_mapping = (void *)stable_node +
499 				(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
500 	rcu_read_lock();
501 	if (page->mapping != expected_mapping)
502 		goto stale;
503 	if (!get_page_unless_zero(page))
504 		goto stale;
505 	if (page->mapping != expected_mapping) {
506 		put_page(page);
507 		goto stale;
508 	}
509 	rcu_read_unlock();
510 	return page;
511 stale:
512 	rcu_read_unlock();
513 	remove_node_from_stable_tree(stable_node);
514 	return NULL;
515 }
516 
517 /*
518  * Removing rmap_item from stable or unstable tree.
519  * This function will clean the information from the stable/unstable tree.
520  */
521 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
522 {
523 	if (rmap_item->address & STABLE_FLAG) {
524 		struct stable_node *stable_node;
525 		struct page *page;
526 
527 		stable_node = rmap_item->head;
528 		page = get_ksm_page(stable_node);
529 		if (!page)
530 			goto out;
531 
532 		lock_page(page);
533 		hlist_del(&rmap_item->hlist);
534 		unlock_page(page);
535 		put_page(page);
536 
537 		if (stable_node->hlist.first)
538 			ksm_pages_sharing--;
539 		else
540 			ksm_pages_shared--;
541 
542 		ksm_drop_anon_vma(rmap_item);
543 		rmap_item->address &= PAGE_MASK;
544 
545 	} else if (rmap_item->address & UNSTABLE_FLAG) {
546 		unsigned char age;
547 		/*
548 		 * Usually ksmd can and must skip the rb_erase, because
549 		 * root_unstable_tree was already reset to RB_ROOT.
550 		 * But be careful when an mm is exiting: do the rb_erase
551 		 * if this rmap_item was inserted by this scan, rather
552 		 * than left over from before.
553 		 */
554 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
555 		BUG_ON(age > 1);
556 		if (!age)
557 			rb_erase(&rmap_item->node, &root_unstable_tree);
558 
559 		ksm_pages_unshared--;
560 		rmap_item->address &= PAGE_MASK;
561 	}
562 out:
563 	cond_resched();		/* we're called from many long loops */
564 }
565 
566 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
567 				       struct rmap_item **rmap_list)
568 {
569 	while (*rmap_list) {
570 		struct rmap_item *rmap_item = *rmap_list;
571 		*rmap_list = rmap_item->rmap_list;
572 		remove_rmap_item_from_tree(rmap_item);
573 		free_rmap_item(rmap_item);
574 	}
575 }
576 
577 /*
578  * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
579  * than check every pte of a given vma, the locking doesn't quite work for
580  * that - an rmap_item is assigned to the stable tree after inserting ksm
581  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
582  * rmap_items from parent to child at fork time (so as not to waste time
583  * if exit comes before the next scan reaches it).
584  *
585  * Similarly, although we'd like to remove rmap_items (so updating counts
586  * and freeing memory) when unmerging an area, it's easier to leave that
587  * to the next pass of ksmd - consider, for example, how ksmd might be
588  * in cmp_and_merge_page on one of the rmap_items we would be removing.
589  */
590 static int unmerge_ksm_pages(struct vm_area_struct *vma,
591 			     unsigned long start, unsigned long end)
592 {
593 	unsigned long addr;
594 	int err = 0;
595 
596 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
597 		if (ksm_test_exit(vma->vm_mm))
598 			break;
599 		if (signal_pending(current))
600 			err = -ERESTARTSYS;
601 		else
602 			err = break_ksm(vma, addr);
603 	}
604 	return err;
605 }
606 
607 #ifdef CONFIG_SYSFS
608 /*
609  * Only called through the sysfs control interface:
610  */
611 static int unmerge_and_remove_all_rmap_items(void)
612 {
613 	struct mm_slot *mm_slot;
614 	struct mm_struct *mm;
615 	struct vm_area_struct *vma;
616 	int err = 0;
617 
618 	spin_lock(&ksm_mmlist_lock);
619 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
620 						struct mm_slot, mm_list);
621 	spin_unlock(&ksm_mmlist_lock);
622 
623 	for (mm_slot = ksm_scan.mm_slot;
624 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
625 		mm = mm_slot->mm;
626 		down_read(&mm->mmap_sem);
627 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
628 			if (ksm_test_exit(mm))
629 				break;
630 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
631 				continue;
632 			err = unmerge_ksm_pages(vma,
633 						vma->vm_start, vma->vm_end);
634 			if (err)
635 				goto error;
636 		}
637 
638 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
639 
640 		spin_lock(&ksm_mmlist_lock);
641 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
642 						struct mm_slot, mm_list);
643 		if (ksm_test_exit(mm)) {
644 			hlist_del(&mm_slot->link);
645 			list_del(&mm_slot->mm_list);
646 			spin_unlock(&ksm_mmlist_lock);
647 
648 			free_mm_slot(mm_slot);
649 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
650 			up_read(&mm->mmap_sem);
651 			mmdrop(mm);
652 		} else {
653 			spin_unlock(&ksm_mmlist_lock);
654 			up_read(&mm->mmap_sem);
655 		}
656 	}
657 
658 	ksm_scan.seqnr = 0;
659 	return 0;
660 
661 error:
662 	up_read(&mm->mmap_sem);
663 	spin_lock(&ksm_mmlist_lock);
664 	ksm_scan.mm_slot = &ksm_mm_head;
665 	spin_unlock(&ksm_mmlist_lock);
666 	return err;
667 }
668 #endif /* CONFIG_SYSFS */
669 
670 static u32 calc_checksum(struct page *page)
671 {
672 	u32 checksum;
673 	void *addr = kmap_atomic(page, KM_USER0);
674 	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
675 	kunmap_atomic(addr, KM_USER0);
676 	return checksum;
677 }
678 
679 static int memcmp_pages(struct page *page1, struct page *page2)
680 {
681 	char *addr1, *addr2;
682 	int ret;
683 
684 	addr1 = kmap_atomic(page1, KM_USER0);
685 	addr2 = kmap_atomic(page2, KM_USER1);
686 	ret = memcmp(addr1, addr2, PAGE_SIZE);
687 	kunmap_atomic(addr2, KM_USER1);
688 	kunmap_atomic(addr1, KM_USER0);
689 	return ret;
690 }
691 
692 static inline int pages_identical(struct page *page1, struct page *page2)
693 {
694 	return !memcmp_pages(page1, page2);
695 }
696 
697 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
698 			      pte_t *orig_pte)
699 {
700 	struct mm_struct *mm = vma->vm_mm;
701 	unsigned long addr;
702 	pte_t *ptep;
703 	spinlock_t *ptl;
704 	int swapped;
705 	int err = -EFAULT;
706 
707 	addr = page_address_in_vma(page, vma);
708 	if (addr == -EFAULT)
709 		goto out;
710 
711 	ptep = page_check_address(page, mm, addr, &ptl, 0);
712 	if (!ptep)
713 		goto out;
714 
715 	if (pte_write(*ptep) || pte_dirty(*ptep)) {
716 		pte_t entry;
717 
718 		swapped = PageSwapCache(page);
719 		flush_cache_page(vma, addr, page_to_pfn(page));
720 		/*
721 		 * Ok this is tricky, when get_user_pages_fast() run it doesnt
722 		 * take any lock, therefore the check that we are going to make
723 		 * with the pagecount against the mapcount is racey and
724 		 * O_DIRECT can happen right after the check.
725 		 * So we clear the pte and flush the tlb before the check
726 		 * this assure us that no O_DIRECT can happen after the check
727 		 * or in the middle of the check.
728 		 */
729 		entry = ptep_clear_flush(vma, addr, ptep);
730 		/*
731 		 * Check that no O_DIRECT or similar I/O is in progress on the
732 		 * page
733 		 */
734 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
735 			set_pte_at(mm, addr, ptep, entry);
736 			goto out_unlock;
737 		}
738 		if (pte_dirty(entry))
739 			set_page_dirty(page);
740 		entry = pte_mkclean(pte_wrprotect(entry));
741 		set_pte_at_notify(mm, addr, ptep, entry);
742 	}
743 	*orig_pte = *ptep;
744 	err = 0;
745 
746 out_unlock:
747 	pte_unmap_unlock(ptep, ptl);
748 out:
749 	return err;
750 }
751 
752 /**
753  * replace_page - replace page in vma by new ksm page
754  * @vma:      vma that holds the pte pointing to page
755  * @page:     the page we are replacing by kpage
756  * @kpage:    the ksm page we replace page by
757  * @orig_pte: the original value of the pte
758  *
759  * Returns 0 on success, -EFAULT on failure.
760  */
761 static int replace_page(struct vm_area_struct *vma, struct page *page,
762 			struct page *kpage, pte_t orig_pte)
763 {
764 	struct mm_struct *mm = vma->vm_mm;
765 	pgd_t *pgd;
766 	pud_t *pud;
767 	pmd_t *pmd;
768 	pte_t *ptep;
769 	spinlock_t *ptl;
770 	unsigned long addr;
771 	int err = -EFAULT;
772 
773 	addr = page_address_in_vma(page, vma);
774 	if (addr == -EFAULT)
775 		goto out;
776 
777 	pgd = pgd_offset(mm, addr);
778 	if (!pgd_present(*pgd))
779 		goto out;
780 
781 	pud = pud_offset(pgd, addr);
782 	if (!pud_present(*pud))
783 		goto out;
784 
785 	pmd = pmd_offset(pud, addr);
786 	if (!pmd_present(*pmd))
787 		goto out;
788 
789 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
790 	if (!pte_same(*ptep, orig_pte)) {
791 		pte_unmap_unlock(ptep, ptl);
792 		goto out;
793 	}
794 
795 	get_page(kpage);
796 	page_add_anon_rmap(kpage, vma, addr);
797 
798 	flush_cache_page(vma, addr, pte_pfn(*ptep));
799 	ptep_clear_flush(vma, addr, ptep);
800 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
801 
802 	page_remove_rmap(page);
803 	put_page(page);
804 
805 	pte_unmap_unlock(ptep, ptl);
806 	err = 0;
807 out:
808 	return err;
809 }
810 
811 /*
812  * try_to_merge_one_page - take two pages and merge them into one
813  * @vma: the vma that holds the pte pointing to page
814  * @page: the PageAnon page that we want to replace with kpage
815  * @kpage: the PageKsm page that we want to map instead of page,
816  *         or NULL the first time when we want to use page as kpage.
817  *
818  * This function returns 0 if the pages were merged, -EFAULT otherwise.
819  */
820 static int try_to_merge_one_page(struct vm_area_struct *vma,
821 				 struct page *page, struct page *kpage)
822 {
823 	pte_t orig_pte = __pte(0);
824 	int err = -EFAULT;
825 
826 	if (page == kpage)			/* ksm page forked */
827 		return 0;
828 
829 	if (!(vma->vm_flags & VM_MERGEABLE))
830 		goto out;
831 	if (!PageAnon(page))
832 		goto out;
833 
834 	/*
835 	 * We need the page lock to read a stable PageSwapCache in
836 	 * write_protect_page().  We use trylock_page() instead of
837 	 * lock_page() because we don't want to wait here - we
838 	 * prefer to continue scanning and merging different pages,
839 	 * then come back to this page when it is unlocked.
840 	 */
841 	if (!trylock_page(page))
842 		goto out;
843 	/*
844 	 * If this anonymous page is mapped only here, its pte may need
845 	 * to be write-protected.  If it's mapped elsewhere, all of its
846 	 * ptes are necessarily already write-protected.  But in either
847 	 * case, we need to lock and check page_count is not raised.
848 	 */
849 	if (write_protect_page(vma, page, &orig_pte) == 0) {
850 		if (!kpage) {
851 			/*
852 			 * While we hold page lock, upgrade page from
853 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
854 			 * stable_tree_insert() will update stable_node.
855 			 */
856 			set_page_stable_node(page, NULL);
857 			mark_page_accessed(page);
858 			err = 0;
859 		} else if (pages_identical(page, kpage))
860 			err = replace_page(vma, page, kpage, orig_pte);
861 	}
862 
863 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
864 		munlock_vma_page(page);
865 		if (!PageMlocked(kpage)) {
866 			unlock_page(page);
867 			lock_page(kpage);
868 			mlock_vma_page(kpage);
869 			page = kpage;		/* for final unlock */
870 		}
871 	}
872 
873 	unlock_page(page);
874 out:
875 	return err;
876 }
877 
878 /*
879  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
880  * but no new kernel page is allocated: kpage must already be a ksm page.
881  *
882  * This function returns 0 if the pages were merged, -EFAULT otherwise.
883  */
884 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
885 				      struct page *page, struct page *kpage)
886 {
887 	struct mm_struct *mm = rmap_item->mm;
888 	struct vm_area_struct *vma;
889 	int err = -EFAULT;
890 
891 	down_read(&mm->mmap_sem);
892 	if (ksm_test_exit(mm))
893 		goto out;
894 	vma = find_vma(mm, rmap_item->address);
895 	if (!vma || vma->vm_start > rmap_item->address)
896 		goto out;
897 
898 	err = try_to_merge_one_page(vma, page, kpage);
899 	if (err)
900 		goto out;
901 
902 	/* Must get reference to anon_vma while still holding mmap_sem */
903 	hold_anon_vma(rmap_item, vma->anon_vma);
904 out:
905 	up_read(&mm->mmap_sem);
906 	return err;
907 }
908 
909 /*
910  * try_to_merge_two_pages - take two identical pages and prepare them
911  * to be merged into one page.
912  *
913  * This function returns the kpage if we successfully merged two identical
914  * pages into one ksm page, NULL otherwise.
915  *
916  * Note that this function upgrades page to ksm page: if one of the pages
917  * is already a ksm page, try_to_merge_with_ksm_page should be used.
918  */
919 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
920 					   struct page *page,
921 					   struct rmap_item *tree_rmap_item,
922 					   struct page *tree_page)
923 {
924 	int err;
925 
926 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
927 	if (!err) {
928 		err = try_to_merge_with_ksm_page(tree_rmap_item,
929 							tree_page, page);
930 		/*
931 		 * If that fails, we have a ksm page with only one pte
932 		 * pointing to it: so break it.
933 		 */
934 		if (err)
935 			break_cow(rmap_item);
936 	}
937 	return err ? NULL : page;
938 }
939 
940 /*
941  * stable_tree_search - search for page inside the stable tree
942  *
943  * This function checks if there is a page inside the stable tree
944  * with identical content to the page that we are scanning right now.
945  *
946  * This function returns the stable tree node of identical content if found,
947  * NULL otherwise.
948  */
949 static struct page *stable_tree_search(struct page *page)
950 {
951 	struct rb_node *node = root_stable_tree.rb_node;
952 	struct stable_node *stable_node;
953 
954 	stable_node = page_stable_node(page);
955 	if (stable_node) {			/* ksm page forked */
956 		get_page(page);
957 		return page;
958 	}
959 
960 	while (node) {
961 		struct page *tree_page;
962 		int ret;
963 
964 		cond_resched();
965 		stable_node = rb_entry(node, struct stable_node, node);
966 		tree_page = get_ksm_page(stable_node);
967 		if (!tree_page)
968 			return NULL;
969 
970 		ret = memcmp_pages(page, tree_page);
971 
972 		if (ret < 0) {
973 			put_page(tree_page);
974 			node = node->rb_left;
975 		} else if (ret > 0) {
976 			put_page(tree_page);
977 			node = node->rb_right;
978 		} else
979 			return tree_page;
980 	}
981 
982 	return NULL;
983 }
984 
985 /*
986  * stable_tree_insert - insert rmap_item pointing to new ksm page
987  * into the stable tree.
988  *
989  * This function returns the stable tree node just allocated on success,
990  * NULL otherwise.
991  */
992 static struct stable_node *stable_tree_insert(struct page *kpage)
993 {
994 	struct rb_node **new = &root_stable_tree.rb_node;
995 	struct rb_node *parent = NULL;
996 	struct stable_node *stable_node;
997 
998 	while (*new) {
999 		struct page *tree_page;
1000 		int ret;
1001 
1002 		cond_resched();
1003 		stable_node = rb_entry(*new, struct stable_node, node);
1004 		tree_page = get_ksm_page(stable_node);
1005 		if (!tree_page)
1006 			return NULL;
1007 
1008 		ret = memcmp_pages(kpage, tree_page);
1009 		put_page(tree_page);
1010 
1011 		parent = *new;
1012 		if (ret < 0)
1013 			new = &parent->rb_left;
1014 		else if (ret > 0)
1015 			new = &parent->rb_right;
1016 		else {
1017 			/*
1018 			 * It is not a bug that stable_tree_search() didn't
1019 			 * find this node: because at that time our page was
1020 			 * not yet write-protected, so may have changed since.
1021 			 */
1022 			return NULL;
1023 		}
1024 	}
1025 
1026 	stable_node = alloc_stable_node();
1027 	if (!stable_node)
1028 		return NULL;
1029 
1030 	rb_link_node(&stable_node->node, parent, new);
1031 	rb_insert_color(&stable_node->node, &root_stable_tree);
1032 
1033 	INIT_HLIST_HEAD(&stable_node->hlist);
1034 
1035 	stable_node->kpfn = page_to_pfn(kpage);
1036 	set_page_stable_node(kpage, stable_node);
1037 
1038 	return stable_node;
1039 }
1040 
1041 /*
1042  * unstable_tree_search_insert - search for identical page,
1043  * else insert rmap_item into the unstable tree.
1044  *
1045  * This function searches for a page in the unstable tree identical to the
1046  * page currently being scanned; and if no identical page is found in the
1047  * tree, we insert rmap_item as a new object into the unstable tree.
1048  *
1049  * This function returns pointer to rmap_item found to be identical
1050  * to the currently scanned page, NULL otherwise.
1051  *
1052  * This function does both searching and inserting, because they share
1053  * the same walking algorithm in an rbtree.
1054  */
1055 static
1056 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1057 					      struct page *page,
1058 					      struct page **tree_pagep)
1059 
1060 {
1061 	struct rb_node **new = &root_unstable_tree.rb_node;
1062 	struct rb_node *parent = NULL;
1063 
1064 	while (*new) {
1065 		struct rmap_item *tree_rmap_item;
1066 		struct page *tree_page;
1067 		int ret;
1068 
1069 		cond_resched();
1070 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1071 		tree_page = get_mergeable_page(tree_rmap_item);
1072 		if (IS_ERR_OR_NULL(tree_page))
1073 			return NULL;
1074 
1075 		/*
1076 		 * Don't substitute a ksm page for a forked page.
1077 		 */
1078 		if (page == tree_page) {
1079 			put_page(tree_page);
1080 			return NULL;
1081 		}
1082 
1083 		ret = memcmp_pages(page, tree_page);
1084 
1085 		parent = *new;
1086 		if (ret < 0) {
1087 			put_page(tree_page);
1088 			new = &parent->rb_left;
1089 		} else if (ret > 0) {
1090 			put_page(tree_page);
1091 			new = &parent->rb_right;
1092 		} else {
1093 			*tree_pagep = tree_page;
1094 			return tree_rmap_item;
1095 		}
1096 	}
1097 
1098 	rmap_item->address |= UNSTABLE_FLAG;
1099 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1100 	rb_link_node(&rmap_item->node, parent, new);
1101 	rb_insert_color(&rmap_item->node, &root_unstable_tree);
1102 
1103 	ksm_pages_unshared++;
1104 	return NULL;
1105 }
1106 
1107 /*
1108  * stable_tree_append - add another rmap_item to the linked list of
1109  * rmap_items hanging off a given node of the stable tree, all sharing
1110  * the same ksm page.
1111  */
1112 static void stable_tree_append(struct rmap_item *rmap_item,
1113 			       struct stable_node *stable_node)
1114 {
1115 	rmap_item->head = stable_node;
1116 	rmap_item->address |= STABLE_FLAG;
1117 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1118 
1119 	if (rmap_item->hlist.next)
1120 		ksm_pages_sharing++;
1121 	else
1122 		ksm_pages_shared++;
1123 }
1124 
1125 /*
1126  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1127  * if not, compare checksum to previous and if it's the same, see if page can
1128  * be inserted into the unstable tree, or merged with a page already there and
1129  * both transferred to the stable tree.
1130  *
1131  * @page: the page that we are searching identical page to.
1132  * @rmap_item: the reverse mapping into the virtual address of this page
1133  */
1134 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1135 {
1136 	struct rmap_item *tree_rmap_item;
1137 	struct page *tree_page = NULL;
1138 	struct stable_node *stable_node;
1139 	struct page *kpage;
1140 	unsigned int checksum;
1141 	int err;
1142 
1143 	remove_rmap_item_from_tree(rmap_item);
1144 
1145 	/* We first start with searching the page inside the stable tree */
1146 	kpage = stable_tree_search(page);
1147 	if (kpage) {
1148 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1149 		if (!err) {
1150 			/*
1151 			 * The page was successfully merged:
1152 			 * add its rmap_item to the stable tree.
1153 			 */
1154 			lock_page(kpage);
1155 			stable_tree_append(rmap_item, page_stable_node(kpage));
1156 			unlock_page(kpage);
1157 		}
1158 		put_page(kpage);
1159 		return;
1160 	}
1161 
1162 	/*
1163 	 * If the hash value of the page has changed from the last time
1164 	 * we calculated it, this page is changing frequently: therefore we
1165 	 * don't want to insert it in the unstable tree, and we don't want
1166 	 * to waste our time searching for something identical to it there.
1167 	 */
1168 	checksum = calc_checksum(page);
1169 	if (rmap_item->oldchecksum != checksum) {
1170 		rmap_item->oldchecksum = checksum;
1171 		return;
1172 	}
1173 
1174 	tree_rmap_item =
1175 		unstable_tree_search_insert(rmap_item, page, &tree_page);
1176 	if (tree_rmap_item) {
1177 		kpage = try_to_merge_two_pages(rmap_item, page,
1178 						tree_rmap_item, tree_page);
1179 		put_page(tree_page);
1180 		/*
1181 		 * As soon as we merge this page, we want to remove the
1182 		 * rmap_item of the page we have merged with from the unstable
1183 		 * tree, and insert it instead as new node in the stable tree.
1184 		 */
1185 		if (kpage) {
1186 			remove_rmap_item_from_tree(tree_rmap_item);
1187 
1188 			lock_page(kpage);
1189 			stable_node = stable_tree_insert(kpage);
1190 			if (stable_node) {
1191 				stable_tree_append(tree_rmap_item, stable_node);
1192 				stable_tree_append(rmap_item, stable_node);
1193 			}
1194 			unlock_page(kpage);
1195 
1196 			/*
1197 			 * If we fail to insert the page into the stable tree,
1198 			 * we will have 2 virtual addresses that are pointing
1199 			 * to a ksm page left outside the stable tree,
1200 			 * in which case we need to break_cow on both.
1201 			 */
1202 			if (!stable_node) {
1203 				break_cow(tree_rmap_item);
1204 				break_cow(rmap_item);
1205 			}
1206 		}
1207 	}
1208 }
1209 
1210 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1211 					    struct rmap_item **rmap_list,
1212 					    unsigned long addr)
1213 {
1214 	struct rmap_item *rmap_item;
1215 
1216 	while (*rmap_list) {
1217 		rmap_item = *rmap_list;
1218 		if ((rmap_item->address & PAGE_MASK) == addr)
1219 			return rmap_item;
1220 		if (rmap_item->address > addr)
1221 			break;
1222 		*rmap_list = rmap_item->rmap_list;
1223 		remove_rmap_item_from_tree(rmap_item);
1224 		free_rmap_item(rmap_item);
1225 	}
1226 
1227 	rmap_item = alloc_rmap_item();
1228 	if (rmap_item) {
1229 		/* It has already been zeroed */
1230 		rmap_item->mm = mm_slot->mm;
1231 		rmap_item->address = addr;
1232 		rmap_item->rmap_list = *rmap_list;
1233 		*rmap_list = rmap_item;
1234 	}
1235 	return rmap_item;
1236 }
1237 
1238 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1239 {
1240 	struct mm_struct *mm;
1241 	struct mm_slot *slot;
1242 	struct vm_area_struct *vma;
1243 	struct rmap_item *rmap_item;
1244 
1245 	if (list_empty(&ksm_mm_head.mm_list))
1246 		return NULL;
1247 
1248 	slot = ksm_scan.mm_slot;
1249 	if (slot == &ksm_mm_head) {
1250 		root_unstable_tree = RB_ROOT;
1251 
1252 		spin_lock(&ksm_mmlist_lock);
1253 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1254 		ksm_scan.mm_slot = slot;
1255 		spin_unlock(&ksm_mmlist_lock);
1256 next_mm:
1257 		ksm_scan.address = 0;
1258 		ksm_scan.rmap_list = &slot->rmap_list;
1259 	}
1260 
1261 	mm = slot->mm;
1262 	down_read(&mm->mmap_sem);
1263 	if (ksm_test_exit(mm))
1264 		vma = NULL;
1265 	else
1266 		vma = find_vma(mm, ksm_scan.address);
1267 
1268 	for (; vma; vma = vma->vm_next) {
1269 		if (!(vma->vm_flags & VM_MERGEABLE))
1270 			continue;
1271 		if (ksm_scan.address < vma->vm_start)
1272 			ksm_scan.address = vma->vm_start;
1273 		if (!vma->anon_vma)
1274 			ksm_scan.address = vma->vm_end;
1275 
1276 		while (ksm_scan.address < vma->vm_end) {
1277 			if (ksm_test_exit(mm))
1278 				break;
1279 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1280 			if (!IS_ERR_OR_NULL(*page) && PageAnon(*page)) {
1281 				flush_anon_page(vma, *page, ksm_scan.address);
1282 				flush_dcache_page(*page);
1283 				rmap_item = get_next_rmap_item(slot,
1284 					ksm_scan.rmap_list, ksm_scan.address);
1285 				if (rmap_item) {
1286 					ksm_scan.rmap_list =
1287 							&rmap_item->rmap_list;
1288 					ksm_scan.address += PAGE_SIZE;
1289 				} else
1290 					put_page(*page);
1291 				up_read(&mm->mmap_sem);
1292 				return rmap_item;
1293 			}
1294 			if (!IS_ERR_OR_NULL(*page))
1295 				put_page(*page);
1296 			ksm_scan.address += PAGE_SIZE;
1297 			cond_resched();
1298 		}
1299 	}
1300 
1301 	if (ksm_test_exit(mm)) {
1302 		ksm_scan.address = 0;
1303 		ksm_scan.rmap_list = &slot->rmap_list;
1304 	}
1305 	/*
1306 	 * Nuke all the rmap_items that are above this current rmap:
1307 	 * because there were no VM_MERGEABLE vmas with such addresses.
1308 	 */
1309 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1310 
1311 	spin_lock(&ksm_mmlist_lock);
1312 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1313 						struct mm_slot, mm_list);
1314 	if (ksm_scan.address == 0) {
1315 		/*
1316 		 * We've completed a full scan of all vmas, holding mmap_sem
1317 		 * throughout, and found no VM_MERGEABLE: so do the same as
1318 		 * __ksm_exit does to remove this mm from all our lists now.
1319 		 * This applies either when cleaning up after __ksm_exit
1320 		 * (but beware: we can reach here even before __ksm_exit),
1321 		 * or when all VM_MERGEABLE areas have been unmapped (and
1322 		 * mmap_sem then protects against race with MADV_MERGEABLE).
1323 		 */
1324 		hlist_del(&slot->link);
1325 		list_del(&slot->mm_list);
1326 		spin_unlock(&ksm_mmlist_lock);
1327 
1328 		free_mm_slot(slot);
1329 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1330 		up_read(&mm->mmap_sem);
1331 		mmdrop(mm);
1332 	} else {
1333 		spin_unlock(&ksm_mmlist_lock);
1334 		up_read(&mm->mmap_sem);
1335 	}
1336 
1337 	/* Repeat until we've completed scanning the whole list */
1338 	slot = ksm_scan.mm_slot;
1339 	if (slot != &ksm_mm_head)
1340 		goto next_mm;
1341 
1342 	ksm_scan.seqnr++;
1343 	return NULL;
1344 }
1345 
1346 /**
1347  * ksm_do_scan  - the ksm scanner main worker function.
1348  * @scan_npages - number of pages we want to scan before we return.
1349  */
1350 static void ksm_do_scan(unsigned int scan_npages)
1351 {
1352 	struct rmap_item *rmap_item;
1353 	struct page *uninitialized_var(page);
1354 
1355 	while (scan_npages--) {
1356 		cond_resched();
1357 		rmap_item = scan_get_next_rmap_item(&page);
1358 		if (!rmap_item)
1359 			return;
1360 		if (!PageKsm(page) || !in_stable_tree(rmap_item))
1361 			cmp_and_merge_page(page, rmap_item);
1362 		put_page(page);
1363 	}
1364 }
1365 
1366 static int ksmd_should_run(void)
1367 {
1368 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1369 }
1370 
1371 static int ksm_scan_thread(void *nothing)
1372 {
1373 	set_user_nice(current, 5);
1374 
1375 	while (!kthread_should_stop()) {
1376 		mutex_lock(&ksm_thread_mutex);
1377 		if (ksmd_should_run())
1378 			ksm_do_scan(ksm_thread_pages_to_scan);
1379 		mutex_unlock(&ksm_thread_mutex);
1380 
1381 		if (ksmd_should_run()) {
1382 			schedule_timeout_interruptible(
1383 				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1384 		} else {
1385 			wait_event_interruptible(ksm_thread_wait,
1386 				ksmd_should_run() || kthread_should_stop());
1387 		}
1388 	}
1389 	return 0;
1390 }
1391 
1392 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1393 		unsigned long end, int advice, unsigned long *vm_flags)
1394 {
1395 	struct mm_struct *mm = vma->vm_mm;
1396 	int err;
1397 
1398 	switch (advice) {
1399 	case MADV_MERGEABLE:
1400 		/*
1401 		 * Be somewhat over-protective for now!
1402 		 */
1403 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1404 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1405 				 VM_RESERVED  | VM_HUGETLB | VM_INSERTPAGE |
1406 				 VM_NONLINEAR | VM_MIXEDMAP | VM_SAO))
1407 			return 0;		/* just ignore the advice */
1408 
1409 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1410 			err = __ksm_enter(mm);
1411 			if (err)
1412 				return err;
1413 		}
1414 
1415 		*vm_flags |= VM_MERGEABLE;
1416 		break;
1417 
1418 	case MADV_UNMERGEABLE:
1419 		if (!(*vm_flags & VM_MERGEABLE))
1420 			return 0;		/* just ignore the advice */
1421 
1422 		if (vma->anon_vma) {
1423 			err = unmerge_ksm_pages(vma, start, end);
1424 			if (err)
1425 				return err;
1426 		}
1427 
1428 		*vm_flags &= ~VM_MERGEABLE;
1429 		break;
1430 	}
1431 
1432 	return 0;
1433 }
1434 
1435 int __ksm_enter(struct mm_struct *mm)
1436 {
1437 	struct mm_slot *mm_slot;
1438 	int needs_wakeup;
1439 
1440 	mm_slot = alloc_mm_slot();
1441 	if (!mm_slot)
1442 		return -ENOMEM;
1443 
1444 	/* Check ksm_run too?  Would need tighter locking */
1445 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1446 
1447 	spin_lock(&ksm_mmlist_lock);
1448 	insert_to_mm_slots_hash(mm, mm_slot);
1449 	/*
1450 	 * Insert just behind the scanning cursor, to let the area settle
1451 	 * down a little; when fork is followed by immediate exec, we don't
1452 	 * want ksmd to waste time setting up and tearing down an rmap_list.
1453 	 */
1454 	list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1455 	spin_unlock(&ksm_mmlist_lock);
1456 
1457 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1458 	atomic_inc(&mm->mm_count);
1459 
1460 	if (needs_wakeup)
1461 		wake_up_interruptible(&ksm_thread_wait);
1462 
1463 	return 0;
1464 }
1465 
1466 void __ksm_exit(struct mm_struct *mm)
1467 {
1468 	struct mm_slot *mm_slot;
1469 	int easy_to_free = 0;
1470 
1471 	/*
1472 	 * This process is exiting: if it's straightforward (as is the
1473 	 * case when ksmd was never running), free mm_slot immediately.
1474 	 * But if it's at the cursor or has rmap_items linked to it, use
1475 	 * mmap_sem to synchronize with any break_cows before pagetables
1476 	 * are freed, and leave the mm_slot on the list for ksmd to free.
1477 	 * Beware: ksm may already have noticed it exiting and freed the slot.
1478 	 */
1479 
1480 	spin_lock(&ksm_mmlist_lock);
1481 	mm_slot = get_mm_slot(mm);
1482 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1483 		if (!mm_slot->rmap_list) {
1484 			hlist_del(&mm_slot->link);
1485 			list_del(&mm_slot->mm_list);
1486 			easy_to_free = 1;
1487 		} else {
1488 			list_move(&mm_slot->mm_list,
1489 				  &ksm_scan.mm_slot->mm_list);
1490 		}
1491 	}
1492 	spin_unlock(&ksm_mmlist_lock);
1493 
1494 	if (easy_to_free) {
1495 		free_mm_slot(mm_slot);
1496 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1497 		mmdrop(mm);
1498 	} else if (mm_slot) {
1499 		down_write(&mm->mmap_sem);
1500 		up_write(&mm->mmap_sem);
1501 	}
1502 }
1503 
1504 struct page *ksm_does_need_to_copy(struct page *page,
1505 			struct vm_area_struct *vma, unsigned long address)
1506 {
1507 	struct page *new_page;
1508 
1509 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1510 	if (new_page) {
1511 		copy_user_highpage(new_page, page, address, vma);
1512 
1513 		SetPageDirty(new_page);
1514 		__SetPageUptodate(new_page);
1515 		SetPageSwapBacked(new_page);
1516 		__set_page_locked(new_page);
1517 
1518 		if (page_evictable(new_page, vma))
1519 			lru_cache_add_lru(new_page, LRU_ACTIVE_ANON);
1520 		else
1521 			add_page_to_unevictable_list(new_page);
1522 	}
1523 
1524 	return new_page;
1525 }
1526 
1527 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1528 			unsigned long *vm_flags)
1529 {
1530 	struct stable_node *stable_node;
1531 	struct rmap_item *rmap_item;
1532 	struct hlist_node *hlist;
1533 	unsigned int mapcount = page_mapcount(page);
1534 	int referenced = 0;
1535 	int search_new_forks = 0;
1536 
1537 	VM_BUG_ON(!PageKsm(page));
1538 	VM_BUG_ON(!PageLocked(page));
1539 
1540 	stable_node = page_stable_node(page);
1541 	if (!stable_node)
1542 		return 0;
1543 again:
1544 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1545 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1546 		struct anon_vma_chain *vmac;
1547 		struct vm_area_struct *vma;
1548 
1549 		anon_vma_lock(anon_vma);
1550 		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1551 			vma = vmac->vma;
1552 			if (rmap_item->address < vma->vm_start ||
1553 			    rmap_item->address >= vma->vm_end)
1554 				continue;
1555 			/*
1556 			 * Initially we examine only the vma which covers this
1557 			 * rmap_item; but later, if there is still work to do,
1558 			 * we examine covering vmas in other mms: in case they
1559 			 * were forked from the original since ksmd passed.
1560 			 */
1561 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1562 				continue;
1563 
1564 			if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1565 				continue;
1566 
1567 			referenced += page_referenced_one(page, vma,
1568 				rmap_item->address, &mapcount, vm_flags);
1569 			if (!search_new_forks || !mapcount)
1570 				break;
1571 		}
1572 		anon_vma_unlock(anon_vma);
1573 		if (!mapcount)
1574 			goto out;
1575 	}
1576 	if (!search_new_forks++)
1577 		goto again;
1578 out:
1579 	return referenced;
1580 }
1581 
1582 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1583 {
1584 	struct stable_node *stable_node;
1585 	struct hlist_node *hlist;
1586 	struct rmap_item *rmap_item;
1587 	int ret = SWAP_AGAIN;
1588 	int search_new_forks = 0;
1589 
1590 	VM_BUG_ON(!PageKsm(page));
1591 	VM_BUG_ON(!PageLocked(page));
1592 
1593 	stable_node = page_stable_node(page);
1594 	if (!stable_node)
1595 		return SWAP_FAIL;
1596 again:
1597 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1598 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1599 		struct anon_vma_chain *vmac;
1600 		struct vm_area_struct *vma;
1601 
1602 		anon_vma_lock(anon_vma);
1603 		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1604 			vma = vmac->vma;
1605 			if (rmap_item->address < vma->vm_start ||
1606 			    rmap_item->address >= vma->vm_end)
1607 				continue;
1608 			/*
1609 			 * Initially we examine only the vma which covers this
1610 			 * rmap_item; but later, if there is still work to do,
1611 			 * we examine covering vmas in other mms: in case they
1612 			 * were forked from the original since ksmd passed.
1613 			 */
1614 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1615 				continue;
1616 
1617 			ret = try_to_unmap_one(page, vma,
1618 					rmap_item->address, flags);
1619 			if (ret != SWAP_AGAIN || !page_mapped(page)) {
1620 				anon_vma_unlock(anon_vma);
1621 				goto out;
1622 			}
1623 		}
1624 		anon_vma_unlock(anon_vma);
1625 	}
1626 	if (!search_new_forks++)
1627 		goto again;
1628 out:
1629 	return ret;
1630 }
1631 
1632 #ifdef CONFIG_MIGRATION
1633 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1634 		  struct vm_area_struct *, unsigned long, void *), void *arg)
1635 {
1636 	struct stable_node *stable_node;
1637 	struct hlist_node *hlist;
1638 	struct rmap_item *rmap_item;
1639 	int ret = SWAP_AGAIN;
1640 	int search_new_forks = 0;
1641 
1642 	VM_BUG_ON(!PageKsm(page));
1643 	VM_BUG_ON(!PageLocked(page));
1644 
1645 	stable_node = page_stable_node(page);
1646 	if (!stable_node)
1647 		return ret;
1648 again:
1649 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1650 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1651 		struct anon_vma_chain *vmac;
1652 		struct vm_area_struct *vma;
1653 
1654 		anon_vma_lock(anon_vma);
1655 		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1656 			vma = vmac->vma;
1657 			if (rmap_item->address < vma->vm_start ||
1658 			    rmap_item->address >= vma->vm_end)
1659 				continue;
1660 			/*
1661 			 * Initially we examine only the vma which covers this
1662 			 * rmap_item; but later, if there is still work to do,
1663 			 * we examine covering vmas in other mms: in case they
1664 			 * were forked from the original since ksmd passed.
1665 			 */
1666 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1667 				continue;
1668 
1669 			ret = rmap_one(page, vma, rmap_item->address, arg);
1670 			if (ret != SWAP_AGAIN) {
1671 				anon_vma_unlock(anon_vma);
1672 				goto out;
1673 			}
1674 		}
1675 		anon_vma_unlock(anon_vma);
1676 	}
1677 	if (!search_new_forks++)
1678 		goto again;
1679 out:
1680 	return ret;
1681 }
1682 
1683 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1684 {
1685 	struct stable_node *stable_node;
1686 
1687 	VM_BUG_ON(!PageLocked(oldpage));
1688 	VM_BUG_ON(!PageLocked(newpage));
1689 	VM_BUG_ON(newpage->mapping != oldpage->mapping);
1690 
1691 	stable_node = page_stable_node(newpage);
1692 	if (stable_node) {
1693 		VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
1694 		stable_node->kpfn = page_to_pfn(newpage);
1695 	}
1696 }
1697 #endif /* CONFIG_MIGRATION */
1698 
1699 #ifdef CONFIG_MEMORY_HOTREMOVE
1700 static struct stable_node *ksm_check_stable_tree(unsigned long start_pfn,
1701 						 unsigned long end_pfn)
1702 {
1703 	struct rb_node *node;
1704 
1705 	for (node = rb_first(&root_stable_tree); node; node = rb_next(node)) {
1706 		struct stable_node *stable_node;
1707 
1708 		stable_node = rb_entry(node, struct stable_node, node);
1709 		if (stable_node->kpfn >= start_pfn &&
1710 		    stable_node->kpfn < end_pfn)
1711 			return stable_node;
1712 	}
1713 	return NULL;
1714 }
1715 
1716 static int ksm_memory_callback(struct notifier_block *self,
1717 			       unsigned long action, void *arg)
1718 {
1719 	struct memory_notify *mn = arg;
1720 	struct stable_node *stable_node;
1721 
1722 	switch (action) {
1723 	case MEM_GOING_OFFLINE:
1724 		/*
1725 		 * Keep it very simple for now: just lock out ksmd and
1726 		 * MADV_UNMERGEABLE while any memory is going offline.
1727 		 */
1728 		mutex_lock(&ksm_thread_mutex);
1729 		break;
1730 
1731 	case MEM_OFFLINE:
1732 		/*
1733 		 * Most of the work is done by page migration; but there might
1734 		 * be a few stable_nodes left over, still pointing to struct
1735 		 * pages which have been offlined: prune those from the tree.
1736 		 */
1737 		while ((stable_node = ksm_check_stable_tree(mn->start_pfn,
1738 					mn->start_pfn + mn->nr_pages)) != NULL)
1739 			remove_node_from_stable_tree(stable_node);
1740 		/* fallthrough */
1741 
1742 	case MEM_CANCEL_OFFLINE:
1743 		mutex_unlock(&ksm_thread_mutex);
1744 		break;
1745 	}
1746 	return NOTIFY_OK;
1747 }
1748 #endif /* CONFIG_MEMORY_HOTREMOVE */
1749 
1750 #ifdef CONFIG_SYSFS
1751 /*
1752  * This all compiles without CONFIG_SYSFS, but is a waste of space.
1753  */
1754 
1755 #define KSM_ATTR_RO(_name) \
1756 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1757 #define KSM_ATTR(_name) \
1758 	static struct kobj_attribute _name##_attr = \
1759 		__ATTR(_name, 0644, _name##_show, _name##_store)
1760 
1761 static ssize_t sleep_millisecs_show(struct kobject *kobj,
1762 				    struct kobj_attribute *attr, char *buf)
1763 {
1764 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1765 }
1766 
1767 static ssize_t sleep_millisecs_store(struct kobject *kobj,
1768 				     struct kobj_attribute *attr,
1769 				     const char *buf, size_t count)
1770 {
1771 	unsigned long msecs;
1772 	int err;
1773 
1774 	err = strict_strtoul(buf, 10, &msecs);
1775 	if (err || msecs > UINT_MAX)
1776 		return -EINVAL;
1777 
1778 	ksm_thread_sleep_millisecs = msecs;
1779 
1780 	return count;
1781 }
1782 KSM_ATTR(sleep_millisecs);
1783 
1784 static ssize_t pages_to_scan_show(struct kobject *kobj,
1785 				  struct kobj_attribute *attr, char *buf)
1786 {
1787 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1788 }
1789 
1790 static ssize_t pages_to_scan_store(struct kobject *kobj,
1791 				   struct kobj_attribute *attr,
1792 				   const char *buf, size_t count)
1793 {
1794 	int err;
1795 	unsigned long nr_pages;
1796 
1797 	err = strict_strtoul(buf, 10, &nr_pages);
1798 	if (err || nr_pages > UINT_MAX)
1799 		return -EINVAL;
1800 
1801 	ksm_thread_pages_to_scan = nr_pages;
1802 
1803 	return count;
1804 }
1805 KSM_ATTR(pages_to_scan);
1806 
1807 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1808 			char *buf)
1809 {
1810 	return sprintf(buf, "%u\n", ksm_run);
1811 }
1812 
1813 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1814 			 const char *buf, size_t count)
1815 {
1816 	int err;
1817 	unsigned long flags;
1818 
1819 	err = strict_strtoul(buf, 10, &flags);
1820 	if (err || flags > UINT_MAX)
1821 		return -EINVAL;
1822 	if (flags > KSM_RUN_UNMERGE)
1823 		return -EINVAL;
1824 
1825 	/*
1826 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1827 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1828 	 * breaking COW to free the pages_shared (but leaves mm_slots
1829 	 * on the list for when ksmd may be set running again).
1830 	 */
1831 
1832 	mutex_lock(&ksm_thread_mutex);
1833 	if (ksm_run != flags) {
1834 		ksm_run = flags;
1835 		if (flags & KSM_RUN_UNMERGE) {
1836 			current->flags |= PF_OOM_ORIGIN;
1837 			err = unmerge_and_remove_all_rmap_items();
1838 			current->flags &= ~PF_OOM_ORIGIN;
1839 			if (err) {
1840 				ksm_run = KSM_RUN_STOP;
1841 				count = err;
1842 			}
1843 		}
1844 	}
1845 	mutex_unlock(&ksm_thread_mutex);
1846 
1847 	if (flags & KSM_RUN_MERGE)
1848 		wake_up_interruptible(&ksm_thread_wait);
1849 
1850 	return count;
1851 }
1852 KSM_ATTR(run);
1853 
1854 static ssize_t pages_shared_show(struct kobject *kobj,
1855 				 struct kobj_attribute *attr, char *buf)
1856 {
1857 	return sprintf(buf, "%lu\n", ksm_pages_shared);
1858 }
1859 KSM_ATTR_RO(pages_shared);
1860 
1861 static ssize_t pages_sharing_show(struct kobject *kobj,
1862 				  struct kobj_attribute *attr, char *buf)
1863 {
1864 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
1865 }
1866 KSM_ATTR_RO(pages_sharing);
1867 
1868 static ssize_t pages_unshared_show(struct kobject *kobj,
1869 				   struct kobj_attribute *attr, char *buf)
1870 {
1871 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
1872 }
1873 KSM_ATTR_RO(pages_unshared);
1874 
1875 static ssize_t pages_volatile_show(struct kobject *kobj,
1876 				   struct kobj_attribute *attr, char *buf)
1877 {
1878 	long ksm_pages_volatile;
1879 
1880 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1881 				- ksm_pages_sharing - ksm_pages_unshared;
1882 	/*
1883 	 * It was not worth any locking to calculate that statistic,
1884 	 * but it might therefore sometimes be negative: conceal that.
1885 	 */
1886 	if (ksm_pages_volatile < 0)
1887 		ksm_pages_volatile = 0;
1888 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
1889 }
1890 KSM_ATTR_RO(pages_volatile);
1891 
1892 static ssize_t full_scans_show(struct kobject *kobj,
1893 			       struct kobj_attribute *attr, char *buf)
1894 {
1895 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1896 }
1897 KSM_ATTR_RO(full_scans);
1898 
1899 static struct attribute *ksm_attrs[] = {
1900 	&sleep_millisecs_attr.attr,
1901 	&pages_to_scan_attr.attr,
1902 	&run_attr.attr,
1903 	&pages_shared_attr.attr,
1904 	&pages_sharing_attr.attr,
1905 	&pages_unshared_attr.attr,
1906 	&pages_volatile_attr.attr,
1907 	&full_scans_attr.attr,
1908 	NULL,
1909 };
1910 
1911 static struct attribute_group ksm_attr_group = {
1912 	.attrs = ksm_attrs,
1913 	.name = "ksm",
1914 };
1915 #endif /* CONFIG_SYSFS */
1916 
1917 static int __init ksm_init(void)
1918 {
1919 	struct task_struct *ksm_thread;
1920 	int err;
1921 
1922 	err = ksm_slab_init();
1923 	if (err)
1924 		goto out;
1925 
1926 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1927 	if (IS_ERR(ksm_thread)) {
1928 		printk(KERN_ERR "ksm: creating kthread failed\n");
1929 		err = PTR_ERR(ksm_thread);
1930 		goto out_free;
1931 	}
1932 
1933 #ifdef CONFIG_SYSFS
1934 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1935 	if (err) {
1936 		printk(KERN_ERR "ksm: register sysfs failed\n");
1937 		kthread_stop(ksm_thread);
1938 		goto out_free;
1939 	}
1940 #else
1941 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
1942 
1943 #endif /* CONFIG_SYSFS */
1944 
1945 #ifdef CONFIG_MEMORY_HOTREMOVE
1946 	/*
1947 	 * Choose a high priority since the callback takes ksm_thread_mutex:
1948 	 * later callbacks could only be taking locks which nest within that.
1949 	 */
1950 	hotplug_memory_notifier(ksm_memory_callback, 100);
1951 #endif
1952 	return 0;
1953 
1954 out_free:
1955 	ksm_slab_free();
1956 out:
1957 	return err;
1958 }
1959 module_init(ksm_init)
1960