1 /* 2 * Memory merging support. 3 * 4 * This code enables dynamic sharing of identical pages found in different 5 * memory areas, even if they are not shared by fork() 6 * 7 * Copyright (C) 2008-2009 Red Hat, Inc. 8 * Authors: 9 * Izik Eidus 10 * Andrea Arcangeli 11 * Chris Wright 12 * Hugh Dickins 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/rwsem.h> 23 #include <linux/pagemap.h> 24 #include <linux/rmap.h> 25 #include <linux/spinlock.h> 26 #include <linux/jhash.h> 27 #include <linux/delay.h> 28 #include <linux/kthread.h> 29 #include <linux/wait.h> 30 #include <linux/slab.h> 31 #include <linux/rbtree.h> 32 #include <linux/memory.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/swap.h> 35 #include <linux/ksm.h> 36 #include <linux/hashtable.h> 37 #include <linux/freezer.h> 38 #include <linux/oom.h> 39 #include <linux/numa.h> 40 41 #include <asm/tlbflush.h> 42 #include "internal.h" 43 44 #ifdef CONFIG_NUMA 45 #define NUMA(x) (x) 46 #define DO_NUMA(x) do { (x); } while (0) 47 #else 48 #define NUMA(x) (0) 49 #define DO_NUMA(x) do { } while (0) 50 #endif 51 52 /* 53 * A few notes about the KSM scanning process, 54 * to make it easier to understand the data structures below: 55 * 56 * In order to reduce excessive scanning, KSM sorts the memory pages by their 57 * contents into a data structure that holds pointers to the pages' locations. 58 * 59 * Since the contents of the pages may change at any moment, KSM cannot just 60 * insert the pages into a normal sorted tree and expect it to find anything. 61 * Therefore KSM uses two data structures - the stable and the unstable tree. 62 * 63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 64 * by their contents. Because each such page is write-protected, searching on 65 * this tree is fully assured to be working (except when pages are unmapped), 66 * and therefore this tree is called the stable tree. 67 * 68 * In addition to the stable tree, KSM uses a second data structure called the 69 * unstable tree: this tree holds pointers to pages which have been found to 70 * be "unchanged for a period of time". The unstable tree sorts these pages 71 * by their contents, but since they are not write-protected, KSM cannot rely 72 * upon the unstable tree to work correctly - the unstable tree is liable to 73 * be corrupted as its contents are modified, and so it is called unstable. 74 * 75 * KSM solves this problem by several techniques: 76 * 77 * 1) The unstable tree is flushed every time KSM completes scanning all 78 * memory areas, and then the tree is rebuilt again from the beginning. 79 * 2) KSM will only insert into the unstable tree, pages whose hash value 80 * has not changed since the previous scan of all memory areas. 81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 82 * colors of the nodes and not on their contents, assuring that even when 83 * the tree gets "corrupted" it won't get out of balance, so scanning time 84 * remains the same (also, searching and inserting nodes in an rbtree uses 85 * the same algorithm, so we have no overhead when we flush and rebuild). 86 * 4) KSM never flushes the stable tree, which means that even if it were to 87 * take 10 attempts to find a page in the unstable tree, once it is found, 88 * it is secured in the stable tree. (When we scan a new page, we first 89 * compare it against the stable tree, and then against the unstable tree.) 90 * 91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 92 * stable trees and multiple unstable trees: one of each for each NUMA node. 93 */ 94 95 /** 96 * struct mm_slot - ksm information per mm that is being scanned 97 * @link: link to the mm_slots hash list 98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 100 * @mm: the mm that this information is valid for 101 */ 102 struct mm_slot { 103 struct hlist_node link; 104 struct list_head mm_list; 105 struct rmap_item *rmap_list; 106 struct mm_struct *mm; 107 }; 108 109 /** 110 * struct ksm_scan - cursor for scanning 111 * @mm_slot: the current mm_slot we are scanning 112 * @address: the next address inside that to be scanned 113 * @rmap_list: link to the next rmap to be scanned in the rmap_list 114 * @seqnr: count of completed full scans (needed when removing unstable node) 115 * 116 * There is only the one ksm_scan instance of this cursor structure. 117 */ 118 struct ksm_scan { 119 struct mm_slot *mm_slot; 120 unsigned long address; 121 struct rmap_item **rmap_list; 122 unsigned long seqnr; 123 }; 124 125 /** 126 * struct stable_node - node of the stable rbtree 127 * @node: rb node of this ksm page in the stable tree 128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 129 * @list: linked into migrate_nodes, pending placement in the proper node tree 130 * @hlist: hlist head of rmap_items using this ksm page 131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 133 */ 134 struct stable_node { 135 union { 136 struct rb_node node; /* when node of stable tree */ 137 struct { /* when listed for migration */ 138 struct list_head *head; 139 struct list_head list; 140 }; 141 }; 142 struct hlist_head hlist; 143 unsigned long kpfn; 144 #ifdef CONFIG_NUMA 145 int nid; 146 #endif 147 }; 148 149 /** 150 * struct rmap_item - reverse mapping item for virtual addresses 151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 153 * @nid: NUMA node id of unstable tree in which linked (may not match page) 154 * @mm: the memory structure this rmap_item is pointing into 155 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 156 * @oldchecksum: previous checksum of the page at that virtual address 157 * @node: rb node of this rmap_item in the unstable tree 158 * @head: pointer to stable_node heading this list in the stable tree 159 * @hlist: link into hlist of rmap_items hanging off that stable_node 160 */ 161 struct rmap_item { 162 struct rmap_item *rmap_list; 163 union { 164 struct anon_vma *anon_vma; /* when stable */ 165 #ifdef CONFIG_NUMA 166 int nid; /* when node of unstable tree */ 167 #endif 168 }; 169 struct mm_struct *mm; 170 unsigned long address; /* + low bits used for flags below */ 171 unsigned int oldchecksum; /* when unstable */ 172 union { 173 struct rb_node node; /* when node of unstable tree */ 174 struct { /* when listed from stable tree */ 175 struct stable_node *head; 176 struct hlist_node hlist; 177 }; 178 }; 179 }; 180 181 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 182 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 183 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 184 185 /* The stable and unstable tree heads */ 186 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 187 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 188 static struct rb_root *root_stable_tree = one_stable_tree; 189 static struct rb_root *root_unstable_tree = one_unstable_tree; 190 191 /* Recently migrated nodes of stable tree, pending proper placement */ 192 static LIST_HEAD(migrate_nodes); 193 194 #define MM_SLOTS_HASH_BITS 10 195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 196 197 static struct mm_slot ksm_mm_head = { 198 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 199 }; 200 static struct ksm_scan ksm_scan = { 201 .mm_slot = &ksm_mm_head, 202 }; 203 204 static struct kmem_cache *rmap_item_cache; 205 static struct kmem_cache *stable_node_cache; 206 static struct kmem_cache *mm_slot_cache; 207 208 /* The number of nodes in the stable tree */ 209 static unsigned long ksm_pages_shared; 210 211 /* The number of page slots additionally sharing those nodes */ 212 static unsigned long ksm_pages_sharing; 213 214 /* The number of nodes in the unstable tree */ 215 static unsigned long ksm_pages_unshared; 216 217 /* The number of rmap_items in use: to calculate pages_volatile */ 218 static unsigned long ksm_rmap_items; 219 220 /* Number of pages ksmd should scan in one batch */ 221 static unsigned int ksm_thread_pages_to_scan = 100; 222 223 /* Milliseconds ksmd should sleep between batches */ 224 static unsigned int ksm_thread_sleep_millisecs = 20; 225 226 #ifdef CONFIG_NUMA 227 /* Zeroed when merging across nodes is not allowed */ 228 static unsigned int ksm_merge_across_nodes = 1; 229 static int ksm_nr_node_ids = 1; 230 #else 231 #define ksm_merge_across_nodes 1U 232 #define ksm_nr_node_ids 1 233 #endif 234 235 #define KSM_RUN_STOP 0 236 #define KSM_RUN_MERGE 1 237 #define KSM_RUN_UNMERGE 2 238 #define KSM_RUN_OFFLINE 4 239 static unsigned long ksm_run = KSM_RUN_STOP; 240 static void wait_while_offlining(void); 241 242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 243 static DEFINE_MUTEX(ksm_thread_mutex); 244 static DEFINE_SPINLOCK(ksm_mmlist_lock); 245 246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 247 sizeof(struct __struct), __alignof__(struct __struct),\ 248 (__flags), NULL) 249 250 static int __init ksm_slab_init(void) 251 { 252 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 253 if (!rmap_item_cache) 254 goto out; 255 256 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 257 if (!stable_node_cache) 258 goto out_free1; 259 260 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 261 if (!mm_slot_cache) 262 goto out_free2; 263 264 return 0; 265 266 out_free2: 267 kmem_cache_destroy(stable_node_cache); 268 out_free1: 269 kmem_cache_destroy(rmap_item_cache); 270 out: 271 return -ENOMEM; 272 } 273 274 static void __init ksm_slab_free(void) 275 { 276 kmem_cache_destroy(mm_slot_cache); 277 kmem_cache_destroy(stable_node_cache); 278 kmem_cache_destroy(rmap_item_cache); 279 mm_slot_cache = NULL; 280 } 281 282 static inline struct rmap_item *alloc_rmap_item(void) 283 { 284 struct rmap_item *rmap_item; 285 286 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL); 287 if (rmap_item) 288 ksm_rmap_items++; 289 return rmap_item; 290 } 291 292 static inline void free_rmap_item(struct rmap_item *rmap_item) 293 { 294 ksm_rmap_items--; 295 rmap_item->mm = NULL; /* debug safety */ 296 kmem_cache_free(rmap_item_cache, rmap_item); 297 } 298 299 static inline struct stable_node *alloc_stable_node(void) 300 { 301 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL); 302 } 303 304 static inline void free_stable_node(struct stable_node *stable_node) 305 { 306 kmem_cache_free(stable_node_cache, stable_node); 307 } 308 309 static inline struct mm_slot *alloc_mm_slot(void) 310 { 311 if (!mm_slot_cache) /* initialization failed */ 312 return NULL; 313 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 314 } 315 316 static inline void free_mm_slot(struct mm_slot *mm_slot) 317 { 318 kmem_cache_free(mm_slot_cache, mm_slot); 319 } 320 321 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 322 { 323 struct mm_slot *slot; 324 325 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 326 if (slot->mm == mm) 327 return slot; 328 329 return NULL; 330 } 331 332 static void insert_to_mm_slots_hash(struct mm_struct *mm, 333 struct mm_slot *mm_slot) 334 { 335 mm_slot->mm = mm; 336 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 337 } 338 339 /* 340 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 341 * page tables after it has passed through ksm_exit() - which, if necessary, 342 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set 343 * a special flag: they can just back out as soon as mm_users goes to zero. 344 * ksm_test_exit() is used throughout to make this test for exit: in some 345 * places for correctness, in some places just to avoid unnecessary work. 346 */ 347 static inline bool ksm_test_exit(struct mm_struct *mm) 348 { 349 return atomic_read(&mm->mm_users) == 0; 350 } 351 352 /* 353 * We use break_ksm to break COW on a ksm page: it's a stripped down 354 * 355 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1) 356 * put_page(page); 357 * 358 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 359 * in case the application has unmapped and remapped mm,addr meanwhile. 360 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 361 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. 362 */ 363 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 364 { 365 struct page *page; 366 int ret = 0; 367 368 do { 369 cond_resched(); 370 page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION); 371 if (IS_ERR_OR_NULL(page)) 372 break; 373 if (PageKsm(page)) 374 ret = handle_mm_fault(vma->vm_mm, vma, addr, 375 FAULT_FLAG_WRITE); 376 else 377 ret = VM_FAULT_WRITE; 378 put_page(page); 379 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM))); 380 /* 381 * We must loop because handle_mm_fault() may back out if there's 382 * any difficulty e.g. if pte accessed bit gets updated concurrently. 383 * 384 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 385 * COW has been broken, even if the vma does not permit VM_WRITE; 386 * but note that a concurrent fault might break PageKsm for us. 387 * 388 * VM_FAULT_SIGBUS could occur if we race with truncation of the 389 * backing file, which also invalidates anonymous pages: that's 390 * okay, that truncation will have unmapped the PageKsm for us. 391 * 392 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 393 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 394 * current task has TIF_MEMDIE set, and will be OOM killed on return 395 * to user; and ksmd, having no mm, would never be chosen for that. 396 * 397 * But if the mm is in a limited mem_cgroup, then the fault may fail 398 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 399 * even ksmd can fail in this way - though it's usually breaking ksm 400 * just to undo a merge it made a moment before, so unlikely to oom. 401 * 402 * That's a pity: we might therefore have more kernel pages allocated 403 * than we're counting as nodes in the stable tree; but ksm_do_scan 404 * will retry to break_cow on each pass, so should recover the page 405 * in due course. The important thing is to not let VM_MERGEABLE 406 * be cleared while any such pages might remain in the area. 407 */ 408 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 409 } 410 411 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 412 unsigned long addr) 413 { 414 struct vm_area_struct *vma; 415 if (ksm_test_exit(mm)) 416 return NULL; 417 vma = find_vma(mm, addr); 418 if (!vma || vma->vm_start > addr) 419 return NULL; 420 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 421 return NULL; 422 return vma; 423 } 424 425 static void break_cow(struct rmap_item *rmap_item) 426 { 427 struct mm_struct *mm = rmap_item->mm; 428 unsigned long addr = rmap_item->address; 429 struct vm_area_struct *vma; 430 431 /* 432 * It is not an accident that whenever we want to break COW 433 * to undo, we also need to drop a reference to the anon_vma. 434 */ 435 put_anon_vma(rmap_item->anon_vma); 436 437 down_read(&mm->mmap_sem); 438 vma = find_mergeable_vma(mm, addr); 439 if (vma) 440 break_ksm(vma, addr); 441 up_read(&mm->mmap_sem); 442 } 443 444 static struct page *page_trans_compound_anon(struct page *page) 445 { 446 if (PageTransCompound(page)) { 447 struct page *head = compound_trans_head(page); 448 /* 449 * head may actually be splitted and freed from under 450 * us but it's ok here. 451 */ 452 if (PageAnon(head)) 453 return head; 454 } 455 return NULL; 456 } 457 458 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 459 { 460 struct mm_struct *mm = rmap_item->mm; 461 unsigned long addr = rmap_item->address; 462 struct vm_area_struct *vma; 463 struct page *page; 464 465 down_read(&mm->mmap_sem); 466 vma = find_mergeable_vma(mm, addr); 467 if (!vma) 468 goto out; 469 470 page = follow_page(vma, addr, FOLL_GET); 471 if (IS_ERR_OR_NULL(page)) 472 goto out; 473 if (PageAnon(page) || page_trans_compound_anon(page)) { 474 flush_anon_page(vma, page, addr); 475 flush_dcache_page(page); 476 } else { 477 put_page(page); 478 out: page = NULL; 479 } 480 up_read(&mm->mmap_sem); 481 return page; 482 } 483 484 /* 485 * This helper is used for getting right index into array of tree roots. 486 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 487 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 488 * every node has its own stable and unstable tree. 489 */ 490 static inline int get_kpfn_nid(unsigned long kpfn) 491 { 492 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 493 } 494 495 static void remove_node_from_stable_tree(struct stable_node *stable_node) 496 { 497 struct rmap_item *rmap_item; 498 499 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 500 if (rmap_item->hlist.next) 501 ksm_pages_sharing--; 502 else 503 ksm_pages_shared--; 504 put_anon_vma(rmap_item->anon_vma); 505 rmap_item->address &= PAGE_MASK; 506 cond_resched(); 507 } 508 509 if (stable_node->head == &migrate_nodes) 510 list_del(&stable_node->list); 511 else 512 rb_erase(&stable_node->node, 513 root_stable_tree + NUMA(stable_node->nid)); 514 free_stable_node(stable_node); 515 } 516 517 /* 518 * get_ksm_page: checks if the page indicated by the stable node 519 * is still its ksm page, despite having held no reference to it. 520 * In which case we can trust the content of the page, and it 521 * returns the gotten page; but if the page has now been zapped, 522 * remove the stale node from the stable tree and return NULL. 523 * But beware, the stable node's page might be being migrated. 524 * 525 * You would expect the stable_node to hold a reference to the ksm page. 526 * But if it increments the page's count, swapping out has to wait for 527 * ksmd to come around again before it can free the page, which may take 528 * seconds or even minutes: much too unresponsive. So instead we use a 529 * "keyhole reference": access to the ksm page from the stable node peeps 530 * out through its keyhole to see if that page still holds the right key, 531 * pointing back to this stable node. This relies on freeing a PageAnon 532 * page to reset its page->mapping to NULL, and relies on no other use of 533 * a page to put something that might look like our key in page->mapping. 534 * is on its way to being freed; but it is an anomaly to bear in mind. 535 */ 536 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it) 537 { 538 struct page *page; 539 void *expected_mapping; 540 unsigned long kpfn; 541 542 expected_mapping = (void *)stable_node + 543 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM); 544 again: 545 kpfn = ACCESS_ONCE(stable_node->kpfn); 546 page = pfn_to_page(kpfn); 547 548 /* 549 * page is computed from kpfn, so on most architectures reading 550 * page->mapping is naturally ordered after reading node->kpfn, 551 * but on Alpha we need to be more careful. 552 */ 553 smp_read_barrier_depends(); 554 if (ACCESS_ONCE(page->mapping) != expected_mapping) 555 goto stale; 556 557 /* 558 * We cannot do anything with the page while its refcount is 0. 559 * Usually 0 means free, or tail of a higher-order page: in which 560 * case this node is no longer referenced, and should be freed; 561 * however, it might mean that the page is under page_freeze_refs(). 562 * The __remove_mapping() case is easy, again the node is now stale; 563 * but if page is swapcache in migrate_page_move_mapping(), it might 564 * still be our page, in which case it's essential to keep the node. 565 */ 566 while (!get_page_unless_zero(page)) { 567 /* 568 * Another check for page->mapping != expected_mapping would 569 * work here too. We have chosen the !PageSwapCache test to 570 * optimize the common case, when the page is or is about to 571 * be freed: PageSwapCache is cleared (under spin_lock_irq) 572 * in the freeze_refs section of __remove_mapping(); but Anon 573 * page->mapping reset to NULL later, in free_pages_prepare(). 574 */ 575 if (!PageSwapCache(page)) 576 goto stale; 577 cpu_relax(); 578 } 579 580 if (ACCESS_ONCE(page->mapping) != expected_mapping) { 581 put_page(page); 582 goto stale; 583 } 584 585 if (lock_it) { 586 lock_page(page); 587 if (ACCESS_ONCE(page->mapping) != expected_mapping) { 588 unlock_page(page); 589 put_page(page); 590 goto stale; 591 } 592 } 593 return page; 594 595 stale: 596 /* 597 * We come here from above when page->mapping or !PageSwapCache 598 * suggests that the node is stale; but it might be under migration. 599 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), 600 * before checking whether node->kpfn has been changed. 601 */ 602 smp_rmb(); 603 if (ACCESS_ONCE(stable_node->kpfn) != kpfn) 604 goto again; 605 remove_node_from_stable_tree(stable_node); 606 return NULL; 607 } 608 609 /* 610 * Removing rmap_item from stable or unstable tree. 611 * This function will clean the information from the stable/unstable tree. 612 */ 613 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 614 { 615 if (rmap_item->address & STABLE_FLAG) { 616 struct stable_node *stable_node; 617 struct page *page; 618 619 stable_node = rmap_item->head; 620 page = get_ksm_page(stable_node, true); 621 if (!page) 622 goto out; 623 624 hlist_del(&rmap_item->hlist); 625 unlock_page(page); 626 put_page(page); 627 628 if (stable_node->hlist.first) 629 ksm_pages_sharing--; 630 else 631 ksm_pages_shared--; 632 633 put_anon_vma(rmap_item->anon_vma); 634 rmap_item->address &= PAGE_MASK; 635 636 } else if (rmap_item->address & UNSTABLE_FLAG) { 637 unsigned char age; 638 /* 639 * Usually ksmd can and must skip the rb_erase, because 640 * root_unstable_tree was already reset to RB_ROOT. 641 * But be careful when an mm is exiting: do the rb_erase 642 * if this rmap_item was inserted by this scan, rather 643 * than left over from before. 644 */ 645 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 646 BUG_ON(age > 1); 647 if (!age) 648 rb_erase(&rmap_item->node, 649 root_unstable_tree + NUMA(rmap_item->nid)); 650 ksm_pages_unshared--; 651 rmap_item->address &= PAGE_MASK; 652 } 653 out: 654 cond_resched(); /* we're called from many long loops */ 655 } 656 657 static void remove_trailing_rmap_items(struct mm_slot *mm_slot, 658 struct rmap_item **rmap_list) 659 { 660 while (*rmap_list) { 661 struct rmap_item *rmap_item = *rmap_list; 662 *rmap_list = rmap_item->rmap_list; 663 remove_rmap_item_from_tree(rmap_item); 664 free_rmap_item(rmap_item); 665 } 666 } 667 668 /* 669 * Though it's very tempting to unmerge rmap_items from stable tree rather 670 * than check every pte of a given vma, the locking doesn't quite work for 671 * that - an rmap_item is assigned to the stable tree after inserting ksm 672 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing 673 * rmap_items from parent to child at fork time (so as not to waste time 674 * if exit comes before the next scan reaches it). 675 * 676 * Similarly, although we'd like to remove rmap_items (so updating counts 677 * and freeing memory) when unmerging an area, it's easier to leave that 678 * to the next pass of ksmd - consider, for example, how ksmd might be 679 * in cmp_and_merge_page on one of the rmap_items we would be removing. 680 */ 681 static int unmerge_ksm_pages(struct vm_area_struct *vma, 682 unsigned long start, unsigned long end) 683 { 684 unsigned long addr; 685 int err = 0; 686 687 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 688 if (ksm_test_exit(vma->vm_mm)) 689 break; 690 if (signal_pending(current)) 691 err = -ERESTARTSYS; 692 else 693 err = break_ksm(vma, addr); 694 } 695 return err; 696 } 697 698 #ifdef CONFIG_SYSFS 699 /* 700 * Only called through the sysfs control interface: 701 */ 702 static int remove_stable_node(struct stable_node *stable_node) 703 { 704 struct page *page; 705 int err; 706 707 page = get_ksm_page(stable_node, true); 708 if (!page) { 709 /* 710 * get_ksm_page did remove_node_from_stable_tree itself. 711 */ 712 return 0; 713 } 714 715 if (WARN_ON_ONCE(page_mapped(page))) { 716 /* 717 * This should not happen: but if it does, just refuse to let 718 * merge_across_nodes be switched - there is no need to panic. 719 */ 720 err = -EBUSY; 721 } else { 722 /* 723 * The stable node did not yet appear stale to get_ksm_page(), 724 * since that allows for an unmapped ksm page to be recognized 725 * right up until it is freed; but the node is safe to remove. 726 * This page might be in a pagevec waiting to be freed, 727 * or it might be PageSwapCache (perhaps under writeback), 728 * or it might have been removed from swapcache a moment ago. 729 */ 730 set_page_stable_node(page, NULL); 731 remove_node_from_stable_tree(stable_node); 732 err = 0; 733 } 734 735 unlock_page(page); 736 put_page(page); 737 return err; 738 } 739 740 static int remove_all_stable_nodes(void) 741 { 742 struct stable_node *stable_node; 743 struct list_head *this, *next; 744 int nid; 745 int err = 0; 746 747 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 748 while (root_stable_tree[nid].rb_node) { 749 stable_node = rb_entry(root_stable_tree[nid].rb_node, 750 struct stable_node, node); 751 if (remove_stable_node(stable_node)) { 752 err = -EBUSY; 753 break; /* proceed to next nid */ 754 } 755 cond_resched(); 756 } 757 } 758 list_for_each_safe(this, next, &migrate_nodes) { 759 stable_node = list_entry(this, struct stable_node, list); 760 if (remove_stable_node(stable_node)) 761 err = -EBUSY; 762 cond_resched(); 763 } 764 return err; 765 } 766 767 static int unmerge_and_remove_all_rmap_items(void) 768 { 769 struct mm_slot *mm_slot; 770 struct mm_struct *mm; 771 struct vm_area_struct *vma; 772 int err = 0; 773 774 spin_lock(&ksm_mmlist_lock); 775 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 776 struct mm_slot, mm_list); 777 spin_unlock(&ksm_mmlist_lock); 778 779 for (mm_slot = ksm_scan.mm_slot; 780 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 781 mm = mm_slot->mm; 782 down_read(&mm->mmap_sem); 783 for (vma = mm->mmap; vma; vma = vma->vm_next) { 784 if (ksm_test_exit(mm)) 785 break; 786 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 787 continue; 788 err = unmerge_ksm_pages(vma, 789 vma->vm_start, vma->vm_end); 790 if (err) 791 goto error; 792 } 793 794 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); 795 796 spin_lock(&ksm_mmlist_lock); 797 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 798 struct mm_slot, mm_list); 799 if (ksm_test_exit(mm)) { 800 hash_del(&mm_slot->link); 801 list_del(&mm_slot->mm_list); 802 spin_unlock(&ksm_mmlist_lock); 803 804 free_mm_slot(mm_slot); 805 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 806 up_read(&mm->mmap_sem); 807 mmdrop(mm); 808 } else { 809 spin_unlock(&ksm_mmlist_lock); 810 up_read(&mm->mmap_sem); 811 } 812 } 813 814 /* Clean up stable nodes, but don't worry if some are still busy */ 815 remove_all_stable_nodes(); 816 ksm_scan.seqnr = 0; 817 return 0; 818 819 error: 820 up_read(&mm->mmap_sem); 821 spin_lock(&ksm_mmlist_lock); 822 ksm_scan.mm_slot = &ksm_mm_head; 823 spin_unlock(&ksm_mmlist_lock); 824 return err; 825 } 826 #endif /* CONFIG_SYSFS */ 827 828 static u32 calc_checksum(struct page *page) 829 { 830 u32 checksum; 831 void *addr = kmap_atomic(page); 832 checksum = jhash2(addr, PAGE_SIZE / 4, 17); 833 kunmap_atomic(addr); 834 return checksum; 835 } 836 837 static int memcmp_pages(struct page *page1, struct page *page2) 838 { 839 char *addr1, *addr2; 840 int ret; 841 842 addr1 = kmap_atomic(page1); 843 addr2 = kmap_atomic(page2); 844 ret = memcmp(addr1, addr2, PAGE_SIZE); 845 kunmap_atomic(addr2); 846 kunmap_atomic(addr1); 847 return ret; 848 } 849 850 static inline int pages_identical(struct page *page1, struct page *page2) 851 { 852 return !memcmp_pages(page1, page2); 853 } 854 855 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 856 pte_t *orig_pte) 857 { 858 struct mm_struct *mm = vma->vm_mm; 859 unsigned long addr; 860 pte_t *ptep; 861 spinlock_t *ptl; 862 int swapped; 863 int err = -EFAULT; 864 unsigned long mmun_start; /* For mmu_notifiers */ 865 unsigned long mmun_end; /* For mmu_notifiers */ 866 867 addr = page_address_in_vma(page, vma); 868 if (addr == -EFAULT) 869 goto out; 870 871 BUG_ON(PageTransCompound(page)); 872 873 mmun_start = addr; 874 mmun_end = addr + PAGE_SIZE; 875 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 876 877 ptep = page_check_address(page, mm, addr, &ptl, 0); 878 if (!ptep) 879 goto out_mn; 880 881 if (pte_write(*ptep) || pte_dirty(*ptep)) { 882 pte_t entry; 883 884 swapped = PageSwapCache(page); 885 flush_cache_page(vma, addr, page_to_pfn(page)); 886 /* 887 * Ok this is tricky, when get_user_pages_fast() run it doesn't 888 * take any lock, therefore the check that we are going to make 889 * with the pagecount against the mapcount is racey and 890 * O_DIRECT can happen right after the check. 891 * So we clear the pte and flush the tlb before the check 892 * this assure us that no O_DIRECT can happen after the check 893 * or in the middle of the check. 894 */ 895 entry = ptep_clear_flush(vma, addr, ptep); 896 /* 897 * Check that no O_DIRECT or similar I/O is in progress on the 898 * page 899 */ 900 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 901 set_pte_at(mm, addr, ptep, entry); 902 goto out_unlock; 903 } 904 if (pte_dirty(entry)) 905 set_page_dirty(page); 906 entry = pte_mkclean(pte_wrprotect(entry)); 907 set_pte_at_notify(mm, addr, ptep, entry); 908 } 909 *orig_pte = *ptep; 910 err = 0; 911 912 out_unlock: 913 pte_unmap_unlock(ptep, ptl); 914 out_mn: 915 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 916 out: 917 return err; 918 } 919 920 /** 921 * replace_page - replace page in vma by new ksm page 922 * @vma: vma that holds the pte pointing to page 923 * @page: the page we are replacing by kpage 924 * @kpage: the ksm page we replace page by 925 * @orig_pte: the original value of the pte 926 * 927 * Returns 0 on success, -EFAULT on failure. 928 */ 929 static int replace_page(struct vm_area_struct *vma, struct page *page, 930 struct page *kpage, pte_t orig_pte) 931 { 932 struct mm_struct *mm = vma->vm_mm; 933 pmd_t *pmd; 934 pte_t *ptep; 935 spinlock_t *ptl; 936 unsigned long addr; 937 int err = -EFAULT; 938 unsigned long mmun_start; /* For mmu_notifiers */ 939 unsigned long mmun_end; /* For mmu_notifiers */ 940 941 addr = page_address_in_vma(page, vma); 942 if (addr == -EFAULT) 943 goto out; 944 945 pmd = mm_find_pmd(mm, addr); 946 if (!pmd) 947 goto out; 948 BUG_ON(pmd_trans_huge(*pmd)); 949 950 mmun_start = addr; 951 mmun_end = addr + PAGE_SIZE; 952 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 953 954 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 955 if (!pte_same(*ptep, orig_pte)) { 956 pte_unmap_unlock(ptep, ptl); 957 goto out_mn; 958 } 959 960 get_page(kpage); 961 page_add_anon_rmap(kpage, vma, addr); 962 963 flush_cache_page(vma, addr, pte_pfn(*ptep)); 964 ptep_clear_flush(vma, addr, ptep); 965 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot)); 966 967 page_remove_rmap(page); 968 if (!page_mapped(page)) 969 try_to_free_swap(page); 970 put_page(page); 971 972 pte_unmap_unlock(ptep, ptl); 973 err = 0; 974 out_mn: 975 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 976 out: 977 return err; 978 } 979 980 static int page_trans_compound_anon_split(struct page *page) 981 { 982 int ret = 0; 983 struct page *transhuge_head = page_trans_compound_anon(page); 984 if (transhuge_head) { 985 /* Get the reference on the head to split it. */ 986 if (get_page_unless_zero(transhuge_head)) { 987 /* 988 * Recheck we got the reference while the head 989 * was still anonymous. 990 */ 991 if (PageAnon(transhuge_head)) 992 ret = split_huge_page(transhuge_head); 993 else 994 /* 995 * Retry later if split_huge_page run 996 * from under us. 997 */ 998 ret = 1; 999 put_page(transhuge_head); 1000 } else 1001 /* Retry later if split_huge_page run from under us. */ 1002 ret = 1; 1003 } 1004 return ret; 1005 } 1006 1007 /* 1008 * try_to_merge_one_page - take two pages and merge them into one 1009 * @vma: the vma that holds the pte pointing to page 1010 * @page: the PageAnon page that we want to replace with kpage 1011 * @kpage: the PageKsm page that we want to map instead of page, 1012 * or NULL the first time when we want to use page as kpage. 1013 * 1014 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1015 */ 1016 static int try_to_merge_one_page(struct vm_area_struct *vma, 1017 struct page *page, struct page *kpage) 1018 { 1019 pte_t orig_pte = __pte(0); 1020 int err = -EFAULT; 1021 1022 if (page == kpage) /* ksm page forked */ 1023 return 0; 1024 1025 if (!(vma->vm_flags & VM_MERGEABLE)) 1026 goto out; 1027 if (PageTransCompound(page) && page_trans_compound_anon_split(page)) 1028 goto out; 1029 BUG_ON(PageTransCompound(page)); 1030 if (!PageAnon(page)) 1031 goto out; 1032 1033 /* 1034 * We need the page lock to read a stable PageSwapCache in 1035 * write_protect_page(). We use trylock_page() instead of 1036 * lock_page() because we don't want to wait here - we 1037 * prefer to continue scanning and merging different pages, 1038 * then come back to this page when it is unlocked. 1039 */ 1040 if (!trylock_page(page)) 1041 goto out; 1042 /* 1043 * If this anonymous page is mapped only here, its pte may need 1044 * to be write-protected. If it's mapped elsewhere, all of its 1045 * ptes are necessarily already write-protected. But in either 1046 * case, we need to lock and check page_count is not raised. 1047 */ 1048 if (write_protect_page(vma, page, &orig_pte) == 0) { 1049 if (!kpage) { 1050 /* 1051 * While we hold page lock, upgrade page from 1052 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1053 * stable_tree_insert() will update stable_node. 1054 */ 1055 set_page_stable_node(page, NULL); 1056 mark_page_accessed(page); 1057 err = 0; 1058 } else if (pages_identical(page, kpage)) 1059 err = replace_page(vma, page, kpage, orig_pte); 1060 } 1061 1062 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1063 munlock_vma_page(page); 1064 if (!PageMlocked(kpage)) { 1065 unlock_page(page); 1066 lock_page(kpage); 1067 mlock_vma_page(kpage); 1068 page = kpage; /* for final unlock */ 1069 } 1070 } 1071 1072 unlock_page(page); 1073 out: 1074 return err; 1075 } 1076 1077 /* 1078 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1079 * but no new kernel page is allocated: kpage must already be a ksm page. 1080 * 1081 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1082 */ 1083 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1084 struct page *page, struct page *kpage) 1085 { 1086 struct mm_struct *mm = rmap_item->mm; 1087 struct vm_area_struct *vma; 1088 int err = -EFAULT; 1089 1090 down_read(&mm->mmap_sem); 1091 if (ksm_test_exit(mm)) 1092 goto out; 1093 vma = find_vma(mm, rmap_item->address); 1094 if (!vma || vma->vm_start > rmap_item->address) 1095 goto out; 1096 1097 err = try_to_merge_one_page(vma, page, kpage); 1098 if (err) 1099 goto out; 1100 1101 /* Unstable nid is in union with stable anon_vma: remove first */ 1102 remove_rmap_item_from_tree(rmap_item); 1103 1104 /* Must get reference to anon_vma while still holding mmap_sem */ 1105 rmap_item->anon_vma = vma->anon_vma; 1106 get_anon_vma(vma->anon_vma); 1107 out: 1108 up_read(&mm->mmap_sem); 1109 return err; 1110 } 1111 1112 /* 1113 * try_to_merge_two_pages - take two identical pages and prepare them 1114 * to be merged into one page. 1115 * 1116 * This function returns the kpage if we successfully merged two identical 1117 * pages into one ksm page, NULL otherwise. 1118 * 1119 * Note that this function upgrades page to ksm page: if one of the pages 1120 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1121 */ 1122 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1123 struct page *page, 1124 struct rmap_item *tree_rmap_item, 1125 struct page *tree_page) 1126 { 1127 int err; 1128 1129 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1130 if (!err) { 1131 err = try_to_merge_with_ksm_page(tree_rmap_item, 1132 tree_page, page); 1133 /* 1134 * If that fails, we have a ksm page with only one pte 1135 * pointing to it: so break it. 1136 */ 1137 if (err) 1138 break_cow(rmap_item); 1139 } 1140 return err ? NULL : page; 1141 } 1142 1143 /* 1144 * stable_tree_search - search for page inside the stable tree 1145 * 1146 * This function checks if there is a page inside the stable tree 1147 * with identical content to the page that we are scanning right now. 1148 * 1149 * This function returns the stable tree node of identical content if found, 1150 * NULL otherwise. 1151 */ 1152 static struct page *stable_tree_search(struct page *page) 1153 { 1154 int nid; 1155 struct rb_root *root; 1156 struct rb_node **new; 1157 struct rb_node *parent; 1158 struct stable_node *stable_node; 1159 struct stable_node *page_node; 1160 1161 page_node = page_stable_node(page); 1162 if (page_node && page_node->head != &migrate_nodes) { 1163 /* ksm page forked */ 1164 get_page(page); 1165 return page; 1166 } 1167 1168 nid = get_kpfn_nid(page_to_pfn(page)); 1169 root = root_stable_tree + nid; 1170 again: 1171 new = &root->rb_node; 1172 parent = NULL; 1173 1174 while (*new) { 1175 struct page *tree_page; 1176 int ret; 1177 1178 cond_resched(); 1179 stable_node = rb_entry(*new, struct stable_node, node); 1180 tree_page = get_ksm_page(stable_node, false); 1181 if (!tree_page) 1182 return NULL; 1183 1184 ret = memcmp_pages(page, tree_page); 1185 put_page(tree_page); 1186 1187 parent = *new; 1188 if (ret < 0) 1189 new = &parent->rb_left; 1190 else if (ret > 0) 1191 new = &parent->rb_right; 1192 else { 1193 /* 1194 * Lock and unlock the stable_node's page (which 1195 * might already have been migrated) so that page 1196 * migration is sure to notice its raised count. 1197 * It would be more elegant to return stable_node 1198 * than kpage, but that involves more changes. 1199 */ 1200 tree_page = get_ksm_page(stable_node, true); 1201 if (tree_page) { 1202 unlock_page(tree_page); 1203 if (get_kpfn_nid(stable_node->kpfn) != 1204 NUMA(stable_node->nid)) { 1205 put_page(tree_page); 1206 goto replace; 1207 } 1208 return tree_page; 1209 } 1210 /* 1211 * There is now a place for page_node, but the tree may 1212 * have been rebalanced, so re-evaluate parent and new. 1213 */ 1214 if (page_node) 1215 goto again; 1216 return NULL; 1217 } 1218 } 1219 1220 if (!page_node) 1221 return NULL; 1222 1223 list_del(&page_node->list); 1224 DO_NUMA(page_node->nid = nid); 1225 rb_link_node(&page_node->node, parent, new); 1226 rb_insert_color(&page_node->node, root); 1227 get_page(page); 1228 return page; 1229 1230 replace: 1231 if (page_node) { 1232 list_del(&page_node->list); 1233 DO_NUMA(page_node->nid = nid); 1234 rb_replace_node(&stable_node->node, &page_node->node, root); 1235 get_page(page); 1236 } else { 1237 rb_erase(&stable_node->node, root); 1238 page = NULL; 1239 } 1240 stable_node->head = &migrate_nodes; 1241 list_add(&stable_node->list, stable_node->head); 1242 return page; 1243 } 1244 1245 /* 1246 * stable_tree_insert - insert stable tree node pointing to new ksm page 1247 * into the stable tree. 1248 * 1249 * This function returns the stable tree node just allocated on success, 1250 * NULL otherwise. 1251 */ 1252 static struct stable_node *stable_tree_insert(struct page *kpage) 1253 { 1254 int nid; 1255 unsigned long kpfn; 1256 struct rb_root *root; 1257 struct rb_node **new; 1258 struct rb_node *parent = NULL; 1259 struct stable_node *stable_node; 1260 1261 kpfn = page_to_pfn(kpage); 1262 nid = get_kpfn_nid(kpfn); 1263 root = root_stable_tree + nid; 1264 new = &root->rb_node; 1265 1266 while (*new) { 1267 struct page *tree_page; 1268 int ret; 1269 1270 cond_resched(); 1271 stable_node = rb_entry(*new, struct stable_node, node); 1272 tree_page = get_ksm_page(stable_node, false); 1273 if (!tree_page) 1274 return NULL; 1275 1276 ret = memcmp_pages(kpage, tree_page); 1277 put_page(tree_page); 1278 1279 parent = *new; 1280 if (ret < 0) 1281 new = &parent->rb_left; 1282 else if (ret > 0) 1283 new = &parent->rb_right; 1284 else { 1285 /* 1286 * It is not a bug that stable_tree_search() didn't 1287 * find this node: because at that time our page was 1288 * not yet write-protected, so may have changed since. 1289 */ 1290 return NULL; 1291 } 1292 } 1293 1294 stable_node = alloc_stable_node(); 1295 if (!stable_node) 1296 return NULL; 1297 1298 INIT_HLIST_HEAD(&stable_node->hlist); 1299 stable_node->kpfn = kpfn; 1300 set_page_stable_node(kpage, stable_node); 1301 DO_NUMA(stable_node->nid = nid); 1302 rb_link_node(&stable_node->node, parent, new); 1303 rb_insert_color(&stable_node->node, root); 1304 1305 return stable_node; 1306 } 1307 1308 /* 1309 * unstable_tree_search_insert - search for identical page, 1310 * else insert rmap_item into the unstable tree. 1311 * 1312 * This function searches for a page in the unstable tree identical to the 1313 * page currently being scanned; and if no identical page is found in the 1314 * tree, we insert rmap_item as a new object into the unstable tree. 1315 * 1316 * This function returns pointer to rmap_item found to be identical 1317 * to the currently scanned page, NULL otherwise. 1318 * 1319 * This function does both searching and inserting, because they share 1320 * the same walking algorithm in an rbtree. 1321 */ 1322 static 1323 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1324 struct page *page, 1325 struct page **tree_pagep) 1326 { 1327 struct rb_node **new; 1328 struct rb_root *root; 1329 struct rb_node *parent = NULL; 1330 int nid; 1331 1332 nid = get_kpfn_nid(page_to_pfn(page)); 1333 root = root_unstable_tree + nid; 1334 new = &root->rb_node; 1335 1336 while (*new) { 1337 struct rmap_item *tree_rmap_item; 1338 struct page *tree_page; 1339 int ret; 1340 1341 cond_resched(); 1342 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1343 tree_page = get_mergeable_page(tree_rmap_item); 1344 if (IS_ERR_OR_NULL(tree_page)) 1345 return NULL; 1346 1347 /* 1348 * Don't substitute a ksm page for a forked page. 1349 */ 1350 if (page == tree_page) { 1351 put_page(tree_page); 1352 return NULL; 1353 } 1354 1355 ret = memcmp_pages(page, tree_page); 1356 1357 parent = *new; 1358 if (ret < 0) { 1359 put_page(tree_page); 1360 new = &parent->rb_left; 1361 } else if (ret > 0) { 1362 put_page(tree_page); 1363 new = &parent->rb_right; 1364 } else if (!ksm_merge_across_nodes && 1365 page_to_nid(tree_page) != nid) { 1366 /* 1367 * If tree_page has been migrated to another NUMA node, 1368 * it will be flushed out and put in the right unstable 1369 * tree next time: only merge with it when across_nodes. 1370 */ 1371 put_page(tree_page); 1372 return NULL; 1373 } else { 1374 *tree_pagep = tree_page; 1375 return tree_rmap_item; 1376 } 1377 } 1378 1379 rmap_item->address |= UNSTABLE_FLAG; 1380 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1381 DO_NUMA(rmap_item->nid = nid); 1382 rb_link_node(&rmap_item->node, parent, new); 1383 rb_insert_color(&rmap_item->node, root); 1384 1385 ksm_pages_unshared++; 1386 return NULL; 1387 } 1388 1389 /* 1390 * stable_tree_append - add another rmap_item to the linked list of 1391 * rmap_items hanging off a given node of the stable tree, all sharing 1392 * the same ksm page. 1393 */ 1394 static void stable_tree_append(struct rmap_item *rmap_item, 1395 struct stable_node *stable_node) 1396 { 1397 rmap_item->head = stable_node; 1398 rmap_item->address |= STABLE_FLAG; 1399 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 1400 1401 if (rmap_item->hlist.next) 1402 ksm_pages_sharing++; 1403 else 1404 ksm_pages_shared++; 1405 } 1406 1407 /* 1408 * cmp_and_merge_page - first see if page can be merged into the stable tree; 1409 * if not, compare checksum to previous and if it's the same, see if page can 1410 * be inserted into the unstable tree, or merged with a page already there and 1411 * both transferred to the stable tree. 1412 * 1413 * @page: the page that we are searching identical page to. 1414 * @rmap_item: the reverse mapping into the virtual address of this page 1415 */ 1416 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 1417 { 1418 struct rmap_item *tree_rmap_item; 1419 struct page *tree_page = NULL; 1420 struct stable_node *stable_node; 1421 struct page *kpage; 1422 unsigned int checksum; 1423 int err; 1424 1425 stable_node = page_stable_node(page); 1426 if (stable_node) { 1427 if (stable_node->head != &migrate_nodes && 1428 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) { 1429 rb_erase(&stable_node->node, 1430 root_stable_tree + NUMA(stable_node->nid)); 1431 stable_node->head = &migrate_nodes; 1432 list_add(&stable_node->list, stable_node->head); 1433 } 1434 if (stable_node->head != &migrate_nodes && 1435 rmap_item->head == stable_node) 1436 return; 1437 } 1438 1439 /* We first start with searching the page inside the stable tree */ 1440 kpage = stable_tree_search(page); 1441 if (kpage == page && rmap_item->head == stable_node) { 1442 put_page(kpage); 1443 return; 1444 } 1445 1446 remove_rmap_item_from_tree(rmap_item); 1447 1448 if (kpage) { 1449 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 1450 if (!err) { 1451 /* 1452 * The page was successfully merged: 1453 * add its rmap_item to the stable tree. 1454 */ 1455 lock_page(kpage); 1456 stable_tree_append(rmap_item, page_stable_node(kpage)); 1457 unlock_page(kpage); 1458 } 1459 put_page(kpage); 1460 return; 1461 } 1462 1463 /* 1464 * If the hash value of the page has changed from the last time 1465 * we calculated it, this page is changing frequently: therefore we 1466 * don't want to insert it in the unstable tree, and we don't want 1467 * to waste our time searching for something identical to it there. 1468 */ 1469 checksum = calc_checksum(page); 1470 if (rmap_item->oldchecksum != checksum) { 1471 rmap_item->oldchecksum = checksum; 1472 return; 1473 } 1474 1475 tree_rmap_item = 1476 unstable_tree_search_insert(rmap_item, page, &tree_page); 1477 if (tree_rmap_item) { 1478 kpage = try_to_merge_two_pages(rmap_item, page, 1479 tree_rmap_item, tree_page); 1480 put_page(tree_page); 1481 if (kpage) { 1482 /* 1483 * The pages were successfully merged: insert new 1484 * node in the stable tree and add both rmap_items. 1485 */ 1486 lock_page(kpage); 1487 stable_node = stable_tree_insert(kpage); 1488 if (stable_node) { 1489 stable_tree_append(tree_rmap_item, stable_node); 1490 stable_tree_append(rmap_item, stable_node); 1491 } 1492 unlock_page(kpage); 1493 1494 /* 1495 * If we fail to insert the page into the stable tree, 1496 * we will have 2 virtual addresses that are pointing 1497 * to a ksm page left outside the stable tree, 1498 * in which case we need to break_cow on both. 1499 */ 1500 if (!stable_node) { 1501 break_cow(tree_rmap_item); 1502 break_cow(rmap_item); 1503 } 1504 } 1505 } 1506 } 1507 1508 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 1509 struct rmap_item **rmap_list, 1510 unsigned long addr) 1511 { 1512 struct rmap_item *rmap_item; 1513 1514 while (*rmap_list) { 1515 rmap_item = *rmap_list; 1516 if ((rmap_item->address & PAGE_MASK) == addr) 1517 return rmap_item; 1518 if (rmap_item->address > addr) 1519 break; 1520 *rmap_list = rmap_item->rmap_list; 1521 remove_rmap_item_from_tree(rmap_item); 1522 free_rmap_item(rmap_item); 1523 } 1524 1525 rmap_item = alloc_rmap_item(); 1526 if (rmap_item) { 1527 /* It has already been zeroed */ 1528 rmap_item->mm = mm_slot->mm; 1529 rmap_item->address = addr; 1530 rmap_item->rmap_list = *rmap_list; 1531 *rmap_list = rmap_item; 1532 } 1533 return rmap_item; 1534 } 1535 1536 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 1537 { 1538 struct mm_struct *mm; 1539 struct mm_slot *slot; 1540 struct vm_area_struct *vma; 1541 struct rmap_item *rmap_item; 1542 int nid; 1543 1544 if (list_empty(&ksm_mm_head.mm_list)) 1545 return NULL; 1546 1547 slot = ksm_scan.mm_slot; 1548 if (slot == &ksm_mm_head) { 1549 /* 1550 * A number of pages can hang around indefinitely on per-cpu 1551 * pagevecs, raised page count preventing write_protect_page 1552 * from merging them. Though it doesn't really matter much, 1553 * it is puzzling to see some stuck in pages_volatile until 1554 * other activity jostles them out, and they also prevented 1555 * LTP's KSM test from succeeding deterministically; so drain 1556 * them here (here rather than on entry to ksm_do_scan(), 1557 * so we don't IPI too often when pages_to_scan is set low). 1558 */ 1559 lru_add_drain_all(); 1560 1561 /* 1562 * Whereas stale stable_nodes on the stable_tree itself 1563 * get pruned in the regular course of stable_tree_search(), 1564 * those moved out to the migrate_nodes list can accumulate: 1565 * so prune them once before each full scan. 1566 */ 1567 if (!ksm_merge_across_nodes) { 1568 struct stable_node *stable_node; 1569 struct list_head *this, *next; 1570 struct page *page; 1571 1572 list_for_each_safe(this, next, &migrate_nodes) { 1573 stable_node = list_entry(this, 1574 struct stable_node, list); 1575 page = get_ksm_page(stable_node, false); 1576 if (page) 1577 put_page(page); 1578 cond_resched(); 1579 } 1580 } 1581 1582 for (nid = 0; nid < ksm_nr_node_ids; nid++) 1583 root_unstable_tree[nid] = RB_ROOT; 1584 1585 spin_lock(&ksm_mmlist_lock); 1586 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 1587 ksm_scan.mm_slot = slot; 1588 spin_unlock(&ksm_mmlist_lock); 1589 /* 1590 * Although we tested list_empty() above, a racing __ksm_exit 1591 * of the last mm on the list may have removed it since then. 1592 */ 1593 if (slot == &ksm_mm_head) 1594 return NULL; 1595 next_mm: 1596 ksm_scan.address = 0; 1597 ksm_scan.rmap_list = &slot->rmap_list; 1598 } 1599 1600 mm = slot->mm; 1601 down_read(&mm->mmap_sem); 1602 if (ksm_test_exit(mm)) 1603 vma = NULL; 1604 else 1605 vma = find_vma(mm, ksm_scan.address); 1606 1607 for (; vma; vma = vma->vm_next) { 1608 if (!(vma->vm_flags & VM_MERGEABLE)) 1609 continue; 1610 if (ksm_scan.address < vma->vm_start) 1611 ksm_scan.address = vma->vm_start; 1612 if (!vma->anon_vma) 1613 ksm_scan.address = vma->vm_end; 1614 1615 while (ksm_scan.address < vma->vm_end) { 1616 if (ksm_test_exit(mm)) 1617 break; 1618 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 1619 if (IS_ERR_OR_NULL(*page)) { 1620 ksm_scan.address += PAGE_SIZE; 1621 cond_resched(); 1622 continue; 1623 } 1624 if (PageAnon(*page) || 1625 page_trans_compound_anon(*page)) { 1626 flush_anon_page(vma, *page, ksm_scan.address); 1627 flush_dcache_page(*page); 1628 rmap_item = get_next_rmap_item(slot, 1629 ksm_scan.rmap_list, ksm_scan.address); 1630 if (rmap_item) { 1631 ksm_scan.rmap_list = 1632 &rmap_item->rmap_list; 1633 ksm_scan.address += PAGE_SIZE; 1634 } else 1635 put_page(*page); 1636 up_read(&mm->mmap_sem); 1637 return rmap_item; 1638 } 1639 put_page(*page); 1640 ksm_scan.address += PAGE_SIZE; 1641 cond_resched(); 1642 } 1643 } 1644 1645 if (ksm_test_exit(mm)) { 1646 ksm_scan.address = 0; 1647 ksm_scan.rmap_list = &slot->rmap_list; 1648 } 1649 /* 1650 * Nuke all the rmap_items that are above this current rmap: 1651 * because there were no VM_MERGEABLE vmas with such addresses. 1652 */ 1653 remove_trailing_rmap_items(slot, ksm_scan.rmap_list); 1654 1655 spin_lock(&ksm_mmlist_lock); 1656 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 1657 struct mm_slot, mm_list); 1658 if (ksm_scan.address == 0) { 1659 /* 1660 * We've completed a full scan of all vmas, holding mmap_sem 1661 * throughout, and found no VM_MERGEABLE: so do the same as 1662 * __ksm_exit does to remove this mm from all our lists now. 1663 * This applies either when cleaning up after __ksm_exit 1664 * (but beware: we can reach here even before __ksm_exit), 1665 * or when all VM_MERGEABLE areas have been unmapped (and 1666 * mmap_sem then protects against race with MADV_MERGEABLE). 1667 */ 1668 hash_del(&slot->link); 1669 list_del(&slot->mm_list); 1670 spin_unlock(&ksm_mmlist_lock); 1671 1672 free_mm_slot(slot); 1673 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1674 up_read(&mm->mmap_sem); 1675 mmdrop(mm); 1676 } else { 1677 spin_unlock(&ksm_mmlist_lock); 1678 up_read(&mm->mmap_sem); 1679 } 1680 1681 /* Repeat until we've completed scanning the whole list */ 1682 slot = ksm_scan.mm_slot; 1683 if (slot != &ksm_mm_head) 1684 goto next_mm; 1685 1686 ksm_scan.seqnr++; 1687 return NULL; 1688 } 1689 1690 /** 1691 * ksm_do_scan - the ksm scanner main worker function. 1692 * @scan_npages - number of pages we want to scan before we return. 1693 */ 1694 static void ksm_do_scan(unsigned int scan_npages) 1695 { 1696 struct rmap_item *rmap_item; 1697 struct page *uninitialized_var(page); 1698 1699 while (scan_npages-- && likely(!freezing(current))) { 1700 cond_resched(); 1701 rmap_item = scan_get_next_rmap_item(&page); 1702 if (!rmap_item) 1703 return; 1704 cmp_and_merge_page(page, rmap_item); 1705 put_page(page); 1706 } 1707 } 1708 1709 static int ksmd_should_run(void) 1710 { 1711 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 1712 } 1713 1714 static int ksm_scan_thread(void *nothing) 1715 { 1716 set_freezable(); 1717 set_user_nice(current, 5); 1718 1719 while (!kthread_should_stop()) { 1720 mutex_lock(&ksm_thread_mutex); 1721 wait_while_offlining(); 1722 if (ksmd_should_run()) 1723 ksm_do_scan(ksm_thread_pages_to_scan); 1724 mutex_unlock(&ksm_thread_mutex); 1725 1726 try_to_freeze(); 1727 1728 if (ksmd_should_run()) { 1729 schedule_timeout_interruptible( 1730 msecs_to_jiffies(ksm_thread_sleep_millisecs)); 1731 } else { 1732 wait_event_freezable(ksm_thread_wait, 1733 ksmd_should_run() || kthread_should_stop()); 1734 } 1735 } 1736 return 0; 1737 } 1738 1739 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 1740 unsigned long end, int advice, unsigned long *vm_flags) 1741 { 1742 struct mm_struct *mm = vma->vm_mm; 1743 int err; 1744 1745 switch (advice) { 1746 case MADV_MERGEABLE: 1747 /* 1748 * Be somewhat over-protective for now! 1749 */ 1750 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 1751 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 1752 VM_HUGETLB | VM_NONLINEAR | VM_MIXEDMAP)) 1753 return 0; /* just ignore the advice */ 1754 1755 #ifdef VM_SAO 1756 if (*vm_flags & VM_SAO) 1757 return 0; 1758 #endif 1759 1760 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 1761 err = __ksm_enter(mm); 1762 if (err) 1763 return err; 1764 } 1765 1766 *vm_flags |= VM_MERGEABLE; 1767 break; 1768 1769 case MADV_UNMERGEABLE: 1770 if (!(*vm_flags & VM_MERGEABLE)) 1771 return 0; /* just ignore the advice */ 1772 1773 if (vma->anon_vma) { 1774 err = unmerge_ksm_pages(vma, start, end); 1775 if (err) 1776 return err; 1777 } 1778 1779 *vm_flags &= ~VM_MERGEABLE; 1780 break; 1781 } 1782 1783 return 0; 1784 } 1785 1786 int __ksm_enter(struct mm_struct *mm) 1787 { 1788 struct mm_slot *mm_slot; 1789 int needs_wakeup; 1790 1791 mm_slot = alloc_mm_slot(); 1792 if (!mm_slot) 1793 return -ENOMEM; 1794 1795 /* Check ksm_run too? Would need tighter locking */ 1796 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 1797 1798 spin_lock(&ksm_mmlist_lock); 1799 insert_to_mm_slots_hash(mm, mm_slot); 1800 /* 1801 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 1802 * insert just behind the scanning cursor, to let the area settle 1803 * down a little; when fork is followed by immediate exec, we don't 1804 * want ksmd to waste time setting up and tearing down an rmap_list. 1805 * 1806 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 1807 * scanning cursor, otherwise KSM pages in newly forked mms will be 1808 * missed: then we might as well insert at the end of the list. 1809 */ 1810 if (ksm_run & KSM_RUN_UNMERGE) 1811 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 1812 else 1813 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 1814 spin_unlock(&ksm_mmlist_lock); 1815 1816 set_bit(MMF_VM_MERGEABLE, &mm->flags); 1817 atomic_inc(&mm->mm_count); 1818 1819 if (needs_wakeup) 1820 wake_up_interruptible(&ksm_thread_wait); 1821 1822 return 0; 1823 } 1824 1825 void __ksm_exit(struct mm_struct *mm) 1826 { 1827 struct mm_slot *mm_slot; 1828 int easy_to_free = 0; 1829 1830 /* 1831 * This process is exiting: if it's straightforward (as is the 1832 * case when ksmd was never running), free mm_slot immediately. 1833 * But if it's at the cursor or has rmap_items linked to it, use 1834 * mmap_sem to synchronize with any break_cows before pagetables 1835 * are freed, and leave the mm_slot on the list for ksmd to free. 1836 * Beware: ksm may already have noticed it exiting and freed the slot. 1837 */ 1838 1839 spin_lock(&ksm_mmlist_lock); 1840 mm_slot = get_mm_slot(mm); 1841 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 1842 if (!mm_slot->rmap_list) { 1843 hash_del(&mm_slot->link); 1844 list_del(&mm_slot->mm_list); 1845 easy_to_free = 1; 1846 } else { 1847 list_move(&mm_slot->mm_list, 1848 &ksm_scan.mm_slot->mm_list); 1849 } 1850 } 1851 spin_unlock(&ksm_mmlist_lock); 1852 1853 if (easy_to_free) { 1854 free_mm_slot(mm_slot); 1855 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1856 mmdrop(mm); 1857 } else if (mm_slot) { 1858 down_write(&mm->mmap_sem); 1859 up_write(&mm->mmap_sem); 1860 } 1861 } 1862 1863 struct page *ksm_might_need_to_copy(struct page *page, 1864 struct vm_area_struct *vma, unsigned long address) 1865 { 1866 struct anon_vma *anon_vma = page_anon_vma(page); 1867 struct page *new_page; 1868 1869 if (PageKsm(page)) { 1870 if (page_stable_node(page) && 1871 !(ksm_run & KSM_RUN_UNMERGE)) 1872 return page; /* no need to copy it */ 1873 } else if (!anon_vma) { 1874 return page; /* no need to copy it */ 1875 } else if (anon_vma->root == vma->anon_vma->root && 1876 page->index == linear_page_index(vma, address)) { 1877 return page; /* still no need to copy it */ 1878 } 1879 if (!PageUptodate(page)) 1880 return page; /* let do_swap_page report the error */ 1881 1882 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1883 if (new_page) { 1884 copy_user_highpage(new_page, page, address, vma); 1885 1886 SetPageDirty(new_page); 1887 __SetPageUptodate(new_page); 1888 __set_page_locked(new_page); 1889 } 1890 1891 return new_page; 1892 } 1893 1894 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg, 1895 unsigned long *vm_flags) 1896 { 1897 struct stable_node *stable_node; 1898 struct rmap_item *rmap_item; 1899 unsigned int mapcount = page_mapcount(page); 1900 int referenced = 0; 1901 int search_new_forks = 0; 1902 1903 VM_BUG_ON(!PageKsm(page)); 1904 VM_BUG_ON(!PageLocked(page)); 1905 1906 stable_node = page_stable_node(page); 1907 if (!stable_node) 1908 return 0; 1909 again: 1910 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 1911 struct anon_vma *anon_vma = rmap_item->anon_vma; 1912 struct anon_vma_chain *vmac; 1913 struct vm_area_struct *vma; 1914 1915 anon_vma_lock_read(anon_vma); 1916 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 1917 0, ULONG_MAX) { 1918 vma = vmac->vma; 1919 if (rmap_item->address < vma->vm_start || 1920 rmap_item->address >= vma->vm_end) 1921 continue; 1922 /* 1923 * Initially we examine only the vma which covers this 1924 * rmap_item; but later, if there is still work to do, 1925 * we examine covering vmas in other mms: in case they 1926 * were forked from the original since ksmd passed. 1927 */ 1928 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 1929 continue; 1930 1931 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 1932 continue; 1933 1934 referenced += page_referenced_one(page, vma, 1935 rmap_item->address, &mapcount, vm_flags); 1936 if (!search_new_forks || !mapcount) 1937 break; 1938 } 1939 anon_vma_unlock_read(anon_vma); 1940 if (!mapcount) 1941 goto out; 1942 } 1943 if (!search_new_forks++) 1944 goto again; 1945 out: 1946 return referenced; 1947 } 1948 1949 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags) 1950 { 1951 struct stable_node *stable_node; 1952 struct rmap_item *rmap_item; 1953 int ret = SWAP_AGAIN; 1954 int search_new_forks = 0; 1955 1956 VM_BUG_ON(!PageKsm(page)); 1957 VM_BUG_ON(!PageLocked(page)); 1958 1959 stable_node = page_stable_node(page); 1960 if (!stable_node) 1961 return SWAP_FAIL; 1962 again: 1963 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 1964 struct anon_vma *anon_vma = rmap_item->anon_vma; 1965 struct anon_vma_chain *vmac; 1966 struct vm_area_struct *vma; 1967 1968 anon_vma_lock_read(anon_vma); 1969 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 1970 0, ULONG_MAX) { 1971 vma = vmac->vma; 1972 if (rmap_item->address < vma->vm_start || 1973 rmap_item->address >= vma->vm_end) 1974 continue; 1975 /* 1976 * Initially we examine only the vma which covers this 1977 * rmap_item; but later, if there is still work to do, 1978 * we examine covering vmas in other mms: in case they 1979 * were forked from the original since ksmd passed. 1980 */ 1981 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 1982 continue; 1983 1984 ret = try_to_unmap_one(page, vma, 1985 rmap_item->address, flags); 1986 if (ret != SWAP_AGAIN || !page_mapped(page)) { 1987 anon_vma_unlock_read(anon_vma); 1988 goto out; 1989 } 1990 } 1991 anon_vma_unlock_read(anon_vma); 1992 } 1993 if (!search_new_forks++) 1994 goto again; 1995 out: 1996 return ret; 1997 } 1998 1999 #ifdef CONFIG_MIGRATION 2000 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *, 2001 struct vm_area_struct *, unsigned long, void *), void *arg) 2002 { 2003 struct stable_node *stable_node; 2004 struct rmap_item *rmap_item; 2005 int ret = SWAP_AGAIN; 2006 int search_new_forks = 0; 2007 2008 VM_BUG_ON(!PageKsm(page)); 2009 VM_BUG_ON(!PageLocked(page)); 2010 2011 stable_node = page_stable_node(page); 2012 if (!stable_node) 2013 return ret; 2014 again: 2015 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2016 struct anon_vma *anon_vma = rmap_item->anon_vma; 2017 struct anon_vma_chain *vmac; 2018 struct vm_area_struct *vma; 2019 2020 anon_vma_lock_read(anon_vma); 2021 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2022 0, ULONG_MAX) { 2023 vma = vmac->vma; 2024 if (rmap_item->address < vma->vm_start || 2025 rmap_item->address >= vma->vm_end) 2026 continue; 2027 /* 2028 * Initially we examine only the vma which covers this 2029 * rmap_item; but later, if there is still work to do, 2030 * we examine covering vmas in other mms: in case they 2031 * were forked from the original since ksmd passed. 2032 */ 2033 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2034 continue; 2035 2036 ret = rmap_one(page, vma, rmap_item->address, arg); 2037 if (ret != SWAP_AGAIN) { 2038 anon_vma_unlock_read(anon_vma); 2039 goto out; 2040 } 2041 } 2042 anon_vma_unlock_read(anon_vma); 2043 } 2044 if (!search_new_forks++) 2045 goto again; 2046 out: 2047 return ret; 2048 } 2049 2050 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 2051 { 2052 struct stable_node *stable_node; 2053 2054 VM_BUG_ON(!PageLocked(oldpage)); 2055 VM_BUG_ON(!PageLocked(newpage)); 2056 VM_BUG_ON(newpage->mapping != oldpage->mapping); 2057 2058 stable_node = page_stable_node(newpage); 2059 if (stable_node) { 2060 VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage)); 2061 stable_node->kpfn = page_to_pfn(newpage); 2062 /* 2063 * newpage->mapping was set in advance; now we need smp_wmb() 2064 * to make sure that the new stable_node->kpfn is visible 2065 * to get_ksm_page() before it can see that oldpage->mapping 2066 * has gone stale (or that PageSwapCache has been cleared). 2067 */ 2068 smp_wmb(); 2069 set_page_stable_node(oldpage, NULL); 2070 } 2071 } 2072 #endif /* CONFIG_MIGRATION */ 2073 2074 #ifdef CONFIG_MEMORY_HOTREMOVE 2075 static int just_wait(void *word) 2076 { 2077 schedule(); 2078 return 0; 2079 } 2080 2081 static void wait_while_offlining(void) 2082 { 2083 while (ksm_run & KSM_RUN_OFFLINE) { 2084 mutex_unlock(&ksm_thread_mutex); 2085 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2086 just_wait, TASK_UNINTERRUPTIBLE); 2087 mutex_lock(&ksm_thread_mutex); 2088 } 2089 } 2090 2091 static void ksm_check_stable_tree(unsigned long start_pfn, 2092 unsigned long end_pfn) 2093 { 2094 struct stable_node *stable_node; 2095 struct list_head *this, *next; 2096 struct rb_node *node; 2097 int nid; 2098 2099 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2100 node = rb_first(root_stable_tree + nid); 2101 while (node) { 2102 stable_node = rb_entry(node, struct stable_node, node); 2103 if (stable_node->kpfn >= start_pfn && 2104 stable_node->kpfn < end_pfn) { 2105 /* 2106 * Don't get_ksm_page, page has already gone: 2107 * which is why we keep kpfn instead of page* 2108 */ 2109 remove_node_from_stable_tree(stable_node); 2110 node = rb_first(root_stable_tree + nid); 2111 } else 2112 node = rb_next(node); 2113 cond_resched(); 2114 } 2115 } 2116 list_for_each_safe(this, next, &migrate_nodes) { 2117 stable_node = list_entry(this, struct stable_node, list); 2118 if (stable_node->kpfn >= start_pfn && 2119 stable_node->kpfn < end_pfn) 2120 remove_node_from_stable_tree(stable_node); 2121 cond_resched(); 2122 } 2123 } 2124 2125 static int ksm_memory_callback(struct notifier_block *self, 2126 unsigned long action, void *arg) 2127 { 2128 struct memory_notify *mn = arg; 2129 2130 switch (action) { 2131 case MEM_GOING_OFFLINE: 2132 /* 2133 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2134 * and remove_all_stable_nodes() while memory is going offline: 2135 * it is unsafe for them to touch the stable tree at this time. 2136 * But unmerge_ksm_pages(), rmap lookups and other entry points 2137 * which do not need the ksm_thread_mutex are all safe. 2138 */ 2139 mutex_lock(&ksm_thread_mutex); 2140 ksm_run |= KSM_RUN_OFFLINE; 2141 mutex_unlock(&ksm_thread_mutex); 2142 break; 2143 2144 case MEM_OFFLINE: 2145 /* 2146 * Most of the work is done by page migration; but there might 2147 * be a few stable_nodes left over, still pointing to struct 2148 * pages which have been offlined: prune those from the tree, 2149 * otherwise get_ksm_page() might later try to access a 2150 * non-existent struct page. 2151 */ 2152 ksm_check_stable_tree(mn->start_pfn, 2153 mn->start_pfn + mn->nr_pages); 2154 /* fallthrough */ 2155 2156 case MEM_CANCEL_OFFLINE: 2157 mutex_lock(&ksm_thread_mutex); 2158 ksm_run &= ~KSM_RUN_OFFLINE; 2159 mutex_unlock(&ksm_thread_mutex); 2160 2161 smp_mb(); /* wake_up_bit advises this */ 2162 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2163 break; 2164 } 2165 return NOTIFY_OK; 2166 } 2167 #else 2168 static void wait_while_offlining(void) 2169 { 2170 } 2171 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2172 2173 #ifdef CONFIG_SYSFS 2174 /* 2175 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2176 */ 2177 2178 #define KSM_ATTR_RO(_name) \ 2179 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2180 #define KSM_ATTR(_name) \ 2181 static struct kobj_attribute _name##_attr = \ 2182 __ATTR(_name, 0644, _name##_show, _name##_store) 2183 2184 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2185 struct kobj_attribute *attr, char *buf) 2186 { 2187 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); 2188 } 2189 2190 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2191 struct kobj_attribute *attr, 2192 const char *buf, size_t count) 2193 { 2194 unsigned long msecs; 2195 int err; 2196 2197 err = kstrtoul(buf, 10, &msecs); 2198 if (err || msecs > UINT_MAX) 2199 return -EINVAL; 2200 2201 ksm_thread_sleep_millisecs = msecs; 2202 2203 return count; 2204 } 2205 KSM_ATTR(sleep_millisecs); 2206 2207 static ssize_t pages_to_scan_show(struct kobject *kobj, 2208 struct kobj_attribute *attr, char *buf) 2209 { 2210 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); 2211 } 2212 2213 static ssize_t pages_to_scan_store(struct kobject *kobj, 2214 struct kobj_attribute *attr, 2215 const char *buf, size_t count) 2216 { 2217 int err; 2218 unsigned long nr_pages; 2219 2220 err = kstrtoul(buf, 10, &nr_pages); 2221 if (err || nr_pages > UINT_MAX) 2222 return -EINVAL; 2223 2224 ksm_thread_pages_to_scan = nr_pages; 2225 2226 return count; 2227 } 2228 KSM_ATTR(pages_to_scan); 2229 2230 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2231 char *buf) 2232 { 2233 return sprintf(buf, "%lu\n", ksm_run); 2234 } 2235 2236 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2237 const char *buf, size_t count) 2238 { 2239 int err; 2240 unsigned long flags; 2241 2242 err = kstrtoul(buf, 10, &flags); 2243 if (err || flags > UINT_MAX) 2244 return -EINVAL; 2245 if (flags > KSM_RUN_UNMERGE) 2246 return -EINVAL; 2247 2248 /* 2249 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2250 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2251 * breaking COW to free the pages_shared (but leaves mm_slots 2252 * on the list for when ksmd may be set running again). 2253 */ 2254 2255 mutex_lock(&ksm_thread_mutex); 2256 wait_while_offlining(); 2257 if (ksm_run != flags) { 2258 ksm_run = flags; 2259 if (flags & KSM_RUN_UNMERGE) { 2260 set_current_oom_origin(); 2261 err = unmerge_and_remove_all_rmap_items(); 2262 clear_current_oom_origin(); 2263 if (err) { 2264 ksm_run = KSM_RUN_STOP; 2265 count = err; 2266 } 2267 } 2268 } 2269 mutex_unlock(&ksm_thread_mutex); 2270 2271 if (flags & KSM_RUN_MERGE) 2272 wake_up_interruptible(&ksm_thread_wait); 2273 2274 return count; 2275 } 2276 KSM_ATTR(run); 2277 2278 #ifdef CONFIG_NUMA 2279 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2280 struct kobj_attribute *attr, char *buf) 2281 { 2282 return sprintf(buf, "%u\n", ksm_merge_across_nodes); 2283 } 2284 2285 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2286 struct kobj_attribute *attr, 2287 const char *buf, size_t count) 2288 { 2289 int err; 2290 unsigned long knob; 2291 2292 err = kstrtoul(buf, 10, &knob); 2293 if (err) 2294 return err; 2295 if (knob > 1) 2296 return -EINVAL; 2297 2298 mutex_lock(&ksm_thread_mutex); 2299 wait_while_offlining(); 2300 if (ksm_merge_across_nodes != knob) { 2301 if (ksm_pages_shared || remove_all_stable_nodes()) 2302 err = -EBUSY; 2303 else if (root_stable_tree == one_stable_tree) { 2304 struct rb_root *buf; 2305 /* 2306 * This is the first time that we switch away from the 2307 * default of merging across nodes: must now allocate 2308 * a buffer to hold as many roots as may be needed. 2309 * Allocate stable and unstable together: 2310 * MAXSMP NODES_SHIFT 10 will use 16kB. 2311 */ 2312 buf = kcalloc(nr_node_ids + nr_node_ids, 2313 sizeof(*buf), GFP_KERNEL | __GFP_ZERO); 2314 /* Let us assume that RB_ROOT is NULL is zero */ 2315 if (!buf) 2316 err = -ENOMEM; 2317 else { 2318 root_stable_tree = buf; 2319 root_unstable_tree = buf + nr_node_ids; 2320 /* Stable tree is empty but not the unstable */ 2321 root_unstable_tree[0] = one_unstable_tree[0]; 2322 } 2323 } 2324 if (!err) { 2325 ksm_merge_across_nodes = knob; 2326 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2327 } 2328 } 2329 mutex_unlock(&ksm_thread_mutex); 2330 2331 return err ? err : count; 2332 } 2333 KSM_ATTR(merge_across_nodes); 2334 #endif 2335 2336 static ssize_t pages_shared_show(struct kobject *kobj, 2337 struct kobj_attribute *attr, char *buf) 2338 { 2339 return sprintf(buf, "%lu\n", ksm_pages_shared); 2340 } 2341 KSM_ATTR_RO(pages_shared); 2342 2343 static ssize_t pages_sharing_show(struct kobject *kobj, 2344 struct kobj_attribute *attr, char *buf) 2345 { 2346 return sprintf(buf, "%lu\n", ksm_pages_sharing); 2347 } 2348 KSM_ATTR_RO(pages_sharing); 2349 2350 static ssize_t pages_unshared_show(struct kobject *kobj, 2351 struct kobj_attribute *attr, char *buf) 2352 { 2353 return sprintf(buf, "%lu\n", ksm_pages_unshared); 2354 } 2355 KSM_ATTR_RO(pages_unshared); 2356 2357 static ssize_t pages_volatile_show(struct kobject *kobj, 2358 struct kobj_attribute *attr, char *buf) 2359 { 2360 long ksm_pages_volatile; 2361 2362 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 2363 - ksm_pages_sharing - ksm_pages_unshared; 2364 /* 2365 * It was not worth any locking to calculate that statistic, 2366 * but it might therefore sometimes be negative: conceal that. 2367 */ 2368 if (ksm_pages_volatile < 0) 2369 ksm_pages_volatile = 0; 2370 return sprintf(buf, "%ld\n", ksm_pages_volatile); 2371 } 2372 KSM_ATTR_RO(pages_volatile); 2373 2374 static ssize_t full_scans_show(struct kobject *kobj, 2375 struct kobj_attribute *attr, char *buf) 2376 { 2377 return sprintf(buf, "%lu\n", ksm_scan.seqnr); 2378 } 2379 KSM_ATTR_RO(full_scans); 2380 2381 static struct attribute *ksm_attrs[] = { 2382 &sleep_millisecs_attr.attr, 2383 &pages_to_scan_attr.attr, 2384 &run_attr.attr, 2385 &pages_shared_attr.attr, 2386 &pages_sharing_attr.attr, 2387 &pages_unshared_attr.attr, 2388 &pages_volatile_attr.attr, 2389 &full_scans_attr.attr, 2390 #ifdef CONFIG_NUMA 2391 &merge_across_nodes_attr.attr, 2392 #endif 2393 NULL, 2394 }; 2395 2396 static struct attribute_group ksm_attr_group = { 2397 .attrs = ksm_attrs, 2398 .name = "ksm", 2399 }; 2400 #endif /* CONFIG_SYSFS */ 2401 2402 static int __init ksm_init(void) 2403 { 2404 struct task_struct *ksm_thread; 2405 int err; 2406 2407 err = ksm_slab_init(); 2408 if (err) 2409 goto out; 2410 2411 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 2412 if (IS_ERR(ksm_thread)) { 2413 printk(KERN_ERR "ksm: creating kthread failed\n"); 2414 err = PTR_ERR(ksm_thread); 2415 goto out_free; 2416 } 2417 2418 #ifdef CONFIG_SYSFS 2419 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 2420 if (err) { 2421 printk(KERN_ERR "ksm: register sysfs failed\n"); 2422 kthread_stop(ksm_thread); 2423 goto out_free; 2424 } 2425 #else 2426 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 2427 2428 #endif /* CONFIG_SYSFS */ 2429 2430 #ifdef CONFIG_MEMORY_HOTREMOVE 2431 /* There is no significance to this priority 100 */ 2432 hotplug_memory_notifier(ksm_memory_callback, 100); 2433 #endif 2434 return 0; 2435 2436 out_free: 2437 ksm_slab_free(); 2438 out: 2439 return err; 2440 } 2441 module_init(ksm_init) 2442