1 /* 2 * Memory merging support. 3 * 4 * This code enables dynamic sharing of identical pages found in different 5 * memory areas, even if they are not shared by fork() 6 * 7 * Copyright (C) 2008-2009 Red Hat, Inc. 8 * Authors: 9 * Izik Eidus 10 * Andrea Arcangeli 11 * Chris Wright 12 * Hugh Dickins 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/coredump.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/jhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 43 #include <asm/tlbflush.h> 44 #include "internal.h" 45 46 #ifdef CONFIG_NUMA 47 #define NUMA(x) (x) 48 #define DO_NUMA(x) do { (x); } while (0) 49 #else 50 #define NUMA(x) (0) 51 #define DO_NUMA(x) do { } while (0) 52 #endif 53 54 /* 55 * A few notes about the KSM scanning process, 56 * to make it easier to understand the data structures below: 57 * 58 * In order to reduce excessive scanning, KSM sorts the memory pages by their 59 * contents into a data structure that holds pointers to the pages' locations. 60 * 61 * Since the contents of the pages may change at any moment, KSM cannot just 62 * insert the pages into a normal sorted tree and expect it to find anything. 63 * Therefore KSM uses two data structures - the stable and the unstable tree. 64 * 65 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 66 * by their contents. Because each such page is write-protected, searching on 67 * this tree is fully assured to be working (except when pages are unmapped), 68 * and therefore this tree is called the stable tree. 69 * 70 * In addition to the stable tree, KSM uses a second data structure called the 71 * unstable tree: this tree holds pointers to pages which have been found to 72 * be "unchanged for a period of time". The unstable tree sorts these pages 73 * by their contents, but since they are not write-protected, KSM cannot rely 74 * upon the unstable tree to work correctly - the unstable tree is liable to 75 * be corrupted as its contents are modified, and so it is called unstable. 76 * 77 * KSM solves this problem by several techniques: 78 * 79 * 1) The unstable tree is flushed every time KSM completes scanning all 80 * memory areas, and then the tree is rebuilt again from the beginning. 81 * 2) KSM will only insert into the unstable tree, pages whose hash value 82 * has not changed since the previous scan of all memory areas. 83 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 84 * colors of the nodes and not on their contents, assuring that even when 85 * the tree gets "corrupted" it won't get out of balance, so scanning time 86 * remains the same (also, searching and inserting nodes in an rbtree uses 87 * the same algorithm, so we have no overhead when we flush and rebuild). 88 * 4) KSM never flushes the stable tree, which means that even if it were to 89 * take 10 attempts to find a page in the unstable tree, once it is found, 90 * it is secured in the stable tree. (When we scan a new page, we first 91 * compare it against the stable tree, and then against the unstable tree.) 92 * 93 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 94 * stable trees and multiple unstable trees: one of each for each NUMA node. 95 */ 96 97 /** 98 * struct mm_slot - ksm information per mm that is being scanned 99 * @link: link to the mm_slots hash list 100 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 101 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 102 * @mm: the mm that this information is valid for 103 */ 104 struct mm_slot { 105 struct hlist_node link; 106 struct list_head mm_list; 107 struct rmap_item *rmap_list; 108 struct mm_struct *mm; 109 }; 110 111 /** 112 * struct ksm_scan - cursor for scanning 113 * @mm_slot: the current mm_slot we are scanning 114 * @address: the next address inside that to be scanned 115 * @rmap_list: link to the next rmap to be scanned in the rmap_list 116 * @seqnr: count of completed full scans (needed when removing unstable node) 117 * 118 * There is only the one ksm_scan instance of this cursor structure. 119 */ 120 struct ksm_scan { 121 struct mm_slot *mm_slot; 122 unsigned long address; 123 struct rmap_item **rmap_list; 124 unsigned long seqnr; 125 }; 126 127 /** 128 * struct stable_node - node of the stable rbtree 129 * @node: rb node of this ksm page in the stable tree 130 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 131 * @list: linked into migrate_nodes, pending placement in the proper node tree 132 * @hlist: hlist head of rmap_items using this ksm page 133 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 134 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 135 */ 136 struct stable_node { 137 union { 138 struct rb_node node; /* when node of stable tree */ 139 struct { /* when listed for migration */ 140 struct list_head *head; 141 struct list_head list; 142 }; 143 }; 144 struct hlist_head hlist; 145 unsigned long kpfn; 146 #ifdef CONFIG_NUMA 147 int nid; 148 #endif 149 }; 150 151 /** 152 * struct rmap_item - reverse mapping item for virtual addresses 153 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 154 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 155 * @nid: NUMA node id of unstable tree in which linked (may not match page) 156 * @mm: the memory structure this rmap_item is pointing into 157 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 158 * @oldchecksum: previous checksum of the page at that virtual address 159 * @node: rb node of this rmap_item in the unstable tree 160 * @head: pointer to stable_node heading this list in the stable tree 161 * @hlist: link into hlist of rmap_items hanging off that stable_node 162 */ 163 struct rmap_item { 164 struct rmap_item *rmap_list; 165 union { 166 struct anon_vma *anon_vma; /* when stable */ 167 #ifdef CONFIG_NUMA 168 int nid; /* when node of unstable tree */ 169 #endif 170 }; 171 struct mm_struct *mm; 172 unsigned long address; /* + low bits used for flags below */ 173 unsigned int oldchecksum; /* when unstable */ 174 union { 175 struct rb_node node; /* when node of unstable tree */ 176 struct { /* when listed from stable tree */ 177 struct stable_node *head; 178 struct hlist_node hlist; 179 }; 180 }; 181 }; 182 183 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 184 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 185 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 186 187 /* The stable and unstable tree heads */ 188 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 189 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 190 static struct rb_root *root_stable_tree = one_stable_tree; 191 static struct rb_root *root_unstable_tree = one_unstable_tree; 192 193 /* Recently migrated nodes of stable tree, pending proper placement */ 194 static LIST_HEAD(migrate_nodes); 195 196 #define MM_SLOTS_HASH_BITS 10 197 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 198 199 static struct mm_slot ksm_mm_head = { 200 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 201 }; 202 static struct ksm_scan ksm_scan = { 203 .mm_slot = &ksm_mm_head, 204 }; 205 206 static struct kmem_cache *rmap_item_cache; 207 static struct kmem_cache *stable_node_cache; 208 static struct kmem_cache *mm_slot_cache; 209 210 /* The number of nodes in the stable tree */ 211 static unsigned long ksm_pages_shared; 212 213 /* The number of page slots additionally sharing those nodes */ 214 static unsigned long ksm_pages_sharing; 215 216 /* The number of nodes in the unstable tree */ 217 static unsigned long ksm_pages_unshared; 218 219 /* The number of rmap_items in use: to calculate pages_volatile */ 220 static unsigned long ksm_rmap_items; 221 222 /* Number of pages ksmd should scan in one batch */ 223 static unsigned int ksm_thread_pages_to_scan = 100; 224 225 /* Milliseconds ksmd should sleep between batches */ 226 static unsigned int ksm_thread_sleep_millisecs = 20; 227 228 /* Checksum of an empty (zeroed) page */ 229 static unsigned int zero_checksum __read_mostly; 230 231 /* Whether to merge empty (zeroed) pages with actual zero pages */ 232 static bool ksm_use_zero_pages __read_mostly; 233 234 #ifdef CONFIG_NUMA 235 /* Zeroed when merging across nodes is not allowed */ 236 static unsigned int ksm_merge_across_nodes = 1; 237 static int ksm_nr_node_ids = 1; 238 #else 239 #define ksm_merge_across_nodes 1U 240 #define ksm_nr_node_ids 1 241 #endif 242 243 #define KSM_RUN_STOP 0 244 #define KSM_RUN_MERGE 1 245 #define KSM_RUN_UNMERGE 2 246 #define KSM_RUN_OFFLINE 4 247 static unsigned long ksm_run = KSM_RUN_STOP; 248 static void wait_while_offlining(void); 249 250 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 251 static DEFINE_MUTEX(ksm_thread_mutex); 252 static DEFINE_SPINLOCK(ksm_mmlist_lock); 253 254 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 255 sizeof(struct __struct), __alignof__(struct __struct),\ 256 (__flags), NULL) 257 258 static int __init ksm_slab_init(void) 259 { 260 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 261 if (!rmap_item_cache) 262 goto out; 263 264 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 265 if (!stable_node_cache) 266 goto out_free1; 267 268 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 269 if (!mm_slot_cache) 270 goto out_free2; 271 272 return 0; 273 274 out_free2: 275 kmem_cache_destroy(stable_node_cache); 276 out_free1: 277 kmem_cache_destroy(rmap_item_cache); 278 out: 279 return -ENOMEM; 280 } 281 282 static void __init ksm_slab_free(void) 283 { 284 kmem_cache_destroy(mm_slot_cache); 285 kmem_cache_destroy(stable_node_cache); 286 kmem_cache_destroy(rmap_item_cache); 287 mm_slot_cache = NULL; 288 } 289 290 static inline struct rmap_item *alloc_rmap_item(void) 291 { 292 struct rmap_item *rmap_item; 293 294 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 295 __GFP_NORETRY | __GFP_NOWARN); 296 if (rmap_item) 297 ksm_rmap_items++; 298 return rmap_item; 299 } 300 301 static inline void free_rmap_item(struct rmap_item *rmap_item) 302 { 303 ksm_rmap_items--; 304 rmap_item->mm = NULL; /* debug safety */ 305 kmem_cache_free(rmap_item_cache, rmap_item); 306 } 307 308 static inline struct stable_node *alloc_stable_node(void) 309 { 310 /* 311 * The allocation can take too long with GFP_KERNEL when memory is under 312 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 313 * grants access to memory reserves, helping to avoid this problem. 314 */ 315 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 316 } 317 318 static inline void free_stable_node(struct stable_node *stable_node) 319 { 320 kmem_cache_free(stable_node_cache, stable_node); 321 } 322 323 static inline struct mm_slot *alloc_mm_slot(void) 324 { 325 if (!mm_slot_cache) /* initialization failed */ 326 return NULL; 327 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 328 } 329 330 static inline void free_mm_slot(struct mm_slot *mm_slot) 331 { 332 kmem_cache_free(mm_slot_cache, mm_slot); 333 } 334 335 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 336 { 337 struct mm_slot *slot; 338 339 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 340 if (slot->mm == mm) 341 return slot; 342 343 return NULL; 344 } 345 346 static void insert_to_mm_slots_hash(struct mm_struct *mm, 347 struct mm_slot *mm_slot) 348 { 349 mm_slot->mm = mm; 350 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 351 } 352 353 /* 354 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 355 * page tables after it has passed through ksm_exit() - which, if necessary, 356 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set 357 * a special flag: they can just back out as soon as mm_users goes to zero. 358 * ksm_test_exit() is used throughout to make this test for exit: in some 359 * places for correctness, in some places just to avoid unnecessary work. 360 */ 361 static inline bool ksm_test_exit(struct mm_struct *mm) 362 { 363 return atomic_read(&mm->mm_users) == 0; 364 } 365 366 /* 367 * We use break_ksm to break COW on a ksm page: it's a stripped down 368 * 369 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1) 370 * put_page(page); 371 * 372 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 373 * in case the application has unmapped and remapped mm,addr meanwhile. 374 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 375 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. 376 * 377 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 378 * of the process that owns 'vma'. We also do not want to enforce 379 * protection keys here anyway. 380 */ 381 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 382 { 383 struct page *page; 384 int ret = 0; 385 386 do { 387 cond_resched(); 388 page = follow_page(vma, addr, 389 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 390 if (IS_ERR_OR_NULL(page)) 391 break; 392 if (PageKsm(page)) 393 ret = handle_mm_fault(vma, addr, 394 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE); 395 else 396 ret = VM_FAULT_WRITE; 397 put_page(page); 398 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 399 /* 400 * We must loop because handle_mm_fault() may back out if there's 401 * any difficulty e.g. if pte accessed bit gets updated concurrently. 402 * 403 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 404 * COW has been broken, even if the vma does not permit VM_WRITE; 405 * but note that a concurrent fault might break PageKsm for us. 406 * 407 * VM_FAULT_SIGBUS could occur if we race with truncation of the 408 * backing file, which also invalidates anonymous pages: that's 409 * okay, that truncation will have unmapped the PageKsm for us. 410 * 411 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 412 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 413 * current task has TIF_MEMDIE set, and will be OOM killed on return 414 * to user; and ksmd, having no mm, would never be chosen for that. 415 * 416 * But if the mm is in a limited mem_cgroup, then the fault may fail 417 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 418 * even ksmd can fail in this way - though it's usually breaking ksm 419 * just to undo a merge it made a moment before, so unlikely to oom. 420 * 421 * That's a pity: we might therefore have more kernel pages allocated 422 * than we're counting as nodes in the stable tree; but ksm_do_scan 423 * will retry to break_cow on each pass, so should recover the page 424 * in due course. The important thing is to not let VM_MERGEABLE 425 * be cleared while any such pages might remain in the area. 426 */ 427 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 428 } 429 430 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 431 unsigned long addr) 432 { 433 struct vm_area_struct *vma; 434 if (ksm_test_exit(mm)) 435 return NULL; 436 vma = find_vma(mm, addr); 437 if (!vma || vma->vm_start > addr) 438 return NULL; 439 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 440 return NULL; 441 return vma; 442 } 443 444 static void break_cow(struct rmap_item *rmap_item) 445 { 446 struct mm_struct *mm = rmap_item->mm; 447 unsigned long addr = rmap_item->address; 448 struct vm_area_struct *vma; 449 450 /* 451 * It is not an accident that whenever we want to break COW 452 * to undo, we also need to drop a reference to the anon_vma. 453 */ 454 put_anon_vma(rmap_item->anon_vma); 455 456 down_read(&mm->mmap_sem); 457 vma = find_mergeable_vma(mm, addr); 458 if (vma) 459 break_ksm(vma, addr); 460 up_read(&mm->mmap_sem); 461 } 462 463 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 464 { 465 struct mm_struct *mm = rmap_item->mm; 466 unsigned long addr = rmap_item->address; 467 struct vm_area_struct *vma; 468 struct page *page; 469 470 down_read(&mm->mmap_sem); 471 vma = find_mergeable_vma(mm, addr); 472 if (!vma) 473 goto out; 474 475 page = follow_page(vma, addr, FOLL_GET); 476 if (IS_ERR_OR_NULL(page)) 477 goto out; 478 if (PageAnon(page)) { 479 flush_anon_page(vma, page, addr); 480 flush_dcache_page(page); 481 } else { 482 put_page(page); 483 out: 484 page = NULL; 485 } 486 up_read(&mm->mmap_sem); 487 return page; 488 } 489 490 /* 491 * This helper is used for getting right index into array of tree roots. 492 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 493 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 494 * every node has its own stable and unstable tree. 495 */ 496 static inline int get_kpfn_nid(unsigned long kpfn) 497 { 498 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 499 } 500 501 static void remove_node_from_stable_tree(struct stable_node *stable_node) 502 { 503 struct rmap_item *rmap_item; 504 505 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 506 if (rmap_item->hlist.next) 507 ksm_pages_sharing--; 508 else 509 ksm_pages_shared--; 510 put_anon_vma(rmap_item->anon_vma); 511 rmap_item->address &= PAGE_MASK; 512 cond_resched(); 513 } 514 515 if (stable_node->head == &migrate_nodes) 516 list_del(&stable_node->list); 517 else 518 rb_erase(&stable_node->node, 519 root_stable_tree + NUMA(stable_node->nid)); 520 free_stable_node(stable_node); 521 } 522 523 /* 524 * get_ksm_page: checks if the page indicated by the stable node 525 * is still its ksm page, despite having held no reference to it. 526 * In which case we can trust the content of the page, and it 527 * returns the gotten page; but if the page has now been zapped, 528 * remove the stale node from the stable tree and return NULL. 529 * But beware, the stable node's page might be being migrated. 530 * 531 * You would expect the stable_node to hold a reference to the ksm page. 532 * But if it increments the page's count, swapping out has to wait for 533 * ksmd to come around again before it can free the page, which may take 534 * seconds or even minutes: much too unresponsive. So instead we use a 535 * "keyhole reference": access to the ksm page from the stable node peeps 536 * out through its keyhole to see if that page still holds the right key, 537 * pointing back to this stable node. This relies on freeing a PageAnon 538 * page to reset its page->mapping to NULL, and relies on no other use of 539 * a page to put something that might look like our key in page->mapping. 540 * is on its way to being freed; but it is an anomaly to bear in mind. 541 */ 542 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it) 543 { 544 struct page *page; 545 void *expected_mapping; 546 unsigned long kpfn; 547 548 expected_mapping = (void *)((unsigned long)stable_node | 549 PAGE_MAPPING_KSM); 550 again: 551 kpfn = READ_ONCE(stable_node->kpfn); 552 page = pfn_to_page(kpfn); 553 554 /* 555 * page is computed from kpfn, so on most architectures reading 556 * page->mapping is naturally ordered after reading node->kpfn, 557 * but on Alpha we need to be more careful. 558 */ 559 smp_read_barrier_depends(); 560 if (READ_ONCE(page->mapping) != expected_mapping) 561 goto stale; 562 563 /* 564 * We cannot do anything with the page while its refcount is 0. 565 * Usually 0 means free, or tail of a higher-order page: in which 566 * case this node is no longer referenced, and should be freed; 567 * however, it might mean that the page is under page_freeze_refs(). 568 * The __remove_mapping() case is easy, again the node is now stale; 569 * but if page is swapcache in migrate_page_move_mapping(), it might 570 * still be our page, in which case it's essential to keep the node. 571 */ 572 while (!get_page_unless_zero(page)) { 573 /* 574 * Another check for page->mapping != expected_mapping would 575 * work here too. We have chosen the !PageSwapCache test to 576 * optimize the common case, when the page is or is about to 577 * be freed: PageSwapCache is cleared (under spin_lock_irq) 578 * in the freeze_refs section of __remove_mapping(); but Anon 579 * page->mapping reset to NULL later, in free_pages_prepare(). 580 */ 581 if (!PageSwapCache(page)) 582 goto stale; 583 cpu_relax(); 584 } 585 586 if (READ_ONCE(page->mapping) != expected_mapping) { 587 put_page(page); 588 goto stale; 589 } 590 591 if (lock_it) { 592 lock_page(page); 593 if (READ_ONCE(page->mapping) != expected_mapping) { 594 unlock_page(page); 595 put_page(page); 596 goto stale; 597 } 598 } 599 return page; 600 601 stale: 602 /* 603 * We come here from above when page->mapping or !PageSwapCache 604 * suggests that the node is stale; but it might be under migration. 605 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), 606 * before checking whether node->kpfn has been changed. 607 */ 608 smp_rmb(); 609 if (READ_ONCE(stable_node->kpfn) != kpfn) 610 goto again; 611 remove_node_from_stable_tree(stable_node); 612 return NULL; 613 } 614 615 /* 616 * Removing rmap_item from stable or unstable tree. 617 * This function will clean the information from the stable/unstable tree. 618 */ 619 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 620 { 621 if (rmap_item->address & STABLE_FLAG) { 622 struct stable_node *stable_node; 623 struct page *page; 624 625 stable_node = rmap_item->head; 626 page = get_ksm_page(stable_node, true); 627 if (!page) 628 goto out; 629 630 hlist_del(&rmap_item->hlist); 631 unlock_page(page); 632 put_page(page); 633 634 if (!hlist_empty(&stable_node->hlist)) 635 ksm_pages_sharing--; 636 else 637 ksm_pages_shared--; 638 639 put_anon_vma(rmap_item->anon_vma); 640 rmap_item->address &= PAGE_MASK; 641 642 } else if (rmap_item->address & UNSTABLE_FLAG) { 643 unsigned char age; 644 /* 645 * Usually ksmd can and must skip the rb_erase, because 646 * root_unstable_tree was already reset to RB_ROOT. 647 * But be careful when an mm is exiting: do the rb_erase 648 * if this rmap_item was inserted by this scan, rather 649 * than left over from before. 650 */ 651 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 652 BUG_ON(age > 1); 653 if (!age) 654 rb_erase(&rmap_item->node, 655 root_unstable_tree + NUMA(rmap_item->nid)); 656 ksm_pages_unshared--; 657 rmap_item->address &= PAGE_MASK; 658 } 659 out: 660 cond_resched(); /* we're called from many long loops */ 661 } 662 663 static void remove_trailing_rmap_items(struct mm_slot *mm_slot, 664 struct rmap_item **rmap_list) 665 { 666 while (*rmap_list) { 667 struct rmap_item *rmap_item = *rmap_list; 668 *rmap_list = rmap_item->rmap_list; 669 remove_rmap_item_from_tree(rmap_item); 670 free_rmap_item(rmap_item); 671 } 672 } 673 674 /* 675 * Though it's very tempting to unmerge rmap_items from stable tree rather 676 * than check every pte of a given vma, the locking doesn't quite work for 677 * that - an rmap_item is assigned to the stable tree after inserting ksm 678 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing 679 * rmap_items from parent to child at fork time (so as not to waste time 680 * if exit comes before the next scan reaches it). 681 * 682 * Similarly, although we'd like to remove rmap_items (so updating counts 683 * and freeing memory) when unmerging an area, it's easier to leave that 684 * to the next pass of ksmd - consider, for example, how ksmd might be 685 * in cmp_and_merge_page on one of the rmap_items we would be removing. 686 */ 687 static int unmerge_ksm_pages(struct vm_area_struct *vma, 688 unsigned long start, unsigned long end) 689 { 690 unsigned long addr; 691 int err = 0; 692 693 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 694 if (ksm_test_exit(vma->vm_mm)) 695 break; 696 if (signal_pending(current)) 697 err = -ERESTARTSYS; 698 else 699 err = break_ksm(vma, addr); 700 } 701 return err; 702 } 703 704 #ifdef CONFIG_SYSFS 705 /* 706 * Only called through the sysfs control interface: 707 */ 708 static int remove_stable_node(struct stable_node *stable_node) 709 { 710 struct page *page; 711 int err; 712 713 page = get_ksm_page(stable_node, true); 714 if (!page) { 715 /* 716 * get_ksm_page did remove_node_from_stable_tree itself. 717 */ 718 return 0; 719 } 720 721 if (WARN_ON_ONCE(page_mapped(page))) { 722 /* 723 * This should not happen: but if it does, just refuse to let 724 * merge_across_nodes be switched - there is no need to panic. 725 */ 726 err = -EBUSY; 727 } else { 728 /* 729 * The stable node did not yet appear stale to get_ksm_page(), 730 * since that allows for an unmapped ksm page to be recognized 731 * right up until it is freed; but the node is safe to remove. 732 * This page might be in a pagevec waiting to be freed, 733 * or it might be PageSwapCache (perhaps under writeback), 734 * or it might have been removed from swapcache a moment ago. 735 */ 736 set_page_stable_node(page, NULL); 737 remove_node_from_stable_tree(stable_node); 738 err = 0; 739 } 740 741 unlock_page(page); 742 put_page(page); 743 return err; 744 } 745 746 static int remove_all_stable_nodes(void) 747 { 748 struct stable_node *stable_node, *next; 749 int nid; 750 int err = 0; 751 752 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 753 while (root_stable_tree[nid].rb_node) { 754 stable_node = rb_entry(root_stable_tree[nid].rb_node, 755 struct stable_node, node); 756 if (remove_stable_node(stable_node)) { 757 err = -EBUSY; 758 break; /* proceed to next nid */ 759 } 760 cond_resched(); 761 } 762 } 763 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 764 if (remove_stable_node(stable_node)) 765 err = -EBUSY; 766 cond_resched(); 767 } 768 return err; 769 } 770 771 static int unmerge_and_remove_all_rmap_items(void) 772 { 773 struct mm_slot *mm_slot; 774 struct mm_struct *mm; 775 struct vm_area_struct *vma; 776 int err = 0; 777 778 spin_lock(&ksm_mmlist_lock); 779 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 780 struct mm_slot, mm_list); 781 spin_unlock(&ksm_mmlist_lock); 782 783 for (mm_slot = ksm_scan.mm_slot; 784 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 785 mm = mm_slot->mm; 786 down_read(&mm->mmap_sem); 787 for (vma = mm->mmap; vma; vma = vma->vm_next) { 788 if (ksm_test_exit(mm)) 789 break; 790 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 791 continue; 792 err = unmerge_ksm_pages(vma, 793 vma->vm_start, vma->vm_end); 794 if (err) 795 goto error; 796 } 797 798 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); 799 up_read(&mm->mmap_sem); 800 801 spin_lock(&ksm_mmlist_lock); 802 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 803 struct mm_slot, mm_list); 804 if (ksm_test_exit(mm)) { 805 hash_del(&mm_slot->link); 806 list_del(&mm_slot->mm_list); 807 spin_unlock(&ksm_mmlist_lock); 808 809 free_mm_slot(mm_slot); 810 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 811 mmdrop(mm); 812 } else 813 spin_unlock(&ksm_mmlist_lock); 814 } 815 816 /* Clean up stable nodes, but don't worry if some are still busy */ 817 remove_all_stable_nodes(); 818 ksm_scan.seqnr = 0; 819 return 0; 820 821 error: 822 up_read(&mm->mmap_sem); 823 spin_lock(&ksm_mmlist_lock); 824 ksm_scan.mm_slot = &ksm_mm_head; 825 spin_unlock(&ksm_mmlist_lock); 826 return err; 827 } 828 #endif /* CONFIG_SYSFS */ 829 830 static u32 calc_checksum(struct page *page) 831 { 832 u32 checksum; 833 void *addr = kmap_atomic(page); 834 checksum = jhash2(addr, PAGE_SIZE / 4, 17); 835 kunmap_atomic(addr); 836 return checksum; 837 } 838 839 static int memcmp_pages(struct page *page1, struct page *page2) 840 { 841 char *addr1, *addr2; 842 int ret; 843 844 addr1 = kmap_atomic(page1); 845 addr2 = kmap_atomic(page2); 846 ret = memcmp(addr1, addr2, PAGE_SIZE); 847 kunmap_atomic(addr2); 848 kunmap_atomic(addr1); 849 return ret; 850 } 851 852 static inline int pages_identical(struct page *page1, struct page *page2) 853 { 854 return !memcmp_pages(page1, page2); 855 } 856 857 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 858 pte_t *orig_pte) 859 { 860 struct mm_struct *mm = vma->vm_mm; 861 struct page_vma_mapped_walk pvmw = { 862 .page = page, 863 .vma = vma, 864 }; 865 int swapped; 866 int err = -EFAULT; 867 unsigned long mmun_start; /* For mmu_notifiers */ 868 unsigned long mmun_end; /* For mmu_notifiers */ 869 870 pvmw.address = page_address_in_vma(page, vma); 871 if (pvmw.address == -EFAULT) 872 goto out; 873 874 BUG_ON(PageTransCompound(page)); 875 876 mmun_start = pvmw.address; 877 mmun_end = pvmw.address + PAGE_SIZE; 878 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 879 880 if (!page_vma_mapped_walk(&pvmw)) 881 goto out_mn; 882 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 883 goto out_unlock; 884 885 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 886 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte))) { 887 pte_t entry; 888 889 swapped = PageSwapCache(page); 890 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 891 /* 892 * Ok this is tricky, when get_user_pages_fast() run it doesn't 893 * take any lock, therefore the check that we are going to make 894 * with the pagecount against the mapcount is racey and 895 * O_DIRECT can happen right after the check. 896 * So we clear the pte and flush the tlb before the check 897 * this assure us that no O_DIRECT can happen after the check 898 * or in the middle of the check. 899 */ 900 entry = ptep_clear_flush_notify(vma, pvmw.address, pvmw.pte); 901 /* 902 * Check that no O_DIRECT or similar I/O is in progress on the 903 * page 904 */ 905 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 906 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 907 goto out_unlock; 908 } 909 if (pte_dirty(entry)) 910 set_page_dirty(page); 911 912 if (pte_protnone(entry)) 913 entry = pte_mkclean(pte_clear_savedwrite(entry)); 914 else 915 entry = pte_mkclean(pte_wrprotect(entry)); 916 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 917 } 918 *orig_pte = *pvmw.pte; 919 err = 0; 920 921 out_unlock: 922 page_vma_mapped_walk_done(&pvmw); 923 out_mn: 924 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 925 out: 926 return err; 927 } 928 929 /** 930 * replace_page - replace page in vma by new ksm page 931 * @vma: vma that holds the pte pointing to page 932 * @page: the page we are replacing by kpage 933 * @kpage: the ksm page we replace page by 934 * @orig_pte: the original value of the pte 935 * 936 * Returns 0 on success, -EFAULT on failure. 937 */ 938 static int replace_page(struct vm_area_struct *vma, struct page *page, 939 struct page *kpage, pte_t orig_pte) 940 { 941 struct mm_struct *mm = vma->vm_mm; 942 pmd_t *pmd; 943 pte_t *ptep; 944 pte_t newpte; 945 spinlock_t *ptl; 946 unsigned long addr; 947 int err = -EFAULT; 948 unsigned long mmun_start; /* For mmu_notifiers */ 949 unsigned long mmun_end; /* For mmu_notifiers */ 950 951 addr = page_address_in_vma(page, vma); 952 if (addr == -EFAULT) 953 goto out; 954 955 pmd = mm_find_pmd(mm, addr); 956 if (!pmd) 957 goto out; 958 959 mmun_start = addr; 960 mmun_end = addr + PAGE_SIZE; 961 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 962 963 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 964 if (!pte_same(*ptep, orig_pte)) { 965 pte_unmap_unlock(ptep, ptl); 966 goto out_mn; 967 } 968 969 /* 970 * No need to check ksm_use_zero_pages here: we can only have a 971 * zero_page here if ksm_use_zero_pages was enabled alreaady. 972 */ 973 if (!is_zero_pfn(page_to_pfn(kpage))) { 974 get_page(kpage); 975 page_add_anon_rmap(kpage, vma, addr, false); 976 newpte = mk_pte(kpage, vma->vm_page_prot); 977 } else { 978 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 979 vma->vm_page_prot)); 980 } 981 982 flush_cache_page(vma, addr, pte_pfn(*ptep)); 983 ptep_clear_flush_notify(vma, addr, ptep); 984 set_pte_at_notify(mm, addr, ptep, newpte); 985 986 page_remove_rmap(page, false); 987 if (!page_mapped(page)) 988 try_to_free_swap(page); 989 put_page(page); 990 991 pte_unmap_unlock(ptep, ptl); 992 err = 0; 993 out_mn: 994 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 995 out: 996 return err; 997 } 998 999 /* 1000 * try_to_merge_one_page - take two pages and merge them into one 1001 * @vma: the vma that holds the pte pointing to page 1002 * @page: the PageAnon page that we want to replace with kpage 1003 * @kpage: the PageKsm page that we want to map instead of page, 1004 * or NULL the first time when we want to use page as kpage. 1005 * 1006 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1007 */ 1008 static int try_to_merge_one_page(struct vm_area_struct *vma, 1009 struct page *page, struct page *kpage) 1010 { 1011 pte_t orig_pte = __pte(0); 1012 int err = -EFAULT; 1013 1014 if (page == kpage) /* ksm page forked */ 1015 return 0; 1016 1017 if (!PageAnon(page)) 1018 goto out; 1019 1020 /* 1021 * We need the page lock to read a stable PageSwapCache in 1022 * write_protect_page(). We use trylock_page() instead of 1023 * lock_page() because we don't want to wait here - we 1024 * prefer to continue scanning and merging different pages, 1025 * then come back to this page when it is unlocked. 1026 */ 1027 if (!trylock_page(page)) 1028 goto out; 1029 1030 if (PageTransCompound(page)) { 1031 err = split_huge_page(page); 1032 if (err) 1033 goto out_unlock; 1034 } 1035 1036 /* 1037 * If this anonymous page is mapped only here, its pte may need 1038 * to be write-protected. If it's mapped elsewhere, all of its 1039 * ptes are necessarily already write-protected. But in either 1040 * case, we need to lock and check page_count is not raised. 1041 */ 1042 if (write_protect_page(vma, page, &orig_pte) == 0) { 1043 if (!kpage) { 1044 /* 1045 * While we hold page lock, upgrade page from 1046 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1047 * stable_tree_insert() will update stable_node. 1048 */ 1049 set_page_stable_node(page, NULL); 1050 mark_page_accessed(page); 1051 /* 1052 * Page reclaim just frees a clean page with no dirty 1053 * ptes: make sure that the ksm page would be swapped. 1054 */ 1055 if (!PageDirty(page)) 1056 SetPageDirty(page); 1057 err = 0; 1058 } else if (pages_identical(page, kpage)) 1059 err = replace_page(vma, page, kpage, orig_pte); 1060 } 1061 1062 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1063 munlock_vma_page(page); 1064 if (!PageMlocked(kpage)) { 1065 unlock_page(page); 1066 lock_page(kpage); 1067 mlock_vma_page(kpage); 1068 page = kpage; /* for final unlock */ 1069 } 1070 } 1071 1072 out_unlock: 1073 unlock_page(page); 1074 out: 1075 return err; 1076 } 1077 1078 /* 1079 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1080 * but no new kernel page is allocated: kpage must already be a ksm page. 1081 * 1082 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1083 */ 1084 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1085 struct page *page, struct page *kpage) 1086 { 1087 struct mm_struct *mm = rmap_item->mm; 1088 struct vm_area_struct *vma; 1089 int err = -EFAULT; 1090 1091 down_read(&mm->mmap_sem); 1092 vma = find_mergeable_vma(mm, rmap_item->address); 1093 if (!vma) 1094 goto out; 1095 1096 err = try_to_merge_one_page(vma, page, kpage); 1097 if (err) 1098 goto out; 1099 1100 /* Unstable nid is in union with stable anon_vma: remove first */ 1101 remove_rmap_item_from_tree(rmap_item); 1102 1103 /* Must get reference to anon_vma while still holding mmap_sem */ 1104 rmap_item->anon_vma = vma->anon_vma; 1105 get_anon_vma(vma->anon_vma); 1106 out: 1107 up_read(&mm->mmap_sem); 1108 return err; 1109 } 1110 1111 /* 1112 * try_to_merge_two_pages - take two identical pages and prepare them 1113 * to be merged into one page. 1114 * 1115 * This function returns the kpage if we successfully merged two identical 1116 * pages into one ksm page, NULL otherwise. 1117 * 1118 * Note that this function upgrades page to ksm page: if one of the pages 1119 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1120 */ 1121 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1122 struct page *page, 1123 struct rmap_item *tree_rmap_item, 1124 struct page *tree_page) 1125 { 1126 int err; 1127 1128 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1129 if (!err) { 1130 err = try_to_merge_with_ksm_page(tree_rmap_item, 1131 tree_page, page); 1132 /* 1133 * If that fails, we have a ksm page with only one pte 1134 * pointing to it: so break it. 1135 */ 1136 if (err) 1137 break_cow(rmap_item); 1138 } 1139 return err ? NULL : page; 1140 } 1141 1142 /* 1143 * stable_tree_search - search for page inside the stable tree 1144 * 1145 * This function checks if there is a page inside the stable tree 1146 * with identical content to the page that we are scanning right now. 1147 * 1148 * This function returns the stable tree node of identical content if found, 1149 * NULL otherwise. 1150 */ 1151 static struct page *stable_tree_search(struct page *page) 1152 { 1153 int nid; 1154 struct rb_root *root; 1155 struct rb_node **new; 1156 struct rb_node *parent; 1157 struct stable_node *stable_node; 1158 struct stable_node *page_node; 1159 1160 page_node = page_stable_node(page); 1161 if (page_node && page_node->head != &migrate_nodes) { 1162 /* ksm page forked */ 1163 get_page(page); 1164 return page; 1165 } 1166 1167 nid = get_kpfn_nid(page_to_pfn(page)); 1168 root = root_stable_tree + nid; 1169 again: 1170 new = &root->rb_node; 1171 parent = NULL; 1172 1173 while (*new) { 1174 struct page *tree_page; 1175 int ret; 1176 1177 cond_resched(); 1178 stable_node = rb_entry(*new, struct stable_node, node); 1179 tree_page = get_ksm_page(stable_node, false); 1180 if (!tree_page) { 1181 /* 1182 * If we walked over a stale stable_node, 1183 * get_ksm_page() will call rb_erase() and it 1184 * may rebalance the tree from under us. So 1185 * restart the search from scratch. Returning 1186 * NULL would be safe too, but we'd generate 1187 * false negative insertions just because some 1188 * stable_node was stale. 1189 */ 1190 goto again; 1191 } 1192 1193 ret = memcmp_pages(page, tree_page); 1194 put_page(tree_page); 1195 1196 parent = *new; 1197 if (ret < 0) 1198 new = &parent->rb_left; 1199 else if (ret > 0) 1200 new = &parent->rb_right; 1201 else { 1202 /* 1203 * Lock and unlock the stable_node's page (which 1204 * might already have been migrated) so that page 1205 * migration is sure to notice its raised count. 1206 * It would be more elegant to return stable_node 1207 * than kpage, but that involves more changes. 1208 */ 1209 tree_page = get_ksm_page(stable_node, true); 1210 if (tree_page) { 1211 unlock_page(tree_page); 1212 if (get_kpfn_nid(stable_node->kpfn) != 1213 NUMA(stable_node->nid)) { 1214 put_page(tree_page); 1215 goto replace; 1216 } 1217 return tree_page; 1218 } 1219 /* 1220 * There is now a place for page_node, but the tree may 1221 * have been rebalanced, so re-evaluate parent and new. 1222 */ 1223 if (page_node) 1224 goto again; 1225 return NULL; 1226 } 1227 } 1228 1229 if (!page_node) 1230 return NULL; 1231 1232 list_del(&page_node->list); 1233 DO_NUMA(page_node->nid = nid); 1234 rb_link_node(&page_node->node, parent, new); 1235 rb_insert_color(&page_node->node, root); 1236 get_page(page); 1237 return page; 1238 1239 replace: 1240 if (page_node) { 1241 list_del(&page_node->list); 1242 DO_NUMA(page_node->nid = nid); 1243 rb_replace_node(&stable_node->node, &page_node->node, root); 1244 get_page(page); 1245 } else { 1246 rb_erase(&stable_node->node, root); 1247 page = NULL; 1248 } 1249 stable_node->head = &migrate_nodes; 1250 list_add(&stable_node->list, stable_node->head); 1251 return page; 1252 } 1253 1254 /* 1255 * stable_tree_insert - insert stable tree node pointing to new ksm page 1256 * into the stable tree. 1257 * 1258 * This function returns the stable tree node just allocated on success, 1259 * NULL otherwise. 1260 */ 1261 static struct stable_node *stable_tree_insert(struct page *kpage) 1262 { 1263 int nid; 1264 unsigned long kpfn; 1265 struct rb_root *root; 1266 struct rb_node **new; 1267 struct rb_node *parent; 1268 struct stable_node *stable_node; 1269 1270 kpfn = page_to_pfn(kpage); 1271 nid = get_kpfn_nid(kpfn); 1272 root = root_stable_tree + nid; 1273 again: 1274 parent = NULL; 1275 new = &root->rb_node; 1276 1277 while (*new) { 1278 struct page *tree_page; 1279 int ret; 1280 1281 cond_resched(); 1282 stable_node = rb_entry(*new, struct stable_node, node); 1283 tree_page = get_ksm_page(stable_node, false); 1284 if (!tree_page) { 1285 /* 1286 * If we walked over a stale stable_node, 1287 * get_ksm_page() will call rb_erase() and it 1288 * may rebalance the tree from under us. So 1289 * restart the search from scratch. Returning 1290 * NULL would be safe too, but we'd generate 1291 * false negative insertions just because some 1292 * stable_node was stale. 1293 */ 1294 goto again; 1295 } 1296 1297 ret = memcmp_pages(kpage, tree_page); 1298 put_page(tree_page); 1299 1300 parent = *new; 1301 if (ret < 0) 1302 new = &parent->rb_left; 1303 else if (ret > 0) 1304 new = &parent->rb_right; 1305 else { 1306 /* 1307 * It is not a bug that stable_tree_search() didn't 1308 * find this node: because at that time our page was 1309 * not yet write-protected, so may have changed since. 1310 */ 1311 return NULL; 1312 } 1313 } 1314 1315 stable_node = alloc_stable_node(); 1316 if (!stable_node) 1317 return NULL; 1318 1319 INIT_HLIST_HEAD(&stable_node->hlist); 1320 stable_node->kpfn = kpfn; 1321 set_page_stable_node(kpage, stable_node); 1322 DO_NUMA(stable_node->nid = nid); 1323 rb_link_node(&stable_node->node, parent, new); 1324 rb_insert_color(&stable_node->node, root); 1325 1326 return stable_node; 1327 } 1328 1329 /* 1330 * unstable_tree_search_insert - search for identical page, 1331 * else insert rmap_item into the unstable tree. 1332 * 1333 * This function searches for a page in the unstable tree identical to the 1334 * page currently being scanned; and if no identical page is found in the 1335 * tree, we insert rmap_item as a new object into the unstable tree. 1336 * 1337 * This function returns pointer to rmap_item found to be identical 1338 * to the currently scanned page, NULL otherwise. 1339 * 1340 * This function does both searching and inserting, because they share 1341 * the same walking algorithm in an rbtree. 1342 */ 1343 static 1344 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1345 struct page *page, 1346 struct page **tree_pagep) 1347 { 1348 struct rb_node **new; 1349 struct rb_root *root; 1350 struct rb_node *parent = NULL; 1351 int nid; 1352 1353 nid = get_kpfn_nid(page_to_pfn(page)); 1354 root = root_unstable_tree + nid; 1355 new = &root->rb_node; 1356 1357 while (*new) { 1358 struct rmap_item *tree_rmap_item; 1359 struct page *tree_page; 1360 int ret; 1361 1362 cond_resched(); 1363 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1364 tree_page = get_mergeable_page(tree_rmap_item); 1365 if (!tree_page) 1366 return NULL; 1367 1368 /* 1369 * Don't substitute a ksm page for a forked page. 1370 */ 1371 if (page == tree_page) { 1372 put_page(tree_page); 1373 return NULL; 1374 } 1375 1376 ret = memcmp_pages(page, tree_page); 1377 1378 parent = *new; 1379 if (ret < 0) { 1380 put_page(tree_page); 1381 new = &parent->rb_left; 1382 } else if (ret > 0) { 1383 put_page(tree_page); 1384 new = &parent->rb_right; 1385 } else if (!ksm_merge_across_nodes && 1386 page_to_nid(tree_page) != nid) { 1387 /* 1388 * If tree_page has been migrated to another NUMA node, 1389 * it will be flushed out and put in the right unstable 1390 * tree next time: only merge with it when across_nodes. 1391 */ 1392 put_page(tree_page); 1393 return NULL; 1394 } else { 1395 *tree_pagep = tree_page; 1396 return tree_rmap_item; 1397 } 1398 } 1399 1400 rmap_item->address |= UNSTABLE_FLAG; 1401 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1402 DO_NUMA(rmap_item->nid = nid); 1403 rb_link_node(&rmap_item->node, parent, new); 1404 rb_insert_color(&rmap_item->node, root); 1405 1406 ksm_pages_unshared++; 1407 return NULL; 1408 } 1409 1410 /* 1411 * stable_tree_append - add another rmap_item to the linked list of 1412 * rmap_items hanging off a given node of the stable tree, all sharing 1413 * the same ksm page. 1414 */ 1415 static void stable_tree_append(struct rmap_item *rmap_item, 1416 struct stable_node *stable_node) 1417 { 1418 rmap_item->head = stable_node; 1419 rmap_item->address |= STABLE_FLAG; 1420 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 1421 1422 if (rmap_item->hlist.next) 1423 ksm_pages_sharing++; 1424 else 1425 ksm_pages_shared++; 1426 } 1427 1428 /* 1429 * cmp_and_merge_page - first see if page can be merged into the stable tree; 1430 * if not, compare checksum to previous and if it's the same, see if page can 1431 * be inserted into the unstable tree, or merged with a page already there and 1432 * both transferred to the stable tree. 1433 * 1434 * @page: the page that we are searching identical page to. 1435 * @rmap_item: the reverse mapping into the virtual address of this page 1436 */ 1437 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 1438 { 1439 struct rmap_item *tree_rmap_item; 1440 struct page *tree_page = NULL; 1441 struct stable_node *stable_node; 1442 struct page *kpage; 1443 unsigned int checksum; 1444 int err; 1445 1446 stable_node = page_stable_node(page); 1447 if (stable_node) { 1448 if (stable_node->head != &migrate_nodes && 1449 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) { 1450 rb_erase(&stable_node->node, 1451 root_stable_tree + NUMA(stable_node->nid)); 1452 stable_node->head = &migrate_nodes; 1453 list_add(&stable_node->list, stable_node->head); 1454 } 1455 if (stable_node->head != &migrate_nodes && 1456 rmap_item->head == stable_node) 1457 return; 1458 } 1459 1460 /* We first start with searching the page inside the stable tree */ 1461 kpage = stable_tree_search(page); 1462 if (kpage == page && rmap_item->head == stable_node) { 1463 put_page(kpage); 1464 return; 1465 } 1466 1467 remove_rmap_item_from_tree(rmap_item); 1468 1469 if (kpage) { 1470 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 1471 if (!err) { 1472 /* 1473 * The page was successfully merged: 1474 * add its rmap_item to the stable tree. 1475 */ 1476 lock_page(kpage); 1477 stable_tree_append(rmap_item, page_stable_node(kpage)); 1478 unlock_page(kpage); 1479 } 1480 put_page(kpage); 1481 return; 1482 } 1483 1484 /* 1485 * If the hash value of the page has changed from the last time 1486 * we calculated it, this page is changing frequently: therefore we 1487 * don't want to insert it in the unstable tree, and we don't want 1488 * to waste our time searching for something identical to it there. 1489 */ 1490 checksum = calc_checksum(page); 1491 if (rmap_item->oldchecksum != checksum) { 1492 rmap_item->oldchecksum = checksum; 1493 return; 1494 } 1495 1496 /* 1497 * Same checksum as an empty page. We attempt to merge it with the 1498 * appropriate zero page if the user enabled this via sysfs. 1499 */ 1500 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 1501 struct vm_area_struct *vma; 1502 1503 vma = find_mergeable_vma(rmap_item->mm, rmap_item->address); 1504 err = try_to_merge_one_page(vma, page, 1505 ZERO_PAGE(rmap_item->address)); 1506 /* 1507 * In case of failure, the page was not really empty, so we 1508 * need to continue. Otherwise we're done. 1509 */ 1510 if (!err) 1511 return; 1512 } 1513 tree_rmap_item = 1514 unstable_tree_search_insert(rmap_item, page, &tree_page); 1515 if (tree_rmap_item) { 1516 kpage = try_to_merge_two_pages(rmap_item, page, 1517 tree_rmap_item, tree_page); 1518 put_page(tree_page); 1519 if (kpage) { 1520 /* 1521 * The pages were successfully merged: insert new 1522 * node in the stable tree and add both rmap_items. 1523 */ 1524 lock_page(kpage); 1525 stable_node = stable_tree_insert(kpage); 1526 if (stable_node) { 1527 stable_tree_append(tree_rmap_item, stable_node); 1528 stable_tree_append(rmap_item, stable_node); 1529 } 1530 unlock_page(kpage); 1531 1532 /* 1533 * If we fail to insert the page into the stable tree, 1534 * we will have 2 virtual addresses that are pointing 1535 * to a ksm page left outside the stable tree, 1536 * in which case we need to break_cow on both. 1537 */ 1538 if (!stable_node) { 1539 break_cow(tree_rmap_item); 1540 break_cow(rmap_item); 1541 } 1542 } 1543 } 1544 } 1545 1546 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 1547 struct rmap_item **rmap_list, 1548 unsigned long addr) 1549 { 1550 struct rmap_item *rmap_item; 1551 1552 while (*rmap_list) { 1553 rmap_item = *rmap_list; 1554 if ((rmap_item->address & PAGE_MASK) == addr) 1555 return rmap_item; 1556 if (rmap_item->address > addr) 1557 break; 1558 *rmap_list = rmap_item->rmap_list; 1559 remove_rmap_item_from_tree(rmap_item); 1560 free_rmap_item(rmap_item); 1561 } 1562 1563 rmap_item = alloc_rmap_item(); 1564 if (rmap_item) { 1565 /* It has already been zeroed */ 1566 rmap_item->mm = mm_slot->mm; 1567 rmap_item->address = addr; 1568 rmap_item->rmap_list = *rmap_list; 1569 *rmap_list = rmap_item; 1570 } 1571 return rmap_item; 1572 } 1573 1574 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 1575 { 1576 struct mm_struct *mm; 1577 struct mm_slot *slot; 1578 struct vm_area_struct *vma; 1579 struct rmap_item *rmap_item; 1580 int nid; 1581 1582 if (list_empty(&ksm_mm_head.mm_list)) 1583 return NULL; 1584 1585 slot = ksm_scan.mm_slot; 1586 if (slot == &ksm_mm_head) { 1587 /* 1588 * A number of pages can hang around indefinitely on per-cpu 1589 * pagevecs, raised page count preventing write_protect_page 1590 * from merging them. Though it doesn't really matter much, 1591 * it is puzzling to see some stuck in pages_volatile until 1592 * other activity jostles them out, and they also prevented 1593 * LTP's KSM test from succeeding deterministically; so drain 1594 * them here (here rather than on entry to ksm_do_scan(), 1595 * so we don't IPI too often when pages_to_scan is set low). 1596 */ 1597 lru_add_drain_all(); 1598 1599 /* 1600 * Whereas stale stable_nodes on the stable_tree itself 1601 * get pruned in the regular course of stable_tree_search(), 1602 * those moved out to the migrate_nodes list can accumulate: 1603 * so prune them once before each full scan. 1604 */ 1605 if (!ksm_merge_across_nodes) { 1606 struct stable_node *stable_node, *next; 1607 struct page *page; 1608 1609 list_for_each_entry_safe(stable_node, next, 1610 &migrate_nodes, list) { 1611 page = get_ksm_page(stable_node, false); 1612 if (page) 1613 put_page(page); 1614 cond_resched(); 1615 } 1616 } 1617 1618 for (nid = 0; nid < ksm_nr_node_ids; nid++) 1619 root_unstable_tree[nid] = RB_ROOT; 1620 1621 spin_lock(&ksm_mmlist_lock); 1622 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 1623 ksm_scan.mm_slot = slot; 1624 spin_unlock(&ksm_mmlist_lock); 1625 /* 1626 * Although we tested list_empty() above, a racing __ksm_exit 1627 * of the last mm on the list may have removed it since then. 1628 */ 1629 if (slot == &ksm_mm_head) 1630 return NULL; 1631 next_mm: 1632 ksm_scan.address = 0; 1633 ksm_scan.rmap_list = &slot->rmap_list; 1634 } 1635 1636 mm = slot->mm; 1637 down_read(&mm->mmap_sem); 1638 if (ksm_test_exit(mm)) 1639 vma = NULL; 1640 else 1641 vma = find_vma(mm, ksm_scan.address); 1642 1643 for (; vma; vma = vma->vm_next) { 1644 if (!(vma->vm_flags & VM_MERGEABLE)) 1645 continue; 1646 if (ksm_scan.address < vma->vm_start) 1647 ksm_scan.address = vma->vm_start; 1648 if (!vma->anon_vma) 1649 ksm_scan.address = vma->vm_end; 1650 1651 while (ksm_scan.address < vma->vm_end) { 1652 if (ksm_test_exit(mm)) 1653 break; 1654 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 1655 if (IS_ERR_OR_NULL(*page)) { 1656 ksm_scan.address += PAGE_SIZE; 1657 cond_resched(); 1658 continue; 1659 } 1660 if (PageAnon(*page)) { 1661 flush_anon_page(vma, *page, ksm_scan.address); 1662 flush_dcache_page(*page); 1663 rmap_item = get_next_rmap_item(slot, 1664 ksm_scan.rmap_list, ksm_scan.address); 1665 if (rmap_item) { 1666 ksm_scan.rmap_list = 1667 &rmap_item->rmap_list; 1668 ksm_scan.address += PAGE_SIZE; 1669 } else 1670 put_page(*page); 1671 up_read(&mm->mmap_sem); 1672 return rmap_item; 1673 } 1674 put_page(*page); 1675 ksm_scan.address += PAGE_SIZE; 1676 cond_resched(); 1677 } 1678 } 1679 1680 if (ksm_test_exit(mm)) { 1681 ksm_scan.address = 0; 1682 ksm_scan.rmap_list = &slot->rmap_list; 1683 } 1684 /* 1685 * Nuke all the rmap_items that are above this current rmap: 1686 * because there were no VM_MERGEABLE vmas with such addresses. 1687 */ 1688 remove_trailing_rmap_items(slot, ksm_scan.rmap_list); 1689 1690 spin_lock(&ksm_mmlist_lock); 1691 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 1692 struct mm_slot, mm_list); 1693 if (ksm_scan.address == 0) { 1694 /* 1695 * We've completed a full scan of all vmas, holding mmap_sem 1696 * throughout, and found no VM_MERGEABLE: so do the same as 1697 * __ksm_exit does to remove this mm from all our lists now. 1698 * This applies either when cleaning up after __ksm_exit 1699 * (but beware: we can reach here even before __ksm_exit), 1700 * or when all VM_MERGEABLE areas have been unmapped (and 1701 * mmap_sem then protects against race with MADV_MERGEABLE). 1702 */ 1703 hash_del(&slot->link); 1704 list_del(&slot->mm_list); 1705 spin_unlock(&ksm_mmlist_lock); 1706 1707 free_mm_slot(slot); 1708 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1709 up_read(&mm->mmap_sem); 1710 mmdrop(mm); 1711 } else { 1712 up_read(&mm->mmap_sem); 1713 /* 1714 * up_read(&mm->mmap_sem) first because after 1715 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 1716 * already have been freed under us by __ksm_exit() 1717 * because the "mm_slot" is still hashed and 1718 * ksm_scan.mm_slot doesn't point to it anymore. 1719 */ 1720 spin_unlock(&ksm_mmlist_lock); 1721 } 1722 1723 /* Repeat until we've completed scanning the whole list */ 1724 slot = ksm_scan.mm_slot; 1725 if (slot != &ksm_mm_head) 1726 goto next_mm; 1727 1728 ksm_scan.seqnr++; 1729 return NULL; 1730 } 1731 1732 /** 1733 * ksm_do_scan - the ksm scanner main worker function. 1734 * @scan_npages - number of pages we want to scan before we return. 1735 */ 1736 static void ksm_do_scan(unsigned int scan_npages) 1737 { 1738 struct rmap_item *rmap_item; 1739 struct page *uninitialized_var(page); 1740 1741 while (scan_npages-- && likely(!freezing(current))) { 1742 cond_resched(); 1743 rmap_item = scan_get_next_rmap_item(&page); 1744 if (!rmap_item) 1745 return; 1746 cmp_and_merge_page(page, rmap_item); 1747 put_page(page); 1748 } 1749 } 1750 1751 static int ksmd_should_run(void) 1752 { 1753 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 1754 } 1755 1756 static int ksm_scan_thread(void *nothing) 1757 { 1758 set_freezable(); 1759 set_user_nice(current, 5); 1760 1761 while (!kthread_should_stop()) { 1762 mutex_lock(&ksm_thread_mutex); 1763 wait_while_offlining(); 1764 if (ksmd_should_run()) 1765 ksm_do_scan(ksm_thread_pages_to_scan); 1766 mutex_unlock(&ksm_thread_mutex); 1767 1768 try_to_freeze(); 1769 1770 if (ksmd_should_run()) { 1771 schedule_timeout_interruptible( 1772 msecs_to_jiffies(ksm_thread_sleep_millisecs)); 1773 } else { 1774 wait_event_freezable(ksm_thread_wait, 1775 ksmd_should_run() || kthread_should_stop()); 1776 } 1777 } 1778 return 0; 1779 } 1780 1781 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 1782 unsigned long end, int advice, unsigned long *vm_flags) 1783 { 1784 struct mm_struct *mm = vma->vm_mm; 1785 int err; 1786 1787 switch (advice) { 1788 case MADV_MERGEABLE: 1789 /* 1790 * Be somewhat over-protective for now! 1791 */ 1792 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 1793 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 1794 VM_HUGETLB | VM_MIXEDMAP)) 1795 return 0; /* just ignore the advice */ 1796 1797 #ifdef VM_SAO 1798 if (*vm_flags & VM_SAO) 1799 return 0; 1800 #endif 1801 1802 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 1803 err = __ksm_enter(mm); 1804 if (err) 1805 return err; 1806 } 1807 1808 *vm_flags |= VM_MERGEABLE; 1809 break; 1810 1811 case MADV_UNMERGEABLE: 1812 if (!(*vm_flags & VM_MERGEABLE)) 1813 return 0; /* just ignore the advice */ 1814 1815 if (vma->anon_vma) { 1816 err = unmerge_ksm_pages(vma, start, end); 1817 if (err) 1818 return err; 1819 } 1820 1821 *vm_flags &= ~VM_MERGEABLE; 1822 break; 1823 } 1824 1825 return 0; 1826 } 1827 1828 int __ksm_enter(struct mm_struct *mm) 1829 { 1830 struct mm_slot *mm_slot; 1831 int needs_wakeup; 1832 1833 mm_slot = alloc_mm_slot(); 1834 if (!mm_slot) 1835 return -ENOMEM; 1836 1837 /* Check ksm_run too? Would need tighter locking */ 1838 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 1839 1840 spin_lock(&ksm_mmlist_lock); 1841 insert_to_mm_slots_hash(mm, mm_slot); 1842 /* 1843 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 1844 * insert just behind the scanning cursor, to let the area settle 1845 * down a little; when fork is followed by immediate exec, we don't 1846 * want ksmd to waste time setting up and tearing down an rmap_list. 1847 * 1848 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 1849 * scanning cursor, otherwise KSM pages in newly forked mms will be 1850 * missed: then we might as well insert at the end of the list. 1851 */ 1852 if (ksm_run & KSM_RUN_UNMERGE) 1853 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 1854 else 1855 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 1856 spin_unlock(&ksm_mmlist_lock); 1857 1858 set_bit(MMF_VM_MERGEABLE, &mm->flags); 1859 mmgrab(mm); 1860 1861 if (needs_wakeup) 1862 wake_up_interruptible(&ksm_thread_wait); 1863 1864 return 0; 1865 } 1866 1867 void __ksm_exit(struct mm_struct *mm) 1868 { 1869 struct mm_slot *mm_slot; 1870 int easy_to_free = 0; 1871 1872 /* 1873 * This process is exiting: if it's straightforward (as is the 1874 * case when ksmd was never running), free mm_slot immediately. 1875 * But if it's at the cursor or has rmap_items linked to it, use 1876 * mmap_sem to synchronize with any break_cows before pagetables 1877 * are freed, and leave the mm_slot on the list for ksmd to free. 1878 * Beware: ksm may already have noticed it exiting and freed the slot. 1879 */ 1880 1881 spin_lock(&ksm_mmlist_lock); 1882 mm_slot = get_mm_slot(mm); 1883 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 1884 if (!mm_slot->rmap_list) { 1885 hash_del(&mm_slot->link); 1886 list_del(&mm_slot->mm_list); 1887 easy_to_free = 1; 1888 } else { 1889 list_move(&mm_slot->mm_list, 1890 &ksm_scan.mm_slot->mm_list); 1891 } 1892 } 1893 spin_unlock(&ksm_mmlist_lock); 1894 1895 if (easy_to_free) { 1896 free_mm_slot(mm_slot); 1897 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1898 mmdrop(mm); 1899 } else if (mm_slot) { 1900 down_write(&mm->mmap_sem); 1901 up_write(&mm->mmap_sem); 1902 } 1903 } 1904 1905 struct page *ksm_might_need_to_copy(struct page *page, 1906 struct vm_area_struct *vma, unsigned long address) 1907 { 1908 struct anon_vma *anon_vma = page_anon_vma(page); 1909 struct page *new_page; 1910 1911 if (PageKsm(page)) { 1912 if (page_stable_node(page) && 1913 !(ksm_run & KSM_RUN_UNMERGE)) 1914 return page; /* no need to copy it */ 1915 } else if (!anon_vma) { 1916 return page; /* no need to copy it */ 1917 } else if (anon_vma->root == vma->anon_vma->root && 1918 page->index == linear_page_index(vma, address)) { 1919 return page; /* still no need to copy it */ 1920 } 1921 if (!PageUptodate(page)) 1922 return page; /* let do_swap_page report the error */ 1923 1924 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1925 if (new_page) { 1926 copy_user_highpage(new_page, page, address, vma); 1927 1928 SetPageDirty(new_page); 1929 __SetPageUptodate(new_page); 1930 __SetPageLocked(new_page); 1931 } 1932 1933 return new_page; 1934 } 1935 1936 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 1937 { 1938 struct stable_node *stable_node; 1939 struct rmap_item *rmap_item; 1940 int search_new_forks = 0; 1941 1942 VM_BUG_ON_PAGE(!PageKsm(page), page); 1943 1944 /* 1945 * Rely on the page lock to protect against concurrent modifications 1946 * to that page's node of the stable tree. 1947 */ 1948 VM_BUG_ON_PAGE(!PageLocked(page), page); 1949 1950 stable_node = page_stable_node(page); 1951 if (!stable_node) 1952 return; 1953 again: 1954 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 1955 struct anon_vma *anon_vma = rmap_item->anon_vma; 1956 struct anon_vma_chain *vmac; 1957 struct vm_area_struct *vma; 1958 1959 cond_resched(); 1960 anon_vma_lock_read(anon_vma); 1961 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 1962 0, ULONG_MAX) { 1963 cond_resched(); 1964 vma = vmac->vma; 1965 if (rmap_item->address < vma->vm_start || 1966 rmap_item->address >= vma->vm_end) 1967 continue; 1968 /* 1969 * Initially we examine only the vma which covers this 1970 * rmap_item; but later, if there is still work to do, 1971 * we examine covering vmas in other mms: in case they 1972 * were forked from the original since ksmd passed. 1973 */ 1974 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 1975 continue; 1976 1977 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1978 continue; 1979 1980 if (!rwc->rmap_one(page, vma, 1981 rmap_item->address, rwc->arg)) { 1982 anon_vma_unlock_read(anon_vma); 1983 return; 1984 } 1985 if (rwc->done && rwc->done(page)) { 1986 anon_vma_unlock_read(anon_vma); 1987 return; 1988 } 1989 } 1990 anon_vma_unlock_read(anon_vma); 1991 } 1992 if (!search_new_forks++) 1993 goto again; 1994 } 1995 1996 #ifdef CONFIG_MIGRATION 1997 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 1998 { 1999 struct stable_node *stable_node; 2000 2001 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 2002 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 2003 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); 2004 2005 stable_node = page_stable_node(newpage); 2006 if (stable_node) { 2007 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); 2008 stable_node->kpfn = page_to_pfn(newpage); 2009 /* 2010 * newpage->mapping was set in advance; now we need smp_wmb() 2011 * to make sure that the new stable_node->kpfn is visible 2012 * to get_ksm_page() before it can see that oldpage->mapping 2013 * has gone stale (or that PageSwapCache has been cleared). 2014 */ 2015 smp_wmb(); 2016 set_page_stable_node(oldpage, NULL); 2017 } 2018 } 2019 #endif /* CONFIG_MIGRATION */ 2020 2021 #ifdef CONFIG_MEMORY_HOTREMOVE 2022 static void wait_while_offlining(void) 2023 { 2024 while (ksm_run & KSM_RUN_OFFLINE) { 2025 mutex_unlock(&ksm_thread_mutex); 2026 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2027 TASK_UNINTERRUPTIBLE); 2028 mutex_lock(&ksm_thread_mutex); 2029 } 2030 } 2031 2032 static void ksm_check_stable_tree(unsigned long start_pfn, 2033 unsigned long end_pfn) 2034 { 2035 struct stable_node *stable_node, *next; 2036 struct rb_node *node; 2037 int nid; 2038 2039 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2040 node = rb_first(root_stable_tree + nid); 2041 while (node) { 2042 stable_node = rb_entry(node, struct stable_node, node); 2043 if (stable_node->kpfn >= start_pfn && 2044 stable_node->kpfn < end_pfn) { 2045 /* 2046 * Don't get_ksm_page, page has already gone: 2047 * which is why we keep kpfn instead of page* 2048 */ 2049 remove_node_from_stable_tree(stable_node); 2050 node = rb_first(root_stable_tree + nid); 2051 } else 2052 node = rb_next(node); 2053 cond_resched(); 2054 } 2055 } 2056 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2057 if (stable_node->kpfn >= start_pfn && 2058 stable_node->kpfn < end_pfn) 2059 remove_node_from_stable_tree(stable_node); 2060 cond_resched(); 2061 } 2062 } 2063 2064 static int ksm_memory_callback(struct notifier_block *self, 2065 unsigned long action, void *arg) 2066 { 2067 struct memory_notify *mn = arg; 2068 2069 switch (action) { 2070 case MEM_GOING_OFFLINE: 2071 /* 2072 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2073 * and remove_all_stable_nodes() while memory is going offline: 2074 * it is unsafe for them to touch the stable tree at this time. 2075 * But unmerge_ksm_pages(), rmap lookups and other entry points 2076 * which do not need the ksm_thread_mutex are all safe. 2077 */ 2078 mutex_lock(&ksm_thread_mutex); 2079 ksm_run |= KSM_RUN_OFFLINE; 2080 mutex_unlock(&ksm_thread_mutex); 2081 break; 2082 2083 case MEM_OFFLINE: 2084 /* 2085 * Most of the work is done by page migration; but there might 2086 * be a few stable_nodes left over, still pointing to struct 2087 * pages which have been offlined: prune those from the tree, 2088 * otherwise get_ksm_page() might later try to access a 2089 * non-existent struct page. 2090 */ 2091 ksm_check_stable_tree(mn->start_pfn, 2092 mn->start_pfn + mn->nr_pages); 2093 /* fallthrough */ 2094 2095 case MEM_CANCEL_OFFLINE: 2096 mutex_lock(&ksm_thread_mutex); 2097 ksm_run &= ~KSM_RUN_OFFLINE; 2098 mutex_unlock(&ksm_thread_mutex); 2099 2100 smp_mb(); /* wake_up_bit advises this */ 2101 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2102 break; 2103 } 2104 return NOTIFY_OK; 2105 } 2106 #else 2107 static void wait_while_offlining(void) 2108 { 2109 } 2110 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2111 2112 #ifdef CONFIG_SYSFS 2113 /* 2114 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2115 */ 2116 2117 #define KSM_ATTR_RO(_name) \ 2118 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2119 #define KSM_ATTR(_name) \ 2120 static struct kobj_attribute _name##_attr = \ 2121 __ATTR(_name, 0644, _name##_show, _name##_store) 2122 2123 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2124 struct kobj_attribute *attr, char *buf) 2125 { 2126 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); 2127 } 2128 2129 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2130 struct kobj_attribute *attr, 2131 const char *buf, size_t count) 2132 { 2133 unsigned long msecs; 2134 int err; 2135 2136 err = kstrtoul(buf, 10, &msecs); 2137 if (err || msecs > UINT_MAX) 2138 return -EINVAL; 2139 2140 ksm_thread_sleep_millisecs = msecs; 2141 2142 return count; 2143 } 2144 KSM_ATTR(sleep_millisecs); 2145 2146 static ssize_t pages_to_scan_show(struct kobject *kobj, 2147 struct kobj_attribute *attr, char *buf) 2148 { 2149 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); 2150 } 2151 2152 static ssize_t pages_to_scan_store(struct kobject *kobj, 2153 struct kobj_attribute *attr, 2154 const char *buf, size_t count) 2155 { 2156 int err; 2157 unsigned long nr_pages; 2158 2159 err = kstrtoul(buf, 10, &nr_pages); 2160 if (err || nr_pages > UINT_MAX) 2161 return -EINVAL; 2162 2163 ksm_thread_pages_to_scan = nr_pages; 2164 2165 return count; 2166 } 2167 KSM_ATTR(pages_to_scan); 2168 2169 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2170 char *buf) 2171 { 2172 return sprintf(buf, "%lu\n", ksm_run); 2173 } 2174 2175 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2176 const char *buf, size_t count) 2177 { 2178 int err; 2179 unsigned long flags; 2180 2181 err = kstrtoul(buf, 10, &flags); 2182 if (err || flags > UINT_MAX) 2183 return -EINVAL; 2184 if (flags > KSM_RUN_UNMERGE) 2185 return -EINVAL; 2186 2187 /* 2188 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2189 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2190 * breaking COW to free the pages_shared (but leaves mm_slots 2191 * on the list for when ksmd may be set running again). 2192 */ 2193 2194 mutex_lock(&ksm_thread_mutex); 2195 wait_while_offlining(); 2196 if (ksm_run != flags) { 2197 ksm_run = flags; 2198 if (flags & KSM_RUN_UNMERGE) { 2199 set_current_oom_origin(); 2200 err = unmerge_and_remove_all_rmap_items(); 2201 clear_current_oom_origin(); 2202 if (err) { 2203 ksm_run = KSM_RUN_STOP; 2204 count = err; 2205 } 2206 } 2207 } 2208 mutex_unlock(&ksm_thread_mutex); 2209 2210 if (flags & KSM_RUN_MERGE) 2211 wake_up_interruptible(&ksm_thread_wait); 2212 2213 return count; 2214 } 2215 KSM_ATTR(run); 2216 2217 #ifdef CONFIG_NUMA 2218 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2219 struct kobj_attribute *attr, char *buf) 2220 { 2221 return sprintf(buf, "%u\n", ksm_merge_across_nodes); 2222 } 2223 2224 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2225 struct kobj_attribute *attr, 2226 const char *buf, size_t count) 2227 { 2228 int err; 2229 unsigned long knob; 2230 2231 err = kstrtoul(buf, 10, &knob); 2232 if (err) 2233 return err; 2234 if (knob > 1) 2235 return -EINVAL; 2236 2237 mutex_lock(&ksm_thread_mutex); 2238 wait_while_offlining(); 2239 if (ksm_merge_across_nodes != knob) { 2240 if (ksm_pages_shared || remove_all_stable_nodes()) 2241 err = -EBUSY; 2242 else if (root_stable_tree == one_stable_tree) { 2243 struct rb_root *buf; 2244 /* 2245 * This is the first time that we switch away from the 2246 * default of merging across nodes: must now allocate 2247 * a buffer to hold as many roots as may be needed. 2248 * Allocate stable and unstable together: 2249 * MAXSMP NODES_SHIFT 10 will use 16kB. 2250 */ 2251 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2252 GFP_KERNEL); 2253 /* Let us assume that RB_ROOT is NULL is zero */ 2254 if (!buf) 2255 err = -ENOMEM; 2256 else { 2257 root_stable_tree = buf; 2258 root_unstable_tree = buf + nr_node_ids; 2259 /* Stable tree is empty but not the unstable */ 2260 root_unstable_tree[0] = one_unstable_tree[0]; 2261 } 2262 } 2263 if (!err) { 2264 ksm_merge_across_nodes = knob; 2265 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2266 } 2267 } 2268 mutex_unlock(&ksm_thread_mutex); 2269 2270 return err ? err : count; 2271 } 2272 KSM_ATTR(merge_across_nodes); 2273 #endif 2274 2275 static ssize_t use_zero_pages_show(struct kobject *kobj, 2276 struct kobj_attribute *attr, char *buf) 2277 { 2278 return sprintf(buf, "%u\n", ksm_use_zero_pages); 2279 } 2280 static ssize_t use_zero_pages_store(struct kobject *kobj, 2281 struct kobj_attribute *attr, 2282 const char *buf, size_t count) 2283 { 2284 int err; 2285 bool value; 2286 2287 err = kstrtobool(buf, &value); 2288 if (err) 2289 return -EINVAL; 2290 2291 ksm_use_zero_pages = value; 2292 2293 return count; 2294 } 2295 KSM_ATTR(use_zero_pages); 2296 2297 static ssize_t pages_shared_show(struct kobject *kobj, 2298 struct kobj_attribute *attr, char *buf) 2299 { 2300 return sprintf(buf, "%lu\n", ksm_pages_shared); 2301 } 2302 KSM_ATTR_RO(pages_shared); 2303 2304 static ssize_t pages_sharing_show(struct kobject *kobj, 2305 struct kobj_attribute *attr, char *buf) 2306 { 2307 return sprintf(buf, "%lu\n", ksm_pages_sharing); 2308 } 2309 KSM_ATTR_RO(pages_sharing); 2310 2311 static ssize_t pages_unshared_show(struct kobject *kobj, 2312 struct kobj_attribute *attr, char *buf) 2313 { 2314 return sprintf(buf, "%lu\n", ksm_pages_unshared); 2315 } 2316 KSM_ATTR_RO(pages_unshared); 2317 2318 static ssize_t pages_volatile_show(struct kobject *kobj, 2319 struct kobj_attribute *attr, char *buf) 2320 { 2321 long ksm_pages_volatile; 2322 2323 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 2324 - ksm_pages_sharing - ksm_pages_unshared; 2325 /* 2326 * It was not worth any locking to calculate that statistic, 2327 * but it might therefore sometimes be negative: conceal that. 2328 */ 2329 if (ksm_pages_volatile < 0) 2330 ksm_pages_volatile = 0; 2331 return sprintf(buf, "%ld\n", ksm_pages_volatile); 2332 } 2333 KSM_ATTR_RO(pages_volatile); 2334 2335 static ssize_t full_scans_show(struct kobject *kobj, 2336 struct kobj_attribute *attr, char *buf) 2337 { 2338 return sprintf(buf, "%lu\n", ksm_scan.seqnr); 2339 } 2340 KSM_ATTR_RO(full_scans); 2341 2342 static struct attribute *ksm_attrs[] = { 2343 &sleep_millisecs_attr.attr, 2344 &pages_to_scan_attr.attr, 2345 &run_attr.attr, 2346 &pages_shared_attr.attr, 2347 &pages_sharing_attr.attr, 2348 &pages_unshared_attr.attr, 2349 &pages_volatile_attr.attr, 2350 &full_scans_attr.attr, 2351 #ifdef CONFIG_NUMA 2352 &merge_across_nodes_attr.attr, 2353 #endif 2354 &use_zero_pages_attr.attr, 2355 NULL, 2356 }; 2357 2358 static struct attribute_group ksm_attr_group = { 2359 .attrs = ksm_attrs, 2360 .name = "ksm", 2361 }; 2362 #endif /* CONFIG_SYSFS */ 2363 2364 static int __init ksm_init(void) 2365 { 2366 struct task_struct *ksm_thread; 2367 int err; 2368 2369 /* The correct value depends on page size and endianness */ 2370 zero_checksum = calc_checksum(ZERO_PAGE(0)); 2371 /* Default to false for backwards compatibility */ 2372 ksm_use_zero_pages = false; 2373 2374 err = ksm_slab_init(); 2375 if (err) 2376 goto out; 2377 2378 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 2379 if (IS_ERR(ksm_thread)) { 2380 pr_err("ksm: creating kthread failed\n"); 2381 err = PTR_ERR(ksm_thread); 2382 goto out_free; 2383 } 2384 2385 #ifdef CONFIG_SYSFS 2386 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 2387 if (err) { 2388 pr_err("ksm: register sysfs failed\n"); 2389 kthread_stop(ksm_thread); 2390 goto out_free; 2391 } 2392 #else 2393 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 2394 2395 #endif /* CONFIG_SYSFS */ 2396 2397 #ifdef CONFIG_MEMORY_HOTREMOVE 2398 /* There is no significance to this priority 100 */ 2399 hotplug_memory_notifier(ksm_memory_callback, 100); 2400 #endif 2401 return 0; 2402 2403 out_free: 2404 ksm_slab_free(); 2405 out: 2406 return err; 2407 } 2408 subsys_initcall(ksm_init); 2409