1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/coredump.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/xxhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 #include <linux/pagewalk.h> 43 44 #include <asm/tlbflush.h> 45 #include "internal.h" 46 #include "mm_slot.h" 47 48 #ifdef CONFIG_NUMA 49 #define NUMA(x) (x) 50 #define DO_NUMA(x) do { (x); } while (0) 51 #else 52 #define NUMA(x) (0) 53 #define DO_NUMA(x) do { } while (0) 54 #endif 55 56 /** 57 * DOC: Overview 58 * 59 * A few notes about the KSM scanning process, 60 * to make it easier to understand the data structures below: 61 * 62 * In order to reduce excessive scanning, KSM sorts the memory pages by their 63 * contents into a data structure that holds pointers to the pages' locations. 64 * 65 * Since the contents of the pages may change at any moment, KSM cannot just 66 * insert the pages into a normal sorted tree and expect it to find anything. 67 * Therefore KSM uses two data structures - the stable and the unstable tree. 68 * 69 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 70 * by their contents. Because each such page is write-protected, searching on 71 * this tree is fully assured to be working (except when pages are unmapped), 72 * and therefore this tree is called the stable tree. 73 * 74 * The stable tree node includes information required for reverse 75 * mapping from a KSM page to virtual addresses that map this page. 76 * 77 * In order to avoid large latencies of the rmap walks on KSM pages, 78 * KSM maintains two types of nodes in the stable tree: 79 * 80 * * the regular nodes that keep the reverse mapping structures in a 81 * linked list 82 * * the "chains" that link nodes ("dups") that represent the same 83 * write protected memory content, but each "dup" corresponds to a 84 * different KSM page copy of that content 85 * 86 * Internally, the regular nodes, "dups" and "chains" are represented 87 * using the same struct ksm_stable_node structure. 88 * 89 * In addition to the stable tree, KSM uses a second data structure called the 90 * unstable tree: this tree holds pointers to pages which have been found to 91 * be "unchanged for a period of time". The unstable tree sorts these pages 92 * by their contents, but since they are not write-protected, KSM cannot rely 93 * upon the unstable tree to work correctly - the unstable tree is liable to 94 * be corrupted as its contents are modified, and so it is called unstable. 95 * 96 * KSM solves this problem by several techniques: 97 * 98 * 1) The unstable tree is flushed every time KSM completes scanning all 99 * memory areas, and then the tree is rebuilt again from the beginning. 100 * 2) KSM will only insert into the unstable tree, pages whose hash value 101 * has not changed since the previous scan of all memory areas. 102 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 103 * colors of the nodes and not on their contents, assuring that even when 104 * the tree gets "corrupted" it won't get out of balance, so scanning time 105 * remains the same (also, searching and inserting nodes in an rbtree uses 106 * the same algorithm, so we have no overhead when we flush and rebuild). 107 * 4) KSM never flushes the stable tree, which means that even if it were to 108 * take 10 attempts to find a page in the unstable tree, once it is found, 109 * it is secured in the stable tree. (When we scan a new page, we first 110 * compare it against the stable tree, and then against the unstable tree.) 111 * 112 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 113 * stable trees and multiple unstable trees: one of each for each NUMA node. 114 */ 115 116 /** 117 * struct ksm_mm_slot - ksm information per mm that is being scanned 118 * @slot: hash lookup from mm to mm_slot 119 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 120 */ 121 struct ksm_mm_slot { 122 struct mm_slot slot; 123 struct ksm_rmap_item *rmap_list; 124 }; 125 126 /** 127 * struct ksm_scan - cursor for scanning 128 * @mm_slot: the current mm_slot we are scanning 129 * @address: the next address inside that to be scanned 130 * @rmap_list: link to the next rmap to be scanned in the rmap_list 131 * @seqnr: count of completed full scans (needed when removing unstable node) 132 * 133 * There is only the one ksm_scan instance of this cursor structure. 134 */ 135 struct ksm_scan { 136 struct ksm_mm_slot *mm_slot; 137 unsigned long address; 138 struct ksm_rmap_item **rmap_list; 139 unsigned long seqnr; 140 }; 141 142 /** 143 * struct ksm_stable_node - node of the stable rbtree 144 * @node: rb node of this ksm page in the stable tree 145 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 146 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 147 * @list: linked into migrate_nodes, pending placement in the proper node tree 148 * @hlist: hlist head of rmap_items using this ksm page 149 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 150 * @chain_prune_time: time of the last full garbage collection 151 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 152 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 153 */ 154 struct ksm_stable_node { 155 union { 156 struct rb_node node; /* when node of stable tree */ 157 struct { /* when listed for migration */ 158 struct list_head *head; 159 struct { 160 struct hlist_node hlist_dup; 161 struct list_head list; 162 }; 163 }; 164 }; 165 struct hlist_head hlist; 166 union { 167 unsigned long kpfn; 168 unsigned long chain_prune_time; 169 }; 170 /* 171 * STABLE_NODE_CHAIN can be any negative number in 172 * rmap_hlist_len negative range, but better not -1 to be able 173 * to reliably detect underflows. 174 */ 175 #define STABLE_NODE_CHAIN -1024 176 int rmap_hlist_len; 177 #ifdef CONFIG_NUMA 178 int nid; 179 #endif 180 }; 181 182 /** 183 * struct ksm_rmap_item - reverse mapping item for virtual addresses 184 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 185 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 186 * @nid: NUMA node id of unstable tree in which linked (may not match page) 187 * @mm: the memory structure this rmap_item is pointing into 188 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 189 * @oldchecksum: previous checksum of the page at that virtual address 190 * @node: rb node of this rmap_item in the unstable tree 191 * @head: pointer to stable_node heading this list in the stable tree 192 * @hlist: link into hlist of rmap_items hanging off that stable_node 193 */ 194 struct ksm_rmap_item { 195 struct ksm_rmap_item *rmap_list; 196 union { 197 struct anon_vma *anon_vma; /* when stable */ 198 #ifdef CONFIG_NUMA 199 int nid; /* when node of unstable tree */ 200 #endif 201 }; 202 struct mm_struct *mm; 203 unsigned long address; /* + low bits used for flags below */ 204 unsigned int oldchecksum; /* when unstable */ 205 union { 206 struct rb_node node; /* when node of unstable tree */ 207 struct { /* when listed from stable tree */ 208 struct ksm_stable_node *head; 209 struct hlist_node hlist; 210 }; 211 }; 212 }; 213 214 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 215 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 216 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 217 218 /* The stable and unstable tree heads */ 219 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 220 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 221 static struct rb_root *root_stable_tree = one_stable_tree; 222 static struct rb_root *root_unstable_tree = one_unstable_tree; 223 224 /* Recently migrated nodes of stable tree, pending proper placement */ 225 static LIST_HEAD(migrate_nodes); 226 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 227 228 #define MM_SLOTS_HASH_BITS 10 229 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 230 231 static struct ksm_mm_slot ksm_mm_head = { 232 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node), 233 }; 234 static struct ksm_scan ksm_scan = { 235 .mm_slot = &ksm_mm_head, 236 }; 237 238 static struct kmem_cache *rmap_item_cache; 239 static struct kmem_cache *stable_node_cache; 240 static struct kmem_cache *mm_slot_cache; 241 242 /* The number of nodes in the stable tree */ 243 static unsigned long ksm_pages_shared; 244 245 /* The number of page slots additionally sharing those nodes */ 246 static unsigned long ksm_pages_sharing; 247 248 /* The number of nodes in the unstable tree */ 249 static unsigned long ksm_pages_unshared; 250 251 /* The number of rmap_items in use: to calculate pages_volatile */ 252 static unsigned long ksm_rmap_items; 253 254 /* The number of stable_node chains */ 255 static unsigned long ksm_stable_node_chains; 256 257 /* The number of stable_node dups linked to the stable_node chains */ 258 static unsigned long ksm_stable_node_dups; 259 260 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 261 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000; 262 263 /* Maximum number of page slots sharing a stable node */ 264 static int ksm_max_page_sharing = 256; 265 266 /* Number of pages ksmd should scan in one batch */ 267 static unsigned int ksm_thread_pages_to_scan = 100; 268 269 /* Milliseconds ksmd should sleep between batches */ 270 static unsigned int ksm_thread_sleep_millisecs = 20; 271 272 /* Checksum of an empty (zeroed) page */ 273 static unsigned int zero_checksum __read_mostly; 274 275 /* Whether to merge empty (zeroed) pages with actual zero pages */ 276 static bool ksm_use_zero_pages __read_mostly; 277 278 #ifdef CONFIG_NUMA 279 /* Zeroed when merging across nodes is not allowed */ 280 static unsigned int ksm_merge_across_nodes = 1; 281 static int ksm_nr_node_ids = 1; 282 #else 283 #define ksm_merge_across_nodes 1U 284 #define ksm_nr_node_ids 1 285 #endif 286 287 #define KSM_RUN_STOP 0 288 #define KSM_RUN_MERGE 1 289 #define KSM_RUN_UNMERGE 2 290 #define KSM_RUN_OFFLINE 4 291 static unsigned long ksm_run = KSM_RUN_STOP; 292 static void wait_while_offlining(void); 293 294 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 295 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 296 static DEFINE_MUTEX(ksm_thread_mutex); 297 static DEFINE_SPINLOCK(ksm_mmlist_lock); 298 299 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 300 sizeof(struct __struct), __alignof__(struct __struct),\ 301 (__flags), NULL) 302 303 static int __init ksm_slab_init(void) 304 { 305 rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0); 306 if (!rmap_item_cache) 307 goto out; 308 309 stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0); 310 if (!stable_node_cache) 311 goto out_free1; 312 313 mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0); 314 if (!mm_slot_cache) 315 goto out_free2; 316 317 return 0; 318 319 out_free2: 320 kmem_cache_destroy(stable_node_cache); 321 out_free1: 322 kmem_cache_destroy(rmap_item_cache); 323 out: 324 return -ENOMEM; 325 } 326 327 static void __init ksm_slab_free(void) 328 { 329 kmem_cache_destroy(mm_slot_cache); 330 kmem_cache_destroy(stable_node_cache); 331 kmem_cache_destroy(rmap_item_cache); 332 mm_slot_cache = NULL; 333 } 334 335 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain) 336 { 337 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 338 } 339 340 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup) 341 { 342 return dup->head == STABLE_NODE_DUP_HEAD; 343 } 344 345 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup, 346 struct ksm_stable_node *chain) 347 { 348 VM_BUG_ON(is_stable_node_dup(dup)); 349 dup->head = STABLE_NODE_DUP_HEAD; 350 VM_BUG_ON(!is_stable_node_chain(chain)); 351 hlist_add_head(&dup->hlist_dup, &chain->hlist); 352 ksm_stable_node_dups++; 353 } 354 355 static inline void __stable_node_dup_del(struct ksm_stable_node *dup) 356 { 357 VM_BUG_ON(!is_stable_node_dup(dup)); 358 hlist_del(&dup->hlist_dup); 359 ksm_stable_node_dups--; 360 } 361 362 static inline void stable_node_dup_del(struct ksm_stable_node *dup) 363 { 364 VM_BUG_ON(is_stable_node_chain(dup)); 365 if (is_stable_node_dup(dup)) 366 __stable_node_dup_del(dup); 367 else 368 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 369 #ifdef CONFIG_DEBUG_VM 370 dup->head = NULL; 371 #endif 372 } 373 374 static inline struct ksm_rmap_item *alloc_rmap_item(void) 375 { 376 struct ksm_rmap_item *rmap_item; 377 378 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 379 __GFP_NORETRY | __GFP_NOWARN); 380 if (rmap_item) 381 ksm_rmap_items++; 382 return rmap_item; 383 } 384 385 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item) 386 { 387 ksm_rmap_items--; 388 rmap_item->mm->ksm_rmap_items--; 389 rmap_item->mm = NULL; /* debug safety */ 390 kmem_cache_free(rmap_item_cache, rmap_item); 391 } 392 393 static inline struct ksm_stable_node *alloc_stable_node(void) 394 { 395 /* 396 * The allocation can take too long with GFP_KERNEL when memory is under 397 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 398 * grants access to memory reserves, helping to avoid this problem. 399 */ 400 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 401 } 402 403 static inline void free_stable_node(struct ksm_stable_node *stable_node) 404 { 405 VM_BUG_ON(stable_node->rmap_hlist_len && 406 !is_stable_node_chain(stable_node)); 407 kmem_cache_free(stable_node_cache, stable_node); 408 } 409 410 /* 411 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 412 * page tables after it has passed through ksm_exit() - which, if necessary, 413 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 414 * a special flag: they can just back out as soon as mm_users goes to zero. 415 * ksm_test_exit() is used throughout to make this test for exit: in some 416 * places for correctness, in some places just to avoid unnecessary work. 417 */ 418 static inline bool ksm_test_exit(struct mm_struct *mm) 419 { 420 return atomic_read(&mm->mm_users) == 0; 421 } 422 423 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next, 424 struct mm_walk *walk) 425 { 426 struct page *page = NULL; 427 spinlock_t *ptl; 428 pte_t *pte; 429 int ret; 430 431 if (pmd_leaf(*pmd) || !pmd_present(*pmd)) 432 return 0; 433 434 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 435 if (pte_present(*pte)) { 436 page = vm_normal_page(walk->vma, addr, *pte); 437 } else if (!pte_none(*pte)) { 438 swp_entry_t entry = pte_to_swp_entry(*pte); 439 440 /* 441 * As KSM pages remain KSM pages until freed, no need to wait 442 * here for migration to end. 443 */ 444 if (is_migration_entry(entry)) 445 page = pfn_swap_entry_to_page(entry); 446 } 447 ret = page && PageKsm(page); 448 pte_unmap_unlock(pte, ptl); 449 return ret; 450 } 451 452 static const struct mm_walk_ops break_ksm_ops = { 453 .pmd_entry = break_ksm_pmd_entry, 454 }; 455 456 /* 457 * We use break_ksm to break COW on a ksm page by triggering unsharing, 458 * such that the ksm page will get replaced by an exclusive anonymous page. 459 * 460 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma, 461 * in case the application has unmapped and remapped mm,addr meanwhile. 462 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 463 * mmap of /dev/mem, where we would not want to touch it. 464 * 465 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context 466 * of the process that owns 'vma'. We also do not want to enforce 467 * protection keys here anyway. 468 */ 469 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 470 { 471 vm_fault_t ret = 0; 472 473 do { 474 int ksm_page; 475 476 cond_resched(); 477 ksm_page = walk_page_range_vma(vma, addr, addr + 1, 478 &break_ksm_ops, NULL); 479 if (WARN_ON_ONCE(ksm_page < 0)) 480 return ksm_page; 481 if (!ksm_page) 482 return 0; 483 ret = handle_mm_fault(vma, addr, 484 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE, 485 NULL); 486 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 487 /* 488 * We must loop until we no longer find a KSM page because 489 * handle_mm_fault() may back out if there's any difficulty e.g. if 490 * pte accessed bit gets updated concurrently. 491 * 492 * VM_FAULT_SIGBUS could occur if we race with truncation of the 493 * backing file, which also invalidates anonymous pages: that's 494 * okay, that truncation will have unmapped the PageKsm for us. 495 * 496 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 497 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 498 * current task has TIF_MEMDIE set, and will be OOM killed on return 499 * to user; and ksmd, having no mm, would never be chosen for that. 500 * 501 * But if the mm is in a limited mem_cgroup, then the fault may fail 502 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 503 * even ksmd can fail in this way - though it's usually breaking ksm 504 * just to undo a merge it made a moment before, so unlikely to oom. 505 * 506 * That's a pity: we might therefore have more kernel pages allocated 507 * than we're counting as nodes in the stable tree; but ksm_do_scan 508 * will retry to break_cow on each pass, so should recover the page 509 * in due course. The important thing is to not let VM_MERGEABLE 510 * be cleared while any such pages might remain in the area. 511 */ 512 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 513 } 514 515 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 516 unsigned long addr) 517 { 518 struct vm_area_struct *vma; 519 if (ksm_test_exit(mm)) 520 return NULL; 521 vma = vma_lookup(mm, addr); 522 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 523 return NULL; 524 return vma; 525 } 526 527 static void break_cow(struct ksm_rmap_item *rmap_item) 528 { 529 struct mm_struct *mm = rmap_item->mm; 530 unsigned long addr = rmap_item->address; 531 struct vm_area_struct *vma; 532 533 /* 534 * It is not an accident that whenever we want to break COW 535 * to undo, we also need to drop a reference to the anon_vma. 536 */ 537 put_anon_vma(rmap_item->anon_vma); 538 539 mmap_read_lock(mm); 540 vma = find_mergeable_vma(mm, addr); 541 if (vma) 542 break_ksm(vma, addr); 543 mmap_read_unlock(mm); 544 } 545 546 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item) 547 { 548 struct mm_struct *mm = rmap_item->mm; 549 unsigned long addr = rmap_item->address; 550 struct vm_area_struct *vma; 551 struct page *page; 552 553 mmap_read_lock(mm); 554 vma = find_mergeable_vma(mm, addr); 555 if (!vma) 556 goto out; 557 558 page = follow_page(vma, addr, FOLL_GET); 559 if (IS_ERR_OR_NULL(page)) 560 goto out; 561 if (is_zone_device_page(page)) 562 goto out_putpage; 563 if (PageAnon(page)) { 564 flush_anon_page(vma, page, addr); 565 flush_dcache_page(page); 566 } else { 567 out_putpage: 568 put_page(page); 569 out: 570 page = NULL; 571 } 572 mmap_read_unlock(mm); 573 return page; 574 } 575 576 /* 577 * This helper is used for getting right index into array of tree roots. 578 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 579 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 580 * every node has its own stable and unstable tree. 581 */ 582 static inline int get_kpfn_nid(unsigned long kpfn) 583 { 584 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 585 } 586 587 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup, 588 struct rb_root *root) 589 { 590 struct ksm_stable_node *chain = alloc_stable_node(); 591 VM_BUG_ON(is_stable_node_chain(dup)); 592 if (likely(chain)) { 593 INIT_HLIST_HEAD(&chain->hlist); 594 chain->chain_prune_time = jiffies; 595 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 596 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 597 chain->nid = NUMA_NO_NODE; /* debug */ 598 #endif 599 ksm_stable_node_chains++; 600 601 /* 602 * Put the stable node chain in the first dimension of 603 * the stable tree and at the same time remove the old 604 * stable node. 605 */ 606 rb_replace_node(&dup->node, &chain->node, root); 607 608 /* 609 * Move the old stable node to the second dimension 610 * queued in the hlist_dup. The invariant is that all 611 * dup stable_nodes in the chain->hlist point to pages 612 * that are write protected and have the exact same 613 * content. 614 */ 615 stable_node_chain_add_dup(dup, chain); 616 } 617 return chain; 618 } 619 620 static inline void free_stable_node_chain(struct ksm_stable_node *chain, 621 struct rb_root *root) 622 { 623 rb_erase(&chain->node, root); 624 free_stable_node(chain); 625 ksm_stable_node_chains--; 626 } 627 628 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node) 629 { 630 struct ksm_rmap_item *rmap_item; 631 632 /* check it's not STABLE_NODE_CHAIN or negative */ 633 BUG_ON(stable_node->rmap_hlist_len < 0); 634 635 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 636 if (rmap_item->hlist.next) 637 ksm_pages_sharing--; 638 else 639 ksm_pages_shared--; 640 641 rmap_item->mm->ksm_merging_pages--; 642 643 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 644 stable_node->rmap_hlist_len--; 645 put_anon_vma(rmap_item->anon_vma); 646 rmap_item->address &= PAGE_MASK; 647 cond_resched(); 648 } 649 650 /* 651 * We need the second aligned pointer of the migrate_nodes 652 * list_head to stay clear from the rb_parent_color union 653 * (aligned and different than any node) and also different 654 * from &migrate_nodes. This will verify that future list.h changes 655 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 656 */ 657 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 658 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 659 660 if (stable_node->head == &migrate_nodes) 661 list_del(&stable_node->list); 662 else 663 stable_node_dup_del(stable_node); 664 free_stable_node(stable_node); 665 } 666 667 enum get_ksm_page_flags { 668 GET_KSM_PAGE_NOLOCK, 669 GET_KSM_PAGE_LOCK, 670 GET_KSM_PAGE_TRYLOCK 671 }; 672 673 /* 674 * get_ksm_page: checks if the page indicated by the stable node 675 * is still its ksm page, despite having held no reference to it. 676 * In which case we can trust the content of the page, and it 677 * returns the gotten page; but if the page has now been zapped, 678 * remove the stale node from the stable tree and return NULL. 679 * But beware, the stable node's page might be being migrated. 680 * 681 * You would expect the stable_node to hold a reference to the ksm page. 682 * But if it increments the page's count, swapping out has to wait for 683 * ksmd to come around again before it can free the page, which may take 684 * seconds or even minutes: much too unresponsive. So instead we use a 685 * "keyhole reference": access to the ksm page from the stable node peeps 686 * out through its keyhole to see if that page still holds the right key, 687 * pointing back to this stable node. This relies on freeing a PageAnon 688 * page to reset its page->mapping to NULL, and relies on no other use of 689 * a page to put something that might look like our key in page->mapping. 690 * is on its way to being freed; but it is an anomaly to bear in mind. 691 */ 692 static struct page *get_ksm_page(struct ksm_stable_node *stable_node, 693 enum get_ksm_page_flags flags) 694 { 695 struct page *page; 696 void *expected_mapping; 697 unsigned long kpfn; 698 699 expected_mapping = (void *)((unsigned long)stable_node | 700 PAGE_MAPPING_KSM); 701 again: 702 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 703 page = pfn_to_page(kpfn); 704 if (READ_ONCE(page->mapping) != expected_mapping) 705 goto stale; 706 707 /* 708 * We cannot do anything with the page while its refcount is 0. 709 * Usually 0 means free, or tail of a higher-order page: in which 710 * case this node is no longer referenced, and should be freed; 711 * however, it might mean that the page is under page_ref_freeze(). 712 * The __remove_mapping() case is easy, again the node is now stale; 713 * the same is in reuse_ksm_page() case; but if page is swapcache 714 * in folio_migrate_mapping(), it might still be our page, 715 * in which case it's essential to keep the node. 716 */ 717 while (!get_page_unless_zero(page)) { 718 /* 719 * Another check for page->mapping != expected_mapping would 720 * work here too. We have chosen the !PageSwapCache test to 721 * optimize the common case, when the page is or is about to 722 * be freed: PageSwapCache is cleared (under spin_lock_irq) 723 * in the ref_freeze section of __remove_mapping(); but Anon 724 * page->mapping reset to NULL later, in free_pages_prepare(). 725 */ 726 if (!PageSwapCache(page)) 727 goto stale; 728 cpu_relax(); 729 } 730 731 if (READ_ONCE(page->mapping) != expected_mapping) { 732 put_page(page); 733 goto stale; 734 } 735 736 if (flags == GET_KSM_PAGE_TRYLOCK) { 737 if (!trylock_page(page)) { 738 put_page(page); 739 return ERR_PTR(-EBUSY); 740 } 741 } else if (flags == GET_KSM_PAGE_LOCK) 742 lock_page(page); 743 744 if (flags != GET_KSM_PAGE_NOLOCK) { 745 if (READ_ONCE(page->mapping) != expected_mapping) { 746 unlock_page(page); 747 put_page(page); 748 goto stale; 749 } 750 } 751 return page; 752 753 stale: 754 /* 755 * We come here from above when page->mapping or !PageSwapCache 756 * suggests that the node is stale; but it might be under migration. 757 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(), 758 * before checking whether node->kpfn has been changed. 759 */ 760 smp_rmb(); 761 if (READ_ONCE(stable_node->kpfn) != kpfn) 762 goto again; 763 remove_node_from_stable_tree(stable_node); 764 return NULL; 765 } 766 767 /* 768 * Removing rmap_item from stable or unstable tree. 769 * This function will clean the information from the stable/unstable tree. 770 */ 771 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item) 772 { 773 if (rmap_item->address & STABLE_FLAG) { 774 struct ksm_stable_node *stable_node; 775 struct page *page; 776 777 stable_node = rmap_item->head; 778 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 779 if (!page) 780 goto out; 781 782 hlist_del(&rmap_item->hlist); 783 unlock_page(page); 784 put_page(page); 785 786 if (!hlist_empty(&stable_node->hlist)) 787 ksm_pages_sharing--; 788 else 789 ksm_pages_shared--; 790 791 rmap_item->mm->ksm_merging_pages--; 792 793 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 794 stable_node->rmap_hlist_len--; 795 796 put_anon_vma(rmap_item->anon_vma); 797 rmap_item->head = NULL; 798 rmap_item->address &= PAGE_MASK; 799 800 } else if (rmap_item->address & UNSTABLE_FLAG) { 801 unsigned char age; 802 /* 803 * Usually ksmd can and must skip the rb_erase, because 804 * root_unstable_tree was already reset to RB_ROOT. 805 * But be careful when an mm is exiting: do the rb_erase 806 * if this rmap_item was inserted by this scan, rather 807 * than left over from before. 808 */ 809 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 810 BUG_ON(age > 1); 811 if (!age) 812 rb_erase(&rmap_item->node, 813 root_unstable_tree + NUMA(rmap_item->nid)); 814 ksm_pages_unshared--; 815 rmap_item->address &= PAGE_MASK; 816 } 817 out: 818 cond_resched(); /* we're called from many long loops */ 819 } 820 821 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list) 822 { 823 while (*rmap_list) { 824 struct ksm_rmap_item *rmap_item = *rmap_list; 825 *rmap_list = rmap_item->rmap_list; 826 remove_rmap_item_from_tree(rmap_item); 827 free_rmap_item(rmap_item); 828 } 829 } 830 831 /* 832 * Though it's very tempting to unmerge rmap_items from stable tree rather 833 * than check every pte of a given vma, the locking doesn't quite work for 834 * that - an rmap_item is assigned to the stable tree after inserting ksm 835 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 836 * rmap_items from parent to child at fork time (so as not to waste time 837 * if exit comes before the next scan reaches it). 838 * 839 * Similarly, although we'd like to remove rmap_items (so updating counts 840 * and freeing memory) when unmerging an area, it's easier to leave that 841 * to the next pass of ksmd - consider, for example, how ksmd might be 842 * in cmp_and_merge_page on one of the rmap_items we would be removing. 843 */ 844 static int unmerge_ksm_pages(struct vm_area_struct *vma, 845 unsigned long start, unsigned long end) 846 { 847 unsigned long addr; 848 int err = 0; 849 850 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 851 if (ksm_test_exit(vma->vm_mm)) 852 break; 853 if (signal_pending(current)) 854 err = -ERESTARTSYS; 855 else 856 err = break_ksm(vma, addr); 857 } 858 return err; 859 } 860 861 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio) 862 { 863 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL; 864 } 865 866 static inline struct ksm_stable_node *page_stable_node(struct page *page) 867 { 868 return folio_stable_node(page_folio(page)); 869 } 870 871 static inline void set_page_stable_node(struct page *page, 872 struct ksm_stable_node *stable_node) 873 { 874 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page); 875 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 876 } 877 878 #ifdef CONFIG_SYSFS 879 /* 880 * Only called through the sysfs control interface: 881 */ 882 static int remove_stable_node(struct ksm_stable_node *stable_node) 883 { 884 struct page *page; 885 int err; 886 887 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 888 if (!page) { 889 /* 890 * get_ksm_page did remove_node_from_stable_tree itself. 891 */ 892 return 0; 893 } 894 895 /* 896 * Page could be still mapped if this races with __mmput() running in 897 * between ksm_exit() and exit_mmap(). Just refuse to let 898 * merge_across_nodes/max_page_sharing be switched. 899 */ 900 err = -EBUSY; 901 if (!page_mapped(page)) { 902 /* 903 * The stable node did not yet appear stale to get_ksm_page(), 904 * since that allows for an unmapped ksm page to be recognized 905 * right up until it is freed; but the node is safe to remove. 906 * This page might be in a pagevec waiting to be freed, 907 * or it might be PageSwapCache (perhaps under writeback), 908 * or it might have been removed from swapcache a moment ago. 909 */ 910 set_page_stable_node(page, NULL); 911 remove_node_from_stable_tree(stable_node); 912 err = 0; 913 } 914 915 unlock_page(page); 916 put_page(page); 917 return err; 918 } 919 920 static int remove_stable_node_chain(struct ksm_stable_node *stable_node, 921 struct rb_root *root) 922 { 923 struct ksm_stable_node *dup; 924 struct hlist_node *hlist_safe; 925 926 if (!is_stable_node_chain(stable_node)) { 927 VM_BUG_ON(is_stable_node_dup(stable_node)); 928 if (remove_stable_node(stable_node)) 929 return true; 930 else 931 return false; 932 } 933 934 hlist_for_each_entry_safe(dup, hlist_safe, 935 &stable_node->hlist, hlist_dup) { 936 VM_BUG_ON(!is_stable_node_dup(dup)); 937 if (remove_stable_node(dup)) 938 return true; 939 } 940 BUG_ON(!hlist_empty(&stable_node->hlist)); 941 free_stable_node_chain(stable_node, root); 942 return false; 943 } 944 945 static int remove_all_stable_nodes(void) 946 { 947 struct ksm_stable_node *stable_node, *next; 948 int nid; 949 int err = 0; 950 951 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 952 while (root_stable_tree[nid].rb_node) { 953 stable_node = rb_entry(root_stable_tree[nid].rb_node, 954 struct ksm_stable_node, node); 955 if (remove_stable_node_chain(stable_node, 956 root_stable_tree + nid)) { 957 err = -EBUSY; 958 break; /* proceed to next nid */ 959 } 960 cond_resched(); 961 } 962 } 963 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 964 if (remove_stable_node(stable_node)) 965 err = -EBUSY; 966 cond_resched(); 967 } 968 return err; 969 } 970 971 static int unmerge_and_remove_all_rmap_items(void) 972 { 973 struct ksm_mm_slot *mm_slot; 974 struct mm_slot *slot; 975 struct mm_struct *mm; 976 struct vm_area_struct *vma; 977 int err = 0; 978 979 spin_lock(&ksm_mmlist_lock); 980 slot = list_entry(ksm_mm_head.slot.mm_node.next, 981 struct mm_slot, mm_node); 982 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 983 spin_unlock(&ksm_mmlist_lock); 984 985 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head; 986 mm_slot = ksm_scan.mm_slot) { 987 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0); 988 989 mm = mm_slot->slot.mm; 990 mmap_read_lock(mm); 991 for_each_vma(vmi, vma) { 992 if (ksm_test_exit(mm)) 993 break; 994 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 995 continue; 996 err = unmerge_ksm_pages(vma, 997 vma->vm_start, vma->vm_end); 998 if (err) 999 goto error; 1000 } 1001 1002 remove_trailing_rmap_items(&mm_slot->rmap_list); 1003 mmap_read_unlock(mm); 1004 1005 spin_lock(&ksm_mmlist_lock); 1006 slot = list_entry(mm_slot->slot.mm_node.next, 1007 struct mm_slot, mm_node); 1008 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 1009 if (ksm_test_exit(mm)) { 1010 hash_del(&mm_slot->slot.hash); 1011 list_del(&mm_slot->slot.mm_node); 1012 spin_unlock(&ksm_mmlist_lock); 1013 1014 mm_slot_free(mm_slot_cache, mm_slot); 1015 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1016 mmdrop(mm); 1017 } else 1018 spin_unlock(&ksm_mmlist_lock); 1019 } 1020 1021 /* Clean up stable nodes, but don't worry if some are still busy */ 1022 remove_all_stable_nodes(); 1023 ksm_scan.seqnr = 0; 1024 return 0; 1025 1026 error: 1027 mmap_read_unlock(mm); 1028 spin_lock(&ksm_mmlist_lock); 1029 ksm_scan.mm_slot = &ksm_mm_head; 1030 spin_unlock(&ksm_mmlist_lock); 1031 return err; 1032 } 1033 #endif /* CONFIG_SYSFS */ 1034 1035 static u32 calc_checksum(struct page *page) 1036 { 1037 u32 checksum; 1038 void *addr = kmap_atomic(page); 1039 checksum = xxhash(addr, PAGE_SIZE, 0); 1040 kunmap_atomic(addr); 1041 return checksum; 1042 } 1043 1044 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1045 pte_t *orig_pte) 1046 { 1047 struct mm_struct *mm = vma->vm_mm; 1048 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0); 1049 int swapped; 1050 int err = -EFAULT; 1051 struct mmu_notifier_range range; 1052 bool anon_exclusive; 1053 1054 pvmw.address = page_address_in_vma(page, vma); 1055 if (pvmw.address == -EFAULT) 1056 goto out; 1057 1058 BUG_ON(PageTransCompound(page)); 1059 1060 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 1061 pvmw.address, 1062 pvmw.address + PAGE_SIZE); 1063 mmu_notifier_invalidate_range_start(&range); 1064 1065 if (!page_vma_mapped_walk(&pvmw)) 1066 goto out_mn; 1067 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1068 goto out_unlock; 1069 1070 anon_exclusive = PageAnonExclusive(page); 1071 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1072 anon_exclusive || mm_tlb_flush_pending(mm)) { 1073 pte_t entry; 1074 1075 swapped = PageSwapCache(page); 1076 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1077 /* 1078 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1079 * take any lock, therefore the check that we are going to make 1080 * with the pagecount against the mapcount is racy and 1081 * O_DIRECT can happen right after the check. 1082 * So we clear the pte and flush the tlb before the check 1083 * this assure us that no O_DIRECT can happen after the check 1084 * or in the middle of the check. 1085 * 1086 * No need to notify as we are downgrading page table to read 1087 * only not changing it to point to a new page. 1088 * 1089 * See Documentation/mm/mmu_notifier.rst 1090 */ 1091 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1092 /* 1093 * Check that no O_DIRECT or similar I/O is in progress on the 1094 * page 1095 */ 1096 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1097 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1098 goto out_unlock; 1099 } 1100 1101 /* See page_try_share_anon_rmap(): clear PTE first. */ 1102 if (anon_exclusive && page_try_share_anon_rmap(page)) { 1103 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1104 goto out_unlock; 1105 } 1106 1107 if (pte_dirty(entry)) 1108 set_page_dirty(page); 1109 entry = pte_mkclean(entry); 1110 1111 if (pte_write(entry)) 1112 entry = pte_wrprotect(entry); 1113 1114 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1115 } 1116 *orig_pte = *pvmw.pte; 1117 err = 0; 1118 1119 out_unlock: 1120 page_vma_mapped_walk_done(&pvmw); 1121 out_mn: 1122 mmu_notifier_invalidate_range_end(&range); 1123 out: 1124 return err; 1125 } 1126 1127 /** 1128 * replace_page - replace page in vma by new ksm page 1129 * @vma: vma that holds the pte pointing to page 1130 * @page: the page we are replacing by kpage 1131 * @kpage: the ksm page we replace page by 1132 * @orig_pte: the original value of the pte 1133 * 1134 * Returns 0 on success, -EFAULT on failure. 1135 */ 1136 static int replace_page(struct vm_area_struct *vma, struct page *page, 1137 struct page *kpage, pte_t orig_pte) 1138 { 1139 struct mm_struct *mm = vma->vm_mm; 1140 struct folio *folio; 1141 pmd_t *pmd; 1142 pmd_t pmde; 1143 pte_t *ptep; 1144 pte_t newpte; 1145 spinlock_t *ptl; 1146 unsigned long addr; 1147 int err = -EFAULT; 1148 struct mmu_notifier_range range; 1149 1150 addr = page_address_in_vma(page, vma); 1151 if (addr == -EFAULT) 1152 goto out; 1153 1154 pmd = mm_find_pmd(mm, addr); 1155 if (!pmd) 1156 goto out; 1157 /* 1158 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 1159 * without holding anon_vma lock for write. So when looking for a 1160 * genuine pmde (in which to find pte), test present and !THP together. 1161 */ 1162 pmde = *pmd; 1163 barrier(); 1164 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 1165 goto out; 1166 1167 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr, 1168 addr + PAGE_SIZE); 1169 mmu_notifier_invalidate_range_start(&range); 1170 1171 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1172 if (!pte_same(*ptep, orig_pte)) { 1173 pte_unmap_unlock(ptep, ptl); 1174 goto out_mn; 1175 } 1176 VM_BUG_ON_PAGE(PageAnonExclusive(page), page); 1177 VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage); 1178 1179 /* 1180 * No need to check ksm_use_zero_pages here: we can only have a 1181 * zero_page here if ksm_use_zero_pages was enabled already. 1182 */ 1183 if (!is_zero_pfn(page_to_pfn(kpage))) { 1184 get_page(kpage); 1185 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE); 1186 newpte = mk_pte(kpage, vma->vm_page_prot); 1187 } else { 1188 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1189 vma->vm_page_prot)); 1190 /* 1191 * We're replacing an anonymous page with a zero page, which is 1192 * not anonymous. We need to do proper accounting otherwise we 1193 * will get wrong values in /proc, and a BUG message in dmesg 1194 * when tearing down the mm. 1195 */ 1196 dec_mm_counter(mm, MM_ANONPAGES); 1197 } 1198 1199 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1200 /* 1201 * No need to notify as we are replacing a read only page with another 1202 * read only page with the same content. 1203 * 1204 * See Documentation/mm/mmu_notifier.rst 1205 */ 1206 ptep_clear_flush(vma, addr, ptep); 1207 set_pte_at_notify(mm, addr, ptep, newpte); 1208 1209 folio = page_folio(page); 1210 page_remove_rmap(page, vma, false); 1211 if (!folio_mapped(folio)) 1212 folio_free_swap(folio); 1213 folio_put(folio); 1214 1215 pte_unmap_unlock(ptep, ptl); 1216 err = 0; 1217 out_mn: 1218 mmu_notifier_invalidate_range_end(&range); 1219 out: 1220 return err; 1221 } 1222 1223 /* 1224 * try_to_merge_one_page - take two pages and merge them into one 1225 * @vma: the vma that holds the pte pointing to page 1226 * @page: the PageAnon page that we want to replace with kpage 1227 * @kpage: the PageKsm page that we want to map instead of page, 1228 * or NULL the first time when we want to use page as kpage. 1229 * 1230 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1231 */ 1232 static int try_to_merge_one_page(struct vm_area_struct *vma, 1233 struct page *page, struct page *kpage) 1234 { 1235 pte_t orig_pte = __pte(0); 1236 int err = -EFAULT; 1237 1238 if (page == kpage) /* ksm page forked */ 1239 return 0; 1240 1241 if (!PageAnon(page)) 1242 goto out; 1243 1244 /* 1245 * We need the page lock to read a stable PageSwapCache in 1246 * write_protect_page(). We use trylock_page() instead of 1247 * lock_page() because we don't want to wait here - we 1248 * prefer to continue scanning and merging different pages, 1249 * then come back to this page when it is unlocked. 1250 */ 1251 if (!trylock_page(page)) 1252 goto out; 1253 1254 if (PageTransCompound(page)) { 1255 if (split_huge_page(page)) 1256 goto out_unlock; 1257 } 1258 1259 /* 1260 * If this anonymous page is mapped only here, its pte may need 1261 * to be write-protected. If it's mapped elsewhere, all of its 1262 * ptes are necessarily already write-protected. But in either 1263 * case, we need to lock and check page_count is not raised. 1264 */ 1265 if (write_protect_page(vma, page, &orig_pte) == 0) { 1266 if (!kpage) { 1267 /* 1268 * While we hold page lock, upgrade page from 1269 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1270 * stable_tree_insert() will update stable_node. 1271 */ 1272 set_page_stable_node(page, NULL); 1273 mark_page_accessed(page); 1274 /* 1275 * Page reclaim just frees a clean page with no dirty 1276 * ptes: make sure that the ksm page would be swapped. 1277 */ 1278 if (!PageDirty(page)) 1279 SetPageDirty(page); 1280 err = 0; 1281 } else if (pages_identical(page, kpage)) 1282 err = replace_page(vma, page, kpage, orig_pte); 1283 } 1284 1285 out_unlock: 1286 unlock_page(page); 1287 out: 1288 return err; 1289 } 1290 1291 /* 1292 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1293 * but no new kernel page is allocated: kpage must already be a ksm page. 1294 * 1295 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1296 */ 1297 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item, 1298 struct page *page, struct page *kpage) 1299 { 1300 struct mm_struct *mm = rmap_item->mm; 1301 struct vm_area_struct *vma; 1302 int err = -EFAULT; 1303 1304 mmap_read_lock(mm); 1305 vma = find_mergeable_vma(mm, rmap_item->address); 1306 if (!vma) 1307 goto out; 1308 1309 err = try_to_merge_one_page(vma, page, kpage); 1310 if (err) 1311 goto out; 1312 1313 /* Unstable nid is in union with stable anon_vma: remove first */ 1314 remove_rmap_item_from_tree(rmap_item); 1315 1316 /* Must get reference to anon_vma while still holding mmap_lock */ 1317 rmap_item->anon_vma = vma->anon_vma; 1318 get_anon_vma(vma->anon_vma); 1319 out: 1320 mmap_read_unlock(mm); 1321 return err; 1322 } 1323 1324 /* 1325 * try_to_merge_two_pages - take two identical pages and prepare them 1326 * to be merged into one page. 1327 * 1328 * This function returns the kpage if we successfully merged two identical 1329 * pages into one ksm page, NULL otherwise. 1330 * 1331 * Note that this function upgrades page to ksm page: if one of the pages 1332 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1333 */ 1334 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item, 1335 struct page *page, 1336 struct ksm_rmap_item *tree_rmap_item, 1337 struct page *tree_page) 1338 { 1339 int err; 1340 1341 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1342 if (!err) { 1343 err = try_to_merge_with_ksm_page(tree_rmap_item, 1344 tree_page, page); 1345 /* 1346 * If that fails, we have a ksm page with only one pte 1347 * pointing to it: so break it. 1348 */ 1349 if (err) 1350 break_cow(rmap_item); 1351 } 1352 return err ? NULL : page; 1353 } 1354 1355 static __always_inline 1356 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset) 1357 { 1358 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1359 /* 1360 * Check that at least one mapping still exists, otherwise 1361 * there's no much point to merge and share with this 1362 * stable_node, as the underlying tree_page of the other 1363 * sharer is going to be freed soon. 1364 */ 1365 return stable_node->rmap_hlist_len && 1366 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1367 } 1368 1369 static __always_inline 1370 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node) 1371 { 1372 return __is_page_sharing_candidate(stable_node, 0); 1373 } 1374 1375 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup, 1376 struct ksm_stable_node **_stable_node, 1377 struct rb_root *root, 1378 bool prune_stale_stable_nodes) 1379 { 1380 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1381 struct hlist_node *hlist_safe; 1382 struct page *_tree_page, *tree_page = NULL; 1383 int nr = 0; 1384 int found_rmap_hlist_len; 1385 1386 if (!prune_stale_stable_nodes || 1387 time_before(jiffies, stable_node->chain_prune_time + 1388 msecs_to_jiffies( 1389 ksm_stable_node_chains_prune_millisecs))) 1390 prune_stale_stable_nodes = false; 1391 else 1392 stable_node->chain_prune_time = jiffies; 1393 1394 hlist_for_each_entry_safe(dup, hlist_safe, 1395 &stable_node->hlist, hlist_dup) { 1396 cond_resched(); 1397 /* 1398 * We must walk all stable_node_dup to prune the stale 1399 * stable nodes during lookup. 1400 * 1401 * get_ksm_page can drop the nodes from the 1402 * stable_node->hlist if they point to freed pages 1403 * (that's why we do a _safe walk). The "dup" 1404 * stable_node parameter itself will be freed from 1405 * under us if it returns NULL. 1406 */ 1407 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK); 1408 if (!_tree_page) 1409 continue; 1410 nr += 1; 1411 if (is_page_sharing_candidate(dup)) { 1412 if (!found || 1413 dup->rmap_hlist_len > found_rmap_hlist_len) { 1414 if (found) 1415 put_page(tree_page); 1416 found = dup; 1417 found_rmap_hlist_len = found->rmap_hlist_len; 1418 tree_page = _tree_page; 1419 1420 /* skip put_page for found dup */ 1421 if (!prune_stale_stable_nodes) 1422 break; 1423 continue; 1424 } 1425 } 1426 put_page(_tree_page); 1427 } 1428 1429 if (found) { 1430 /* 1431 * nr is counting all dups in the chain only if 1432 * prune_stale_stable_nodes is true, otherwise we may 1433 * break the loop at nr == 1 even if there are 1434 * multiple entries. 1435 */ 1436 if (prune_stale_stable_nodes && nr == 1) { 1437 /* 1438 * If there's not just one entry it would 1439 * corrupt memory, better BUG_ON. In KSM 1440 * context with no lock held it's not even 1441 * fatal. 1442 */ 1443 BUG_ON(stable_node->hlist.first->next); 1444 1445 /* 1446 * There's just one entry and it is below the 1447 * deduplication limit so drop the chain. 1448 */ 1449 rb_replace_node(&stable_node->node, &found->node, 1450 root); 1451 free_stable_node(stable_node); 1452 ksm_stable_node_chains--; 1453 ksm_stable_node_dups--; 1454 /* 1455 * NOTE: the caller depends on the stable_node 1456 * to be equal to stable_node_dup if the chain 1457 * was collapsed. 1458 */ 1459 *_stable_node = found; 1460 /* 1461 * Just for robustness, as stable_node is 1462 * otherwise left as a stable pointer, the 1463 * compiler shall optimize it away at build 1464 * time. 1465 */ 1466 stable_node = NULL; 1467 } else if (stable_node->hlist.first != &found->hlist_dup && 1468 __is_page_sharing_candidate(found, 1)) { 1469 /* 1470 * If the found stable_node dup can accept one 1471 * more future merge (in addition to the one 1472 * that is underway) and is not at the head of 1473 * the chain, put it there so next search will 1474 * be quicker in the !prune_stale_stable_nodes 1475 * case. 1476 * 1477 * NOTE: it would be inaccurate to use nr > 1 1478 * instead of checking the hlist.first pointer 1479 * directly, because in the 1480 * prune_stale_stable_nodes case "nr" isn't 1481 * the position of the found dup in the chain, 1482 * but the total number of dups in the chain. 1483 */ 1484 hlist_del(&found->hlist_dup); 1485 hlist_add_head(&found->hlist_dup, 1486 &stable_node->hlist); 1487 } 1488 } 1489 1490 *_stable_node_dup = found; 1491 return tree_page; 1492 } 1493 1494 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node, 1495 struct rb_root *root) 1496 { 1497 if (!is_stable_node_chain(stable_node)) 1498 return stable_node; 1499 if (hlist_empty(&stable_node->hlist)) { 1500 free_stable_node_chain(stable_node, root); 1501 return NULL; 1502 } 1503 return hlist_entry(stable_node->hlist.first, 1504 typeof(*stable_node), hlist_dup); 1505 } 1506 1507 /* 1508 * Like for get_ksm_page, this function can free the *_stable_node and 1509 * *_stable_node_dup if the returned tree_page is NULL. 1510 * 1511 * It can also free and overwrite *_stable_node with the found 1512 * stable_node_dup if the chain is collapsed (in which case 1513 * *_stable_node will be equal to *_stable_node_dup like if the chain 1514 * never existed). It's up to the caller to verify tree_page is not 1515 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1516 * 1517 * *_stable_node_dup is really a second output parameter of this 1518 * function and will be overwritten in all cases, the caller doesn't 1519 * need to initialize it. 1520 */ 1521 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup, 1522 struct ksm_stable_node **_stable_node, 1523 struct rb_root *root, 1524 bool prune_stale_stable_nodes) 1525 { 1526 struct ksm_stable_node *stable_node = *_stable_node; 1527 if (!is_stable_node_chain(stable_node)) { 1528 if (is_page_sharing_candidate(stable_node)) { 1529 *_stable_node_dup = stable_node; 1530 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); 1531 } 1532 /* 1533 * _stable_node_dup set to NULL means the stable_node 1534 * reached the ksm_max_page_sharing limit. 1535 */ 1536 *_stable_node_dup = NULL; 1537 return NULL; 1538 } 1539 return stable_node_dup(_stable_node_dup, _stable_node, root, 1540 prune_stale_stable_nodes); 1541 } 1542 1543 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d, 1544 struct ksm_stable_node **s_n, 1545 struct rb_root *root) 1546 { 1547 return __stable_node_chain(s_n_d, s_n, root, true); 1548 } 1549 1550 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d, 1551 struct ksm_stable_node *s_n, 1552 struct rb_root *root) 1553 { 1554 struct ksm_stable_node *old_stable_node = s_n; 1555 struct page *tree_page; 1556 1557 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1558 /* not pruning dups so s_n cannot have changed */ 1559 VM_BUG_ON(s_n != old_stable_node); 1560 return tree_page; 1561 } 1562 1563 /* 1564 * stable_tree_search - search for page inside the stable tree 1565 * 1566 * This function checks if there is a page inside the stable tree 1567 * with identical content to the page that we are scanning right now. 1568 * 1569 * This function returns the stable tree node of identical content if found, 1570 * NULL otherwise. 1571 */ 1572 static struct page *stable_tree_search(struct page *page) 1573 { 1574 int nid; 1575 struct rb_root *root; 1576 struct rb_node **new; 1577 struct rb_node *parent; 1578 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any; 1579 struct ksm_stable_node *page_node; 1580 1581 page_node = page_stable_node(page); 1582 if (page_node && page_node->head != &migrate_nodes) { 1583 /* ksm page forked */ 1584 get_page(page); 1585 return page; 1586 } 1587 1588 nid = get_kpfn_nid(page_to_pfn(page)); 1589 root = root_stable_tree + nid; 1590 again: 1591 new = &root->rb_node; 1592 parent = NULL; 1593 1594 while (*new) { 1595 struct page *tree_page; 1596 int ret; 1597 1598 cond_resched(); 1599 stable_node = rb_entry(*new, struct ksm_stable_node, node); 1600 stable_node_any = NULL; 1601 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1602 /* 1603 * NOTE: stable_node may have been freed by 1604 * chain_prune() if the returned stable_node_dup is 1605 * not NULL. stable_node_dup may have been inserted in 1606 * the rbtree instead as a regular stable_node (in 1607 * order to collapse the stable_node chain if a single 1608 * stable_node dup was found in it). In such case the 1609 * stable_node is overwritten by the callee to point 1610 * to the stable_node_dup that was collapsed in the 1611 * stable rbtree and stable_node will be equal to 1612 * stable_node_dup like if the chain never existed. 1613 */ 1614 if (!stable_node_dup) { 1615 /* 1616 * Either all stable_node dups were full in 1617 * this stable_node chain, or this chain was 1618 * empty and should be rb_erased. 1619 */ 1620 stable_node_any = stable_node_dup_any(stable_node, 1621 root); 1622 if (!stable_node_any) { 1623 /* rb_erase just run */ 1624 goto again; 1625 } 1626 /* 1627 * Take any of the stable_node dups page of 1628 * this stable_node chain to let the tree walk 1629 * continue. All KSM pages belonging to the 1630 * stable_node dups in a stable_node chain 1631 * have the same content and they're 1632 * write protected at all times. Any will work 1633 * fine to continue the walk. 1634 */ 1635 tree_page = get_ksm_page(stable_node_any, 1636 GET_KSM_PAGE_NOLOCK); 1637 } 1638 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1639 if (!tree_page) { 1640 /* 1641 * If we walked over a stale stable_node, 1642 * get_ksm_page() will call rb_erase() and it 1643 * may rebalance the tree from under us. So 1644 * restart the search from scratch. Returning 1645 * NULL would be safe too, but we'd generate 1646 * false negative insertions just because some 1647 * stable_node was stale. 1648 */ 1649 goto again; 1650 } 1651 1652 ret = memcmp_pages(page, tree_page); 1653 put_page(tree_page); 1654 1655 parent = *new; 1656 if (ret < 0) 1657 new = &parent->rb_left; 1658 else if (ret > 0) 1659 new = &parent->rb_right; 1660 else { 1661 if (page_node) { 1662 VM_BUG_ON(page_node->head != &migrate_nodes); 1663 /* 1664 * Test if the migrated page should be merged 1665 * into a stable node dup. If the mapcount is 1666 * 1 we can migrate it with another KSM page 1667 * without adding it to the chain. 1668 */ 1669 if (page_mapcount(page) > 1) 1670 goto chain_append; 1671 } 1672 1673 if (!stable_node_dup) { 1674 /* 1675 * If the stable_node is a chain and 1676 * we got a payload match in memcmp 1677 * but we cannot merge the scanned 1678 * page in any of the existing 1679 * stable_node dups because they're 1680 * all full, we need to wait the 1681 * scanned page to find itself a match 1682 * in the unstable tree to create a 1683 * brand new KSM page to add later to 1684 * the dups of this stable_node. 1685 */ 1686 return NULL; 1687 } 1688 1689 /* 1690 * Lock and unlock the stable_node's page (which 1691 * might already have been migrated) so that page 1692 * migration is sure to notice its raised count. 1693 * It would be more elegant to return stable_node 1694 * than kpage, but that involves more changes. 1695 */ 1696 tree_page = get_ksm_page(stable_node_dup, 1697 GET_KSM_PAGE_TRYLOCK); 1698 1699 if (PTR_ERR(tree_page) == -EBUSY) 1700 return ERR_PTR(-EBUSY); 1701 1702 if (unlikely(!tree_page)) 1703 /* 1704 * The tree may have been rebalanced, 1705 * so re-evaluate parent and new. 1706 */ 1707 goto again; 1708 unlock_page(tree_page); 1709 1710 if (get_kpfn_nid(stable_node_dup->kpfn) != 1711 NUMA(stable_node_dup->nid)) { 1712 put_page(tree_page); 1713 goto replace; 1714 } 1715 return tree_page; 1716 } 1717 } 1718 1719 if (!page_node) 1720 return NULL; 1721 1722 list_del(&page_node->list); 1723 DO_NUMA(page_node->nid = nid); 1724 rb_link_node(&page_node->node, parent, new); 1725 rb_insert_color(&page_node->node, root); 1726 out: 1727 if (is_page_sharing_candidate(page_node)) { 1728 get_page(page); 1729 return page; 1730 } else 1731 return NULL; 1732 1733 replace: 1734 /* 1735 * If stable_node was a chain and chain_prune collapsed it, 1736 * stable_node has been updated to be the new regular 1737 * stable_node. A collapse of the chain is indistinguishable 1738 * from the case there was no chain in the stable 1739 * rbtree. Otherwise stable_node is the chain and 1740 * stable_node_dup is the dup to replace. 1741 */ 1742 if (stable_node_dup == stable_node) { 1743 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1744 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1745 /* there is no chain */ 1746 if (page_node) { 1747 VM_BUG_ON(page_node->head != &migrate_nodes); 1748 list_del(&page_node->list); 1749 DO_NUMA(page_node->nid = nid); 1750 rb_replace_node(&stable_node_dup->node, 1751 &page_node->node, 1752 root); 1753 if (is_page_sharing_candidate(page_node)) 1754 get_page(page); 1755 else 1756 page = NULL; 1757 } else { 1758 rb_erase(&stable_node_dup->node, root); 1759 page = NULL; 1760 } 1761 } else { 1762 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1763 __stable_node_dup_del(stable_node_dup); 1764 if (page_node) { 1765 VM_BUG_ON(page_node->head != &migrate_nodes); 1766 list_del(&page_node->list); 1767 DO_NUMA(page_node->nid = nid); 1768 stable_node_chain_add_dup(page_node, stable_node); 1769 if (is_page_sharing_candidate(page_node)) 1770 get_page(page); 1771 else 1772 page = NULL; 1773 } else { 1774 page = NULL; 1775 } 1776 } 1777 stable_node_dup->head = &migrate_nodes; 1778 list_add(&stable_node_dup->list, stable_node_dup->head); 1779 return page; 1780 1781 chain_append: 1782 /* stable_node_dup could be null if it reached the limit */ 1783 if (!stable_node_dup) 1784 stable_node_dup = stable_node_any; 1785 /* 1786 * If stable_node was a chain and chain_prune collapsed it, 1787 * stable_node has been updated to be the new regular 1788 * stable_node. A collapse of the chain is indistinguishable 1789 * from the case there was no chain in the stable 1790 * rbtree. Otherwise stable_node is the chain and 1791 * stable_node_dup is the dup to replace. 1792 */ 1793 if (stable_node_dup == stable_node) { 1794 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1795 /* chain is missing so create it */ 1796 stable_node = alloc_stable_node_chain(stable_node_dup, 1797 root); 1798 if (!stable_node) 1799 return NULL; 1800 } 1801 /* 1802 * Add this stable_node dup that was 1803 * migrated to the stable_node chain 1804 * of the current nid for this page 1805 * content. 1806 */ 1807 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1808 VM_BUG_ON(page_node->head != &migrate_nodes); 1809 list_del(&page_node->list); 1810 DO_NUMA(page_node->nid = nid); 1811 stable_node_chain_add_dup(page_node, stable_node); 1812 goto out; 1813 } 1814 1815 /* 1816 * stable_tree_insert - insert stable tree node pointing to new ksm page 1817 * into the stable tree. 1818 * 1819 * This function returns the stable tree node just allocated on success, 1820 * NULL otherwise. 1821 */ 1822 static struct ksm_stable_node *stable_tree_insert(struct page *kpage) 1823 { 1824 int nid; 1825 unsigned long kpfn; 1826 struct rb_root *root; 1827 struct rb_node **new; 1828 struct rb_node *parent; 1829 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any; 1830 bool need_chain = false; 1831 1832 kpfn = page_to_pfn(kpage); 1833 nid = get_kpfn_nid(kpfn); 1834 root = root_stable_tree + nid; 1835 again: 1836 parent = NULL; 1837 new = &root->rb_node; 1838 1839 while (*new) { 1840 struct page *tree_page; 1841 int ret; 1842 1843 cond_resched(); 1844 stable_node = rb_entry(*new, struct ksm_stable_node, node); 1845 stable_node_any = NULL; 1846 tree_page = chain(&stable_node_dup, stable_node, root); 1847 if (!stable_node_dup) { 1848 /* 1849 * Either all stable_node dups were full in 1850 * this stable_node chain, or this chain was 1851 * empty and should be rb_erased. 1852 */ 1853 stable_node_any = stable_node_dup_any(stable_node, 1854 root); 1855 if (!stable_node_any) { 1856 /* rb_erase just run */ 1857 goto again; 1858 } 1859 /* 1860 * Take any of the stable_node dups page of 1861 * this stable_node chain to let the tree walk 1862 * continue. All KSM pages belonging to the 1863 * stable_node dups in a stable_node chain 1864 * have the same content and they're 1865 * write protected at all times. Any will work 1866 * fine to continue the walk. 1867 */ 1868 tree_page = get_ksm_page(stable_node_any, 1869 GET_KSM_PAGE_NOLOCK); 1870 } 1871 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1872 if (!tree_page) { 1873 /* 1874 * If we walked over a stale stable_node, 1875 * get_ksm_page() will call rb_erase() and it 1876 * may rebalance the tree from under us. So 1877 * restart the search from scratch. Returning 1878 * NULL would be safe too, but we'd generate 1879 * false negative insertions just because some 1880 * stable_node was stale. 1881 */ 1882 goto again; 1883 } 1884 1885 ret = memcmp_pages(kpage, tree_page); 1886 put_page(tree_page); 1887 1888 parent = *new; 1889 if (ret < 0) 1890 new = &parent->rb_left; 1891 else if (ret > 0) 1892 new = &parent->rb_right; 1893 else { 1894 need_chain = true; 1895 break; 1896 } 1897 } 1898 1899 stable_node_dup = alloc_stable_node(); 1900 if (!stable_node_dup) 1901 return NULL; 1902 1903 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1904 stable_node_dup->kpfn = kpfn; 1905 set_page_stable_node(kpage, stable_node_dup); 1906 stable_node_dup->rmap_hlist_len = 0; 1907 DO_NUMA(stable_node_dup->nid = nid); 1908 if (!need_chain) { 1909 rb_link_node(&stable_node_dup->node, parent, new); 1910 rb_insert_color(&stable_node_dup->node, root); 1911 } else { 1912 if (!is_stable_node_chain(stable_node)) { 1913 struct ksm_stable_node *orig = stable_node; 1914 /* chain is missing so create it */ 1915 stable_node = alloc_stable_node_chain(orig, root); 1916 if (!stable_node) { 1917 free_stable_node(stable_node_dup); 1918 return NULL; 1919 } 1920 } 1921 stable_node_chain_add_dup(stable_node_dup, stable_node); 1922 } 1923 1924 return stable_node_dup; 1925 } 1926 1927 /* 1928 * unstable_tree_search_insert - search for identical page, 1929 * else insert rmap_item into the unstable tree. 1930 * 1931 * This function searches for a page in the unstable tree identical to the 1932 * page currently being scanned; and if no identical page is found in the 1933 * tree, we insert rmap_item as a new object into the unstable tree. 1934 * 1935 * This function returns pointer to rmap_item found to be identical 1936 * to the currently scanned page, NULL otherwise. 1937 * 1938 * This function does both searching and inserting, because they share 1939 * the same walking algorithm in an rbtree. 1940 */ 1941 static 1942 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item, 1943 struct page *page, 1944 struct page **tree_pagep) 1945 { 1946 struct rb_node **new; 1947 struct rb_root *root; 1948 struct rb_node *parent = NULL; 1949 int nid; 1950 1951 nid = get_kpfn_nid(page_to_pfn(page)); 1952 root = root_unstable_tree + nid; 1953 new = &root->rb_node; 1954 1955 while (*new) { 1956 struct ksm_rmap_item *tree_rmap_item; 1957 struct page *tree_page; 1958 int ret; 1959 1960 cond_resched(); 1961 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node); 1962 tree_page = get_mergeable_page(tree_rmap_item); 1963 if (!tree_page) 1964 return NULL; 1965 1966 /* 1967 * Don't substitute a ksm page for a forked page. 1968 */ 1969 if (page == tree_page) { 1970 put_page(tree_page); 1971 return NULL; 1972 } 1973 1974 ret = memcmp_pages(page, tree_page); 1975 1976 parent = *new; 1977 if (ret < 0) { 1978 put_page(tree_page); 1979 new = &parent->rb_left; 1980 } else if (ret > 0) { 1981 put_page(tree_page); 1982 new = &parent->rb_right; 1983 } else if (!ksm_merge_across_nodes && 1984 page_to_nid(tree_page) != nid) { 1985 /* 1986 * If tree_page has been migrated to another NUMA node, 1987 * it will be flushed out and put in the right unstable 1988 * tree next time: only merge with it when across_nodes. 1989 */ 1990 put_page(tree_page); 1991 return NULL; 1992 } else { 1993 *tree_pagep = tree_page; 1994 return tree_rmap_item; 1995 } 1996 } 1997 1998 rmap_item->address |= UNSTABLE_FLAG; 1999 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 2000 DO_NUMA(rmap_item->nid = nid); 2001 rb_link_node(&rmap_item->node, parent, new); 2002 rb_insert_color(&rmap_item->node, root); 2003 2004 ksm_pages_unshared++; 2005 return NULL; 2006 } 2007 2008 /* 2009 * stable_tree_append - add another rmap_item to the linked list of 2010 * rmap_items hanging off a given node of the stable tree, all sharing 2011 * the same ksm page. 2012 */ 2013 static void stable_tree_append(struct ksm_rmap_item *rmap_item, 2014 struct ksm_stable_node *stable_node, 2015 bool max_page_sharing_bypass) 2016 { 2017 /* 2018 * rmap won't find this mapping if we don't insert the 2019 * rmap_item in the right stable_node 2020 * duplicate. page_migration could break later if rmap breaks, 2021 * so we can as well crash here. We really need to check for 2022 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2023 * for other negative values as an underflow if detected here 2024 * for the first time (and not when decreasing rmap_hlist_len) 2025 * would be sign of memory corruption in the stable_node. 2026 */ 2027 BUG_ON(stable_node->rmap_hlist_len < 0); 2028 2029 stable_node->rmap_hlist_len++; 2030 if (!max_page_sharing_bypass) 2031 /* possibly non fatal but unexpected overflow, only warn */ 2032 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2033 ksm_max_page_sharing); 2034 2035 rmap_item->head = stable_node; 2036 rmap_item->address |= STABLE_FLAG; 2037 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2038 2039 if (rmap_item->hlist.next) 2040 ksm_pages_sharing++; 2041 else 2042 ksm_pages_shared++; 2043 2044 rmap_item->mm->ksm_merging_pages++; 2045 } 2046 2047 /* 2048 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2049 * if not, compare checksum to previous and if it's the same, see if page can 2050 * be inserted into the unstable tree, or merged with a page already there and 2051 * both transferred to the stable tree. 2052 * 2053 * @page: the page that we are searching identical page to. 2054 * @rmap_item: the reverse mapping into the virtual address of this page 2055 */ 2056 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item) 2057 { 2058 struct mm_struct *mm = rmap_item->mm; 2059 struct ksm_rmap_item *tree_rmap_item; 2060 struct page *tree_page = NULL; 2061 struct ksm_stable_node *stable_node; 2062 struct page *kpage; 2063 unsigned int checksum; 2064 int err; 2065 bool max_page_sharing_bypass = false; 2066 2067 stable_node = page_stable_node(page); 2068 if (stable_node) { 2069 if (stable_node->head != &migrate_nodes && 2070 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2071 NUMA(stable_node->nid)) { 2072 stable_node_dup_del(stable_node); 2073 stable_node->head = &migrate_nodes; 2074 list_add(&stable_node->list, stable_node->head); 2075 } 2076 if (stable_node->head != &migrate_nodes && 2077 rmap_item->head == stable_node) 2078 return; 2079 /* 2080 * If it's a KSM fork, allow it to go over the sharing limit 2081 * without warnings. 2082 */ 2083 if (!is_page_sharing_candidate(stable_node)) 2084 max_page_sharing_bypass = true; 2085 } 2086 2087 /* We first start with searching the page inside the stable tree */ 2088 kpage = stable_tree_search(page); 2089 if (kpage == page && rmap_item->head == stable_node) { 2090 put_page(kpage); 2091 return; 2092 } 2093 2094 remove_rmap_item_from_tree(rmap_item); 2095 2096 if (kpage) { 2097 if (PTR_ERR(kpage) == -EBUSY) 2098 return; 2099 2100 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2101 if (!err) { 2102 /* 2103 * The page was successfully merged: 2104 * add its rmap_item to the stable tree. 2105 */ 2106 lock_page(kpage); 2107 stable_tree_append(rmap_item, page_stable_node(kpage), 2108 max_page_sharing_bypass); 2109 unlock_page(kpage); 2110 } 2111 put_page(kpage); 2112 return; 2113 } 2114 2115 /* 2116 * If the hash value of the page has changed from the last time 2117 * we calculated it, this page is changing frequently: therefore we 2118 * don't want to insert it in the unstable tree, and we don't want 2119 * to waste our time searching for something identical to it there. 2120 */ 2121 checksum = calc_checksum(page); 2122 if (rmap_item->oldchecksum != checksum) { 2123 rmap_item->oldchecksum = checksum; 2124 return; 2125 } 2126 2127 /* 2128 * Same checksum as an empty page. We attempt to merge it with the 2129 * appropriate zero page if the user enabled this via sysfs. 2130 */ 2131 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2132 struct vm_area_struct *vma; 2133 2134 mmap_read_lock(mm); 2135 vma = find_mergeable_vma(mm, rmap_item->address); 2136 if (vma) { 2137 err = try_to_merge_one_page(vma, page, 2138 ZERO_PAGE(rmap_item->address)); 2139 } else { 2140 /* 2141 * If the vma is out of date, we do not need to 2142 * continue. 2143 */ 2144 err = 0; 2145 } 2146 mmap_read_unlock(mm); 2147 /* 2148 * In case of failure, the page was not really empty, so we 2149 * need to continue. Otherwise we're done. 2150 */ 2151 if (!err) 2152 return; 2153 } 2154 tree_rmap_item = 2155 unstable_tree_search_insert(rmap_item, page, &tree_page); 2156 if (tree_rmap_item) { 2157 bool split; 2158 2159 kpage = try_to_merge_two_pages(rmap_item, page, 2160 tree_rmap_item, tree_page); 2161 /* 2162 * If both pages we tried to merge belong to the same compound 2163 * page, then we actually ended up increasing the reference 2164 * count of the same compound page twice, and split_huge_page 2165 * failed. 2166 * Here we set a flag if that happened, and we use it later to 2167 * try split_huge_page again. Since we call put_page right 2168 * afterwards, the reference count will be correct and 2169 * split_huge_page should succeed. 2170 */ 2171 split = PageTransCompound(page) 2172 && compound_head(page) == compound_head(tree_page); 2173 put_page(tree_page); 2174 if (kpage) { 2175 /* 2176 * The pages were successfully merged: insert new 2177 * node in the stable tree and add both rmap_items. 2178 */ 2179 lock_page(kpage); 2180 stable_node = stable_tree_insert(kpage); 2181 if (stable_node) { 2182 stable_tree_append(tree_rmap_item, stable_node, 2183 false); 2184 stable_tree_append(rmap_item, stable_node, 2185 false); 2186 } 2187 unlock_page(kpage); 2188 2189 /* 2190 * If we fail to insert the page into the stable tree, 2191 * we will have 2 virtual addresses that are pointing 2192 * to a ksm page left outside the stable tree, 2193 * in which case we need to break_cow on both. 2194 */ 2195 if (!stable_node) { 2196 break_cow(tree_rmap_item); 2197 break_cow(rmap_item); 2198 } 2199 } else if (split) { 2200 /* 2201 * We are here if we tried to merge two pages and 2202 * failed because they both belonged to the same 2203 * compound page. We will split the page now, but no 2204 * merging will take place. 2205 * We do not want to add the cost of a full lock; if 2206 * the page is locked, it is better to skip it and 2207 * perhaps try again later. 2208 */ 2209 if (!trylock_page(page)) 2210 return; 2211 split_huge_page(page); 2212 unlock_page(page); 2213 } 2214 } 2215 } 2216 2217 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot, 2218 struct ksm_rmap_item **rmap_list, 2219 unsigned long addr) 2220 { 2221 struct ksm_rmap_item *rmap_item; 2222 2223 while (*rmap_list) { 2224 rmap_item = *rmap_list; 2225 if ((rmap_item->address & PAGE_MASK) == addr) 2226 return rmap_item; 2227 if (rmap_item->address > addr) 2228 break; 2229 *rmap_list = rmap_item->rmap_list; 2230 remove_rmap_item_from_tree(rmap_item); 2231 free_rmap_item(rmap_item); 2232 } 2233 2234 rmap_item = alloc_rmap_item(); 2235 if (rmap_item) { 2236 /* It has already been zeroed */ 2237 rmap_item->mm = mm_slot->slot.mm; 2238 rmap_item->mm->ksm_rmap_items++; 2239 rmap_item->address = addr; 2240 rmap_item->rmap_list = *rmap_list; 2241 *rmap_list = rmap_item; 2242 } 2243 return rmap_item; 2244 } 2245 2246 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page) 2247 { 2248 struct mm_struct *mm; 2249 struct ksm_mm_slot *mm_slot; 2250 struct mm_slot *slot; 2251 struct vm_area_struct *vma; 2252 struct ksm_rmap_item *rmap_item; 2253 struct vma_iterator vmi; 2254 int nid; 2255 2256 if (list_empty(&ksm_mm_head.slot.mm_node)) 2257 return NULL; 2258 2259 mm_slot = ksm_scan.mm_slot; 2260 if (mm_slot == &ksm_mm_head) { 2261 /* 2262 * A number of pages can hang around indefinitely on per-cpu 2263 * pagevecs, raised page count preventing write_protect_page 2264 * from merging them. Though it doesn't really matter much, 2265 * it is puzzling to see some stuck in pages_volatile until 2266 * other activity jostles them out, and they also prevented 2267 * LTP's KSM test from succeeding deterministically; so drain 2268 * them here (here rather than on entry to ksm_do_scan(), 2269 * so we don't IPI too often when pages_to_scan is set low). 2270 */ 2271 lru_add_drain_all(); 2272 2273 /* 2274 * Whereas stale stable_nodes on the stable_tree itself 2275 * get pruned in the regular course of stable_tree_search(), 2276 * those moved out to the migrate_nodes list can accumulate: 2277 * so prune them once before each full scan. 2278 */ 2279 if (!ksm_merge_across_nodes) { 2280 struct ksm_stable_node *stable_node, *next; 2281 struct page *page; 2282 2283 list_for_each_entry_safe(stable_node, next, 2284 &migrate_nodes, list) { 2285 page = get_ksm_page(stable_node, 2286 GET_KSM_PAGE_NOLOCK); 2287 if (page) 2288 put_page(page); 2289 cond_resched(); 2290 } 2291 } 2292 2293 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2294 root_unstable_tree[nid] = RB_ROOT; 2295 2296 spin_lock(&ksm_mmlist_lock); 2297 slot = list_entry(mm_slot->slot.mm_node.next, 2298 struct mm_slot, mm_node); 2299 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2300 ksm_scan.mm_slot = mm_slot; 2301 spin_unlock(&ksm_mmlist_lock); 2302 /* 2303 * Although we tested list_empty() above, a racing __ksm_exit 2304 * of the last mm on the list may have removed it since then. 2305 */ 2306 if (mm_slot == &ksm_mm_head) 2307 return NULL; 2308 next_mm: 2309 ksm_scan.address = 0; 2310 ksm_scan.rmap_list = &mm_slot->rmap_list; 2311 } 2312 2313 slot = &mm_slot->slot; 2314 mm = slot->mm; 2315 vma_iter_init(&vmi, mm, ksm_scan.address); 2316 2317 mmap_read_lock(mm); 2318 if (ksm_test_exit(mm)) 2319 goto no_vmas; 2320 2321 for_each_vma(vmi, vma) { 2322 if (!(vma->vm_flags & VM_MERGEABLE)) 2323 continue; 2324 if (ksm_scan.address < vma->vm_start) 2325 ksm_scan.address = vma->vm_start; 2326 if (!vma->anon_vma) 2327 ksm_scan.address = vma->vm_end; 2328 2329 while (ksm_scan.address < vma->vm_end) { 2330 if (ksm_test_exit(mm)) 2331 break; 2332 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2333 if (IS_ERR_OR_NULL(*page)) { 2334 ksm_scan.address += PAGE_SIZE; 2335 cond_resched(); 2336 continue; 2337 } 2338 if (is_zone_device_page(*page)) 2339 goto next_page; 2340 if (PageAnon(*page)) { 2341 flush_anon_page(vma, *page, ksm_scan.address); 2342 flush_dcache_page(*page); 2343 rmap_item = get_next_rmap_item(mm_slot, 2344 ksm_scan.rmap_list, ksm_scan.address); 2345 if (rmap_item) { 2346 ksm_scan.rmap_list = 2347 &rmap_item->rmap_list; 2348 ksm_scan.address += PAGE_SIZE; 2349 } else 2350 put_page(*page); 2351 mmap_read_unlock(mm); 2352 return rmap_item; 2353 } 2354 next_page: 2355 put_page(*page); 2356 ksm_scan.address += PAGE_SIZE; 2357 cond_resched(); 2358 } 2359 } 2360 2361 if (ksm_test_exit(mm)) { 2362 no_vmas: 2363 ksm_scan.address = 0; 2364 ksm_scan.rmap_list = &mm_slot->rmap_list; 2365 } 2366 /* 2367 * Nuke all the rmap_items that are above this current rmap: 2368 * because there were no VM_MERGEABLE vmas with such addresses. 2369 */ 2370 remove_trailing_rmap_items(ksm_scan.rmap_list); 2371 2372 spin_lock(&ksm_mmlist_lock); 2373 slot = list_entry(mm_slot->slot.mm_node.next, 2374 struct mm_slot, mm_node); 2375 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2376 if (ksm_scan.address == 0) { 2377 /* 2378 * We've completed a full scan of all vmas, holding mmap_lock 2379 * throughout, and found no VM_MERGEABLE: so do the same as 2380 * __ksm_exit does to remove this mm from all our lists now. 2381 * This applies either when cleaning up after __ksm_exit 2382 * (but beware: we can reach here even before __ksm_exit), 2383 * or when all VM_MERGEABLE areas have been unmapped (and 2384 * mmap_lock then protects against race with MADV_MERGEABLE). 2385 */ 2386 hash_del(&mm_slot->slot.hash); 2387 list_del(&mm_slot->slot.mm_node); 2388 spin_unlock(&ksm_mmlist_lock); 2389 2390 mm_slot_free(mm_slot_cache, mm_slot); 2391 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2392 mmap_read_unlock(mm); 2393 mmdrop(mm); 2394 } else { 2395 mmap_read_unlock(mm); 2396 /* 2397 * mmap_read_unlock(mm) first because after 2398 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2399 * already have been freed under us by __ksm_exit() 2400 * because the "mm_slot" is still hashed and 2401 * ksm_scan.mm_slot doesn't point to it anymore. 2402 */ 2403 spin_unlock(&ksm_mmlist_lock); 2404 } 2405 2406 /* Repeat until we've completed scanning the whole list */ 2407 mm_slot = ksm_scan.mm_slot; 2408 if (mm_slot != &ksm_mm_head) 2409 goto next_mm; 2410 2411 ksm_scan.seqnr++; 2412 return NULL; 2413 } 2414 2415 /** 2416 * ksm_do_scan - the ksm scanner main worker function. 2417 * @scan_npages: number of pages we want to scan before we return. 2418 */ 2419 static void ksm_do_scan(unsigned int scan_npages) 2420 { 2421 struct ksm_rmap_item *rmap_item; 2422 struct page *page; 2423 2424 while (scan_npages-- && likely(!freezing(current))) { 2425 cond_resched(); 2426 rmap_item = scan_get_next_rmap_item(&page); 2427 if (!rmap_item) 2428 return; 2429 cmp_and_merge_page(page, rmap_item); 2430 put_page(page); 2431 } 2432 } 2433 2434 static int ksmd_should_run(void) 2435 { 2436 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node); 2437 } 2438 2439 static int ksm_scan_thread(void *nothing) 2440 { 2441 unsigned int sleep_ms; 2442 2443 set_freezable(); 2444 set_user_nice(current, 5); 2445 2446 while (!kthread_should_stop()) { 2447 mutex_lock(&ksm_thread_mutex); 2448 wait_while_offlining(); 2449 if (ksmd_should_run()) 2450 ksm_do_scan(ksm_thread_pages_to_scan); 2451 mutex_unlock(&ksm_thread_mutex); 2452 2453 try_to_freeze(); 2454 2455 if (ksmd_should_run()) { 2456 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2457 wait_event_interruptible_timeout(ksm_iter_wait, 2458 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2459 msecs_to_jiffies(sleep_ms)); 2460 } else { 2461 wait_event_freezable(ksm_thread_wait, 2462 ksmd_should_run() || kthread_should_stop()); 2463 } 2464 } 2465 return 0; 2466 } 2467 2468 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2469 unsigned long end, int advice, unsigned long *vm_flags) 2470 { 2471 struct mm_struct *mm = vma->vm_mm; 2472 int err; 2473 2474 switch (advice) { 2475 case MADV_MERGEABLE: 2476 /* 2477 * Be somewhat over-protective for now! 2478 */ 2479 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 2480 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 2481 VM_HUGETLB | VM_MIXEDMAP)) 2482 return 0; /* just ignore the advice */ 2483 2484 if (vma_is_dax(vma)) 2485 return 0; 2486 2487 #ifdef VM_SAO 2488 if (*vm_flags & VM_SAO) 2489 return 0; 2490 #endif 2491 #ifdef VM_SPARC_ADI 2492 if (*vm_flags & VM_SPARC_ADI) 2493 return 0; 2494 #endif 2495 2496 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2497 err = __ksm_enter(mm); 2498 if (err) 2499 return err; 2500 } 2501 2502 *vm_flags |= VM_MERGEABLE; 2503 break; 2504 2505 case MADV_UNMERGEABLE: 2506 if (!(*vm_flags & VM_MERGEABLE)) 2507 return 0; /* just ignore the advice */ 2508 2509 if (vma->anon_vma) { 2510 err = unmerge_ksm_pages(vma, start, end); 2511 if (err) 2512 return err; 2513 } 2514 2515 *vm_flags &= ~VM_MERGEABLE; 2516 break; 2517 } 2518 2519 return 0; 2520 } 2521 EXPORT_SYMBOL_GPL(ksm_madvise); 2522 2523 int __ksm_enter(struct mm_struct *mm) 2524 { 2525 struct ksm_mm_slot *mm_slot; 2526 struct mm_slot *slot; 2527 int needs_wakeup; 2528 2529 mm_slot = mm_slot_alloc(mm_slot_cache); 2530 if (!mm_slot) 2531 return -ENOMEM; 2532 2533 slot = &mm_slot->slot; 2534 2535 /* Check ksm_run too? Would need tighter locking */ 2536 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node); 2537 2538 spin_lock(&ksm_mmlist_lock); 2539 mm_slot_insert(mm_slots_hash, mm, slot); 2540 /* 2541 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2542 * insert just behind the scanning cursor, to let the area settle 2543 * down a little; when fork is followed by immediate exec, we don't 2544 * want ksmd to waste time setting up and tearing down an rmap_list. 2545 * 2546 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2547 * scanning cursor, otherwise KSM pages in newly forked mms will be 2548 * missed: then we might as well insert at the end of the list. 2549 */ 2550 if (ksm_run & KSM_RUN_UNMERGE) 2551 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node); 2552 else 2553 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node); 2554 spin_unlock(&ksm_mmlist_lock); 2555 2556 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2557 mmgrab(mm); 2558 2559 if (needs_wakeup) 2560 wake_up_interruptible(&ksm_thread_wait); 2561 2562 return 0; 2563 } 2564 2565 void __ksm_exit(struct mm_struct *mm) 2566 { 2567 struct ksm_mm_slot *mm_slot; 2568 struct mm_slot *slot; 2569 int easy_to_free = 0; 2570 2571 /* 2572 * This process is exiting: if it's straightforward (as is the 2573 * case when ksmd was never running), free mm_slot immediately. 2574 * But if it's at the cursor or has rmap_items linked to it, use 2575 * mmap_lock to synchronize with any break_cows before pagetables 2576 * are freed, and leave the mm_slot on the list for ksmd to free. 2577 * Beware: ksm may already have noticed it exiting and freed the slot. 2578 */ 2579 2580 spin_lock(&ksm_mmlist_lock); 2581 slot = mm_slot_lookup(mm_slots_hash, mm); 2582 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2583 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2584 if (!mm_slot->rmap_list) { 2585 hash_del(&slot->hash); 2586 list_del(&slot->mm_node); 2587 easy_to_free = 1; 2588 } else { 2589 list_move(&slot->mm_node, 2590 &ksm_scan.mm_slot->slot.mm_node); 2591 } 2592 } 2593 spin_unlock(&ksm_mmlist_lock); 2594 2595 if (easy_to_free) { 2596 mm_slot_free(mm_slot_cache, mm_slot); 2597 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2598 mmdrop(mm); 2599 } else if (mm_slot) { 2600 mmap_write_lock(mm); 2601 mmap_write_unlock(mm); 2602 } 2603 } 2604 2605 struct page *ksm_might_need_to_copy(struct page *page, 2606 struct vm_area_struct *vma, unsigned long address) 2607 { 2608 struct folio *folio = page_folio(page); 2609 struct anon_vma *anon_vma = folio_anon_vma(folio); 2610 struct page *new_page; 2611 2612 if (PageKsm(page)) { 2613 if (page_stable_node(page) && 2614 !(ksm_run & KSM_RUN_UNMERGE)) 2615 return page; /* no need to copy it */ 2616 } else if (!anon_vma) { 2617 return page; /* no need to copy it */ 2618 } else if (page->index == linear_page_index(vma, address) && 2619 anon_vma->root == vma->anon_vma->root) { 2620 return page; /* still no need to copy it */ 2621 } 2622 if (!PageUptodate(page)) 2623 return page; /* let do_swap_page report the error */ 2624 2625 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2626 if (new_page && 2627 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) { 2628 put_page(new_page); 2629 new_page = NULL; 2630 } 2631 if (new_page) { 2632 if (copy_mc_user_highpage(new_page, page, address, vma)) { 2633 put_page(new_page); 2634 memory_failure_queue(page_to_pfn(page), 0); 2635 return ERR_PTR(-EHWPOISON); 2636 } 2637 SetPageDirty(new_page); 2638 __SetPageUptodate(new_page); 2639 __SetPageLocked(new_page); 2640 #ifdef CONFIG_SWAP 2641 count_vm_event(KSM_SWPIN_COPY); 2642 #endif 2643 } 2644 2645 return new_page; 2646 } 2647 2648 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc) 2649 { 2650 struct ksm_stable_node *stable_node; 2651 struct ksm_rmap_item *rmap_item; 2652 int search_new_forks = 0; 2653 2654 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio); 2655 2656 /* 2657 * Rely on the page lock to protect against concurrent modifications 2658 * to that page's node of the stable tree. 2659 */ 2660 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2661 2662 stable_node = folio_stable_node(folio); 2663 if (!stable_node) 2664 return; 2665 again: 2666 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2667 struct anon_vma *anon_vma = rmap_item->anon_vma; 2668 struct anon_vma_chain *vmac; 2669 struct vm_area_struct *vma; 2670 2671 cond_resched(); 2672 if (!anon_vma_trylock_read(anon_vma)) { 2673 if (rwc->try_lock) { 2674 rwc->contended = true; 2675 return; 2676 } 2677 anon_vma_lock_read(anon_vma); 2678 } 2679 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2680 0, ULONG_MAX) { 2681 unsigned long addr; 2682 2683 cond_resched(); 2684 vma = vmac->vma; 2685 2686 /* Ignore the stable/unstable/sqnr flags */ 2687 addr = rmap_item->address & PAGE_MASK; 2688 2689 if (addr < vma->vm_start || addr >= vma->vm_end) 2690 continue; 2691 /* 2692 * Initially we examine only the vma which covers this 2693 * rmap_item; but later, if there is still work to do, 2694 * we examine covering vmas in other mms: in case they 2695 * were forked from the original since ksmd passed. 2696 */ 2697 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2698 continue; 2699 2700 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2701 continue; 2702 2703 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) { 2704 anon_vma_unlock_read(anon_vma); 2705 return; 2706 } 2707 if (rwc->done && rwc->done(folio)) { 2708 anon_vma_unlock_read(anon_vma); 2709 return; 2710 } 2711 } 2712 anon_vma_unlock_read(anon_vma); 2713 } 2714 if (!search_new_forks++) 2715 goto again; 2716 } 2717 2718 #ifdef CONFIG_MIGRATION 2719 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio) 2720 { 2721 struct ksm_stable_node *stable_node; 2722 2723 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2724 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio); 2725 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio); 2726 2727 stable_node = folio_stable_node(folio); 2728 if (stable_node) { 2729 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio); 2730 stable_node->kpfn = folio_pfn(newfolio); 2731 /* 2732 * newfolio->mapping was set in advance; now we need smp_wmb() 2733 * to make sure that the new stable_node->kpfn is visible 2734 * to get_ksm_page() before it can see that folio->mapping 2735 * has gone stale (or that folio_test_swapcache has been cleared). 2736 */ 2737 smp_wmb(); 2738 set_page_stable_node(&folio->page, NULL); 2739 } 2740 } 2741 #endif /* CONFIG_MIGRATION */ 2742 2743 #ifdef CONFIG_MEMORY_HOTREMOVE 2744 static void wait_while_offlining(void) 2745 { 2746 while (ksm_run & KSM_RUN_OFFLINE) { 2747 mutex_unlock(&ksm_thread_mutex); 2748 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2749 TASK_UNINTERRUPTIBLE); 2750 mutex_lock(&ksm_thread_mutex); 2751 } 2752 } 2753 2754 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node, 2755 unsigned long start_pfn, 2756 unsigned long end_pfn) 2757 { 2758 if (stable_node->kpfn >= start_pfn && 2759 stable_node->kpfn < end_pfn) { 2760 /* 2761 * Don't get_ksm_page, page has already gone: 2762 * which is why we keep kpfn instead of page* 2763 */ 2764 remove_node_from_stable_tree(stable_node); 2765 return true; 2766 } 2767 return false; 2768 } 2769 2770 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node, 2771 unsigned long start_pfn, 2772 unsigned long end_pfn, 2773 struct rb_root *root) 2774 { 2775 struct ksm_stable_node *dup; 2776 struct hlist_node *hlist_safe; 2777 2778 if (!is_stable_node_chain(stable_node)) { 2779 VM_BUG_ON(is_stable_node_dup(stable_node)); 2780 return stable_node_dup_remove_range(stable_node, start_pfn, 2781 end_pfn); 2782 } 2783 2784 hlist_for_each_entry_safe(dup, hlist_safe, 2785 &stable_node->hlist, hlist_dup) { 2786 VM_BUG_ON(!is_stable_node_dup(dup)); 2787 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2788 } 2789 if (hlist_empty(&stable_node->hlist)) { 2790 free_stable_node_chain(stable_node, root); 2791 return true; /* notify caller that tree was rebalanced */ 2792 } else 2793 return false; 2794 } 2795 2796 static void ksm_check_stable_tree(unsigned long start_pfn, 2797 unsigned long end_pfn) 2798 { 2799 struct ksm_stable_node *stable_node, *next; 2800 struct rb_node *node; 2801 int nid; 2802 2803 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2804 node = rb_first(root_stable_tree + nid); 2805 while (node) { 2806 stable_node = rb_entry(node, struct ksm_stable_node, node); 2807 if (stable_node_chain_remove_range(stable_node, 2808 start_pfn, end_pfn, 2809 root_stable_tree + 2810 nid)) 2811 node = rb_first(root_stable_tree + nid); 2812 else 2813 node = rb_next(node); 2814 cond_resched(); 2815 } 2816 } 2817 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2818 if (stable_node->kpfn >= start_pfn && 2819 stable_node->kpfn < end_pfn) 2820 remove_node_from_stable_tree(stable_node); 2821 cond_resched(); 2822 } 2823 } 2824 2825 static int ksm_memory_callback(struct notifier_block *self, 2826 unsigned long action, void *arg) 2827 { 2828 struct memory_notify *mn = arg; 2829 2830 switch (action) { 2831 case MEM_GOING_OFFLINE: 2832 /* 2833 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2834 * and remove_all_stable_nodes() while memory is going offline: 2835 * it is unsafe for them to touch the stable tree at this time. 2836 * But unmerge_ksm_pages(), rmap lookups and other entry points 2837 * which do not need the ksm_thread_mutex are all safe. 2838 */ 2839 mutex_lock(&ksm_thread_mutex); 2840 ksm_run |= KSM_RUN_OFFLINE; 2841 mutex_unlock(&ksm_thread_mutex); 2842 break; 2843 2844 case MEM_OFFLINE: 2845 /* 2846 * Most of the work is done by page migration; but there might 2847 * be a few stable_nodes left over, still pointing to struct 2848 * pages which have been offlined: prune those from the tree, 2849 * otherwise get_ksm_page() might later try to access a 2850 * non-existent struct page. 2851 */ 2852 ksm_check_stable_tree(mn->start_pfn, 2853 mn->start_pfn + mn->nr_pages); 2854 fallthrough; 2855 case MEM_CANCEL_OFFLINE: 2856 mutex_lock(&ksm_thread_mutex); 2857 ksm_run &= ~KSM_RUN_OFFLINE; 2858 mutex_unlock(&ksm_thread_mutex); 2859 2860 smp_mb(); /* wake_up_bit advises this */ 2861 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2862 break; 2863 } 2864 return NOTIFY_OK; 2865 } 2866 #else 2867 static void wait_while_offlining(void) 2868 { 2869 } 2870 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2871 2872 #ifdef CONFIG_SYSFS 2873 /* 2874 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2875 */ 2876 2877 #define KSM_ATTR_RO(_name) \ 2878 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2879 #define KSM_ATTR(_name) \ 2880 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 2881 2882 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2883 struct kobj_attribute *attr, char *buf) 2884 { 2885 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs); 2886 } 2887 2888 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2889 struct kobj_attribute *attr, 2890 const char *buf, size_t count) 2891 { 2892 unsigned int msecs; 2893 int err; 2894 2895 err = kstrtouint(buf, 10, &msecs); 2896 if (err) 2897 return -EINVAL; 2898 2899 ksm_thread_sleep_millisecs = msecs; 2900 wake_up_interruptible(&ksm_iter_wait); 2901 2902 return count; 2903 } 2904 KSM_ATTR(sleep_millisecs); 2905 2906 static ssize_t pages_to_scan_show(struct kobject *kobj, 2907 struct kobj_attribute *attr, char *buf) 2908 { 2909 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan); 2910 } 2911 2912 static ssize_t pages_to_scan_store(struct kobject *kobj, 2913 struct kobj_attribute *attr, 2914 const char *buf, size_t count) 2915 { 2916 unsigned int nr_pages; 2917 int err; 2918 2919 err = kstrtouint(buf, 10, &nr_pages); 2920 if (err) 2921 return -EINVAL; 2922 2923 ksm_thread_pages_to_scan = nr_pages; 2924 2925 return count; 2926 } 2927 KSM_ATTR(pages_to_scan); 2928 2929 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2930 char *buf) 2931 { 2932 return sysfs_emit(buf, "%lu\n", ksm_run); 2933 } 2934 2935 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2936 const char *buf, size_t count) 2937 { 2938 unsigned int flags; 2939 int err; 2940 2941 err = kstrtouint(buf, 10, &flags); 2942 if (err) 2943 return -EINVAL; 2944 if (flags > KSM_RUN_UNMERGE) 2945 return -EINVAL; 2946 2947 /* 2948 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2949 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2950 * breaking COW to free the pages_shared (but leaves mm_slots 2951 * on the list for when ksmd may be set running again). 2952 */ 2953 2954 mutex_lock(&ksm_thread_mutex); 2955 wait_while_offlining(); 2956 if (ksm_run != flags) { 2957 ksm_run = flags; 2958 if (flags & KSM_RUN_UNMERGE) { 2959 set_current_oom_origin(); 2960 err = unmerge_and_remove_all_rmap_items(); 2961 clear_current_oom_origin(); 2962 if (err) { 2963 ksm_run = KSM_RUN_STOP; 2964 count = err; 2965 } 2966 } 2967 } 2968 mutex_unlock(&ksm_thread_mutex); 2969 2970 if (flags & KSM_RUN_MERGE) 2971 wake_up_interruptible(&ksm_thread_wait); 2972 2973 return count; 2974 } 2975 KSM_ATTR(run); 2976 2977 #ifdef CONFIG_NUMA 2978 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2979 struct kobj_attribute *attr, char *buf) 2980 { 2981 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes); 2982 } 2983 2984 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2985 struct kobj_attribute *attr, 2986 const char *buf, size_t count) 2987 { 2988 int err; 2989 unsigned long knob; 2990 2991 err = kstrtoul(buf, 10, &knob); 2992 if (err) 2993 return err; 2994 if (knob > 1) 2995 return -EINVAL; 2996 2997 mutex_lock(&ksm_thread_mutex); 2998 wait_while_offlining(); 2999 if (ksm_merge_across_nodes != knob) { 3000 if (ksm_pages_shared || remove_all_stable_nodes()) 3001 err = -EBUSY; 3002 else if (root_stable_tree == one_stable_tree) { 3003 struct rb_root *buf; 3004 /* 3005 * This is the first time that we switch away from the 3006 * default of merging across nodes: must now allocate 3007 * a buffer to hold as many roots as may be needed. 3008 * Allocate stable and unstable together: 3009 * MAXSMP NODES_SHIFT 10 will use 16kB. 3010 */ 3011 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 3012 GFP_KERNEL); 3013 /* Let us assume that RB_ROOT is NULL is zero */ 3014 if (!buf) 3015 err = -ENOMEM; 3016 else { 3017 root_stable_tree = buf; 3018 root_unstable_tree = buf + nr_node_ids; 3019 /* Stable tree is empty but not the unstable */ 3020 root_unstable_tree[0] = one_unstable_tree[0]; 3021 } 3022 } 3023 if (!err) { 3024 ksm_merge_across_nodes = knob; 3025 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 3026 } 3027 } 3028 mutex_unlock(&ksm_thread_mutex); 3029 3030 return err ? err : count; 3031 } 3032 KSM_ATTR(merge_across_nodes); 3033 #endif 3034 3035 static ssize_t use_zero_pages_show(struct kobject *kobj, 3036 struct kobj_attribute *attr, char *buf) 3037 { 3038 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages); 3039 } 3040 static ssize_t use_zero_pages_store(struct kobject *kobj, 3041 struct kobj_attribute *attr, 3042 const char *buf, size_t count) 3043 { 3044 int err; 3045 bool value; 3046 3047 err = kstrtobool(buf, &value); 3048 if (err) 3049 return -EINVAL; 3050 3051 ksm_use_zero_pages = value; 3052 3053 return count; 3054 } 3055 KSM_ATTR(use_zero_pages); 3056 3057 static ssize_t max_page_sharing_show(struct kobject *kobj, 3058 struct kobj_attribute *attr, char *buf) 3059 { 3060 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing); 3061 } 3062 3063 static ssize_t max_page_sharing_store(struct kobject *kobj, 3064 struct kobj_attribute *attr, 3065 const char *buf, size_t count) 3066 { 3067 int err; 3068 int knob; 3069 3070 err = kstrtoint(buf, 10, &knob); 3071 if (err) 3072 return err; 3073 /* 3074 * When a KSM page is created it is shared by 2 mappings. This 3075 * being a signed comparison, it implicitly verifies it's not 3076 * negative. 3077 */ 3078 if (knob < 2) 3079 return -EINVAL; 3080 3081 if (READ_ONCE(ksm_max_page_sharing) == knob) 3082 return count; 3083 3084 mutex_lock(&ksm_thread_mutex); 3085 wait_while_offlining(); 3086 if (ksm_max_page_sharing != knob) { 3087 if (ksm_pages_shared || remove_all_stable_nodes()) 3088 err = -EBUSY; 3089 else 3090 ksm_max_page_sharing = knob; 3091 } 3092 mutex_unlock(&ksm_thread_mutex); 3093 3094 return err ? err : count; 3095 } 3096 KSM_ATTR(max_page_sharing); 3097 3098 static ssize_t pages_shared_show(struct kobject *kobj, 3099 struct kobj_attribute *attr, char *buf) 3100 { 3101 return sysfs_emit(buf, "%lu\n", ksm_pages_shared); 3102 } 3103 KSM_ATTR_RO(pages_shared); 3104 3105 static ssize_t pages_sharing_show(struct kobject *kobj, 3106 struct kobj_attribute *attr, char *buf) 3107 { 3108 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing); 3109 } 3110 KSM_ATTR_RO(pages_sharing); 3111 3112 static ssize_t pages_unshared_show(struct kobject *kobj, 3113 struct kobj_attribute *attr, char *buf) 3114 { 3115 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared); 3116 } 3117 KSM_ATTR_RO(pages_unshared); 3118 3119 static ssize_t pages_volatile_show(struct kobject *kobj, 3120 struct kobj_attribute *attr, char *buf) 3121 { 3122 long ksm_pages_volatile; 3123 3124 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3125 - ksm_pages_sharing - ksm_pages_unshared; 3126 /* 3127 * It was not worth any locking to calculate that statistic, 3128 * but it might therefore sometimes be negative: conceal that. 3129 */ 3130 if (ksm_pages_volatile < 0) 3131 ksm_pages_volatile = 0; 3132 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile); 3133 } 3134 KSM_ATTR_RO(pages_volatile); 3135 3136 static ssize_t stable_node_dups_show(struct kobject *kobj, 3137 struct kobj_attribute *attr, char *buf) 3138 { 3139 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups); 3140 } 3141 KSM_ATTR_RO(stable_node_dups); 3142 3143 static ssize_t stable_node_chains_show(struct kobject *kobj, 3144 struct kobj_attribute *attr, char *buf) 3145 { 3146 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains); 3147 } 3148 KSM_ATTR_RO(stable_node_chains); 3149 3150 static ssize_t 3151 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3152 struct kobj_attribute *attr, 3153 char *buf) 3154 { 3155 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3156 } 3157 3158 static ssize_t 3159 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3160 struct kobj_attribute *attr, 3161 const char *buf, size_t count) 3162 { 3163 unsigned int msecs; 3164 int err; 3165 3166 err = kstrtouint(buf, 10, &msecs); 3167 if (err) 3168 return -EINVAL; 3169 3170 ksm_stable_node_chains_prune_millisecs = msecs; 3171 3172 return count; 3173 } 3174 KSM_ATTR(stable_node_chains_prune_millisecs); 3175 3176 static ssize_t full_scans_show(struct kobject *kobj, 3177 struct kobj_attribute *attr, char *buf) 3178 { 3179 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr); 3180 } 3181 KSM_ATTR_RO(full_scans); 3182 3183 static struct attribute *ksm_attrs[] = { 3184 &sleep_millisecs_attr.attr, 3185 &pages_to_scan_attr.attr, 3186 &run_attr.attr, 3187 &pages_shared_attr.attr, 3188 &pages_sharing_attr.attr, 3189 &pages_unshared_attr.attr, 3190 &pages_volatile_attr.attr, 3191 &full_scans_attr.attr, 3192 #ifdef CONFIG_NUMA 3193 &merge_across_nodes_attr.attr, 3194 #endif 3195 &max_page_sharing_attr.attr, 3196 &stable_node_chains_attr.attr, 3197 &stable_node_dups_attr.attr, 3198 &stable_node_chains_prune_millisecs_attr.attr, 3199 &use_zero_pages_attr.attr, 3200 NULL, 3201 }; 3202 3203 static const struct attribute_group ksm_attr_group = { 3204 .attrs = ksm_attrs, 3205 .name = "ksm", 3206 }; 3207 #endif /* CONFIG_SYSFS */ 3208 3209 static int __init ksm_init(void) 3210 { 3211 struct task_struct *ksm_thread; 3212 int err; 3213 3214 /* The correct value depends on page size and endianness */ 3215 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3216 /* Default to false for backwards compatibility */ 3217 ksm_use_zero_pages = false; 3218 3219 err = ksm_slab_init(); 3220 if (err) 3221 goto out; 3222 3223 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3224 if (IS_ERR(ksm_thread)) { 3225 pr_err("ksm: creating kthread failed\n"); 3226 err = PTR_ERR(ksm_thread); 3227 goto out_free; 3228 } 3229 3230 #ifdef CONFIG_SYSFS 3231 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3232 if (err) { 3233 pr_err("ksm: register sysfs failed\n"); 3234 kthread_stop(ksm_thread); 3235 goto out_free; 3236 } 3237 #else 3238 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3239 3240 #endif /* CONFIG_SYSFS */ 3241 3242 #ifdef CONFIG_MEMORY_HOTREMOVE 3243 /* There is no significance to this priority 100 */ 3244 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI); 3245 #endif 3246 return 0; 3247 3248 out_free: 3249 ksm_slab_free(); 3250 out: 3251 return err; 3252 } 3253 subsys_initcall(ksm_init); 3254