1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/fs.h> 19 #include <linux/mman.h> 20 #include <linux/sched.h> 21 #include <linux/sched/mm.h> 22 #include <linux/sched/coredump.h> 23 #include <linux/rwsem.h> 24 #include <linux/pagemap.h> 25 #include <linux/rmap.h> 26 #include <linux/spinlock.h> 27 #include <linux/xxhash.h> 28 #include <linux/delay.h> 29 #include <linux/kthread.h> 30 #include <linux/wait.h> 31 #include <linux/slab.h> 32 #include <linux/rbtree.h> 33 #include <linux/memory.h> 34 #include <linux/mmu_notifier.h> 35 #include <linux/swap.h> 36 #include <linux/ksm.h> 37 #include <linux/hashtable.h> 38 #include <linux/freezer.h> 39 #include <linux/oom.h> 40 #include <linux/numa.h> 41 42 #include <asm/tlbflush.h> 43 #include "internal.h" 44 45 #ifdef CONFIG_NUMA 46 #define NUMA(x) (x) 47 #define DO_NUMA(x) do { (x); } while (0) 48 #else 49 #define NUMA(x) (0) 50 #define DO_NUMA(x) do { } while (0) 51 #endif 52 53 /** 54 * DOC: Overview 55 * 56 * A few notes about the KSM scanning process, 57 * to make it easier to understand the data structures below: 58 * 59 * In order to reduce excessive scanning, KSM sorts the memory pages by their 60 * contents into a data structure that holds pointers to the pages' locations. 61 * 62 * Since the contents of the pages may change at any moment, KSM cannot just 63 * insert the pages into a normal sorted tree and expect it to find anything. 64 * Therefore KSM uses two data structures - the stable and the unstable tree. 65 * 66 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 67 * by their contents. Because each such page is write-protected, searching on 68 * this tree is fully assured to be working (except when pages are unmapped), 69 * and therefore this tree is called the stable tree. 70 * 71 * The stable tree node includes information required for reverse 72 * mapping from a KSM page to virtual addresses that map this page. 73 * 74 * In order to avoid large latencies of the rmap walks on KSM pages, 75 * KSM maintains two types of nodes in the stable tree: 76 * 77 * * the regular nodes that keep the reverse mapping structures in a 78 * linked list 79 * * the "chains" that link nodes ("dups") that represent the same 80 * write protected memory content, but each "dup" corresponds to a 81 * different KSM page copy of that content 82 * 83 * Internally, the regular nodes, "dups" and "chains" are represented 84 * using the same :c:type:`struct stable_node` structure. 85 * 86 * In addition to the stable tree, KSM uses a second data structure called the 87 * unstable tree: this tree holds pointers to pages which have been found to 88 * be "unchanged for a period of time". The unstable tree sorts these pages 89 * by their contents, but since they are not write-protected, KSM cannot rely 90 * upon the unstable tree to work correctly - the unstable tree is liable to 91 * be corrupted as its contents are modified, and so it is called unstable. 92 * 93 * KSM solves this problem by several techniques: 94 * 95 * 1) The unstable tree is flushed every time KSM completes scanning all 96 * memory areas, and then the tree is rebuilt again from the beginning. 97 * 2) KSM will only insert into the unstable tree, pages whose hash value 98 * has not changed since the previous scan of all memory areas. 99 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 100 * colors of the nodes and not on their contents, assuring that even when 101 * the tree gets "corrupted" it won't get out of balance, so scanning time 102 * remains the same (also, searching and inserting nodes in an rbtree uses 103 * the same algorithm, so we have no overhead when we flush and rebuild). 104 * 4) KSM never flushes the stable tree, which means that even if it were to 105 * take 10 attempts to find a page in the unstable tree, once it is found, 106 * it is secured in the stable tree. (When we scan a new page, we first 107 * compare it against the stable tree, and then against the unstable tree.) 108 * 109 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 110 * stable trees and multiple unstable trees: one of each for each NUMA node. 111 */ 112 113 /** 114 * struct mm_slot - ksm information per mm that is being scanned 115 * @link: link to the mm_slots hash list 116 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 117 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 118 * @mm: the mm that this information is valid for 119 */ 120 struct mm_slot { 121 struct hlist_node link; 122 struct list_head mm_list; 123 struct rmap_item *rmap_list; 124 struct mm_struct *mm; 125 }; 126 127 /** 128 * struct ksm_scan - cursor for scanning 129 * @mm_slot: the current mm_slot we are scanning 130 * @address: the next address inside that to be scanned 131 * @rmap_list: link to the next rmap to be scanned in the rmap_list 132 * @seqnr: count of completed full scans (needed when removing unstable node) 133 * 134 * There is only the one ksm_scan instance of this cursor structure. 135 */ 136 struct ksm_scan { 137 struct mm_slot *mm_slot; 138 unsigned long address; 139 struct rmap_item **rmap_list; 140 unsigned long seqnr; 141 }; 142 143 /** 144 * struct stable_node - node of the stable rbtree 145 * @node: rb node of this ksm page in the stable tree 146 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 147 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 148 * @list: linked into migrate_nodes, pending placement in the proper node tree 149 * @hlist: hlist head of rmap_items using this ksm page 150 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 151 * @chain_prune_time: time of the last full garbage collection 152 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 153 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 154 */ 155 struct stable_node { 156 union { 157 struct rb_node node; /* when node of stable tree */ 158 struct { /* when listed for migration */ 159 struct list_head *head; 160 struct { 161 struct hlist_node hlist_dup; 162 struct list_head list; 163 }; 164 }; 165 }; 166 struct hlist_head hlist; 167 union { 168 unsigned long kpfn; 169 unsigned long chain_prune_time; 170 }; 171 /* 172 * STABLE_NODE_CHAIN can be any negative number in 173 * rmap_hlist_len negative range, but better not -1 to be able 174 * to reliably detect underflows. 175 */ 176 #define STABLE_NODE_CHAIN -1024 177 int rmap_hlist_len; 178 #ifdef CONFIG_NUMA 179 int nid; 180 #endif 181 }; 182 183 /** 184 * struct rmap_item - reverse mapping item for virtual addresses 185 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 186 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 187 * @nid: NUMA node id of unstable tree in which linked (may not match page) 188 * @mm: the memory structure this rmap_item is pointing into 189 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 190 * @oldchecksum: previous checksum of the page at that virtual address 191 * @node: rb node of this rmap_item in the unstable tree 192 * @head: pointer to stable_node heading this list in the stable tree 193 * @hlist: link into hlist of rmap_items hanging off that stable_node 194 */ 195 struct rmap_item { 196 struct rmap_item *rmap_list; 197 union { 198 struct anon_vma *anon_vma; /* when stable */ 199 #ifdef CONFIG_NUMA 200 int nid; /* when node of unstable tree */ 201 #endif 202 }; 203 struct mm_struct *mm; 204 unsigned long address; /* + low bits used for flags below */ 205 unsigned int oldchecksum; /* when unstable */ 206 union { 207 struct rb_node node; /* when node of unstable tree */ 208 struct { /* when listed from stable tree */ 209 struct stable_node *head; 210 struct hlist_node hlist; 211 }; 212 }; 213 }; 214 215 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 216 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 217 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 218 #define KSM_FLAG_MASK (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG) 219 /* to mask all the flags */ 220 221 /* The stable and unstable tree heads */ 222 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 223 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 224 static struct rb_root *root_stable_tree = one_stable_tree; 225 static struct rb_root *root_unstable_tree = one_unstable_tree; 226 227 /* Recently migrated nodes of stable tree, pending proper placement */ 228 static LIST_HEAD(migrate_nodes); 229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 230 231 #define MM_SLOTS_HASH_BITS 10 232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 233 234 static struct mm_slot ksm_mm_head = { 235 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 236 }; 237 static struct ksm_scan ksm_scan = { 238 .mm_slot = &ksm_mm_head, 239 }; 240 241 static struct kmem_cache *rmap_item_cache; 242 static struct kmem_cache *stable_node_cache; 243 static struct kmem_cache *mm_slot_cache; 244 245 /* The number of nodes in the stable tree */ 246 static unsigned long ksm_pages_shared; 247 248 /* The number of page slots additionally sharing those nodes */ 249 static unsigned long ksm_pages_sharing; 250 251 /* The number of nodes in the unstable tree */ 252 static unsigned long ksm_pages_unshared; 253 254 /* The number of rmap_items in use: to calculate pages_volatile */ 255 static unsigned long ksm_rmap_items; 256 257 /* The number of stable_node chains */ 258 static unsigned long ksm_stable_node_chains; 259 260 /* The number of stable_node dups linked to the stable_node chains */ 261 static unsigned long ksm_stable_node_dups; 262 263 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 264 static int ksm_stable_node_chains_prune_millisecs = 2000; 265 266 /* Maximum number of page slots sharing a stable node */ 267 static int ksm_max_page_sharing = 256; 268 269 /* Number of pages ksmd should scan in one batch */ 270 static unsigned int ksm_thread_pages_to_scan = 100; 271 272 /* Milliseconds ksmd should sleep between batches */ 273 static unsigned int ksm_thread_sleep_millisecs = 20; 274 275 /* Checksum of an empty (zeroed) page */ 276 static unsigned int zero_checksum __read_mostly; 277 278 /* Whether to merge empty (zeroed) pages with actual zero pages */ 279 static bool ksm_use_zero_pages __read_mostly; 280 281 #ifdef CONFIG_NUMA 282 /* Zeroed when merging across nodes is not allowed */ 283 static unsigned int ksm_merge_across_nodes = 1; 284 static int ksm_nr_node_ids = 1; 285 #else 286 #define ksm_merge_across_nodes 1U 287 #define ksm_nr_node_ids 1 288 #endif 289 290 #define KSM_RUN_STOP 0 291 #define KSM_RUN_MERGE 1 292 #define KSM_RUN_UNMERGE 2 293 #define KSM_RUN_OFFLINE 4 294 static unsigned long ksm_run = KSM_RUN_STOP; 295 static void wait_while_offlining(void); 296 297 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 298 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 299 static DEFINE_MUTEX(ksm_thread_mutex); 300 static DEFINE_SPINLOCK(ksm_mmlist_lock); 301 302 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 303 sizeof(struct __struct), __alignof__(struct __struct),\ 304 (__flags), NULL) 305 306 static int __init ksm_slab_init(void) 307 { 308 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 309 if (!rmap_item_cache) 310 goto out; 311 312 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 313 if (!stable_node_cache) 314 goto out_free1; 315 316 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 317 if (!mm_slot_cache) 318 goto out_free2; 319 320 return 0; 321 322 out_free2: 323 kmem_cache_destroy(stable_node_cache); 324 out_free1: 325 kmem_cache_destroy(rmap_item_cache); 326 out: 327 return -ENOMEM; 328 } 329 330 static void __init ksm_slab_free(void) 331 { 332 kmem_cache_destroy(mm_slot_cache); 333 kmem_cache_destroy(stable_node_cache); 334 kmem_cache_destroy(rmap_item_cache); 335 mm_slot_cache = NULL; 336 } 337 338 static __always_inline bool is_stable_node_chain(struct stable_node *chain) 339 { 340 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 341 } 342 343 static __always_inline bool is_stable_node_dup(struct stable_node *dup) 344 { 345 return dup->head == STABLE_NODE_DUP_HEAD; 346 } 347 348 static inline void stable_node_chain_add_dup(struct stable_node *dup, 349 struct stable_node *chain) 350 { 351 VM_BUG_ON(is_stable_node_dup(dup)); 352 dup->head = STABLE_NODE_DUP_HEAD; 353 VM_BUG_ON(!is_stable_node_chain(chain)); 354 hlist_add_head(&dup->hlist_dup, &chain->hlist); 355 ksm_stable_node_dups++; 356 } 357 358 static inline void __stable_node_dup_del(struct stable_node *dup) 359 { 360 VM_BUG_ON(!is_stable_node_dup(dup)); 361 hlist_del(&dup->hlist_dup); 362 ksm_stable_node_dups--; 363 } 364 365 static inline void stable_node_dup_del(struct stable_node *dup) 366 { 367 VM_BUG_ON(is_stable_node_chain(dup)); 368 if (is_stable_node_dup(dup)) 369 __stable_node_dup_del(dup); 370 else 371 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 372 #ifdef CONFIG_DEBUG_VM 373 dup->head = NULL; 374 #endif 375 } 376 377 static inline struct rmap_item *alloc_rmap_item(void) 378 { 379 struct rmap_item *rmap_item; 380 381 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 382 __GFP_NORETRY | __GFP_NOWARN); 383 if (rmap_item) 384 ksm_rmap_items++; 385 return rmap_item; 386 } 387 388 static inline void free_rmap_item(struct rmap_item *rmap_item) 389 { 390 ksm_rmap_items--; 391 rmap_item->mm = NULL; /* debug safety */ 392 kmem_cache_free(rmap_item_cache, rmap_item); 393 } 394 395 static inline struct stable_node *alloc_stable_node(void) 396 { 397 /* 398 * The allocation can take too long with GFP_KERNEL when memory is under 399 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 400 * grants access to memory reserves, helping to avoid this problem. 401 */ 402 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 403 } 404 405 static inline void free_stable_node(struct stable_node *stable_node) 406 { 407 VM_BUG_ON(stable_node->rmap_hlist_len && 408 !is_stable_node_chain(stable_node)); 409 kmem_cache_free(stable_node_cache, stable_node); 410 } 411 412 static inline struct mm_slot *alloc_mm_slot(void) 413 { 414 if (!mm_slot_cache) /* initialization failed */ 415 return NULL; 416 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 417 } 418 419 static inline void free_mm_slot(struct mm_slot *mm_slot) 420 { 421 kmem_cache_free(mm_slot_cache, mm_slot); 422 } 423 424 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 425 { 426 struct mm_slot *slot; 427 428 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 429 if (slot->mm == mm) 430 return slot; 431 432 return NULL; 433 } 434 435 static void insert_to_mm_slots_hash(struct mm_struct *mm, 436 struct mm_slot *mm_slot) 437 { 438 mm_slot->mm = mm; 439 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 440 } 441 442 /* 443 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 444 * page tables after it has passed through ksm_exit() - which, if necessary, 445 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set 446 * a special flag: they can just back out as soon as mm_users goes to zero. 447 * ksm_test_exit() is used throughout to make this test for exit: in some 448 * places for correctness, in some places just to avoid unnecessary work. 449 */ 450 static inline bool ksm_test_exit(struct mm_struct *mm) 451 { 452 return atomic_read(&mm->mm_users) == 0; 453 } 454 455 /* 456 * We use break_ksm to break COW on a ksm page: it's a stripped down 457 * 458 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1) 459 * put_page(page); 460 * 461 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 462 * in case the application has unmapped and remapped mm,addr meanwhile. 463 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 464 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. 465 * 466 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 467 * of the process that owns 'vma'. We also do not want to enforce 468 * protection keys here anyway. 469 */ 470 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 471 { 472 struct page *page; 473 vm_fault_t ret = 0; 474 475 do { 476 cond_resched(); 477 page = follow_page(vma, addr, 478 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 479 if (IS_ERR_OR_NULL(page)) 480 break; 481 if (PageKsm(page)) 482 ret = handle_mm_fault(vma, addr, 483 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE); 484 else 485 ret = VM_FAULT_WRITE; 486 put_page(page); 487 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 488 /* 489 * We must loop because handle_mm_fault() may back out if there's 490 * any difficulty e.g. if pte accessed bit gets updated concurrently. 491 * 492 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 493 * COW has been broken, even if the vma does not permit VM_WRITE; 494 * but note that a concurrent fault might break PageKsm for us. 495 * 496 * VM_FAULT_SIGBUS could occur if we race with truncation of the 497 * backing file, which also invalidates anonymous pages: that's 498 * okay, that truncation will have unmapped the PageKsm for us. 499 * 500 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 501 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 502 * current task has TIF_MEMDIE set, and will be OOM killed on return 503 * to user; and ksmd, having no mm, would never be chosen for that. 504 * 505 * But if the mm is in a limited mem_cgroup, then the fault may fail 506 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 507 * even ksmd can fail in this way - though it's usually breaking ksm 508 * just to undo a merge it made a moment before, so unlikely to oom. 509 * 510 * That's a pity: we might therefore have more kernel pages allocated 511 * than we're counting as nodes in the stable tree; but ksm_do_scan 512 * will retry to break_cow on each pass, so should recover the page 513 * in due course. The important thing is to not let VM_MERGEABLE 514 * be cleared while any such pages might remain in the area. 515 */ 516 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 517 } 518 519 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 520 unsigned long addr) 521 { 522 struct vm_area_struct *vma; 523 if (ksm_test_exit(mm)) 524 return NULL; 525 vma = find_vma(mm, addr); 526 if (!vma || vma->vm_start > addr) 527 return NULL; 528 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 529 return NULL; 530 return vma; 531 } 532 533 static void break_cow(struct rmap_item *rmap_item) 534 { 535 struct mm_struct *mm = rmap_item->mm; 536 unsigned long addr = rmap_item->address; 537 struct vm_area_struct *vma; 538 539 /* 540 * It is not an accident that whenever we want to break COW 541 * to undo, we also need to drop a reference to the anon_vma. 542 */ 543 put_anon_vma(rmap_item->anon_vma); 544 545 down_read(&mm->mmap_sem); 546 vma = find_mergeable_vma(mm, addr); 547 if (vma) 548 break_ksm(vma, addr); 549 up_read(&mm->mmap_sem); 550 } 551 552 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 553 { 554 struct mm_struct *mm = rmap_item->mm; 555 unsigned long addr = rmap_item->address; 556 struct vm_area_struct *vma; 557 struct page *page; 558 559 down_read(&mm->mmap_sem); 560 vma = find_mergeable_vma(mm, addr); 561 if (!vma) 562 goto out; 563 564 page = follow_page(vma, addr, FOLL_GET); 565 if (IS_ERR_OR_NULL(page)) 566 goto out; 567 if (PageAnon(page)) { 568 flush_anon_page(vma, page, addr); 569 flush_dcache_page(page); 570 } else { 571 put_page(page); 572 out: 573 page = NULL; 574 } 575 up_read(&mm->mmap_sem); 576 return page; 577 } 578 579 /* 580 * This helper is used for getting right index into array of tree roots. 581 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 582 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 583 * every node has its own stable and unstable tree. 584 */ 585 static inline int get_kpfn_nid(unsigned long kpfn) 586 { 587 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 588 } 589 590 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup, 591 struct rb_root *root) 592 { 593 struct stable_node *chain = alloc_stable_node(); 594 VM_BUG_ON(is_stable_node_chain(dup)); 595 if (likely(chain)) { 596 INIT_HLIST_HEAD(&chain->hlist); 597 chain->chain_prune_time = jiffies; 598 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 599 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 600 chain->nid = NUMA_NO_NODE; /* debug */ 601 #endif 602 ksm_stable_node_chains++; 603 604 /* 605 * Put the stable node chain in the first dimension of 606 * the stable tree and at the same time remove the old 607 * stable node. 608 */ 609 rb_replace_node(&dup->node, &chain->node, root); 610 611 /* 612 * Move the old stable node to the second dimension 613 * queued in the hlist_dup. The invariant is that all 614 * dup stable_nodes in the chain->hlist point to pages 615 * that are wrprotected and have the exact same 616 * content. 617 */ 618 stable_node_chain_add_dup(dup, chain); 619 } 620 return chain; 621 } 622 623 static inline void free_stable_node_chain(struct stable_node *chain, 624 struct rb_root *root) 625 { 626 rb_erase(&chain->node, root); 627 free_stable_node(chain); 628 ksm_stable_node_chains--; 629 } 630 631 static void remove_node_from_stable_tree(struct stable_node *stable_node) 632 { 633 struct rmap_item *rmap_item; 634 635 /* check it's not STABLE_NODE_CHAIN or negative */ 636 BUG_ON(stable_node->rmap_hlist_len < 0); 637 638 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 639 if (rmap_item->hlist.next) 640 ksm_pages_sharing--; 641 else 642 ksm_pages_shared--; 643 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 644 stable_node->rmap_hlist_len--; 645 put_anon_vma(rmap_item->anon_vma); 646 rmap_item->address &= PAGE_MASK; 647 cond_resched(); 648 } 649 650 /* 651 * We need the second aligned pointer of the migrate_nodes 652 * list_head to stay clear from the rb_parent_color union 653 * (aligned and different than any node) and also different 654 * from &migrate_nodes. This will verify that future list.h changes 655 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 656 */ 657 #if defined(GCC_VERSION) && GCC_VERSION >= 40903 658 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 659 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 660 #endif 661 662 if (stable_node->head == &migrate_nodes) 663 list_del(&stable_node->list); 664 else 665 stable_node_dup_del(stable_node); 666 free_stable_node(stable_node); 667 } 668 669 enum get_ksm_page_flags { 670 GET_KSM_PAGE_NOLOCK, 671 GET_KSM_PAGE_LOCK, 672 GET_KSM_PAGE_TRYLOCK 673 }; 674 675 /* 676 * get_ksm_page: checks if the page indicated by the stable node 677 * is still its ksm page, despite having held no reference to it. 678 * In which case we can trust the content of the page, and it 679 * returns the gotten page; but if the page has now been zapped, 680 * remove the stale node from the stable tree and return NULL. 681 * But beware, the stable node's page might be being migrated. 682 * 683 * You would expect the stable_node to hold a reference to the ksm page. 684 * But if it increments the page's count, swapping out has to wait for 685 * ksmd to come around again before it can free the page, which may take 686 * seconds or even minutes: much too unresponsive. So instead we use a 687 * "keyhole reference": access to the ksm page from the stable node peeps 688 * out through its keyhole to see if that page still holds the right key, 689 * pointing back to this stable node. This relies on freeing a PageAnon 690 * page to reset its page->mapping to NULL, and relies on no other use of 691 * a page to put something that might look like our key in page->mapping. 692 * is on its way to being freed; but it is an anomaly to bear in mind. 693 */ 694 static struct page *get_ksm_page(struct stable_node *stable_node, 695 enum get_ksm_page_flags flags) 696 { 697 struct page *page; 698 void *expected_mapping; 699 unsigned long kpfn; 700 701 expected_mapping = (void *)((unsigned long)stable_node | 702 PAGE_MAPPING_KSM); 703 again: 704 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 705 page = pfn_to_page(kpfn); 706 if (READ_ONCE(page->mapping) != expected_mapping) 707 goto stale; 708 709 /* 710 * We cannot do anything with the page while its refcount is 0. 711 * Usually 0 means free, or tail of a higher-order page: in which 712 * case this node is no longer referenced, and should be freed; 713 * however, it might mean that the page is under page_ref_freeze(). 714 * The __remove_mapping() case is easy, again the node is now stale; 715 * the same is in reuse_ksm_page() case; but if page is swapcache 716 * in migrate_page_move_mapping(), it might still be our page, 717 * in which case it's essential to keep the node. 718 */ 719 while (!get_page_unless_zero(page)) { 720 /* 721 * Another check for page->mapping != expected_mapping would 722 * work here too. We have chosen the !PageSwapCache test to 723 * optimize the common case, when the page is or is about to 724 * be freed: PageSwapCache is cleared (under spin_lock_irq) 725 * in the ref_freeze section of __remove_mapping(); but Anon 726 * page->mapping reset to NULL later, in free_pages_prepare(). 727 */ 728 if (!PageSwapCache(page)) 729 goto stale; 730 cpu_relax(); 731 } 732 733 if (READ_ONCE(page->mapping) != expected_mapping) { 734 put_page(page); 735 goto stale; 736 } 737 738 if (flags == GET_KSM_PAGE_TRYLOCK) { 739 if (!trylock_page(page)) { 740 put_page(page); 741 return ERR_PTR(-EBUSY); 742 } 743 } else if (flags == GET_KSM_PAGE_LOCK) 744 lock_page(page); 745 746 if (flags != GET_KSM_PAGE_NOLOCK) { 747 if (READ_ONCE(page->mapping) != expected_mapping) { 748 unlock_page(page); 749 put_page(page); 750 goto stale; 751 } 752 } 753 return page; 754 755 stale: 756 /* 757 * We come here from above when page->mapping or !PageSwapCache 758 * suggests that the node is stale; but it might be under migration. 759 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), 760 * before checking whether node->kpfn has been changed. 761 */ 762 smp_rmb(); 763 if (READ_ONCE(stable_node->kpfn) != kpfn) 764 goto again; 765 remove_node_from_stable_tree(stable_node); 766 return NULL; 767 } 768 769 /* 770 * Removing rmap_item from stable or unstable tree. 771 * This function will clean the information from the stable/unstable tree. 772 */ 773 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 774 { 775 if (rmap_item->address & STABLE_FLAG) { 776 struct stable_node *stable_node; 777 struct page *page; 778 779 stable_node = rmap_item->head; 780 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 781 if (!page) 782 goto out; 783 784 hlist_del(&rmap_item->hlist); 785 unlock_page(page); 786 put_page(page); 787 788 if (!hlist_empty(&stable_node->hlist)) 789 ksm_pages_sharing--; 790 else 791 ksm_pages_shared--; 792 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 793 stable_node->rmap_hlist_len--; 794 795 put_anon_vma(rmap_item->anon_vma); 796 rmap_item->address &= PAGE_MASK; 797 798 } else if (rmap_item->address & UNSTABLE_FLAG) { 799 unsigned char age; 800 /* 801 * Usually ksmd can and must skip the rb_erase, because 802 * root_unstable_tree was already reset to RB_ROOT. 803 * But be careful when an mm is exiting: do the rb_erase 804 * if this rmap_item was inserted by this scan, rather 805 * than left over from before. 806 */ 807 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 808 BUG_ON(age > 1); 809 if (!age) 810 rb_erase(&rmap_item->node, 811 root_unstable_tree + NUMA(rmap_item->nid)); 812 ksm_pages_unshared--; 813 rmap_item->address &= PAGE_MASK; 814 } 815 out: 816 cond_resched(); /* we're called from many long loops */ 817 } 818 819 static void remove_trailing_rmap_items(struct mm_slot *mm_slot, 820 struct rmap_item **rmap_list) 821 { 822 while (*rmap_list) { 823 struct rmap_item *rmap_item = *rmap_list; 824 *rmap_list = rmap_item->rmap_list; 825 remove_rmap_item_from_tree(rmap_item); 826 free_rmap_item(rmap_item); 827 } 828 } 829 830 /* 831 * Though it's very tempting to unmerge rmap_items from stable tree rather 832 * than check every pte of a given vma, the locking doesn't quite work for 833 * that - an rmap_item is assigned to the stable tree after inserting ksm 834 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing 835 * rmap_items from parent to child at fork time (so as not to waste time 836 * if exit comes before the next scan reaches it). 837 * 838 * Similarly, although we'd like to remove rmap_items (so updating counts 839 * and freeing memory) when unmerging an area, it's easier to leave that 840 * to the next pass of ksmd - consider, for example, how ksmd might be 841 * in cmp_and_merge_page on one of the rmap_items we would be removing. 842 */ 843 static int unmerge_ksm_pages(struct vm_area_struct *vma, 844 unsigned long start, unsigned long end) 845 { 846 unsigned long addr; 847 int err = 0; 848 849 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 850 if (ksm_test_exit(vma->vm_mm)) 851 break; 852 if (signal_pending(current)) 853 err = -ERESTARTSYS; 854 else 855 err = break_ksm(vma, addr); 856 } 857 return err; 858 } 859 860 static inline struct stable_node *page_stable_node(struct page *page) 861 { 862 return PageKsm(page) ? page_rmapping(page) : NULL; 863 } 864 865 static inline void set_page_stable_node(struct page *page, 866 struct stable_node *stable_node) 867 { 868 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 869 } 870 871 #ifdef CONFIG_SYSFS 872 /* 873 * Only called through the sysfs control interface: 874 */ 875 static int remove_stable_node(struct stable_node *stable_node) 876 { 877 struct page *page; 878 int err; 879 880 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 881 if (!page) { 882 /* 883 * get_ksm_page did remove_node_from_stable_tree itself. 884 */ 885 return 0; 886 } 887 888 if (WARN_ON_ONCE(page_mapped(page))) { 889 /* 890 * This should not happen: but if it does, just refuse to let 891 * merge_across_nodes be switched - there is no need to panic. 892 */ 893 err = -EBUSY; 894 } else { 895 /* 896 * The stable node did not yet appear stale to get_ksm_page(), 897 * since that allows for an unmapped ksm page to be recognized 898 * right up until it is freed; but the node is safe to remove. 899 * This page might be in a pagevec waiting to be freed, 900 * or it might be PageSwapCache (perhaps under writeback), 901 * or it might have been removed from swapcache a moment ago. 902 */ 903 set_page_stable_node(page, NULL); 904 remove_node_from_stable_tree(stable_node); 905 err = 0; 906 } 907 908 unlock_page(page); 909 put_page(page); 910 return err; 911 } 912 913 static int remove_stable_node_chain(struct stable_node *stable_node, 914 struct rb_root *root) 915 { 916 struct stable_node *dup; 917 struct hlist_node *hlist_safe; 918 919 if (!is_stable_node_chain(stable_node)) { 920 VM_BUG_ON(is_stable_node_dup(stable_node)); 921 if (remove_stable_node(stable_node)) 922 return true; 923 else 924 return false; 925 } 926 927 hlist_for_each_entry_safe(dup, hlist_safe, 928 &stable_node->hlist, hlist_dup) { 929 VM_BUG_ON(!is_stable_node_dup(dup)); 930 if (remove_stable_node(dup)) 931 return true; 932 } 933 BUG_ON(!hlist_empty(&stable_node->hlist)); 934 free_stable_node_chain(stable_node, root); 935 return false; 936 } 937 938 static int remove_all_stable_nodes(void) 939 { 940 struct stable_node *stable_node, *next; 941 int nid; 942 int err = 0; 943 944 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 945 while (root_stable_tree[nid].rb_node) { 946 stable_node = rb_entry(root_stable_tree[nid].rb_node, 947 struct stable_node, node); 948 if (remove_stable_node_chain(stable_node, 949 root_stable_tree + nid)) { 950 err = -EBUSY; 951 break; /* proceed to next nid */ 952 } 953 cond_resched(); 954 } 955 } 956 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 957 if (remove_stable_node(stable_node)) 958 err = -EBUSY; 959 cond_resched(); 960 } 961 return err; 962 } 963 964 static int unmerge_and_remove_all_rmap_items(void) 965 { 966 struct mm_slot *mm_slot; 967 struct mm_struct *mm; 968 struct vm_area_struct *vma; 969 int err = 0; 970 971 spin_lock(&ksm_mmlist_lock); 972 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 973 struct mm_slot, mm_list); 974 spin_unlock(&ksm_mmlist_lock); 975 976 for (mm_slot = ksm_scan.mm_slot; 977 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 978 mm = mm_slot->mm; 979 down_read(&mm->mmap_sem); 980 for (vma = mm->mmap; vma; vma = vma->vm_next) { 981 if (ksm_test_exit(mm)) 982 break; 983 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 984 continue; 985 err = unmerge_ksm_pages(vma, 986 vma->vm_start, vma->vm_end); 987 if (err) 988 goto error; 989 } 990 991 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); 992 up_read(&mm->mmap_sem); 993 994 spin_lock(&ksm_mmlist_lock); 995 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 996 struct mm_slot, mm_list); 997 if (ksm_test_exit(mm)) { 998 hash_del(&mm_slot->link); 999 list_del(&mm_slot->mm_list); 1000 spin_unlock(&ksm_mmlist_lock); 1001 1002 free_mm_slot(mm_slot); 1003 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1004 mmdrop(mm); 1005 } else 1006 spin_unlock(&ksm_mmlist_lock); 1007 } 1008 1009 /* Clean up stable nodes, but don't worry if some are still busy */ 1010 remove_all_stable_nodes(); 1011 ksm_scan.seqnr = 0; 1012 return 0; 1013 1014 error: 1015 up_read(&mm->mmap_sem); 1016 spin_lock(&ksm_mmlist_lock); 1017 ksm_scan.mm_slot = &ksm_mm_head; 1018 spin_unlock(&ksm_mmlist_lock); 1019 return err; 1020 } 1021 #endif /* CONFIG_SYSFS */ 1022 1023 static u32 calc_checksum(struct page *page) 1024 { 1025 u32 checksum; 1026 void *addr = kmap_atomic(page); 1027 checksum = xxhash(addr, PAGE_SIZE, 0); 1028 kunmap_atomic(addr); 1029 return checksum; 1030 } 1031 1032 static int memcmp_pages(struct page *page1, struct page *page2) 1033 { 1034 char *addr1, *addr2; 1035 int ret; 1036 1037 addr1 = kmap_atomic(page1); 1038 addr2 = kmap_atomic(page2); 1039 ret = memcmp(addr1, addr2, PAGE_SIZE); 1040 kunmap_atomic(addr2); 1041 kunmap_atomic(addr1); 1042 return ret; 1043 } 1044 1045 static inline int pages_identical(struct page *page1, struct page *page2) 1046 { 1047 return !memcmp_pages(page1, page2); 1048 } 1049 1050 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1051 pte_t *orig_pte) 1052 { 1053 struct mm_struct *mm = vma->vm_mm; 1054 struct page_vma_mapped_walk pvmw = { 1055 .page = page, 1056 .vma = vma, 1057 }; 1058 int swapped; 1059 int err = -EFAULT; 1060 struct mmu_notifier_range range; 1061 1062 pvmw.address = page_address_in_vma(page, vma); 1063 if (pvmw.address == -EFAULT) 1064 goto out; 1065 1066 BUG_ON(PageTransCompound(page)); 1067 1068 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 1069 pvmw.address, 1070 pvmw.address + PAGE_SIZE); 1071 mmu_notifier_invalidate_range_start(&range); 1072 1073 if (!page_vma_mapped_walk(&pvmw)) 1074 goto out_mn; 1075 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1076 goto out_unlock; 1077 1078 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1079 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) || 1080 mm_tlb_flush_pending(mm)) { 1081 pte_t entry; 1082 1083 swapped = PageSwapCache(page); 1084 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1085 /* 1086 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1087 * take any lock, therefore the check that we are going to make 1088 * with the pagecount against the mapcount is racey and 1089 * O_DIRECT can happen right after the check. 1090 * So we clear the pte and flush the tlb before the check 1091 * this assure us that no O_DIRECT can happen after the check 1092 * or in the middle of the check. 1093 * 1094 * No need to notify as we are downgrading page table to read 1095 * only not changing it to point to a new page. 1096 * 1097 * See Documentation/vm/mmu_notifier.rst 1098 */ 1099 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1100 /* 1101 * Check that no O_DIRECT or similar I/O is in progress on the 1102 * page 1103 */ 1104 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1105 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1106 goto out_unlock; 1107 } 1108 if (pte_dirty(entry)) 1109 set_page_dirty(page); 1110 1111 if (pte_protnone(entry)) 1112 entry = pte_mkclean(pte_clear_savedwrite(entry)); 1113 else 1114 entry = pte_mkclean(pte_wrprotect(entry)); 1115 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1116 } 1117 *orig_pte = *pvmw.pte; 1118 err = 0; 1119 1120 out_unlock: 1121 page_vma_mapped_walk_done(&pvmw); 1122 out_mn: 1123 mmu_notifier_invalidate_range_end(&range); 1124 out: 1125 return err; 1126 } 1127 1128 /** 1129 * replace_page - replace page in vma by new ksm page 1130 * @vma: vma that holds the pte pointing to page 1131 * @page: the page we are replacing by kpage 1132 * @kpage: the ksm page we replace page by 1133 * @orig_pte: the original value of the pte 1134 * 1135 * Returns 0 on success, -EFAULT on failure. 1136 */ 1137 static int replace_page(struct vm_area_struct *vma, struct page *page, 1138 struct page *kpage, pte_t orig_pte) 1139 { 1140 struct mm_struct *mm = vma->vm_mm; 1141 pmd_t *pmd; 1142 pte_t *ptep; 1143 pte_t newpte; 1144 spinlock_t *ptl; 1145 unsigned long addr; 1146 int err = -EFAULT; 1147 struct mmu_notifier_range range; 1148 1149 addr = page_address_in_vma(page, vma); 1150 if (addr == -EFAULT) 1151 goto out; 1152 1153 pmd = mm_find_pmd(mm, addr); 1154 if (!pmd) 1155 goto out; 1156 1157 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr, 1158 addr + PAGE_SIZE); 1159 mmu_notifier_invalidate_range_start(&range); 1160 1161 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1162 if (!pte_same(*ptep, orig_pte)) { 1163 pte_unmap_unlock(ptep, ptl); 1164 goto out_mn; 1165 } 1166 1167 /* 1168 * No need to check ksm_use_zero_pages here: we can only have a 1169 * zero_page here if ksm_use_zero_pages was enabled alreaady. 1170 */ 1171 if (!is_zero_pfn(page_to_pfn(kpage))) { 1172 get_page(kpage); 1173 page_add_anon_rmap(kpage, vma, addr, false); 1174 newpte = mk_pte(kpage, vma->vm_page_prot); 1175 } else { 1176 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1177 vma->vm_page_prot)); 1178 /* 1179 * We're replacing an anonymous page with a zero page, which is 1180 * not anonymous. We need to do proper accounting otherwise we 1181 * will get wrong values in /proc, and a BUG message in dmesg 1182 * when tearing down the mm. 1183 */ 1184 dec_mm_counter(mm, MM_ANONPAGES); 1185 } 1186 1187 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1188 /* 1189 * No need to notify as we are replacing a read only page with another 1190 * read only page with the same content. 1191 * 1192 * See Documentation/vm/mmu_notifier.rst 1193 */ 1194 ptep_clear_flush(vma, addr, ptep); 1195 set_pte_at_notify(mm, addr, ptep, newpte); 1196 1197 page_remove_rmap(page, false); 1198 if (!page_mapped(page)) 1199 try_to_free_swap(page); 1200 put_page(page); 1201 1202 pte_unmap_unlock(ptep, ptl); 1203 err = 0; 1204 out_mn: 1205 mmu_notifier_invalidate_range_end(&range); 1206 out: 1207 return err; 1208 } 1209 1210 /* 1211 * try_to_merge_one_page - take two pages and merge them into one 1212 * @vma: the vma that holds the pte pointing to page 1213 * @page: the PageAnon page that we want to replace with kpage 1214 * @kpage: the PageKsm page that we want to map instead of page, 1215 * or NULL the first time when we want to use page as kpage. 1216 * 1217 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1218 */ 1219 static int try_to_merge_one_page(struct vm_area_struct *vma, 1220 struct page *page, struct page *kpage) 1221 { 1222 pte_t orig_pte = __pte(0); 1223 int err = -EFAULT; 1224 1225 if (page == kpage) /* ksm page forked */ 1226 return 0; 1227 1228 if (!PageAnon(page)) 1229 goto out; 1230 1231 /* 1232 * We need the page lock to read a stable PageSwapCache in 1233 * write_protect_page(). We use trylock_page() instead of 1234 * lock_page() because we don't want to wait here - we 1235 * prefer to continue scanning and merging different pages, 1236 * then come back to this page when it is unlocked. 1237 */ 1238 if (!trylock_page(page)) 1239 goto out; 1240 1241 if (PageTransCompound(page)) { 1242 if (split_huge_page(page)) 1243 goto out_unlock; 1244 } 1245 1246 /* 1247 * If this anonymous page is mapped only here, its pte may need 1248 * to be write-protected. If it's mapped elsewhere, all of its 1249 * ptes are necessarily already write-protected. But in either 1250 * case, we need to lock and check page_count is not raised. 1251 */ 1252 if (write_protect_page(vma, page, &orig_pte) == 0) { 1253 if (!kpage) { 1254 /* 1255 * While we hold page lock, upgrade page from 1256 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1257 * stable_tree_insert() will update stable_node. 1258 */ 1259 set_page_stable_node(page, NULL); 1260 mark_page_accessed(page); 1261 /* 1262 * Page reclaim just frees a clean page with no dirty 1263 * ptes: make sure that the ksm page would be swapped. 1264 */ 1265 if (!PageDirty(page)) 1266 SetPageDirty(page); 1267 err = 0; 1268 } else if (pages_identical(page, kpage)) 1269 err = replace_page(vma, page, kpage, orig_pte); 1270 } 1271 1272 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1273 munlock_vma_page(page); 1274 if (!PageMlocked(kpage)) { 1275 unlock_page(page); 1276 lock_page(kpage); 1277 mlock_vma_page(kpage); 1278 page = kpage; /* for final unlock */ 1279 } 1280 } 1281 1282 out_unlock: 1283 unlock_page(page); 1284 out: 1285 return err; 1286 } 1287 1288 /* 1289 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1290 * but no new kernel page is allocated: kpage must already be a ksm page. 1291 * 1292 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1293 */ 1294 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1295 struct page *page, struct page *kpage) 1296 { 1297 struct mm_struct *mm = rmap_item->mm; 1298 struct vm_area_struct *vma; 1299 int err = -EFAULT; 1300 1301 down_read(&mm->mmap_sem); 1302 vma = find_mergeable_vma(mm, rmap_item->address); 1303 if (!vma) 1304 goto out; 1305 1306 err = try_to_merge_one_page(vma, page, kpage); 1307 if (err) 1308 goto out; 1309 1310 /* Unstable nid is in union with stable anon_vma: remove first */ 1311 remove_rmap_item_from_tree(rmap_item); 1312 1313 /* Must get reference to anon_vma while still holding mmap_sem */ 1314 rmap_item->anon_vma = vma->anon_vma; 1315 get_anon_vma(vma->anon_vma); 1316 out: 1317 up_read(&mm->mmap_sem); 1318 return err; 1319 } 1320 1321 /* 1322 * try_to_merge_two_pages - take two identical pages and prepare them 1323 * to be merged into one page. 1324 * 1325 * This function returns the kpage if we successfully merged two identical 1326 * pages into one ksm page, NULL otherwise. 1327 * 1328 * Note that this function upgrades page to ksm page: if one of the pages 1329 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1330 */ 1331 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1332 struct page *page, 1333 struct rmap_item *tree_rmap_item, 1334 struct page *tree_page) 1335 { 1336 int err; 1337 1338 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1339 if (!err) { 1340 err = try_to_merge_with_ksm_page(tree_rmap_item, 1341 tree_page, page); 1342 /* 1343 * If that fails, we have a ksm page with only one pte 1344 * pointing to it: so break it. 1345 */ 1346 if (err) 1347 break_cow(rmap_item); 1348 } 1349 return err ? NULL : page; 1350 } 1351 1352 static __always_inline 1353 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset) 1354 { 1355 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1356 /* 1357 * Check that at least one mapping still exists, otherwise 1358 * there's no much point to merge and share with this 1359 * stable_node, as the underlying tree_page of the other 1360 * sharer is going to be freed soon. 1361 */ 1362 return stable_node->rmap_hlist_len && 1363 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1364 } 1365 1366 static __always_inline 1367 bool is_page_sharing_candidate(struct stable_node *stable_node) 1368 { 1369 return __is_page_sharing_candidate(stable_node, 0); 1370 } 1371 1372 static struct page *stable_node_dup(struct stable_node **_stable_node_dup, 1373 struct stable_node **_stable_node, 1374 struct rb_root *root, 1375 bool prune_stale_stable_nodes) 1376 { 1377 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1378 struct hlist_node *hlist_safe; 1379 struct page *_tree_page, *tree_page = NULL; 1380 int nr = 0; 1381 int found_rmap_hlist_len; 1382 1383 if (!prune_stale_stable_nodes || 1384 time_before(jiffies, stable_node->chain_prune_time + 1385 msecs_to_jiffies( 1386 ksm_stable_node_chains_prune_millisecs))) 1387 prune_stale_stable_nodes = false; 1388 else 1389 stable_node->chain_prune_time = jiffies; 1390 1391 hlist_for_each_entry_safe(dup, hlist_safe, 1392 &stable_node->hlist, hlist_dup) { 1393 cond_resched(); 1394 /* 1395 * We must walk all stable_node_dup to prune the stale 1396 * stable nodes during lookup. 1397 * 1398 * get_ksm_page can drop the nodes from the 1399 * stable_node->hlist if they point to freed pages 1400 * (that's why we do a _safe walk). The "dup" 1401 * stable_node parameter itself will be freed from 1402 * under us if it returns NULL. 1403 */ 1404 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK); 1405 if (!_tree_page) 1406 continue; 1407 nr += 1; 1408 if (is_page_sharing_candidate(dup)) { 1409 if (!found || 1410 dup->rmap_hlist_len > found_rmap_hlist_len) { 1411 if (found) 1412 put_page(tree_page); 1413 found = dup; 1414 found_rmap_hlist_len = found->rmap_hlist_len; 1415 tree_page = _tree_page; 1416 1417 /* skip put_page for found dup */ 1418 if (!prune_stale_stable_nodes) 1419 break; 1420 continue; 1421 } 1422 } 1423 put_page(_tree_page); 1424 } 1425 1426 if (found) { 1427 /* 1428 * nr is counting all dups in the chain only if 1429 * prune_stale_stable_nodes is true, otherwise we may 1430 * break the loop at nr == 1 even if there are 1431 * multiple entries. 1432 */ 1433 if (prune_stale_stable_nodes && nr == 1) { 1434 /* 1435 * If there's not just one entry it would 1436 * corrupt memory, better BUG_ON. In KSM 1437 * context with no lock held it's not even 1438 * fatal. 1439 */ 1440 BUG_ON(stable_node->hlist.first->next); 1441 1442 /* 1443 * There's just one entry and it is below the 1444 * deduplication limit so drop the chain. 1445 */ 1446 rb_replace_node(&stable_node->node, &found->node, 1447 root); 1448 free_stable_node(stable_node); 1449 ksm_stable_node_chains--; 1450 ksm_stable_node_dups--; 1451 /* 1452 * NOTE: the caller depends on the stable_node 1453 * to be equal to stable_node_dup if the chain 1454 * was collapsed. 1455 */ 1456 *_stable_node = found; 1457 /* 1458 * Just for robustneess as stable_node is 1459 * otherwise left as a stable pointer, the 1460 * compiler shall optimize it away at build 1461 * time. 1462 */ 1463 stable_node = NULL; 1464 } else if (stable_node->hlist.first != &found->hlist_dup && 1465 __is_page_sharing_candidate(found, 1)) { 1466 /* 1467 * If the found stable_node dup can accept one 1468 * more future merge (in addition to the one 1469 * that is underway) and is not at the head of 1470 * the chain, put it there so next search will 1471 * be quicker in the !prune_stale_stable_nodes 1472 * case. 1473 * 1474 * NOTE: it would be inaccurate to use nr > 1 1475 * instead of checking the hlist.first pointer 1476 * directly, because in the 1477 * prune_stale_stable_nodes case "nr" isn't 1478 * the position of the found dup in the chain, 1479 * but the total number of dups in the chain. 1480 */ 1481 hlist_del(&found->hlist_dup); 1482 hlist_add_head(&found->hlist_dup, 1483 &stable_node->hlist); 1484 } 1485 } 1486 1487 *_stable_node_dup = found; 1488 return tree_page; 1489 } 1490 1491 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node, 1492 struct rb_root *root) 1493 { 1494 if (!is_stable_node_chain(stable_node)) 1495 return stable_node; 1496 if (hlist_empty(&stable_node->hlist)) { 1497 free_stable_node_chain(stable_node, root); 1498 return NULL; 1499 } 1500 return hlist_entry(stable_node->hlist.first, 1501 typeof(*stable_node), hlist_dup); 1502 } 1503 1504 /* 1505 * Like for get_ksm_page, this function can free the *_stable_node and 1506 * *_stable_node_dup if the returned tree_page is NULL. 1507 * 1508 * It can also free and overwrite *_stable_node with the found 1509 * stable_node_dup if the chain is collapsed (in which case 1510 * *_stable_node will be equal to *_stable_node_dup like if the chain 1511 * never existed). It's up to the caller to verify tree_page is not 1512 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1513 * 1514 * *_stable_node_dup is really a second output parameter of this 1515 * function and will be overwritten in all cases, the caller doesn't 1516 * need to initialize it. 1517 */ 1518 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup, 1519 struct stable_node **_stable_node, 1520 struct rb_root *root, 1521 bool prune_stale_stable_nodes) 1522 { 1523 struct stable_node *stable_node = *_stable_node; 1524 if (!is_stable_node_chain(stable_node)) { 1525 if (is_page_sharing_candidate(stable_node)) { 1526 *_stable_node_dup = stable_node; 1527 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); 1528 } 1529 /* 1530 * _stable_node_dup set to NULL means the stable_node 1531 * reached the ksm_max_page_sharing limit. 1532 */ 1533 *_stable_node_dup = NULL; 1534 return NULL; 1535 } 1536 return stable_node_dup(_stable_node_dup, _stable_node, root, 1537 prune_stale_stable_nodes); 1538 } 1539 1540 static __always_inline struct page *chain_prune(struct stable_node **s_n_d, 1541 struct stable_node **s_n, 1542 struct rb_root *root) 1543 { 1544 return __stable_node_chain(s_n_d, s_n, root, true); 1545 } 1546 1547 static __always_inline struct page *chain(struct stable_node **s_n_d, 1548 struct stable_node *s_n, 1549 struct rb_root *root) 1550 { 1551 struct stable_node *old_stable_node = s_n; 1552 struct page *tree_page; 1553 1554 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1555 /* not pruning dups so s_n cannot have changed */ 1556 VM_BUG_ON(s_n != old_stable_node); 1557 return tree_page; 1558 } 1559 1560 /* 1561 * stable_tree_search - search for page inside the stable tree 1562 * 1563 * This function checks if there is a page inside the stable tree 1564 * with identical content to the page that we are scanning right now. 1565 * 1566 * This function returns the stable tree node of identical content if found, 1567 * NULL otherwise. 1568 */ 1569 static struct page *stable_tree_search(struct page *page) 1570 { 1571 int nid; 1572 struct rb_root *root; 1573 struct rb_node **new; 1574 struct rb_node *parent; 1575 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1576 struct stable_node *page_node; 1577 1578 page_node = page_stable_node(page); 1579 if (page_node && page_node->head != &migrate_nodes) { 1580 /* ksm page forked */ 1581 get_page(page); 1582 return page; 1583 } 1584 1585 nid = get_kpfn_nid(page_to_pfn(page)); 1586 root = root_stable_tree + nid; 1587 again: 1588 new = &root->rb_node; 1589 parent = NULL; 1590 1591 while (*new) { 1592 struct page *tree_page; 1593 int ret; 1594 1595 cond_resched(); 1596 stable_node = rb_entry(*new, struct stable_node, node); 1597 stable_node_any = NULL; 1598 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1599 /* 1600 * NOTE: stable_node may have been freed by 1601 * chain_prune() if the returned stable_node_dup is 1602 * not NULL. stable_node_dup may have been inserted in 1603 * the rbtree instead as a regular stable_node (in 1604 * order to collapse the stable_node chain if a single 1605 * stable_node dup was found in it). In such case the 1606 * stable_node is overwritten by the calleee to point 1607 * to the stable_node_dup that was collapsed in the 1608 * stable rbtree and stable_node will be equal to 1609 * stable_node_dup like if the chain never existed. 1610 */ 1611 if (!stable_node_dup) { 1612 /* 1613 * Either all stable_node dups were full in 1614 * this stable_node chain, or this chain was 1615 * empty and should be rb_erased. 1616 */ 1617 stable_node_any = stable_node_dup_any(stable_node, 1618 root); 1619 if (!stable_node_any) { 1620 /* rb_erase just run */ 1621 goto again; 1622 } 1623 /* 1624 * Take any of the stable_node dups page of 1625 * this stable_node chain to let the tree walk 1626 * continue. All KSM pages belonging to the 1627 * stable_node dups in a stable_node chain 1628 * have the same content and they're 1629 * wrprotected at all times. Any will work 1630 * fine to continue the walk. 1631 */ 1632 tree_page = get_ksm_page(stable_node_any, 1633 GET_KSM_PAGE_NOLOCK); 1634 } 1635 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1636 if (!tree_page) { 1637 /* 1638 * If we walked over a stale stable_node, 1639 * get_ksm_page() will call rb_erase() and it 1640 * may rebalance the tree from under us. So 1641 * restart the search from scratch. Returning 1642 * NULL would be safe too, but we'd generate 1643 * false negative insertions just because some 1644 * stable_node was stale. 1645 */ 1646 goto again; 1647 } 1648 1649 ret = memcmp_pages(page, tree_page); 1650 put_page(tree_page); 1651 1652 parent = *new; 1653 if (ret < 0) 1654 new = &parent->rb_left; 1655 else if (ret > 0) 1656 new = &parent->rb_right; 1657 else { 1658 if (page_node) { 1659 VM_BUG_ON(page_node->head != &migrate_nodes); 1660 /* 1661 * Test if the migrated page should be merged 1662 * into a stable node dup. If the mapcount is 1663 * 1 we can migrate it with another KSM page 1664 * without adding it to the chain. 1665 */ 1666 if (page_mapcount(page) > 1) 1667 goto chain_append; 1668 } 1669 1670 if (!stable_node_dup) { 1671 /* 1672 * If the stable_node is a chain and 1673 * we got a payload match in memcmp 1674 * but we cannot merge the scanned 1675 * page in any of the existing 1676 * stable_node dups because they're 1677 * all full, we need to wait the 1678 * scanned page to find itself a match 1679 * in the unstable tree to create a 1680 * brand new KSM page to add later to 1681 * the dups of this stable_node. 1682 */ 1683 return NULL; 1684 } 1685 1686 /* 1687 * Lock and unlock the stable_node's page (which 1688 * might already have been migrated) so that page 1689 * migration is sure to notice its raised count. 1690 * It would be more elegant to return stable_node 1691 * than kpage, but that involves more changes. 1692 */ 1693 tree_page = get_ksm_page(stable_node_dup, 1694 GET_KSM_PAGE_TRYLOCK); 1695 1696 if (PTR_ERR(tree_page) == -EBUSY) 1697 return ERR_PTR(-EBUSY); 1698 1699 if (unlikely(!tree_page)) 1700 /* 1701 * The tree may have been rebalanced, 1702 * so re-evaluate parent and new. 1703 */ 1704 goto again; 1705 unlock_page(tree_page); 1706 1707 if (get_kpfn_nid(stable_node_dup->kpfn) != 1708 NUMA(stable_node_dup->nid)) { 1709 put_page(tree_page); 1710 goto replace; 1711 } 1712 return tree_page; 1713 } 1714 } 1715 1716 if (!page_node) 1717 return NULL; 1718 1719 list_del(&page_node->list); 1720 DO_NUMA(page_node->nid = nid); 1721 rb_link_node(&page_node->node, parent, new); 1722 rb_insert_color(&page_node->node, root); 1723 out: 1724 if (is_page_sharing_candidate(page_node)) { 1725 get_page(page); 1726 return page; 1727 } else 1728 return NULL; 1729 1730 replace: 1731 /* 1732 * If stable_node was a chain and chain_prune collapsed it, 1733 * stable_node has been updated to be the new regular 1734 * stable_node. A collapse of the chain is indistinguishable 1735 * from the case there was no chain in the stable 1736 * rbtree. Otherwise stable_node is the chain and 1737 * stable_node_dup is the dup to replace. 1738 */ 1739 if (stable_node_dup == stable_node) { 1740 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1741 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1742 /* there is no chain */ 1743 if (page_node) { 1744 VM_BUG_ON(page_node->head != &migrate_nodes); 1745 list_del(&page_node->list); 1746 DO_NUMA(page_node->nid = nid); 1747 rb_replace_node(&stable_node_dup->node, 1748 &page_node->node, 1749 root); 1750 if (is_page_sharing_candidate(page_node)) 1751 get_page(page); 1752 else 1753 page = NULL; 1754 } else { 1755 rb_erase(&stable_node_dup->node, root); 1756 page = NULL; 1757 } 1758 } else { 1759 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1760 __stable_node_dup_del(stable_node_dup); 1761 if (page_node) { 1762 VM_BUG_ON(page_node->head != &migrate_nodes); 1763 list_del(&page_node->list); 1764 DO_NUMA(page_node->nid = nid); 1765 stable_node_chain_add_dup(page_node, stable_node); 1766 if (is_page_sharing_candidate(page_node)) 1767 get_page(page); 1768 else 1769 page = NULL; 1770 } else { 1771 page = NULL; 1772 } 1773 } 1774 stable_node_dup->head = &migrate_nodes; 1775 list_add(&stable_node_dup->list, stable_node_dup->head); 1776 return page; 1777 1778 chain_append: 1779 /* stable_node_dup could be null if it reached the limit */ 1780 if (!stable_node_dup) 1781 stable_node_dup = stable_node_any; 1782 /* 1783 * If stable_node was a chain and chain_prune collapsed it, 1784 * stable_node has been updated to be the new regular 1785 * stable_node. A collapse of the chain is indistinguishable 1786 * from the case there was no chain in the stable 1787 * rbtree. Otherwise stable_node is the chain and 1788 * stable_node_dup is the dup to replace. 1789 */ 1790 if (stable_node_dup == stable_node) { 1791 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1792 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1793 /* chain is missing so create it */ 1794 stable_node = alloc_stable_node_chain(stable_node_dup, 1795 root); 1796 if (!stable_node) 1797 return NULL; 1798 } 1799 /* 1800 * Add this stable_node dup that was 1801 * migrated to the stable_node chain 1802 * of the current nid for this page 1803 * content. 1804 */ 1805 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1806 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1807 VM_BUG_ON(page_node->head != &migrate_nodes); 1808 list_del(&page_node->list); 1809 DO_NUMA(page_node->nid = nid); 1810 stable_node_chain_add_dup(page_node, stable_node); 1811 goto out; 1812 } 1813 1814 /* 1815 * stable_tree_insert - insert stable tree node pointing to new ksm page 1816 * into the stable tree. 1817 * 1818 * This function returns the stable tree node just allocated on success, 1819 * NULL otherwise. 1820 */ 1821 static struct stable_node *stable_tree_insert(struct page *kpage) 1822 { 1823 int nid; 1824 unsigned long kpfn; 1825 struct rb_root *root; 1826 struct rb_node **new; 1827 struct rb_node *parent; 1828 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1829 bool need_chain = false; 1830 1831 kpfn = page_to_pfn(kpage); 1832 nid = get_kpfn_nid(kpfn); 1833 root = root_stable_tree + nid; 1834 again: 1835 parent = NULL; 1836 new = &root->rb_node; 1837 1838 while (*new) { 1839 struct page *tree_page; 1840 int ret; 1841 1842 cond_resched(); 1843 stable_node = rb_entry(*new, struct stable_node, node); 1844 stable_node_any = NULL; 1845 tree_page = chain(&stable_node_dup, stable_node, root); 1846 if (!stable_node_dup) { 1847 /* 1848 * Either all stable_node dups were full in 1849 * this stable_node chain, or this chain was 1850 * empty and should be rb_erased. 1851 */ 1852 stable_node_any = stable_node_dup_any(stable_node, 1853 root); 1854 if (!stable_node_any) { 1855 /* rb_erase just run */ 1856 goto again; 1857 } 1858 /* 1859 * Take any of the stable_node dups page of 1860 * this stable_node chain to let the tree walk 1861 * continue. All KSM pages belonging to the 1862 * stable_node dups in a stable_node chain 1863 * have the same content and they're 1864 * wrprotected at all times. Any will work 1865 * fine to continue the walk. 1866 */ 1867 tree_page = get_ksm_page(stable_node_any, 1868 GET_KSM_PAGE_NOLOCK); 1869 } 1870 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1871 if (!tree_page) { 1872 /* 1873 * If we walked over a stale stable_node, 1874 * get_ksm_page() will call rb_erase() and it 1875 * may rebalance the tree from under us. So 1876 * restart the search from scratch. Returning 1877 * NULL would be safe too, but we'd generate 1878 * false negative insertions just because some 1879 * stable_node was stale. 1880 */ 1881 goto again; 1882 } 1883 1884 ret = memcmp_pages(kpage, tree_page); 1885 put_page(tree_page); 1886 1887 parent = *new; 1888 if (ret < 0) 1889 new = &parent->rb_left; 1890 else if (ret > 0) 1891 new = &parent->rb_right; 1892 else { 1893 need_chain = true; 1894 break; 1895 } 1896 } 1897 1898 stable_node_dup = alloc_stable_node(); 1899 if (!stable_node_dup) 1900 return NULL; 1901 1902 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1903 stable_node_dup->kpfn = kpfn; 1904 set_page_stable_node(kpage, stable_node_dup); 1905 stable_node_dup->rmap_hlist_len = 0; 1906 DO_NUMA(stable_node_dup->nid = nid); 1907 if (!need_chain) { 1908 rb_link_node(&stable_node_dup->node, parent, new); 1909 rb_insert_color(&stable_node_dup->node, root); 1910 } else { 1911 if (!is_stable_node_chain(stable_node)) { 1912 struct stable_node *orig = stable_node; 1913 /* chain is missing so create it */ 1914 stable_node = alloc_stable_node_chain(orig, root); 1915 if (!stable_node) { 1916 free_stable_node(stable_node_dup); 1917 return NULL; 1918 } 1919 } 1920 stable_node_chain_add_dup(stable_node_dup, stable_node); 1921 } 1922 1923 return stable_node_dup; 1924 } 1925 1926 /* 1927 * unstable_tree_search_insert - search for identical page, 1928 * else insert rmap_item into the unstable tree. 1929 * 1930 * This function searches for a page in the unstable tree identical to the 1931 * page currently being scanned; and if no identical page is found in the 1932 * tree, we insert rmap_item as a new object into the unstable tree. 1933 * 1934 * This function returns pointer to rmap_item found to be identical 1935 * to the currently scanned page, NULL otherwise. 1936 * 1937 * This function does both searching and inserting, because they share 1938 * the same walking algorithm in an rbtree. 1939 */ 1940 static 1941 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1942 struct page *page, 1943 struct page **tree_pagep) 1944 { 1945 struct rb_node **new; 1946 struct rb_root *root; 1947 struct rb_node *parent = NULL; 1948 int nid; 1949 1950 nid = get_kpfn_nid(page_to_pfn(page)); 1951 root = root_unstable_tree + nid; 1952 new = &root->rb_node; 1953 1954 while (*new) { 1955 struct rmap_item *tree_rmap_item; 1956 struct page *tree_page; 1957 int ret; 1958 1959 cond_resched(); 1960 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1961 tree_page = get_mergeable_page(tree_rmap_item); 1962 if (!tree_page) 1963 return NULL; 1964 1965 /* 1966 * Don't substitute a ksm page for a forked page. 1967 */ 1968 if (page == tree_page) { 1969 put_page(tree_page); 1970 return NULL; 1971 } 1972 1973 ret = memcmp_pages(page, tree_page); 1974 1975 parent = *new; 1976 if (ret < 0) { 1977 put_page(tree_page); 1978 new = &parent->rb_left; 1979 } else if (ret > 0) { 1980 put_page(tree_page); 1981 new = &parent->rb_right; 1982 } else if (!ksm_merge_across_nodes && 1983 page_to_nid(tree_page) != nid) { 1984 /* 1985 * If tree_page has been migrated to another NUMA node, 1986 * it will be flushed out and put in the right unstable 1987 * tree next time: only merge with it when across_nodes. 1988 */ 1989 put_page(tree_page); 1990 return NULL; 1991 } else { 1992 *tree_pagep = tree_page; 1993 return tree_rmap_item; 1994 } 1995 } 1996 1997 rmap_item->address |= UNSTABLE_FLAG; 1998 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1999 DO_NUMA(rmap_item->nid = nid); 2000 rb_link_node(&rmap_item->node, parent, new); 2001 rb_insert_color(&rmap_item->node, root); 2002 2003 ksm_pages_unshared++; 2004 return NULL; 2005 } 2006 2007 /* 2008 * stable_tree_append - add another rmap_item to the linked list of 2009 * rmap_items hanging off a given node of the stable tree, all sharing 2010 * the same ksm page. 2011 */ 2012 static void stable_tree_append(struct rmap_item *rmap_item, 2013 struct stable_node *stable_node, 2014 bool max_page_sharing_bypass) 2015 { 2016 /* 2017 * rmap won't find this mapping if we don't insert the 2018 * rmap_item in the right stable_node 2019 * duplicate. page_migration could break later if rmap breaks, 2020 * so we can as well crash here. We really need to check for 2021 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2022 * for other negative values as an undeflow if detected here 2023 * for the first time (and not when decreasing rmap_hlist_len) 2024 * would be sign of memory corruption in the stable_node. 2025 */ 2026 BUG_ON(stable_node->rmap_hlist_len < 0); 2027 2028 stable_node->rmap_hlist_len++; 2029 if (!max_page_sharing_bypass) 2030 /* possibly non fatal but unexpected overflow, only warn */ 2031 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2032 ksm_max_page_sharing); 2033 2034 rmap_item->head = stable_node; 2035 rmap_item->address |= STABLE_FLAG; 2036 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2037 2038 if (rmap_item->hlist.next) 2039 ksm_pages_sharing++; 2040 else 2041 ksm_pages_shared++; 2042 } 2043 2044 /* 2045 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2046 * if not, compare checksum to previous and if it's the same, see if page can 2047 * be inserted into the unstable tree, or merged with a page already there and 2048 * both transferred to the stable tree. 2049 * 2050 * @page: the page that we are searching identical page to. 2051 * @rmap_item: the reverse mapping into the virtual address of this page 2052 */ 2053 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 2054 { 2055 struct mm_struct *mm = rmap_item->mm; 2056 struct rmap_item *tree_rmap_item; 2057 struct page *tree_page = NULL; 2058 struct stable_node *stable_node; 2059 struct page *kpage; 2060 unsigned int checksum; 2061 int err; 2062 bool max_page_sharing_bypass = false; 2063 2064 stable_node = page_stable_node(page); 2065 if (stable_node) { 2066 if (stable_node->head != &migrate_nodes && 2067 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2068 NUMA(stable_node->nid)) { 2069 stable_node_dup_del(stable_node); 2070 stable_node->head = &migrate_nodes; 2071 list_add(&stable_node->list, stable_node->head); 2072 } 2073 if (stable_node->head != &migrate_nodes && 2074 rmap_item->head == stable_node) 2075 return; 2076 /* 2077 * If it's a KSM fork, allow it to go over the sharing limit 2078 * without warnings. 2079 */ 2080 if (!is_page_sharing_candidate(stable_node)) 2081 max_page_sharing_bypass = true; 2082 } 2083 2084 /* We first start with searching the page inside the stable tree */ 2085 kpage = stable_tree_search(page); 2086 if (kpage == page && rmap_item->head == stable_node) { 2087 put_page(kpage); 2088 return; 2089 } 2090 2091 remove_rmap_item_from_tree(rmap_item); 2092 2093 if (kpage) { 2094 if (PTR_ERR(kpage) == -EBUSY) 2095 return; 2096 2097 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2098 if (!err) { 2099 /* 2100 * The page was successfully merged: 2101 * add its rmap_item to the stable tree. 2102 */ 2103 lock_page(kpage); 2104 stable_tree_append(rmap_item, page_stable_node(kpage), 2105 max_page_sharing_bypass); 2106 unlock_page(kpage); 2107 } 2108 put_page(kpage); 2109 return; 2110 } 2111 2112 /* 2113 * If the hash value of the page has changed from the last time 2114 * we calculated it, this page is changing frequently: therefore we 2115 * don't want to insert it in the unstable tree, and we don't want 2116 * to waste our time searching for something identical to it there. 2117 */ 2118 checksum = calc_checksum(page); 2119 if (rmap_item->oldchecksum != checksum) { 2120 rmap_item->oldchecksum = checksum; 2121 return; 2122 } 2123 2124 /* 2125 * Same checksum as an empty page. We attempt to merge it with the 2126 * appropriate zero page if the user enabled this via sysfs. 2127 */ 2128 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2129 struct vm_area_struct *vma; 2130 2131 down_read(&mm->mmap_sem); 2132 vma = find_mergeable_vma(mm, rmap_item->address); 2133 err = try_to_merge_one_page(vma, page, 2134 ZERO_PAGE(rmap_item->address)); 2135 up_read(&mm->mmap_sem); 2136 /* 2137 * In case of failure, the page was not really empty, so we 2138 * need to continue. Otherwise we're done. 2139 */ 2140 if (!err) 2141 return; 2142 } 2143 tree_rmap_item = 2144 unstable_tree_search_insert(rmap_item, page, &tree_page); 2145 if (tree_rmap_item) { 2146 bool split; 2147 2148 kpage = try_to_merge_two_pages(rmap_item, page, 2149 tree_rmap_item, tree_page); 2150 /* 2151 * If both pages we tried to merge belong to the same compound 2152 * page, then we actually ended up increasing the reference 2153 * count of the same compound page twice, and split_huge_page 2154 * failed. 2155 * Here we set a flag if that happened, and we use it later to 2156 * try split_huge_page again. Since we call put_page right 2157 * afterwards, the reference count will be correct and 2158 * split_huge_page should succeed. 2159 */ 2160 split = PageTransCompound(page) 2161 && compound_head(page) == compound_head(tree_page); 2162 put_page(tree_page); 2163 if (kpage) { 2164 /* 2165 * The pages were successfully merged: insert new 2166 * node in the stable tree and add both rmap_items. 2167 */ 2168 lock_page(kpage); 2169 stable_node = stable_tree_insert(kpage); 2170 if (stable_node) { 2171 stable_tree_append(tree_rmap_item, stable_node, 2172 false); 2173 stable_tree_append(rmap_item, stable_node, 2174 false); 2175 } 2176 unlock_page(kpage); 2177 2178 /* 2179 * If we fail to insert the page into the stable tree, 2180 * we will have 2 virtual addresses that are pointing 2181 * to a ksm page left outside the stable tree, 2182 * in which case we need to break_cow on both. 2183 */ 2184 if (!stable_node) { 2185 break_cow(tree_rmap_item); 2186 break_cow(rmap_item); 2187 } 2188 } else if (split) { 2189 /* 2190 * We are here if we tried to merge two pages and 2191 * failed because they both belonged to the same 2192 * compound page. We will split the page now, but no 2193 * merging will take place. 2194 * We do not want to add the cost of a full lock; if 2195 * the page is locked, it is better to skip it and 2196 * perhaps try again later. 2197 */ 2198 if (!trylock_page(page)) 2199 return; 2200 split_huge_page(page); 2201 unlock_page(page); 2202 } 2203 } 2204 } 2205 2206 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 2207 struct rmap_item **rmap_list, 2208 unsigned long addr) 2209 { 2210 struct rmap_item *rmap_item; 2211 2212 while (*rmap_list) { 2213 rmap_item = *rmap_list; 2214 if ((rmap_item->address & PAGE_MASK) == addr) 2215 return rmap_item; 2216 if (rmap_item->address > addr) 2217 break; 2218 *rmap_list = rmap_item->rmap_list; 2219 remove_rmap_item_from_tree(rmap_item); 2220 free_rmap_item(rmap_item); 2221 } 2222 2223 rmap_item = alloc_rmap_item(); 2224 if (rmap_item) { 2225 /* It has already been zeroed */ 2226 rmap_item->mm = mm_slot->mm; 2227 rmap_item->address = addr; 2228 rmap_item->rmap_list = *rmap_list; 2229 *rmap_list = rmap_item; 2230 } 2231 return rmap_item; 2232 } 2233 2234 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 2235 { 2236 struct mm_struct *mm; 2237 struct mm_slot *slot; 2238 struct vm_area_struct *vma; 2239 struct rmap_item *rmap_item; 2240 int nid; 2241 2242 if (list_empty(&ksm_mm_head.mm_list)) 2243 return NULL; 2244 2245 slot = ksm_scan.mm_slot; 2246 if (slot == &ksm_mm_head) { 2247 /* 2248 * A number of pages can hang around indefinitely on per-cpu 2249 * pagevecs, raised page count preventing write_protect_page 2250 * from merging them. Though it doesn't really matter much, 2251 * it is puzzling to see some stuck in pages_volatile until 2252 * other activity jostles them out, and they also prevented 2253 * LTP's KSM test from succeeding deterministically; so drain 2254 * them here (here rather than on entry to ksm_do_scan(), 2255 * so we don't IPI too often when pages_to_scan is set low). 2256 */ 2257 lru_add_drain_all(); 2258 2259 /* 2260 * Whereas stale stable_nodes on the stable_tree itself 2261 * get pruned in the regular course of stable_tree_search(), 2262 * those moved out to the migrate_nodes list can accumulate: 2263 * so prune them once before each full scan. 2264 */ 2265 if (!ksm_merge_across_nodes) { 2266 struct stable_node *stable_node, *next; 2267 struct page *page; 2268 2269 list_for_each_entry_safe(stable_node, next, 2270 &migrate_nodes, list) { 2271 page = get_ksm_page(stable_node, 2272 GET_KSM_PAGE_NOLOCK); 2273 if (page) 2274 put_page(page); 2275 cond_resched(); 2276 } 2277 } 2278 2279 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2280 root_unstable_tree[nid] = RB_ROOT; 2281 2282 spin_lock(&ksm_mmlist_lock); 2283 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 2284 ksm_scan.mm_slot = slot; 2285 spin_unlock(&ksm_mmlist_lock); 2286 /* 2287 * Although we tested list_empty() above, a racing __ksm_exit 2288 * of the last mm on the list may have removed it since then. 2289 */ 2290 if (slot == &ksm_mm_head) 2291 return NULL; 2292 next_mm: 2293 ksm_scan.address = 0; 2294 ksm_scan.rmap_list = &slot->rmap_list; 2295 } 2296 2297 mm = slot->mm; 2298 down_read(&mm->mmap_sem); 2299 if (ksm_test_exit(mm)) 2300 vma = NULL; 2301 else 2302 vma = find_vma(mm, ksm_scan.address); 2303 2304 for (; vma; vma = vma->vm_next) { 2305 if (!(vma->vm_flags & VM_MERGEABLE)) 2306 continue; 2307 if (ksm_scan.address < vma->vm_start) 2308 ksm_scan.address = vma->vm_start; 2309 if (!vma->anon_vma) 2310 ksm_scan.address = vma->vm_end; 2311 2312 while (ksm_scan.address < vma->vm_end) { 2313 if (ksm_test_exit(mm)) 2314 break; 2315 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2316 if (IS_ERR_OR_NULL(*page)) { 2317 ksm_scan.address += PAGE_SIZE; 2318 cond_resched(); 2319 continue; 2320 } 2321 if (PageAnon(*page)) { 2322 flush_anon_page(vma, *page, ksm_scan.address); 2323 flush_dcache_page(*page); 2324 rmap_item = get_next_rmap_item(slot, 2325 ksm_scan.rmap_list, ksm_scan.address); 2326 if (rmap_item) { 2327 ksm_scan.rmap_list = 2328 &rmap_item->rmap_list; 2329 ksm_scan.address += PAGE_SIZE; 2330 } else 2331 put_page(*page); 2332 up_read(&mm->mmap_sem); 2333 return rmap_item; 2334 } 2335 put_page(*page); 2336 ksm_scan.address += PAGE_SIZE; 2337 cond_resched(); 2338 } 2339 } 2340 2341 if (ksm_test_exit(mm)) { 2342 ksm_scan.address = 0; 2343 ksm_scan.rmap_list = &slot->rmap_list; 2344 } 2345 /* 2346 * Nuke all the rmap_items that are above this current rmap: 2347 * because there were no VM_MERGEABLE vmas with such addresses. 2348 */ 2349 remove_trailing_rmap_items(slot, ksm_scan.rmap_list); 2350 2351 spin_lock(&ksm_mmlist_lock); 2352 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 2353 struct mm_slot, mm_list); 2354 if (ksm_scan.address == 0) { 2355 /* 2356 * We've completed a full scan of all vmas, holding mmap_sem 2357 * throughout, and found no VM_MERGEABLE: so do the same as 2358 * __ksm_exit does to remove this mm from all our lists now. 2359 * This applies either when cleaning up after __ksm_exit 2360 * (but beware: we can reach here even before __ksm_exit), 2361 * or when all VM_MERGEABLE areas have been unmapped (and 2362 * mmap_sem then protects against race with MADV_MERGEABLE). 2363 */ 2364 hash_del(&slot->link); 2365 list_del(&slot->mm_list); 2366 spin_unlock(&ksm_mmlist_lock); 2367 2368 free_mm_slot(slot); 2369 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2370 up_read(&mm->mmap_sem); 2371 mmdrop(mm); 2372 } else { 2373 up_read(&mm->mmap_sem); 2374 /* 2375 * up_read(&mm->mmap_sem) first because after 2376 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2377 * already have been freed under us by __ksm_exit() 2378 * because the "mm_slot" is still hashed and 2379 * ksm_scan.mm_slot doesn't point to it anymore. 2380 */ 2381 spin_unlock(&ksm_mmlist_lock); 2382 } 2383 2384 /* Repeat until we've completed scanning the whole list */ 2385 slot = ksm_scan.mm_slot; 2386 if (slot != &ksm_mm_head) 2387 goto next_mm; 2388 2389 ksm_scan.seqnr++; 2390 return NULL; 2391 } 2392 2393 /** 2394 * ksm_do_scan - the ksm scanner main worker function. 2395 * @scan_npages: number of pages we want to scan before we return. 2396 */ 2397 static void ksm_do_scan(unsigned int scan_npages) 2398 { 2399 struct rmap_item *rmap_item; 2400 struct page *uninitialized_var(page); 2401 2402 while (scan_npages-- && likely(!freezing(current))) { 2403 cond_resched(); 2404 rmap_item = scan_get_next_rmap_item(&page); 2405 if (!rmap_item) 2406 return; 2407 cmp_and_merge_page(page, rmap_item); 2408 put_page(page); 2409 } 2410 } 2411 2412 static int ksmd_should_run(void) 2413 { 2414 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 2415 } 2416 2417 static int ksm_scan_thread(void *nothing) 2418 { 2419 unsigned int sleep_ms; 2420 2421 set_freezable(); 2422 set_user_nice(current, 5); 2423 2424 while (!kthread_should_stop()) { 2425 mutex_lock(&ksm_thread_mutex); 2426 wait_while_offlining(); 2427 if (ksmd_should_run()) 2428 ksm_do_scan(ksm_thread_pages_to_scan); 2429 mutex_unlock(&ksm_thread_mutex); 2430 2431 try_to_freeze(); 2432 2433 if (ksmd_should_run()) { 2434 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2435 wait_event_interruptible_timeout(ksm_iter_wait, 2436 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2437 msecs_to_jiffies(sleep_ms)); 2438 } else { 2439 wait_event_freezable(ksm_thread_wait, 2440 ksmd_should_run() || kthread_should_stop()); 2441 } 2442 } 2443 return 0; 2444 } 2445 2446 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2447 unsigned long end, int advice, unsigned long *vm_flags) 2448 { 2449 struct mm_struct *mm = vma->vm_mm; 2450 int err; 2451 2452 switch (advice) { 2453 case MADV_MERGEABLE: 2454 /* 2455 * Be somewhat over-protective for now! 2456 */ 2457 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 2458 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 2459 VM_HUGETLB | VM_MIXEDMAP)) 2460 return 0; /* just ignore the advice */ 2461 2462 if (vma_is_dax(vma)) 2463 return 0; 2464 2465 #ifdef VM_SAO 2466 if (*vm_flags & VM_SAO) 2467 return 0; 2468 #endif 2469 #ifdef VM_SPARC_ADI 2470 if (*vm_flags & VM_SPARC_ADI) 2471 return 0; 2472 #endif 2473 2474 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2475 err = __ksm_enter(mm); 2476 if (err) 2477 return err; 2478 } 2479 2480 *vm_flags |= VM_MERGEABLE; 2481 break; 2482 2483 case MADV_UNMERGEABLE: 2484 if (!(*vm_flags & VM_MERGEABLE)) 2485 return 0; /* just ignore the advice */ 2486 2487 if (vma->anon_vma) { 2488 err = unmerge_ksm_pages(vma, start, end); 2489 if (err) 2490 return err; 2491 } 2492 2493 *vm_flags &= ~VM_MERGEABLE; 2494 break; 2495 } 2496 2497 return 0; 2498 } 2499 2500 int __ksm_enter(struct mm_struct *mm) 2501 { 2502 struct mm_slot *mm_slot; 2503 int needs_wakeup; 2504 2505 mm_slot = alloc_mm_slot(); 2506 if (!mm_slot) 2507 return -ENOMEM; 2508 2509 /* Check ksm_run too? Would need tighter locking */ 2510 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 2511 2512 spin_lock(&ksm_mmlist_lock); 2513 insert_to_mm_slots_hash(mm, mm_slot); 2514 /* 2515 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2516 * insert just behind the scanning cursor, to let the area settle 2517 * down a little; when fork is followed by immediate exec, we don't 2518 * want ksmd to waste time setting up and tearing down an rmap_list. 2519 * 2520 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2521 * scanning cursor, otherwise KSM pages in newly forked mms will be 2522 * missed: then we might as well insert at the end of the list. 2523 */ 2524 if (ksm_run & KSM_RUN_UNMERGE) 2525 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 2526 else 2527 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 2528 spin_unlock(&ksm_mmlist_lock); 2529 2530 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2531 mmgrab(mm); 2532 2533 if (needs_wakeup) 2534 wake_up_interruptible(&ksm_thread_wait); 2535 2536 return 0; 2537 } 2538 2539 void __ksm_exit(struct mm_struct *mm) 2540 { 2541 struct mm_slot *mm_slot; 2542 int easy_to_free = 0; 2543 2544 /* 2545 * This process is exiting: if it's straightforward (as is the 2546 * case when ksmd was never running), free mm_slot immediately. 2547 * But if it's at the cursor or has rmap_items linked to it, use 2548 * mmap_sem to synchronize with any break_cows before pagetables 2549 * are freed, and leave the mm_slot on the list for ksmd to free. 2550 * Beware: ksm may already have noticed it exiting and freed the slot. 2551 */ 2552 2553 spin_lock(&ksm_mmlist_lock); 2554 mm_slot = get_mm_slot(mm); 2555 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2556 if (!mm_slot->rmap_list) { 2557 hash_del(&mm_slot->link); 2558 list_del(&mm_slot->mm_list); 2559 easy_to_free = 1; 2560 } else { 2561 list_move(&mm_slot->mm_list, 2562 &ksm_scan.mm_slot->mm_list); 2563 } 2564 } 2565 spin_unlock(&ksm_mmlist_lock); 2566 2567 if (easy_to_free) { 2568 free_mm_slot(mm_slot); 2569 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2570 mmdrop(mm); 2571 } else if (mm_slot) { 2572 down_write(&mm->mmap_sem); 2573 up_write(&mm->mmap_sem); 2574 } 2575 } 2576 2577 struct page *ksm_might_need_to_copy(struct page *page, 2578 struct vm_area_struct *vma, unsigned long address) 2579 { 2580 struct anon_vma *anon_vma = page_anon_vma(page); 2581 struct page *new_page; 2582 2583 if (PageKsm(page)) { 2584 if (page_stable_node(page) && 2585 !(ksm_run & KSM_RUN_UNMERGE)) 2586 return page; /* no need to copy it */ 2587 } else if (!anon_vma) { 2588 return page; /* no need to copy it */ 2589 } else if (anon_vma->root == vma->anon_vma->root && 2590 page->index == linear_page_index(vma, address)) { 2591 return page; /* still no need to copy it */ 2592 } 2593 if (!PageUptodate(page)) 2594 return page; /* let do_swap_page report the error */ 2595 2596 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2597 if (new_page) { 2598 copy_user_highpage(new_page, page, address, vma); 2599 2600 SetPageDirty(new_page); 2601 __SetPageUptodate(new_page); 2602 __SetPageLocked(new_page); 2603 } 2604 2605 return new_page; 2606 } 2607 2608 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 2609 { 2610 struct stable_node *stable_node; 2611 struct rmap_item *rmap_item; 2612 int search_new_forks = 0; 2613 2614 VM_BUG_ON_PAGE(!PageKsm(page), page); 2615 2616 /* 2617 * Rely on the page lock to protect against concurrent modifications 2618 * to that page's node of the stable tree. 2619 */ 2620 VM_BUG_ON_PAGE(!PageLocked(page), page); 2621 2622 stable_node = page_stable_node(page); 2623 if (!stable_node) 2624 return; 2625 again: 2626 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2627 struct anon_vma *anon_vma = rmap_item->anon_vma; 2628 struct anon_vma_chain *vmac; 2629 struct vm_area_struct *vma; 2630 2631 cond_resched(); 2632 anon_vma_lock_read(anon_vma); 2633 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2634 0, ULONG_MAX) { 2635 unsigned long addr; 2636 2637 cond_resched(); 2638 vma = vmac->vma; 2639 2640 /* Ignore the stable/unstable/sqnr flags */ 2641 addr = rmap_item->address & ~KSM_FLAG_MASK; 2642 2643 if (addr < vma->vm_start || addr >= vma->vm_end) 2644 continue; 2645 /* 2646 * Initially we examine only the vma which covers this 2647 * rmap_item; but later, if there is still work to do, 2648 * we examine covering vmas in other mms: in case they 2649 * were forked from the original since ksmd passed. 2650 */ 2651 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2652 continue; 2653 2654 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2655 continue; 2656 2657 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) { 2658 anon_vma_unlock_read(anon_vma); 2659 return; 2660 } 2661 if (rwc->done && rwc->done(page)) { 2662 anon_vma_unlock_read(anon_vma); 2663 return; 2664 } 2665 } 2666 anon_vma_unlock_read(anon_vma); 2667 } 2668 if (!search_new_forks++) 2669 goto again; 2670 } 2671 2672 bool reuse_ksm_page(struct page *page, 2673 struct vm_area_struct *vma, 2674 unsigned long address) 2675 { 2676 #ifdef CONFIG_DEBUG_VM 2677 if (WARN_ON(is_zero_pfn(page_to_pfn(page))) || 2678 WARN_ON(!page_mapped(page)) || 2679 WARN_ON(!PageLocked(page))) { 2680 dump_page(page, "reuse_ksm_page"); 2681 return false; 2682 } 2683 #endif 2684 2685 if (PageSwapCache(page) || !page_stable_node(page)) 2686 return false; 2687 /* Prohibit parallel get_ksm_page() */ 2688 if (!page_ref_freeze(page, 1)) 2689 return false; 2690 2691 page_move_anon_rmap(page, vma); 2692 page->index = linear_page_index(vma, address); 2693 page_ref_unfreeze(page, 1); 2694 2695 return true; 2696 } 2697 #ifdef CONFIG_MIGRATION 2698 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 2699 { 2700 struct stable_node *stable_node; 2701 2702 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 2703 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 2704 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); 2705 2706 stable_node = page_stable_node(newpage); 2707 if (stable_node) { 2708 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); 2709 stable_node->kpfn = page_to_pfn(newpage); 2710 /* 2711 * newpage->mapping was set in advance; now we need smp_wmb() 2712 * to make sure that the new stable_node->kpfn is visible 2713 * to get_ksm_page() before it can see that oldpage->mapping 2714 * has gone stale (or that PageSwapCache has been cleared). 2715 */ 2716 smp_wmb(); 2717 set_page_stable_node(oldpage, NULL); 2718 } 2719 } 2720 #endif /* CONFIG_MIGRATION */ 2721 2722 #ifdef CONFIG_MEMORY_HOTREMOVE 2723 static void wait_while_offlining(void) 2724 { 2725 while (ksm_run & KSM_RUN_OFFLINE) { 2726 mutex_unlock(&ksm_thread_mutex); 2727 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2728 TASK_UNINTERRUPTIBLE); 2729 mutex_lock(&ksm_thread_mutex); 2730 } 2731 } 2732 2733 static bool stable_node_dup_remove_range(struct stable_node *stable_node, 2734 unsigned long start_pfn, 2735 unsigned long end_pfn) 2736 { 2737 if (stable_node->kpfn >= start_pfn && 2738 stable_node->kpfn < end_pfn) { 2739 /* 2740 * Don't get_ksm_page, page has already gone: 2741 * which is why we keep kpfn instead of page* 2742 */ 2743 remove_node_from_stable_tree(stable_node); 2744 return true; 2745 } 2746 return false; 2747 } 2748 2749 static bool stable_node_chain_remove_range(struct stable_node *stable_node, 2750 unsigned long start_pfn, 2751 unsigned long end_pfn, 2752 struct rb_root *root) 2753 { 2754 struct stable_node *dup; 2755 struct hlist_node *hlist_safe; 2756 2757 if (!is_stable_node_chain(stable_node)) { 2758 VM_BUG_ON(is_stable_node_dup(stable_node)); 2759 return stable_node_dup_remove_range(stable_node, start_pfn, 2760 end_pfn); 2761 } 2762 2763 hlist_for_each_entry_safe(dup, hlist_safe, 2764 &stable_node->hlist, hlist_dup) { 2765 VM_BUG_ON(!is_stable_node_dup(dup)); 2766 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2767 } 2768 if (hlist_empty(&stable_node->hlist)) { 2769 free_stable_node_chain(stable_node, root); 2770 return true; /* notify caller that tree was rebalanced */ 2771 } else 2772 return false; 2773 } 2774 2775 static void ksm_check_stable_tree(unsigned long start_pfn, 2776 unsigned long end_pfn) 2777 { 2778 struct stable_node *stable_node, *next; 2779 struct rb_node *node; 2780 int nid; 2781 2782 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2783 node = rb_first(root_stable_tree + nid); 2784 while (node) { 2785 stable_node = rb_entry(node, struct stable_node, node); 2786 if (stable_node_chain_remove_range(stable_node, 2787 start_pfn, end_pfn, 2788 root_stable_tree + 2789 nid)) 2790 node = rb_first(root_stable_tree + nid); 2791 else 2792 node = rb_next(node); 2793 cond_resched(); 2794 } 2795 } 2796 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2797 if (stable_node->kpfn >= start_pfn && 2798 stable_node->kpfn < end_pfn) 2799 remove_node_from_stable_tree(stable_node); 2800 cond_resched(); 2801 } 2802 } 2803 2804 static int ksm_memory_callback(struct notifier_block *self, 2805 unsigned long action, void *arg) 2806 { 2807 struct memory_notify *mn = arg; 2808 2809 switch (action) { 2810 case MEM_GOING_OFFLINE: 2811 /* 2812 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2813 * and remove_all_stable_nodes() while memory is going offline: 2814 * it is unsafe for them to touch the stable tree at this time. 2815 * But unmerge_ksm_pages(), rmap lookups and other entry points 2816 * which do not need the ksm_thread_mutex are all safe. 2817 */ 2818 mutex_lock(&ksm_thread_mutex); 2819 ksm_run |= KSM_RUN_OFFLINE; 2820 mutex_unlock(&ksm_thread_mutex); 2821 break; 2822 2823 case MEM_OFFLINE: 2824 /* 2825 * Most of the work is done by page migration; but there might 2826 * be a few stable_nodes left over, still pointing to struct 2827 * pages which have been offlined: prune those from the tree, 2828 * otherwise get_ksm_page() might later try to access a 2829 * non-existent struct page. 2830 */ 2831 ksm_check_stable_tree(mn->start_pfn, 2832 mn->start_pfn + mn->nr_pages); 2833 /* fallthrough */ 2834 2835 case MEM_CANCEL_OFFLINE: 2836 mutex_lock(&ksm_thread_mutex); 2837 ksm_run &= ~KSM_RUN_OFFLINE; 2838 mutex_unlock(&ksm_thread_mutex); 2839 2840 smp_mb(); /* wake_up_bit advises this */ 2841 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2842 break; 2843 } 2844 return NOTIFY_OK; 2845 } 2846 #else 2847 static void wait_while_offlining(void) 2848 { 2849 } 2850 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2851 2852 #ifdef CONFIG_SYSFS 2853 /* 2854 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2855 */ 2856 2857 #define KSM_ATTR_RO(_name) \ 2858 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2859 #define KSM_ATTR(_name) \ 2860 static struct kobj_attribute _name##_attr = \ 2861 __ATTR(_name, 0644, _name##_show, _name##_store) 2862 2863 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2864 struct kobj_attribute *attr, char *buf) 2865 { 2866 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); 2867 } 2868 2869 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2870 struct kobj_attribute *attr, 2871 const char *buf, size_t count) 2872 { 2873 unsigned long msecs; 2874 int err; 2875 2876 err = kstrtoul(buf, 10, &msecs); 2877 if (err || msecs > UINT_MAX) 2878 return -EINVAL; 2879 2880 ksm_thread_sleep_millisecs = msecs; 2881 wake_up_interruptible(&ksm_iter_wait); 2882 2883 return count; 2884 } 2885 KSM_ATTR(sleep_millisecs); 2886 2887 static ssize_t pages_to_scan_show(struct kobject *kobj, 2888 struct kobj_attribute *attr, char *buf) 2889 { 2890 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); 2891 } 2892 2893 static ssize_t pages_to_scan_store(struct kobject *kobj, 2894 struct kobj_attribute *attr, 2895 const char *buf, size_t count) 2896 { 2897 int err; 2898 unsigned long nr_pages; 2899 2900 err = kstrtoul(buf, 10, &nr_pages); 2901 if (err || nr_pages > UINT_MAX) 2902 return -EINVAL; 2903 2904 ksm_thread_pages_to_scan = nr_pages; 2905 2906 return count; 2907 } 2908 KSM_ATTR(pages_to_scan); 2909 2910 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2911 char *buf) 2912 { 2913 return sprintf(buf, "%lu\n", ksm_run); 2914 } 2915 2916 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2917 const char *buf, size_t count) 2918 { 2919 int err; 2920 unsigned long flags; 2921 2922 err = kstrtoul(buf, 10, &flags); 2923 if (err || flags > UINT_MAX) 2924 return -EINVAL; 2925 if (flags > KSM_RUN_UNMERGE) 2926 return -EINVAL; 2927 2928 /* 2929 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2930 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2931 * breaking COW to free the pages_shared (but leaves mm_slots 2932 * on the list for when ksmd may be set running again). 2933 */ 2934 2935 mutex_lock(&ksm_thread_mutex); 2936 wait_while_offlining(); 2937 if (ksm_run != flags) { 2938 ksm_run = flags; 2939 if (flags & KSM_RUN_UNMERGE) { 2940 set_current_oom_origin(); 2941 err = unmerge_and_remove_all_rmap_items(); 2942 clear_current_oom_origin(); 2943 if (err) { 2944 ksm_run = KSM_RUN_STOP; 2945 count = err; 2946 } 2947 } 2948 } 2949 mutex_unlock(&ksm_thread_mutex); 2950 2951 if (flags & KSM_RUN_MERGE) 2952 wake_up_interruptible(&ksm_thread_wait); 2953 2954 return count; 2955 } 2956 KSM_ATTR(run); 2957 2958 #ifdef CONFIG_NUMA 2959 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2960 struct kobj_attribute *attr, char *buf) 2961 { 2962 return sprintf(buf, "%u\n", ksm_merge_across_nodes); 2963 } 2964 2965 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2966 struct kobj_attribute *attr, 2967 const char *buf, size_t count) 2968 { 2969 int err; 2970 unsigned long knob; 2971 2972 err = kstrtoul(buf, 10, &knob); 2973 if (err) 2974 return err; 2975 if (knob > 1) 2976 return -EINVAL; 2977 2978 mutex_lock(&ksm_thread_mutex); 2979 wait_while_offlining(); 2980 if (ksm_merge_across_nodes != knob) { 2981 if (ksm_pages_shared || remove_all_stable_nodes()) 2982 err = -EBUSY; 2983 else if (root_stable_tree == one_stable_tree) { 2984 struct rb_root *buf; 2985 /* 2986 * This is the first time that we switch away from the 2987 * default of merging across nodes: must now allocate 2988 * a buffer to hold as many roots as may be needed. 2989 * Allocate stable and unstable together: 2990 * MAXSMP NODES_SHIFT 10 will use 16kB. 2991 */ 2992 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2993 GFP_KERNEL); 2994 /* Let us assume that RB_ROOT is NULL is zero */ 2995 if (!buf) 2996 err = -ENOMEM; 2997 else { 2998 root_stable_tree = buf; 2999 root_unstable_tree = buf + nr_node_ids; 3000 /* Stable tree is empty but not the unstable */ 3001 root_unstable_tree[0] = one_unstable_tree[0]; 3002 } 3003 } 3004 if (!err) { 3005 ksm_merge_across_nodes = knob; 3006 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 3007 } 3008 } 3009 mutex_unlock(&ksm_thread_mutex); 3010 3011 return err ? err : count; 3012 } 3013 KSM_ATTR(merge_across_nodes); 3014 #endif 3015 3016 static ssize_t use_zero_pages_show(struct kobject *kobj, 3017 struct kobj_attribute *attr, char *buf) 3018 { 3019 return sprintf(buf, "%u\n", ksm_use_zero_pages); 3020 } 3021 static ssize_t use_zero_pages_store(struct kobject *kobj, 3022 struct kobj_attribute *attr, 3023 const char *buf, size_t count) 3024 { 3025 int err; 3026 bool value; 3027 3028 err = kstrtobool(buf, &value); 3029 if (err) 3030 return -EINVAL; 3031 3032 ksm_use_zero_pages = value; 3033 3034 return count; 3035 } 3036 KSM_ATTR(use_zero_pages); 3037 3038 static ssize_t max_page_sharing_show(struct kobject *kobj, 3039 struct kobj_attribute *attr, char *buf) 3040 { 3041 return sprintf(buf, "%u\n", ksm_max_page_sharing); 3042 } 3043 3044 static ssize_t max_page_sharing_store(struct kobject *kobj, 3045 struct kobj_attribute *attr, 3046 const char *buf, size_t count) 3047 { 3048 int err; 3049 int knob; 3050 3051 err = kstrtoint(buf, 10, &knob); 3052 if (err) 3053 return err; 3054 /* 3055 * When a KSM page is created it is shared by 2 mappings. This 3056 * being a signed comparison, it implicitly verifies it's not 3057 * negative. 3058 */ 3059 if (knob < 2) 3060 return -EINVAL; 3061 3062 if (READ_ONCE(ksm_max_page_sharing) == knob) 3063 return count; 3064 3065 mutex_lock(&ksm_thread_mutex); 3066 wait_while_offlining(); 3067 if (ksm_max_page_sharing != knob) { 3068 if (ksm_pages_shared || remove_all_stable_nodes()) 3069 err = -EBUSY; 3070 else 3071 ksm_max_page_sharing = knob; 3072 } 3073 mutex_unlock(&ksm_thread_mutex); 3074 3075 return err ? err : count; 3076 } 3077 KSM_ATTR(max_page_sharing); 3078 3079 static ssize_t pages_shared_show(struct kobject *kobj, 3080 struct kobj_attribute *attr, char *buf) 3081 { 3082 return sprintf(buf, "%lu\n", ksm_pages_shared); 3083 } 3084 KSM_ATTR_RO(pages_shared); 3085 3086 static ssize_t pages_sharing_show(struct kobject *kobj, 3087 struct kobj_attribute *attr, char *buf) 3088 { 3089 return sprintf(buf, "%lu\n", ksm_pages_sharing); 3090 } 3091 KSM_ATTR_RO(pages_sharing); 3092 3093 static ssize_t pages_unshared_show(struct kobject *kobj, 3094 struct kobj_attribute *attr, char *buf) 3095 { 3096 return sprintf(buf, "%lu\n", ksm_pages_unshared); 3097 } 3098 KSM_ATTR_RO(pages_unshared); 3099 3100 static ssize_t pages_volatile_show(struct kobject *kobj, 3101 struct kobj_attribute *attr, char *buf) 3102 { 3103 long ksm_pages_volatile; 3104 3105 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3106 - ksm_pages_sharing - ksm_pages_unshared; 3107 /* 3108 * It was not worth any locking to calculate that statistic, 3109 * but it might therefore sometimes be negative: conceal that. 3110 */ 3111 if (ksm_pages_volatile < 0) 3112 ksm_pages_volatile = 0; 3113 return sprintf(buf, "%ld\n", ksm_pages_volatile); 3114 } 3115 KSM_ATTR_RO(pages_volatile); 3116 3117 static ssize_t stable_node_dups_show(struct kobject *kobj, 3118 struct kobj_attribute *attr, char *buf) 3119 { 3120 return sprintf(buf, "%lu\n", ksm_stable_node_dups); 3121 } 3122 KSM_ATTR_RO(stable_node_dups); 3123 3124 static ssize_t stable_node_chains_show(struct kobject *kobj, 3125 struct kobj_attribute *attr, char *buf) 3126 { 3127 return sprintf(buf, "%lu\n", ksm_stable_node_chains); 3128 } 3129 KSM_ATTR_RO(stable_node_chains); 3130 3131 static ssize_t 3132 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3133 struct kobj_attribute *attr, 3134 char *buf) 3135 { 3136 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3137 } 3138 3139 static ssize_t 3140 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3141 struct kobj_attribute *attr, 3142 const char *buf, size_t count) 3143 { 3144 unsigned long msecs; 3145 int err; 3146 3147 err = kstrtoul(buf, 10, &msecs); 3148 if (err || msecs > UINT_MAX) 3149 return -EINVAL; 3150 3151 ksm_stable_node_chains_prune_millisecs = msecs; 3152 3153 return count; 3154 } 3155 KSM_ATTR(stable_node_chains_prune_millisecs); 3156 3157 static ssize_t full_scans_show(struct kobject *kobj, 3158 struct kobj_attribute *attr, char *buf) 3159 { 3160 return sprintf(buf, "%lu\n", ksm_scan.seqnr); 3161 } 3162 KSM_ATTR_RO(full_scans); 3163 3164 static struct attribute *ksm_attrs[] = { 3165 &sleep_millisecs_attr.attr, 3166 &pages_to_scan_attr.attr, 3167 &run_attr.attr, 3168 &pages_shared_attr.attr, 3169 &pages_sharing_attr.attr, 3170 &pages_unshared_attr.attr, 3171 &pages_volatile_attr.attr, 3172 &full_scans_attr.attr, 3173 #ifdef CONFIG_NUMA 3174 &merge_across_nodes_attr.attr, 3175 #endif 3176 &max_page_sharing_attr.attr, 3177 &stable_node_chains_attr.attr, 3178 &stable_node_dups_attr.attr, 3179 &stable_node_chains_prune_millisecs_attr.attr, 3180 &use_zero_pages_attr.attr, 3181 NULL, 3182 }; 3183 3184 static const struct attribute_group ksm_attr_group = { 3185 .attrs = ksm_attrs, 3186 .name = "ksm", 3187 }; 3188 #endif /* CONFIG_SYSFS */ 3189 3190 static int __init ksm_init(void) 3191 { 3192 struct task_struct *ksm_thread; 3193 int err; 3194 3195 /* The correct value depends on page size and endianness */ 3196 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3197 /* Default to false for backwards compatibility */ 3198 ksm_use_zero_pages = false; 3199 3200 err = ksm_slab_init(); 3201 if (err) 3202 goto out; 3203 3204 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3205 if (IS_ERR(ksm_thread)) { 3206 pr_err("ksm: creating kthread failed\n"); 3207 err = PTR_ERR(ksm_thread); 3208 goto out_free; 3209 } 3210 3211 #ifdef CONFIG_SYSFS 3212 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3213 if (err) { 3214 pr_err("ksm: register sysfs failed\n"); 3215 kthread_stop(ksm_thread); 3216 goto out_free; 3217 } 3218 #else 3219 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3220 3221 #endif /* CONFIG_SYSFS */ 3222 3223 #ifdef CONFIG_MEMORY_HOTREMOVE 3224 /* There is no significance to this priority 100 */ 3225 hotplug_memory_notifier(ksm_memory_callback, 100); 3226 #endif 3227 return 0; 3228 3229 out_free: 3230 ksm_slab_free(); 3231 out: 3232 return err; 3233 } 3234 subsys_initcall(ksm_init); 3235