xref: /openbmc/linux/mm/ksm.c (revision 1a59d1b8)
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45 
46 #ifdef CONFIG_NUMA
47 #define NUMA(x)		(x)
48 #define DO_NUMA(x)	do { (x); } while (0)
49 #else
50 #define NUMA(x)		(0)
51 #define DO_NUMA(x)	do { } while (0)
52 #endif
53 
54 /**
55  * DOC: Overview
56  *
57  * A few notes about the KSM scanning process,
58  * to make it easier to understand the data structures below:
59  *
60  * In order to reduce excessive scanning, KSM sorts the memory pages by their
61  * contents into a data structure that holds pointers to the pages' locations.
62  *
63  * Since the contents of the pages may change at any moment, KSM cannot just
64  * insert the pages into a normal sorted tree and expect it to find anything.
65  * Therefore KSM uses two data structures - the stable and the unstable tree.
66  *
67  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68  * by their contents.  Because each such page is write-protected, searching on
69  * this tree is fully assured to be working (except when pages are unmapped),
70  * and therefore this tree is called the stable tree.
71  *
72  * The stable tree node includes information required for reverse
73  * mapping from a KSM page to virtual addresses that map this page.
74  *
75  * In order to avoid large latencies of the rmap walks on KSM pages,
76  * KSM maintains two types of nodes in the stable tree:
77  *
78  * * the regular nodes that keep the reverse mapping structures in a
79  *   linked list
80  * * the "chains" that link nodes ("dups") that represent the same
81  *   write protected memory content, but each "dup" corresponds to a
82  *   different KSM page copy of that content
83  *
84  * Internally, the regular nodes, "dups" and "chains" are represented
85  * using the same :c:type:`struct stable_node` structure.
86  *
87  * In addition to the stable tree, KSM uses a second data structure called the
88  * unstable tree: this tree holds pointers to pages which have been found to
89  * be "unchanged for a period of time".  The unstable tree sorts these pages
90  * by their contents, but since they are not write-protected, KSM cannot rely
91  * upon the unstable tree to work correctly - the unstable tree is liable to
92  * be corrupted as its contents are modified, and so it is called unstable.
93  *
94  * KSM solves this problem by several techniques:
95  *
96  * 1) The unstable tree is flushed every time KSM completes scanning all
97  *    memory areas, and then the tree is rebuilt again from the beginning.
98  * 2) KSM will only insert into the unstable tree, pages whose hash value
99  *    has not changed since the previous scan of all memory areas.
100  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101  *    colors of the nodes and not on their contents, assuring that even when
102  *    the tree gets "corrupted" it won't get out of balance, so scanning time
103  *    remains the same (also, searching and inserting nodes in an rbtree uses
104  *    the same algorithm, so we have no overhead when we flush and rebuild).
105  * 4) KSM never flushes the stable tree, which means that even if it were to
106  *    take 10 attempts to find a page in the unstable tree, once it is found,
107  *    it is secured in the stable tree.  (When we scan a new page, we first
108  *    compare it against the stable tree, and then against the unstable tree.)
109  *
110  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111  * stable trees and multiple unstable trees: one of each for each NUMA node.
112  */
113 
114 /**
115  * struct mm_slot - ksm information per mm that is being scanned
116  * @link: link to the mm_slots hash list
117  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
118  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
119  * @mm: the mm that this information is valid for
120  */
121 struct mm_slot {
122 	struct hlist_node link;
123 	struct list_head mm_list;
124 	struct rmap_item *rmap_list;
125 	struct mm_struct *mm;
126 };
127 
128 /**
129  * struct ksm_scan - cursor for scanning
130  * @mm_slot: the current mm_slot we are scanning
131  * @address: the next address inside that to be scanned
132  * @rmap_list: link to the next rmap to be scanned in the rmap_list
133  * @seqnr: count of completed full scans (needed when removing unstable node)
134  *
135  * There is only the one ksm_scan instance of this cursor structure.
136  */
137 struct ksm_scan {
138 	struct mm_slot *mm_slot;
139 	unsigned long address;
140 	struct rmap_item **rmap_list;
141 	unsigned long seqnr;
142 };
143 
144 /**
145  * struct stable_node - node of the stable rbtree
146  * @node: rb node of this ksm page in the stable tree
147  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
148  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
149  * @list: linked into migrate_nodes, pending placement in the proper node tree
150  * @hlist: hlist head of rmap_items using this ksm page
151  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
152  * @chain_prune_time: time of the last full garbage collection
153  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
154  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
155  */
156 struct stable_node {
157 	union {
158 		struct rb_node node;	/* when node of stable tree */
159 		struct {		/* when listed for migration */
160 			struct list_head *head;
161 			struct {
162 				struct hlist_node hlist_dup;
163 				struct list_head list;
164 			};
165 		};
166 	};
167 	struct hlist_head hlist;
168 	union {
169 		unsigned long kpfn;
170 		unsigned long chain_prune_time;
171 	};
172 	/*
173 	 * STABLE_NODE_CHAIN can be any negative number in
174 	 * rmap_hlist_len negative range, but better not -1 to be able
175 	 * to reliably detect underflows.
176 	 */
177 #define STABLE_NODE_CHAIN -1024
178 	int rmap_hlist_len;
179 #ifdef CONFIG_NUMA
180 	int nid;
181 #endif
182 };
183 
184 /**
185  * struct rmap_item - reverse mapping item for virtual addresses
186  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
187  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
188  * @nid: NUMA node id of unstable tree in which linked (may not match page)
189  * @mm: the memory structure this rmap_item is pointing into
190  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191  * @oldchecksum: previous checksum of the page at that virtual address
192  * @node: rb node of this rmap_item in the unstable tree
193  * @head: pointer to stable_node heading this list in the stable tree
194  * @hlist: link into hlist of rmap_items hanging off that stable_node
195  */
196 struct rmap_item {
197 	struct rmap_item *rmap_list;
198 	union {
199 		struct anon_vma *anon_vma;	/* when stable */
200 #ifdef CONFIG_NUMA
201 		int nid;		/* when node of unstable tree */
202 #endif
203 	};
204 	struct mm_struct *mm;
205 	unsigned long address;		/* + low bits used for flags below */
206 	unsigned int oldchecksum;	/* when unstable */
207 	union {
208 		struct rb_node node;	/* when node of unstable tree */
209 		struct {		/* when listed from stable tree */
210 			struct stable_node *head;
211 			struct hlist_node hlist;
212 		};
213 	};
214 };
215 
216 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
217 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
218 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
219 #define KSM_FLAG_MASK	(SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
220 				/* to mask all the flags */
221 
222 /* The stable and unstable tree heads */
223 static struct rb_root one_stable_tree[1] = { RB_ROOT };
224 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
225 static struct rb_root *root_stable_tree = one_stable_tree;
226 static struct rb_root *root_unstable_tree = one_unstable_tree;
227 
228 /* Recently migrated nodes of stable tree, pending proper placement */
229 static LIST_HEAD(migrate_nodes);
230 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
231 
232 #define MM_SLOTS_HASH_BITS 10
233 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
234 
235 static struct mm_slot ksm_mm_head = {
236 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
237 };
238 static struct ksm_scan ksm_scan = {
239 	.mm_slot = &ksm_mm_head,
240 };
241 
242 static struct kmem_cache *rmap_item_cache;
243 static struct kmem_cache *stable_node_cache;
244 static struct kmem_cache *mm_slot_cache;
245 
246 /* The number of nodes in the stable tree */
247 static unsigned long ksm_pages_shared;
248 
249 /* The number of page slots additionally sharing those nodes */
250 static unsigned long ksm_pages_sharing;
251 
252 /* The number of nodes in the unstable tree */
253 static unsigned long ksm_pages_unshared;
254 
255 /* The number of rmap_items in use: to calculate pages_volatile */
256 static unsigned long ksm_rmap_items;
257 
258 /* The number of stable_node chains */
259 static unsigned long ksm_stable_node_chains;
260 
261 /* The number of stable_node dups linked to the stable_node chains */
262 static unsigned long ksm_stable_node_dups;
263 
264 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
265 static int ksm_stable_node_chains_prune_millisecs = 2000;
266 
267 /* Maximum number of page slots sharing a stable node */
268 static int ksm_max_page_sharing = 256;
269 
270 /* Number of pages ksmd should scan in one batch */
271 static unsigned int ksm_thread_pages_to_scan = 100;
272 
273 /* Milliseconds ksmd should sleep between batches */
274 static unsigned int ksm_thread_sleep_millisecs = 20;
275 
276 /* Checksum of an empty (zeroed) page */
277 static unsigned int zero_checksum __read_mostly;
278 
279 /* Whether to merge empty (zeroed) pages with actual zero pages */
280 static bool ksm_use_zero_pages __read_mostly;
281 
282 #ifdef CONFIG_NUMA
283 /* Zeroed when merging across nodes is not allowed */
284 static unsigned int ksm_merge_across_nodes = 1;
285 static int ksm_nr_node_ids = 1;
286 #else
287 #define ksm_merge_across_nodes	1U
288 #define ksm_nr_node_ids		1
289 #endif
290 
291 #define KSM_RUN_STOP	0
292 #define KSM_RUN_MERGE	1
293 #define KSM_RUN_UNMERGE	2
294 #define KSM_RUN_OFFLINE	4
295 static unsigned long ksm_run = KSM_RUN_STOP;
296 static void wait_while_offlining(void);
297 
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
299 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
300 static DEFINE_MUTEX(ksm_thread_mutex);
301 static DEFINE_SPINLOCK(ksm_mmlist_lock);
302 
303 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
304 		sizeof(struct __struct), __alignof__(struct __struct),\
305 		(__flags), NULL)
306 
307 static int __init ksm_slab_init(void)
308 {
309 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
310 	if (!rmap_item_cache)
311 		goto out;
312 
313 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
314 	if (!stable_node_cache)
315 		goto out_free1;
316 
317 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
318 	if (!mm_slot_cache)
319 		goto out_free2;
320 
321 	return 0;
322 
323 out_free2:
324 	kmem_cache_destroy(stable_node_cache);
325 out_free1:
326 	kmem_cache_destroy(rmap_item_cache);
327 out:
328 	return -ENOMEM;
329 }
330 
331 static void __init ksm_slab_free(void)
332 {
333 	kmem_cache_destroy(mm_slot_cache);
334 	kmem_cache_destroy(stable_node_cache);
335 	kmem_cache_destroy(rmap_item_cache);
336 	mm_slot_cache = NULL;
337 }
338 
339 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
340 {
341 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
342 }
343 
344 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
345 {
346 	return dup->head == STABLE_NODE_DUP_HEAD;
347 }
348 
349 static inline void stable_node_chain_add_dup(struct stable_node *dup,
350 					     struct stable_node *chain)
351 {
352 	VM_BUG_ON(is_stable_node_dup(dup));
353 	dup->head = STABLE_NODE_DUP_HEAD;
354 	VM_BUG_ON(!is_stable_node_chain(chain));
355 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
356 	ksm_stable_node_dups++;
357 }
358 
359 static inline void __stable_node_dup_del(struct stable_node *dup)
360 {
361 	VM_BUG_ON(!is_stable_node_dup(dup));
362 	hlist_del(&dup->hlist_dup);
363 	ksm_stable_node_dups--;
364 }
365 
366 static inline void stable_node_dup_del(struct stable_node *dup)
367 {
368 	VM_BUG_ON(is_stable_node_chain(dup));
369 	if (is_stable_node_dup(dup))
370 		__stable_node_dup_del(dup);
371 	else
372 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
373 #ifdef CONFIG_DEBUG_VM
374 	dup->head = NULL;
375 #endif
376 }
377 
378 static inline struct rmap_item *alloc_rmap_item(void)
379 {
380 	struct rmap_item *rmap_item;
381 
382 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
383 						__GFP_NORETRY | __GFP_NOWARN);
384 	if (rmap_item)
385 		ksm_rmap_items++;
386 	return rmap_item;
387 }
388 
389 static inline void free_rmap_item(struct rmap_item *rmap_item)
390 {
391 	ksm_rmap_items--;
392 	rmap_item->mm = NULL;	/* debug safety */
393 	kmem_cache_free(rmap_item_cache, rmap_item);
394 }
395 
396 static inline struct stable_node *alloc_stable_node(void)
397 {
398 	/*
399 	 * The allocation can take too long with GFP_KERNEL when memory is under
400 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
401 	 * grants access to memory reserves, helping to avoid this problem.
402 	 */
403 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
404 }
405 
406 static inline void free_stable_node(struct stable_node *stable_node)
407 {
408 	VM_BUG_ON(stable_node->rmap_hlist_len &&
409 		  !is_stable_node_chain(stable_node));
410 	kmem_cache_free(stable_node_cache, stable_node);
411 }
412 
413 static inline struct mm_slot *alloc_mm_slot(void)
414 {
415 	if (!mm_slot_cache)	/* initialization failed */
416 		return NULL;
417 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
418 }
419 
420 static inline void free_mm_slot(struct mm_slot *mm_slot)
421 {
422 	kmem_cache_free(mm_slot_cache, mm_slot);
423 }
424 
425 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
426 {
427 	struct mm_slot *slot;
428 
429 	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
430 		if (slot->mm == mm)
431 			return slot;
432 
433 	return NULL;
434 }
435 
436 static void insert_to_mm_slots_hash(struct mm_struct *mm,
437 				    struct mm_slot *mm_slot)
438 {
439 	mm_slot->mm = mm;
440 	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
441 }
442 
443 /*
444  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
445  * page tables after it has passed through ksm_exit() - which, if necessary,
446  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
447  * a special flag: they can just back out as soon as mm_users goes to zero.
448  * ksm_test_exit() is used throughout to make this test for exit: in some
449  * places for correctness, in some places just to avoid unnecessary work.
450  */
451 static inline bool ksm_test_exit(struct mm_struct *mm)
452 {
453 	return atomic_read(&mm->mm_users) == 0;
454 }
455 
456 /*
457  * We use break_ksm to break COW on a ksm page: it's a stripped down
458  *
459  *	if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
460  *		put_page(page);
461  *
462  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
463  * in case the application has unmapped and remapped mm,addr meanwhile.
464  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
465  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
466  *
467  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
468  * of the process that owns 'vma'.  We also do not want to enforce
469  * protection keys here anyway.
470  */
471 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
472 {
473 	struct page *page;
474 	vm_fault_t ret = 0;
475 
476 	do {
477 		cond_resched();
478 		page = follow_page(vma, addr,
479 				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
480 		if (IS_ERR_OR_NULL(page))
481 			break;
482 		if (PageKsm(page))
483 			ret = handle_mm_fault(vma, addr,
484 					FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
485 		else
486 			ret = VM_FAULT_WRITE;
487 		put_page(page);
488 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
489 	/*
490 	 * We must loop because handle_mm_fault() may back out if there's
491 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
492 	 *
493 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
494 	 * COW has been broken, even if the vma does not permit VM_WRITE;
495 	 * but note that a concurrent fault might break PageKsm for us.
496 	 *
497 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
498 	 * backing file, which also invalidates anonymous pages: that's
499 	 * okay, that truncation will have unmapped the PageKsm for us.
500 	 *
501 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
502 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
503 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
504 	 * to user; and ksmd, having no mm, would never be chosen for that.
505 	 *
506 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
507 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
508 	 * even ksmd can fail in this way - though it's usually breaking ksm
509 	 * just to undo a merge it made a moment before, so unlikely to oom.
510 	 *
511 	 * That's a pity: we might therefore have more kernel pages allocated
512 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
513 	 * will retry to break_cow on each pass, so should recover the page
514 	 * in due course.  The important thing is to not let VM_MERGEABLE
515 	 * be cleared while any such pages might remain in the area.
516 	 */
517 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
518 }
519 
520 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
521 		unsigned long addr)
522 {
523 	struct vm_area_struct *vma;
524 	if (ksm_test_exit(mm))
525 		return NULL;
526 	vma = find_vma(mm, addr);
527 	if (!vma || vma->vm_start > addr)
528 		return NULL;
529 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
530 		return NULL;
531 	return vma;
532 }
533 
534 static void break_cow(struct rmap_item *rmap_item)
535 {
536 	struct mm_struct *mm = rmap_item->mm;
537 	unsigned long addr = rmap_item->address;
538 	struct vm_area_struct *vma;
539 
540 	/*
541 	 * It is not an accident that whenever we want to break COW
542 	 * to undo, we also need to drop a reference to the anon_vma.
543 	 */
544 	put_anon_vma(rmap_item->anon_vma);
545 
546 	down_read(&mm->mmap_sem);
547 	vma = find_mergeable_vma(mm, addr);
548 	if (vma)
549 		break_ksm(vma, addr);
550 	up_read(&mm->mmap_sem);
551 }
552 
553 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
554 {
555 	struct mm_struct *mm = rmap_item->mm;
556 	unsigned long addr = rmap_item->address;
557 	struct vm_area_struct *vma;
558 	struct page *page;
559 
560 	down_read(&mm->mmap_sem);
561 	vma = find_mergeable_vma(mm, addr);
562 	if (!vma)
563 		goto out;
564 
565 	page = follow_page(vma, addr, FOLL_GET);
566 	if (IS_ERR_OR_NULL(page))
567 		goto out;
568 	if (PageAnon(page)) {
569 		flush_anon_page(vma, page, addr);
570 		flush_dcache_page(page);
571 	} else {
572 		put_page(page);
573 out:
574 		page = NULL;
575 	}
576 	up_read(&mm->mmap_sem);
577 	return page;
578 }
579 
580 /*
581  * This helper is used for getting right index into array of tree roots.
582  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
583  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
584  * every node has its own stable and unstable tree.
585  */
586 static inline int get_kpfn_nid(unsigned long kpfn)
587 {
588 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
589 }
590 
591 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
592 						   struct rb_root *root)
593 {
594 	struct stable_node *chain = alloc_stable_node();
595 	VM_BUG_ON(is_stable_node_chain(dup));
596 	if (likely(chain)) {
597 		INIT_HLIST_HEAD(&chain->hlist);
598 		chain->chain_prune_time = jiffies;
599 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
600 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
601 		chain->nid = NUMA_NO_NODE; /* debug */
602 #endif
603 		ksm_stable_node_chains++;
604 
605 		/*
606 		 * Put the stable node chain in the first dimension of
607 		 * the stable tree and at the same time remove the old
608 		 * stable node.
609 		 */
610 		rb_replace_node(&dup->node, &chain->node, root);
611 
612 		/*
613 		 * Move the old stable node to the second dimension
614 		 * queued in the hlist_dup. The invariant is that all
615 		 * dup stable_nodes in the chain->hlist point to pages
616 		 * that are wrprotected and have the exact same
617 		 * content.
618 		 */
619 		stable_node_chain_add_dup(dup, chain);
620 	}
621 	return chain;
622 }
623 
624 static inline void free_stable_node_chain(struct stable_node *chain,
625 					  struct rb_root *root)
626 {
627 	rb_erase(&chain->node, root);
628 	free_stable_node(chain);
629 	ksm_stable_node_chains--;
630 }
631 
632 static void remove_node_from_stable_tree(struct stable_node *stable_node)
633 {
634 	struct rmap_item *rmap_item;
635 
636 	/* check it's not STABLE_NODE_CHAIN or negative */
637 	BUG_ON(stable_node->rmap_hlist_len < 0);
638 
639 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
640 		if (rmap_item->hlist.next)
641 			ksm_pages_sharing--;
642 		else
643 			ksm_pages_shared--;
644 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
645 		stable_node->rmap_hlist_len--;
646 		put_anon_vma(rmap_item->anon_vma);
647 		rmap_item->address &= PAGE_MASK;
648 		cond_resched();
649 	}
650 
651 	/*
652 	 * We need the second aligned pointer of the migrate_nodes
653 	 * list_head to stay clear from the rb_parent_color union
654 	 * (aligned and different than any node) and also different
655 	 * from &migrate_nodes. This will verify that future list.h changes
656 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
657 	 */
658 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
659 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
660 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
661 #endif
662 
663 	if (stable_node->head == &migrate_nodes)
664 		list_del(&stable_node->list);
665 	else
666 		stable_node_dup_del(stable_node);
667 	free_stable_node(stable_node);
668 }
669 
670 enum get_ksm_page_flags {
671 	GET_KSM_PAGE_NOLOCK,
672 	GET_KSM_PAGE_LOCK,
673 	GET_KSM_PAGE_TRYLOCK
674 };
675 
676 /*
677  * get_ksm_page: checks if the page indicated by the stable node
678  * is still its ksm page, despite having held no reference to it.
679  * In which case we can trust the content of the page, and it
680  * returns the gotten page; but if the page has now been zapped,
681  * remove the stale node from the stable tree and return NULL.
682  * But beware, the stable node's page might be being migrated.
683  *
684  * You would expect the stable_node to hold a reference to the ksm page.
685  * But if it increments the page's count, swapping out has to wait for
686  * ksmd to come around again before it can free the page, which may take
687  * seconds or even minutes: much too unresponsive.  So instead we use a
688  * "keyhole reference": access to the ksm page from the stable node peeps
689  * out through its keyhole to see if that page still holds the right key,
690  * pointing back to this stable node.  This relies on freeing a PageAnon
691  * page to reset its page->mapping to NULL, and relies on no other use of
692  * a page to put something that might look like our key in page->mapping.
693  * is on its way to being freed; but it is an anomaly to bear in mind.
694  */
695 static struct page *get_ksm_page(struct stable_node *stable_node,
696 				 enum get_ksm_page_flags flags)
697 {
698 	struct page *page;
699 	void *expected_mapping;
700 	unsigned long kpfn;
701 
702 	expected_mapping = (void *)((unsigned long)stable_node |
703 					PAGE_MAPPING_KSM);
704 again:
705 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
706 	page = pfn_to_page(kpfn);
707 	if (READ_ONCE(page->mapping) != expected_mapping)
708 		goto stale;
709 
710 	/*
711 	 * We cannot do anything with the page while its refcount is 0.
712 	 * Usually 0 means free, or tail of a higher-order page: in which
713 	 * case this node is no longer referenced, and should be freed;
714 	 * however, it might mean that the page is under page_ref_freeze().
715 	 * The __remove_mapping() case is easy, again the node is now stale;
716 	 * the same is in reuse_ksm_page() case; but if page is swapcache
717 	 * in migrate_page_move_mapping(), it might still be our page,
718 	 * in which case it's essential to keep the node.
719 	 */
720 	while (!get_page_unless_zero(page)) {
721 		/*
722 		 * Another check for page->mapping != expected_mapping would
723 		 * work here too.  We have chosen the !PageSwapCache test to
724 		 * optimize the common case, when the page is or is about to
725 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
726 		 * in the ref_freeze section of __remove_mapping(); but Anon
727 		 * page->mapping reset to NULL later, in free_pages_prepare().
728 		 */
729 		if (!PageSwapCache(page))
730 			goto stale;
731 		cpu_relax();
732 	}
733 
734 	if (READ_ONCE(page->mapping) != expected_mapping) {
735 		put_page(page);
736 		goto stale;
737 	}
738 
739 	if (flags == GET_KSM_PAGE_TRYLOCK) {
740 		if (!trylock_page(page)) {
741 			put_page(page);
742 			return ERR_PTR(-EBUSY);
743 		}
744 	} else if (flags == GET_KSM_PAGE_LOCK)
745 		lock_page(page);
746 
747 	if (flags != GET_KSM_PAGE_NOLOCK) {
748 		if (READ_ONCE(page->mapping) != expected_mapping) {
749 			unlock_page(page);
750 			put_page(page);
751 			goto stale;
752 		}
753 	}
754 	return page;
755 
756 stale:
757 	/*
758 	 * We come here from above when page->mapping or !PageSwapCache
759 	 * suggests that the node is stale; but it might be under migration.
760 	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
761 	 * before checking whether node->kpfn has been changed.
762 	 */
763 	smp_rmb();
764 	if (READ_ONCE(stable_node->kpfn) != kpfn)
765 		goto again;
766 	remove_node_from_stable_tree(stable_node);
767 	return NULL;
768 }
769 
770 /*
771  * Removing rmap_item from stable or unstable tree.
772  * This function will clean the information from the stable/unstable tree.
773  */
774 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
775 {
776 	if (rmap_item->address & STABLE_FLAG) {
777 		struct stable_node *stable_node;
778 		struct page *page;
779 
780 		stable_node = rmap_item->head;
781 		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
782 		if (!page)
783 			goto out;
784 
785 		hlist_del(&rmap_item->hlist);
786 		unlock_page(page);
787 		put_page(page);
788 
789 		if (!hlist_empty(&stable_node->hlist))
790 			ksm_pages_sharing--;
791 		else
792 			ksm_pages_shared--;
793 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
794 		stable_node->rmap_hlist_len--;
795 
796 		put_anon_vma(rmap_item->anon_vma);
797 		rmap_item->address &= PAGE_MASK;
798 
799 	} else if (rmap_item->address & UNSTABLE_FLAG) {
800 		unsigned char age;
801 		/*
802 		 * Usually ksmd can and must skip the rb_erase, because
803 		 * root_unstable_tree was already reset to RB_ROOT.
804 		 * But be careful when an mm is exiting: do the rb_erase
805 		 * if this rmap_item was inserted by this scan, rather
806 		 * than left over from before.
807 		 */
808 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
809 		BUG_ON(age > 1);
810 		if (!age)
811 			rb_erase(&rmap_item->node,
812 				 root_unstable_tree + NUMA(rmap_item->nid));
813 		ksm_pages_unshared--;
814 		rmap_item->address &= PAGE_MASK;
815 	}
816 out:
817 	cond_resched();		/* we're called from many long loops */
818 }
819 
820 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
821 				       struct rmap_item **rmap_list)
822 {
823 	while (*rmap_list) {
824 		struct rmap_item *rmap_item = *rmap_list;
825 		*rmap_list = rmap_item->rmap_list;
826 		remove_rmap_item_from_tree(rmap_item);
827 		free_rmap_item(rmap_item);
828 	}
829 }
830 
831 /*
832  * Though it's very tempting to unmerge rmap_items from stable tree rather
833  * than check every pte of a given vma, the locking doesn't quite work for
834  * that - an rmap_item is assigned to the stable tree after inserting ksm
835  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
836  * rmap_items from parent to child at fork time (so as not to waste time
837  * if exit comes before the next scan reaches it).
838  *
839  * Similarly, although we'd like to remove rmap_items (so updating counts
840  * and freeing memory) when unmerging an area, it's easier to leave that
841  * to the next pass of ksmd - consider, for example, how ksmd might be
842  * in cmp_and_merge_page on one of the rmap_items we would be removing.
843  */
844 static int unmerge_ksm_pages(struct vm_area_struct *vma,
845 			     unsigned long start, unsigned long end)
846 {
847 	unsigned long addr;
848 	int err = 0;
849 
850 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
851 		if (ksm_test_exit(vma->vm_mm))
852 			break;
853 		if (signal_pending(current))
854 			err = -ERESTARTSYS;
855 		else
856 			err = break_ksm(vma, addr);
857 	}
858 	return err;
859 }
860 
861 static inline struct stable_node *page_stable_node(struct page *page)
862 {
863 	return PageKsm(page) ? page_rmapping(page) : NULL;
864 }
865 
866 static inline void set_page_stable_node(struct page *page,
867 					struct stable_node *stable_node)
868 {
869 	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
870 }
871 
872 #ifdef CONFIG_SYSFS
873 /*
874  * Only called through the sysfs control interface:
875  */
876 static int remove_stable_node(struct stable_node *stable_node)
877 {
878 	struct page *page;
879 	int err;
880 
881 	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
882 	if (!page) {
883 		/*
884 		 * get_ksm_page did remove_node_from_stable_tree itself.
885 		 */
886 		return 0;
887 	}
888 
889 	if (WARN_ON_ONCE(page_mapped(page))) {
890 		/*
891 		 * This should not happen: but if it does, just refuse to let
892 		 * merge_across_nodes be switched - there is no need to panic.
893 		 */
894 		err = -EBUSY;
895 	} else {
896 		/*
897 		 * The stable node did not yet appear stale to get_ksm_page(),
898 		 * since that allows for an unmapped ksm page to be recognized
899 		 * right up until it is freed; but the node is safe to remove.
900 		 * This page might be in a pagevec waiting to be freed,
901 		 * or it might be PageSwapCache (perhaps under writeback),
902 		 * or it might have been removed from swapcache a moment ago.
903 		 */
904 		set_page_stable_node(page, NULL);
905 		remove_node_from_stable_tree(stable_node);
906 		err = 0;
907 	}
908 
909 	unlock_page(page);
910 	put_page(page);
911 	return err;
912 }
913 
914 static int remove_stable_node_chain(struct stable_node *stable_node,
915 				    struct rb_root *root)
916 {
917 	struct stable_node *dup;
918 	struct hlist_node *hlist_safe;
919 
920 	if (!is_stable_node_chain(stable_node)) {
921 		VM_BUG_ON(is_stable_node_dup(stable_node));
922 		if (remove_stable_node(stable_node))
923 			return true;
924 		else
925 			return false;
926 	}
927 
928 	hlist_for_each_entry_safe(dup, hlist_safe,
929 				  &stable_node->hlist, hlist_dup) {
930 		VM_BUG_ON(!is_stable_node_dup(dup));
931 		if (remove_stable_node(dup))
932 			return true;
933 	}
934 	BUG_ON(!hlist_empty(&stable_node->hlist));
935 	free_stable_node_chain(stable_node, root);
936 	return false;
937 }
938 
939 static int remove_all_stable_nodes(void)
940 {
941 	struct stable_node *stable_node, *next;
942 	int nid;
943 	int err = 0;
944 
945 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
946 		while (root_stable_tree[nid].rb_node) {
947 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
948 						struct stable_node, node);
949 			if (remove_stable_node_chain(stable_node,
950 						     root_stable_tree + nid)) {
951 				err = -EBUSY;
952 				break;	/* proceed to next nid */
953 			}
954 			cond_resched();
955 		}
956 	}
957 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
958 		if (remove_stable_node(stable_node))
959 			err = -EBUSY;
960 		cond_resched();
961 	}
962 	return err;
963 }
964 
965 static int unmerge_and_remove_all_rmap_items(void)
966 {
967 	struct mm_slot *mm_slot;
968 	struct mm_struct *mm;
969 	struct vm_area_struct *vma;
970 	int err = 0;
971 
972 	spin_lock(&ksm_mmlist_lock);
973 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
974 						struct mm_slot, mm_list);
975 	spin_unlock(&ksm_mmlist_lock);
976 
977 	for (mm_slot = ksm_scan.mm_slot;
978 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
979 		mm = mm_slot->mm;
980 		down_read(&mm->mmap_sem);
981 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
982 			if (ksm_test_exit(mm))
983 				break;
984 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
985 				continue;
986 			err = unmerge_ksm_pages(vma,
987 						vma->vm_start, vma->vm_end);
988 			if (err)
989 				goto error;
990 		}
991 
992 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
993 		up_read(&mm->mmap_sem);
994 
995 		spin_lock(&ksm_mmlist_lock);
996 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
997 						struct mm_slot, mm_list);
998 		if (ksm_test_exit(mm)) {
999 			hash_del(&mm_slot->link);
1000 			list_del(&mm_slot->mm_list);
1001 			spin_unlock(&ksm_mmlist_lock);
1002 
1003 			free_mm_slot(mm_slot);
1004 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1005 			mmdrop(mm);
1006 		} else
1007 			spin_unlock(&ksm_mmlist_lock);
1008 	}
1009 
1010 	/* Clean up stable nodes, but don't worry if some are still busy */
1011 	remove_all_stable_nodes();
1012 	ksm_scan.seqnr = 0;
1013 	return 0;
1014 
1015 error:
1016 	up_read(&mm->mmap_sem);
1017 	spin_lock(&ksm_mmlist_lock);
1018 	ksm_scan.mm_slot = &ksm_mm_head;
1019 	spin_unlock(&ksm_mmlist_lock);
1020 	return err;
1021 }
1022 #endif /* CONFIG_SYSFS */
1023 
1024 static u32 calc_checksum(struct page *page)
1025 {
1026 	u32 checksum;
1027 	void *addr = kmap_atomic(page);
1028 	checksum = xxhash(addr, PAGE_SIZE, 0);
1029 	kunmap_atomic(addr);
1030 	return checksum;
1031 }
1032 
1033 static int memcmp_pages(struct page *page1, struct page *page2)
1034 {
1035 	char *addr1, *addr2;
1036 	int ret;
1037 
1038 	addr1 = kmap_atomic(page1);
1039 	addr2 = kmap_atomic(page2);
1040 	ret = memcmp(addr1, addr2, PAGE_SIZE);
1041 	kunmap_atomic(addr2);
1042 	kunmap_atomic(addr1);
1043 	return ret;
1044 }
1045 
1046 static inline int pages_identical(struct page *page1, struct page *page2)
1047 {
1048 	return !memcmp_pages(page1, page2);
1049 }
1050 
1051 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1052 			      pte_t *orig_pte)
1053 {
1054 	struct mm_struct *mm = vma->vm_mm;
1055 	struct page_vma_mapped_walk pvmw = {
1056 		.page = page,
1057 		.vma = vma,
1058 	};
1059 	int swapped;
1060 	int err = -EFAULT;
1061 	struct mmu_notifier_range range;
1062 
1063 	pvmw.address = page_address_in_vma(page, vma);
1064 	if (pvmw.address == -EFAULT)
1065 		goto out;
1066 
1067 	BUG_ON(PageTransCompound(page));
1068 
1069 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1070 				pvmw.address,
1071 				pvmw.address + PAGE_SIZE);
1072 	mmu_notifier_invalidate_range_start(&range);
1073 
1074 	if (!page_vma_mapped_walk(&pvmw))
1075 		goto out_mn;
1076 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1077 		goto out_unlock;
1078 
1079 	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1080 	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1081 						mm_tlb_flush_pending(mm)) {
1082 		pte_t entry;
1083 
1084 		swapped = PageSwapCache(page);
1085 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1086 		/*
1087 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1088 		 * take any lock, therefore the check that we are going to make
1089 		 * with the pagecount against the mapcount is racey and
1090 		 * O_DIRECT can happen right after the check.
1091 		 * So we clear the pte and flush the tlb before the check
1092 		 * this assure us that no O_DIRECT can happen after the check
1093 		 * or in the middle of the check.
1094 		 *
1095 		 * No need to notify as we are downgrading page table to read
1096 		 * only not changing it to point to a new page.
1097 		 *
1098 		 * See Documentation/vm/mmu_notifier.rst
1099 		 */
1100 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1101 		/*
1102 		 * Check that no O_DIRECT or similar I/O is in progress on the
1103 		 * page
1104 		 */
1105 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1106 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1107 			goto out_unlock;
1108 		}
1109 		if (pte_dirty(entry))
1110 			set_page_dirty(page);
1111 
1112 		if (pte_protnone(entry))
1113 			entry = pte_mkclean(pte_clear_savedwrite(entry));
1114 		else
1115 			entry = pte_mkclean(pte_wrprotect(entry));
1116 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1117 	}
1118 	*orig_pte = *pvmw.pte;
1119 	err = 0;
1120 
1121 out_unlock:
1122 	page_vma_mapped_walk_done(&pvmw);
1123 out_mn:
1124 	mmu_notifier_invalidate_range_end(&range);
1125 out:
1126 	return err;
1127 }
1128 
1129 /**
1130  * replace_page - replace page in vma by new ksm page
1131  * @vma:      vma that holds the pte pointing to page
1132  * @page:     the page we are replacing by kpage
1133  * @kpage:    the ksm page we replace page by
1134  * @orig_pte: the original value of the pte
1135  *
1136  * Returns 0 on success, -EFAULT on failure.
1137  */
1138 static int replace_page(struct vm_area_struct *vma, struct page *page,
1139 			struct page *kpage, pte_t orig_pte)
1140 {
1141 	struct mm_struct *mm = vma->vm_mm;
1142 	pmd_t *pmd;
1143 	pte_t *ptep;
1144 	pte_t newpte;
1145 	spinlock_t *ptl;
1146 	unsigned long addr;
1147 	int err = -EFAULT;
1148 	struct mmu_notifier_range range;
1149 
1150 	addr = page_address_in_vma(page, vma);
1151 	if (addr == -EFAULT)
1152 		goto out;
1153 
1154 	pmd = mm_find_pmd(mm, addr);
1155 	if (!pmd)
1156 		goto out;
1157 
1158 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1159 				addr + PAGE_SIZE);
1160 	mmu_notifier_invalidate_range_start(&range);
1161 
1162 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1163 	if (!pte_same(*ptep, orig_pte)) {
1164 		pte_unmap_unlock(ptep, ptl);
1165 		goto out_mn;
1166 	}
1167 
1168 	/*
1169 	 * No need to check ksm_use_zero_pages here: we can only have a
1170 	 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1171 	 */
1172 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1173 		get_page(kpage);
1174 		page_add_anon_rmap(kpage, vma, addr, false);
1175 		newpte = mk_pte(kpage, vma->vm_page_prot);
1176 	} else {
1177 		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1178 					       vma->vm_page_prot));
1179 		/*
1180 		 * We're replacing an anonymous page with a zero page, which is
1181 		 * not anonymous. We need to do proper accounting otherwise we
1182 		 * will get wrong values in /proc, and a BUG message in dmesg
1183 		 * when tearing down the mm.
1184 		 */
1185 		dec_mm_counter(mm, MM_ANONPAGES);
1186 	}
1187 
1188 	flush_cache_page(vma, addr, pte_pfn(*ptep));
1189 	/*
1190 	 * No need to notify as we are replacing a read only page with another
1191 	 * read only page with the same content.
1192 	 *
1193 	 * See Documentation/vm/mmu_notifier.rst
1194 	 */
1195 	ptep_clear_flush(vma, addr, ptep);
1196 	set_pte_at_notify(mm, addr, ptep, newpte);
1197 
1198 	page_remove_rmap(page, false);
1199 	if (!page_mapped(page))
1200 		try_to_free_swap(page);
1201 	put_page(page);
1202 
1203 	pte_unmap_unlock(ptep, ptl);
1204 	err = 0;
1205 out_mn:
1206 	mmu_notifier_invalidate_range_end(&range);
1207 out:
1208 	return err;
1209 }
1210 
1211 /*
1212  * try_to_merge_one_page - take two pages and merge them into one
1213  * @vma: the vma that holds the pte pointing to page
1214  * @page: the PageAnon page that we want to replace with kpage
1215  * @kpage: the PageKsm page that we want to map instead of page,
1216  *         or NULL the first time when we want to use page as kpage.
1217  *
1218  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1219  */
1220 static int try_to_merge_one_page(struct vm_area_struct *vma,
1221 				 struct page *page, struct page *kpage)
1222 {
1223 	pte_t orig_pte = __pte(0);
1224 	int err = -EFAULT;
1225 
1226 	if (page == kpage)			/* ksm page forked */
1227 		return 0;
1228 
1229 	if (!PageAnon(page))
1230 		goto out;
1231 
1232 	/*
1233 	 * We need the page lock to read a stable PageSwapCache in
1234 	 * write_protect_page().  We use trylock_page() instead of
1235 	 * lock_page() because we don't want to wait here - we
1236 	 * prefer to continue scanning and merging different pages,
1237 	 * then come back to this page when it is unlocked.
1238 	 */
1239 	if (!trylock_page(page))
1240 		goto out;
1241 
1242 	if (PageTransCompound(page)) {
1243 		if (split_huge_page(page))
1244 			goto out_unlock;
1245 	}
1246 
1247 	/*
1248 	 * If this anonymous page is mapped only here, its pte may need
1249 	 * to be write-protected.  If it's mapped elsewhere, all of its
1250 	 * ptes are necessarily already write-protected.  But in either
1251 	 * case, we need to lock and check page_count is not raised.
1252 	 */
1253 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1254 		if (!kpage) {
1255 			/*
1256 			 * While we hold page lock, upgrade page from
1257 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1258 			 * stable_tree_insert() will update stable_node.
1259 			 */
1260 			set_page_stable_node(page, NULL);
1261 			mark_page_accessed(page);
1262 			/*
1263 			 * Page reclaim just frees a clean page with no dirty
1264 			 * ptes: make sure that the ksm page would be swapped.
1265 			 */
1266 			if (!PageDirty(page))
1267 				SetPageDirty(page);
1268 			err = 0;
1269 		} else if (pages_identical(page, kpage))
1270 			err = replace_page(vma, page, kpage, orig_pte);
1271 	}
1272 
1273 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1274 		munlock_vma_page(page);
1275 		if (!PageMlocked(kpage)) {
1276 			unlock_page(page);
1277 			lock_page(kpage);
1278 			mlock_vma_page(kpage);
1279 			page = kpage;		/* for final unlock */
1280 		}
1281 	}
1282 
1283 out_unlock:
1284 	unlock_page(page);
1285 out:
1286 	return err;
1287 }
1288 
1289 /*
1290  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1291  * but no new kernel page is allocated: kpage must already be a ksm page.
1292  *
1293  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1294  */
1295 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1296 				      struct page *page, struct page *kpage)
1297 {
1298 	struct mm_struct *mm = rmap_item->mm;
1299 	struct vm_area_struct *vma;
1300 	int err = -EFAULT;
1301 
1302 	down_read(&mm->mmap_sem);
1303 	vma = find_mergeable_vma(mm, rmap_item->address);
1304 	if (!vma)
1305 		goto out;
1306 
1307 	err = try_to_merge_one_page(vma, page, kpage);
1308 	if (err)
1309 		goto out;
1310 
1311 	/* Unstable nid is in union with stable anon_vma: remove first */
1312 	remove_rmap_item_from_tree(rmap_item);
1313 
1314 	/* Must get reference to anon_vma while still holding mmap_sem */
1315 	rmap_item->anon_vma = vma->anon_vma;
1316 	get_anon_vma(vma->anon_vma);
1317 out:
1318 	up_read(&mm->mmap_sem);
1319 	return err;
1320 }
1321 
1322 /*
1323  * try_to_merge_two_pages - take two identical pages and prepare them
1324  * to be merged into one page.
1325  *
1326  * This function returns the kpage if we successfully merged two identical
1327  * pages into one ksm page, NULL otherwise.
1328  *
1329  * Note that this function upgrades page to ksm page: if one of the pages
1330  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1331  */
1332 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1333 					   struct page *page,
1334 					   struct rmap_item *tree_rmap_item,
1335 					   struct page *tree_page)
1336 {
1337 	int err;
1338 
1339 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1340 	if (!err) {
1341 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1342 							tree_page, page);
1343 		/*
1344 		 * If that fails, we have a ksm page with only one pte
1345 		 * pointing to it: so break it.
1346 		 */
1347 		if (err)
1348 			break_cow(rmap_item);
1349 	}
1350 	return err ? NULL : page;
1351 }
1352 
1353 static __always_inline
1354 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1355 {
1356 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1357 	/*
1358 	 * Check that at least one mapping still exists, otherwise
1359 	 * there's no much point to merge and share with this
1360 	 * stable_node, as the underlying tree_page of the other
1361 	 * sharer is going to be freed soon.
1362 	 */
1363 	return stable_node->rmap_hlist_len &&
1364 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1365 }
1366 
1367 static __always_inline
1368 bool is_page_sharing_candidate(struct stable_node *stable_node)
1369 {
1370 	return __is_page_sharing_candidate(stable_node, 0);
1371 }
1372 
1373 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1374 				    struct stable_node **_stable_node,
1375 				    struct rb_root *root,
1376 				    bool prune_stale_stable_nodes)
1377 {
1378 	struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1379 	struct hlist_node *hlist_safe;
1380 	struct page *_tree_page, *tree_page = NULL;
1381 	int nr = 0;
1382 	int found_rmap_hlist_len;
1383 
1384 	if (!prune_stale_stable_nodes ||
1385 	    time_before(jiffies, stable_node->chain_prune_time +
1386 			msecs_to_jiffies(
1387 				ksm_stable_node_chains_prune_millisecs)))
1388 		prune_stale_stable_nodes = false;
1389 	else
1390 		stable_node->chain_prune_time = jiffies;
1391 
1392 	hlist_for_each_entry_safe(dup, hlist_safe,
1393 				  &stable_node->hlist, hlist_dup) {
1394 		cond_resched();
1395 		/*
1396 		 * We must walk all stable_node_dup to prune the stale
1397 		 * stable nodes during lookup.
1398 		 *
1399 		 * get_ksm_page can drop the nodes from the
1400 		 * stable_node->hlist if they point to freed pages
1401 		 * (that's why we do a _safe walk). The "dup"
1402 		 * stable_node parameter itself will be freed from
1403 		 * under us if it returns NULL.
1404 		 */
1405 		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1406 		if (!_tree_page)
1407 			continue;
1408 		nr += 1;
1409 		if (is_page_sharing_candidate(dup)) {
1410 			if (!found ||
1411 			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1412 				if (found)
1413 					put_page(tree_page);
1414 				found = dup;
1415 				found_rmap_hlist_len = found->rmap_hlist_len;
1416 				tree_page = _tree_page;
1417 
1418 				/* skip put_page for found dup */
1419 				if (!prune_stale_stable_nodes)
1420 					break;
1421 				continue;
1422 			}
1423 		}
1424 		put_page(_tree_page);
1425 	}
1426 
1427 	if (found) {
1428 		/*
1429 		 * nr is counting all dups in the chain only if
1430 		 * prune_stale_stable_nodes is true, otherwise we may
1431 		 * break the loop at nr == 1 even if there are
1432 		 * multiple entries.
1433 		 */
1434 		if (prune_stale_stable_nodes && nr == 1) {
1435 			/*
1436 			 * If there's not just one entry it would
1437 			 * corrupt memory, better BUG_ON. In KSM
1438 			 * context with no lock held it's not even
1439 			 * fatal.
1440 			 */
1441 			BUG_ON(stable_node->hlist.first->next);
1442 
1443 			/*
1444 			 * There's just one entry and it is below the
1445 			 * deduplication limit so drop the chain.
1446 			 */
1447 			rb_replace_node(&stable_node->node, &found->node,
1448 					root);
1449 			free_stable_node(stable_node);
1450 			ksm_stable_node_chains--;
1451 			ksm_stable_node_dups--;
1452 			/*
1453 			 * NOTE: the caller depends on the stable_node
1454 			 * to be equal to stable_node_dup if the chain
1455 			 * was collapsed.
1456 			 */
1457 			*_stable_node = found;
1458 			/*
1459 			 * Just for robustneess as stable_node is
1460 			 * otherwise left as a stable pointer, the
1461 			 * compiler shall optimize it away at build
1462 			 * time.
1463 			 */
1464 			stable_node = NULL;
1465 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1466 			   __is_page_sharing_candidate(found, 1)) {
1467 			/*
1468 			 * If the found stable_node dup can accept one
1469 			 * more future merge (in addition to the one
1470 			 * that is underway) and is not at the head of
1471 			 * the chain, put it there so next search will
1472 			 * be quicker in the !prune_stale_stable_nodes
1473 			 * case.
1474 			 *
1475 			 * NOTE: it would be inaccurate to use nr > 1
1476 			 * instead of checking the hlist.first pointer
1477 			 * directly, because in the
1478 			 * prune_stale_stable_nodes case "nr" isn't
1479 			 * the position of the found dup in the chain,
1480 			 * but the total number of dups in the chain.
1481 			 */
1482 			hlist_del(&found->hlist_dup);
1483 			hlist_add_head(&found->hlist_dup,
1484 				       &stable_node->hlist);
1485 		}
1486 	}
1487 
1488 	*_stable_node_dup = found;
1489 	return tree_page;
1490 }
1491 
1492 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1493 					       struct rb_root *root)
1494 {
1495 	if (!is_stable_node_chain(stable_node))
1496 		return stable_node;
1497 	if (hlist_empty(&stable_node->hlist)) {
1498 		free_stable_node_chain(stable_node, root);
1499 		return NULL;
1500 	}
1501 	return hlist_entry(stable_node->hlist.first,
1502 			   typeof(*stable_node), hlist_dup);
1503 }
1504 
1505 /*
1506  * Like for get_ksm_page, this function can free the *_stable_node and
1507  * *_stable_node_dup if the returned tree_page is NULL.
1508  *
1509  * It can also free and overwrite *_stable_node with the found
1510  * stable_node_dup if the chain is collapsed (in which case
1511  * *_stable_node will be equal to *_stable_node_dup like if the chain
1512  * never existed). It's up to the caller to verify tree_page is not
1513  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1514  *
1515  * *_stable_node_dup is really a second output parameter of this
1516  * function and will be overwritten in all cases, the caller doesn't
1517  * need to initialize it.
1518  */
1519 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1520 					struct stable_node **_stable_node,
1521 					struct rb_root *root,
1522 					bool prune_stale_stable_nodes)
1523 {
1524 	struct stable_node *stable_node = *_stable_node;
1525 	if (!is_stable_node_chain(stable_node)) {
1526 		if (is_page_sharing_candidate(stable_node)) {
1527 			*_stable_node_dup = stable_node;
1528 			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1529 		}
1530 		/*
1531 		 * _stable_node_dup set to NULL means the stable_node
1532 		 * reached the ksm_max_page_sharing limit.
1533 		 */
1534 		*_stable_node_dup = NULL;
1535 		return NULL;
1536 	}
1537 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1538 			       prune_stale_stable_nodes);
1539 }
1540 
1541 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1542 						struct stable_node **s_n,
1543 						struct rb_root *root)
1544 {
1545 	return __stable_node_chain(s_n_d, s_n, root, true);
1546 }
1547 
1548 static __always_inline struct page *chain(struct stable_node **s_n_d,
1549 					  struct stable_node *s_n,
1550 					  struct rb_root *root)
1551 {
1552 	struct stable_node *old_stable_node = s_n;
1553 	struct page *tree_page;
1554 
1555 	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1556 	/* not pruning dups so s_n cannot have changed */
1557 	VM_BUG_ON(s_n != old_stable_node);
1558 	return tree_page;
1559 }
1560 
1561 /*
1562  * stable_tree_search - search for page inside the stable tree
1563  *
1564  * This function checks if there is a page inside the stable tree
1565  * with identical content to the page that we are scanning right now.
1566  *
1567  * This function returns the stable tree node of identical content if found,
1568  * NULL otherwise.
1569  */
1570 static struct page *stable_tree_search(struct page *page)
1571 {
1572 	int nid;
1573 	struct rb_root *root;
1574 	struct rb_node **new;
1575 	struct rb_node *parent;
1576 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1577 	struct stable_node *page_node;
1578 
1579 	page_node = page_stable_node(page);
1580 	if (page_node && page_node->head != &migrate_nodes) {
1581 		/* ksm page forked */
1582 		get_page(page);
1583 		return page;
1584 	}
1585 
1586 	nid = get_kpfn_nid(page_to_pfn(page));
1587 	root = root_stable_tree + nid;
1588 again:
1589 	new = &root->rb_node;
1590 	parent = NULL;
1591 
1592 	while (*new) {
1593 		struct page *tree_page;
1594 		int ret;
1595 
1596 		cond_resched();
1597 		stable_node = rb_entry(*new, struct stable_node, node);
1598 		stable_node_any = NULL;
1599 		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1600 		/*
1601 		 * NOTE: stable_node may have been freed by
1602 		 * chain_prune() if the returned stable_node_dup is
1603 		 * not NULL. stable_node_dup may have been inserted in
1604 		 * the rbtree instead as a regular stable_node (in
1605 		 * order to collapse the stable_node chain if a single
1606 		 * stable_node dup was found in it). In such case the
1607 		 * stable_node is overwritten by the calleee to point
1608 		 * to the stable_node_dup that was collapsed in the
1609 		 * stable rbtree and stable_node will be equal to
1610 		 * stable_node_dup like if the chain never existed.
1611 		 */
1612 		if (!stable_node_dup) {
1613 			/*
1614 			 * Either all stable_node dups were full in
1615 			 * this stable_node chain, or this chain was
1616 			 * empty and should be rb_erased.
1617 			 */
1618 			stable_node_any = stable_node_dup_any(stable_node,
1619 							      root);
1620 			if (!stable_node_any) {
1621 				/* rb_erase just run */
1622 				goto again;
1623 			}
1624 			/*
1625 			 * Take any of the stable_node dups page of
1626 			 * this stable_node chain to let the tree walk
1627 			 * continue. All KSM pages belonging to the
1628 			 * stable_node dups in a stable_node chain
1629 			 * have the same content and they're
1630 			 * wrprotected at all times. Any will work
1631 			 * fine to continue the walk.
1632 			 */
1633 			tree_page = get_ksm_page(stable_node_any,
1634 						 GET_KSM_PAGE_NOLOCK);
1635 		}
1636 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1637 		if (!tree_page) {
1638 			/*
1639 			 * If we walked over a stale stable_node,
1640 			 * get_ksm_page() will call rb_erase() and it
1641 			 * may rebalance the tree from under us. So
1642 			 * restart the search from scratch. Returning
1643 			 * NULL would be safe too, but we'd generate
1644 			 * false negative insertions just because some
1645 			 * stable_node was stale.
1646 			 */
1647 			goto again;
1648 		}
1649 
1650 		ret = memcmp_pages(page, tree_page);
1651 		put_page(tree_page);
1652 
1653 		parent = *new;
1654 		if (ret < 0)
1655 			new = &parent->rb_left;
1656 		else if (ret > 0)
1657 			new = &parent->rb_right;
1658 		else {
1659 			if (page_node) {
1660 				VM_BUG_ON(page_node->head != &migrate_nodes);
1661 				/*
1662 				 * Test if the migrated page should be merged
1663 				 * into a stable node dup. If the mapcount is
1664 				 * 1 we can migrate it with another KSM page
1665 				 * without adding it to the chain.
1666 				 */
1667 				if (page_mapcount(page) > 1)
1668 					goto chain_append;
1669 			}
1670 
1671 			if (!stable_node_dup) {
1672 				/*
1673 				 * If the stable_node is a chain and
1674 				 * we got a payload match in memcmp
1675 				 * but we cannot merge the scanned
1676 				 * page in any of the existing
1677 				 * stable_node dups because they're
1678 				 * all full, we need to wait the
1679 				 * scanned page to find itself a match
1680 				 * in the unstable tree to create a
1681 				 * brand new KSM page to add later to
1682 				 * the dups of this stable_node.
1683 				 */
1684 				return NULL;
1685 			}
1686 
1687 			/*
1688 			 * Lock and unlock the stable_node's page (which
1689 			 * might already have been migrated) so that page
1690 			 * migration is sure to notice its raised count.
1691 			 * It would be more elegant to return stable_node
1692 			 * than kpage, but that involves more changes.
1693 			 */
1694 			tree_page = get_ksm_page(stable_node_dup,
1695 						 GET_KSM_PAGE_TRYLOCK);
1696 
1697 			if (PTR_ERR(tree_page) == -EBUSY)
1698 				return ERR_PTR(-EBUSY);
1699 
1700 			if (unlikely(!tree_page))
1701 				/*
1702 				 * The tree may have been rebalanced,
1703 				 * so re-evaluate parent and new.
1704 				 */
1705 				goto again;
1706 			unlock_page(tree_page);
1707 
1708 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1709 			    NUMA(stable_node_dup->nid)) {
1710 				put_page(tree_page);
1711 				goto replace;
1712 			}
1713 			return tree_page;
1714 		}
1715 	}
1716 
1717 	if (!page_node)
1718 		return NULL;
1719 
1720 	list_del(&page_node->list);
1721 	DO_NUMA(page_node->nid = nid);
1722 	rb_link_node(&page_node->node, parent, new);
1723 	rb_insert_color(&page_node->node, root);
1724 out:
1725 	if (is_page_sharing_candidate(page_node)) {
1726 		get_page(page);
1727 		return page;
1728 	} else
1729 		return NULL;
1730 
1731 replace:
1732 	/*
1733 	 * If stable_node was a chain and chain_prune collapsed it,
1734 	 * stable_node has been updated to be the new regular
1735 	 * stable_node. A collapse of the chain is indistinguishable
1736 	 * from the case there was no chain in the stable
1737 	 * rbtree. Otherwise stable_node is the chain and
1738 	 * stable_node_dup is the dup to replace.
1739 	 */
1740 	if (stable_node_dup == stable_node) {
1741 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1742 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1743 		/* there is no chain */
1744 		if (page_node) {
1745 			VM_BUG_ON(page_node->head != &migrate_nodes);
1746 			list_del(&page_node->list);
1747 			DO_NUMA(page_node->nid = nid);
1748 			rb_replace_node(&stable_node_dup->node,
1749 					&page_node->node,
1750 					root);
1751 			if (is_page_sharing_candidate(page_node))
1752 				get_page(page);
1753 			else
1754 				page = NULL;
1755 		} else {
1756 			rb_erase(&stable_node_dup->node, root);
1757 			page = NULL;
1758 		}
1759 	} else {
1760 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1761 		__stable_node_dup_del(stable_node_dup);
1762 		if (page_node) {
1763 			VM_BUG_ON(page_node->head != &migrate_nodes);
1764 			list_del(&page_node->list);
1765 			DO_NUMA(page_node->nid = nid);
1766 			stable_node_chain_add_dup(page_node, stable_node);
1767 			if (is_page_sharing_candidate(page_node))
1768 				get_page(page);
1769 			else
1770 				page = NULL;
1771 		} else {
1772 			page = NULL;
1773 		}
1774 	}
1775 	stable_node_dup->head = &migrate_nodes;
1776 	list_add(&stable_node_dup->list, stable_node_dup->head);
1777 	return page;
1778 
1779 chain_append:
1780 	/* stable_node_dup could be null if it reached the limit */
1781 	if (!stable_node_dup)
1782 		stable_node_dup = stable_node_any;
1783 	/*
1784 	 * If stable_node was a chain and chain_prune collapsed it,
1785 	 * stable_node has been updated to be the new regular
1786 	 * stable_node. A collapse of the chain is indistinguishable
1787 	 * from the case there was no chain in the stable
1788 	 * rbtree. Otherwise stable_node is the chain and
1789 	 * stable_node_dup is the dup to replace.
1790 	 */
1791 	if (stable_node_dup == stable_node) {
1792 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1793 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1794 		/* chain is missing so create it */
1795 		stable_node = alloc_stable_node_chain(stable_node_dup,
1796 						      root);
1797 		if (!stable_node)
1798 			return NULL;
1799 	}
1800 	/*
1801 	 * Add this stable_node dup that was
1802 	 * migrated to the stable_node chain
1803 	 * of the current nid for this page
1804 	 * content.
1805 	 */
1806 	VM_BUG_ON(!is_stable_node_chain(stable_node));
1807 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1808 	VM_BUG_ON(page_node->head != &migrate_nodes);
1809 	list_del(&page_node->list);
1810 	DO_NUMA(page_node->nid = nid);
1811 	stable_node_chain_add_dup(page_node, stable_node);
1812 	goto out;
1813 }
1814 
1815 /*
1816  * stable_tree_insert - insert stable tree node pointing to new ksm page
1817  * into the stable tree.
1818  *
1819  * This function returns the stable tree node just allocated on success,
1820  * NULL otherwise.
1821  */
1822 static struct stable_node *stable_tree_insert(struct page *kpage)
1823 {
1824 	int nid;
1825 	unsigned long kpfn;
1826 	struct rb_root *root;
1827 	struct rb_node **new;
1828 	struct rb_node *parent;
1829 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1830 	bool need_chain = false;
1831 
1832 	kpfn = page_to_pfn(kpage);
1833 	nid = get_kpfn_nid(kpfn);
1834 	root = root_stable_tree + nid;
1835 again:
1836 	parent = NULL;
1837 	new = &root->rb_node;
1838 
1839 	while (*new) {
1840 		struct page *tree_page;
1841 		int ret;
1842 
1843 		cond_resched();
1844 		stable_node = rb_entry(*new, struct stable_node, node);
1845 		stable_node_any = NULL;
1846 		tree_page = chain(&stable_node_dup, stable_node, root);
1847 		if (!stable_node_dup) {
1848 			/*
1849 			 * Either all stable_node dups were full in
1850 			 * this stable_node chain, or this chain was
1851 			 * empty and should be rb_erased.
1852 			 */
1853 			stable_node_any = stable_node_dup_any(stable_node,
1854 							      root);
1855 			if (!stable_node_any) {
1856 				/* rb_erase just run */
1857 				goto again;
1858 			}
1859 			/*
1860 			 * Take any of the stable_node dups page of
1861 			 * this stable_node chain to let the tree walk
1862 			 * continue. All KSM pages belonging to the
1863 			 * stable_node dups in a stable_node chain
1864 			 * have the same content and they're
1865 			 * wrprotected at all times. Any will work
1866 			 * fine to continue the walk.
1867 			 */
1868 			tree_page = get_ksm_page(stable_node_any,
1869 						 GET_KSM_PAGE_NOLOCK);
1870 		}
1871 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1872 		if (!tree_page) {
1873 			/*
1874 			 * If we walked over a stale stable_node,
1875 			 * get_ksm_page() will call rb_erase() and it
1876 			 * may rebalance the tree from under us. So
1877 			 * restart the search from scratch. Returning
1878 			 * NULL would be safe too, but we'd generate
1879 			 * false negative insertions just because some
1880 			 * stable_node was stale.
1881 			 */
1882 			goto again;
1883 		}
1884 
1885 		ret = memcmp_pages(kpage, tree_page);
1886 		put_page(tree_page);
1887 
1888 		parent = *new;
1889 		if (ret < 0)
1890 			new = &parent->rb_left;
1891 		else if (ret > 0)
1892 			new = &parent->rb_right;
1893 		else {
1894 			need_chain = true;
1895 			break;
1896 		}
1897 	}
1898 
1899 	stable_node_dup = alloc_stable_node();
1900 	if (!stable_node_dup)
1901 		return NULL;
1902 
1903 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1904 	stable_node_dup->kpfn = kpfn;
1905 	set_page_stable_node(kpage, stable_node_dup);
1906 	stable_node_dup->rmap_hlist_len = 0;
1907 	DO_NUMA(stable_node_dup->nid = nid);
1908 	if (!need_chain) {
1909 		rb_link_node(&stable_node_dup->node, parent, new);
1910 		rb_insert_color(&stable_node_dup->node, root);
1911 	} else {
1912 		if (!is_stable_node_chain(stable_node)) {
1913 			struct stable_node *orig = stable_node;
1914 			/* chain is missing so create it */
1915 			stable_node = alloc_stable_node_chain(orig, root);
1916 			if (!stable_node) {
1917 				free_stable_node(stable_node_dup);
1918 				return NULL;
1919 			}
1920 		}
1921 		stable_node_chain_add_dup(stable_node_dup, stable_node);
1922 	}
1923 
1924 	return stable_node_dup;
1925 }
1926 
1927 /*
1928  * unstable_tree_search_insert - search for identical page,
1929  * else insert rmap_item into the unstable tree.
1930  *
1931  * This function searches for a page in the unstable tree identical to the
1932  * page currently being scanned; and if no identical page is found in the
1933  * tree, we insert rmap_item as a new object into the unstable tree.
1934  *
1935  * This function returns pointer to rmap_item found to be identical
1936  * to the currently scanned page, NULL otherwise.
1937  *
1938  * This function does both searching and inserting, because they share
1939  * the same walking algorithm in an rbtree.
1940  */
1941 static
1942 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1943 					      struct page *page,
1944 					      struct page **tree_pagep)
1945 {
1946 	struct rb_node **new;
1947 	struct rb_root *root;
1948 	struct rb_node *parent = NULL;
1949 	int nid;
1950 
1951 	nid = get_kpfn_nid(page_to_pfn(page));
1952 	root = root_unstable_tree + nid;
1953 	new = &root->rb_node;
1954 
1955 	while (*new) {
1956 		struct rmap_item *tree_rmap_item;
1957 		struct page *tree_page;
1958 		int ret;
1959 
1960 		cond_resched();
1961 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1962 		tree_page = get_mergeable_page(tree_rmap_item);
1963 		if (!tree_page)
1964 			return NULL;
1965 
1966 		/*
1967 		 * Don't substitute a ksm page for a forked page.
1968 		 */
1969 		if (page == tree_page) {
1970 			put_page(tree_page);
1971 			return NULL;
1972 		}
1973 
1974 		ret = memcmp_pages(page, tree_page);
1975 
1976 		parent = *new;
1977 		if (ret < 0) {
1978 			put_page(tree_page);
1979 			new = &parent->rb_left;
1980 		} else if (ret > 0) {
1981 			put_page(tree_page);
1982 			new = &parent->rb_right;
1983 		} else if (!ksm_merge_across_nodes &&
1984 			   page_to_nid(tree_page) != nid) {
1985 			/*
1986 			 * If tree_page has been migrated to another NUMA node,
1987 			 * it will be flushed out and put in the right unstable
1988 			 * tree next time: only merge with it when across_nodes.
1989 			 */
1990 			put_page(tree_page);
1991 			return NULL;
1992 		} else {
1993 			*tree_pagep = tree_page;
1994 			return tree_rmap_item;
1995 		}
1996 	}
1997 
1998 	rmap_item->address |= UNSTABLE_FLAG;
1999 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2000 	DO_NUMA(rmap_item->nid = nid);
2001 	rb_link_node(&rmap_item->node, parent, new);
2002 	rb_insert_color(&rmap_item->node, root);
2003 
2004 	ksm_pages_unshared++;
2005 	return NULL;
2006 }
2007 
2008 /*
2009  * stable_tree_append - add another rmap_item to the linked list of
2010  * rmap_items hanging off a given node of the stable tree, all sharing
2011  * the same ksm page.
2012  */
2013 static void stable_tree_append(struct rmap_item *rmap_item,
2014 			       struct stable_node *stable_node,
2015 			       bool max_page_sharing_bypass)
2016 {
2017 	/*
2018 	 * rmap won't find this mapping if we don't insert the
2019 	 * rmap_item in the right stable_node
2020 	 * duplicate. page_migration could break later if rmap breaks,
2021 	 * so we can as well crash here. We really need to check for
2022 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2023 	 * for other negative values as an undeflow if detected here
2024 	 * for the first time (and not when decreasing rmap_hlist_len)
2025 	 * would be sign of memory corruption in the stable_node.
2026 	 */
2027 	BUG_ON(stable_node->rmap_hlist_len < 0);
2028 
2029 	stable_node->rmap_hlist_len++;
2030 	if (!max_page_sharing_bypass)
2031 		/* possibly non fatal but unexpected overflow, only warn */
2032 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2033 			     ksm_max_page_sharing);
2034 
2035 	rmap_item->head = stable_node;
2036 	rmap_item->address |= STABLE_FLAG;
2037 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2038 
2039 	if (rmap_item->hlist.next)
2040 		ksm_pages_sharing++;
2041 	else
2042 		ksm_pages_shared++;
2043 }
2044 
2045 /*
2046  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2047  * if not, compare checksum to previous and if it's the same, see if page can
2048  * be inserted into the unstable tree, or merged with a page already there and
2049  * both transferred to the stable tree.
2050  *
2051  * @page: the page that we are searching identical page to.
2052  * @rmap_item: the reverse mapping into the virtual address of this page
2053  */
2054 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2055 {
2056 	struct mm_struct *mm = rmap_item->mm;
2057 	struct rmap_item *tree_rmap_item;
2058 	struct page *tree_page = NULL;
2059 	struct stable_node *stable_node;
2060 	struct page *kpage;
2061 	unsigned int checksum;
2062 	int err;
2063 	bool max_page_sharing_bypass = false;
2064 
2065 	stable_node = page_stable_node(page);
2066 	if (stable_node) {
2067 		if (stable_node->head != &migrate_nodes &&
2068 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2069 		    NUMA(stable_node->nid)) {
2070 			stable_node_dup_del(stable_node);
2071 			stable_node->head = &migrate_nodes;
2072 			list_add(&stable_node->list, stable_node->head);
2073 		}
2074 		if (stable_node->head != &migrate_nodes &&
2075 		    rmap_item->head == stable_node)
2076 			return;
2077 		/*
2078 		 * If it's a KSM fork, allow it to go over the sharing limit
2079 		 * without warnings.
2080 		 */
2081 		if (!is_page_sharing_candidate(stable_node))
2082 			max_page_sharing_bypass = true;
2083 	}
2084 
2085 	/* We first start with searching the page inside the stable tree */
2086 	kpage = stable_tree_search(page);
2087 	if (kpage == page && rmap_item->head == stable_node) {
2088 		put_page(kpage);
2089 		return;
2090 	}
2091 
2092 	remove_rmap_item_from_tree(rmap_item);
2093 
2094 	if (kpage) {
2095 		if (PTR_ERR(kpage) == -EBUSY)
2096 			return;
2097 
2098 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2099 		if (!err) {
2100 			/*
2101 			 * The page was successfully merged:
2102 			 * add its rmap_item to the stable tree.
2103 			 */
2104 			lock_page(kpage);
2105 			stable_tree_append(rmap_item, page_stable_node(kpage),
2106 					   max_page_sharing_bypass);
2107 			unlock_page(kpage);
2108 		}
2109 		put_page(kpage);
2110 		return;
2111 	}
2112 
2113 	/*
2114 	 * If the hash value of the page has changed from the last time
2115 	 * we calculated it, this page is changing frequently: therefore we
2116 	 * don't want to insert it in the unstable tree, and we don't want
2117 	 * to waste our time searching for something identical to it there.
2118 	 */
2119 	checksum = calc_checksum(page);
2120 	if (rmap_item->oldchecksum != checksum) {
2121 		rmap_item->oldchecksum = checksum;
2122 		return;
2123 	}
2124 
2125 	/*
2126 	 * Same checksum as an empty page. We attempt to merge it with the
2127 	 * appropriate zero page if the user enabled this via sysfs.
2128 	 */
2129 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2130 		struct vm_area_struct *vma;
2131 
2132 		down_read(&mm->mmap_sem);
2133 		vma = find_mergeable_vma(mm, rmap_item->address);
2134 		err = try_to_merge_one_page(vma, page,
2135 					    ZERO_PAGE(rmap_item->address));
2136 		up_read(&mm->mmap_sem);
2137 		/*
2138 		 * In case of failure, the page was not really empty, so we
2139 		 * need to continue. Otherwise we're done.
2140 		 */
2141 		if (!err)
2142 			return;
2143 	}
2144 	tree_rmap_item =
2145 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2146 	if (tree_rmap_item) {
2147 		bool split;
2148 
2149 		kpage = try_to_merge_two_pages(rmap_item, page,
2150 						tree_rmap_item, tree_page);
2151 		/*
2152 		 * If both pages we tried to merge belong to the same compound
2153 		 * page, then we actually ended up increasing the reference
2154 		 * count of the same compound page twice, and split_huge_page
2155 		 * failed.
2156 		 * Here we set a flag if that happened, and we use it later to
2157 		 * try split_huge_page again. Since we call put_page right
2158 		 * afterwards, the reference count will be correct and
2159 		 * split_huge_page should succeed.
2160 		 */
2161 		split = PageTransCompound(page)
2162 			&& compound_head(page) == compound_head(tree_page);
2163 		put_page(tree_page);
2164 		if (kpage) {
2165 			/*
2166 			 * The pages were successfully merged: insert new
2167 			 * node in the stable tree and add both rmap_items.
2168 			 */
2169 			lock_page(kpage);
2170 			stable_node = stable_tree_insert(kpage);
2171 			if (stable_node) {
2172 				stable_tree_append(tree_rmap_item, stable_node,
2173 						   false);
2174 				stable_tree_append(rmap_item, stable_node,
2175 						   false);
2176 			}
2177 			unlock_page(kpage);
2178 
2179 			/*
2180 			 * If we fail to insert the page into the stable tree,
2181 			 * we will have 2 virtual addresses that are pointing
2182 			 * to a ksm page left outside the stable tree,
2183 			 * in which case we need to break_cow on both.
2184 			 */
2185 			if (!stable_node) {
2186 				break_cow(tree_rmap_item);
2187 				break_cow(rmap_item);
2188 			}
2189 		} else if (split) {
2190 			/*
2191 			 * We are here if we tried to merge two pages and
2192 			 * failed because they both belonged to the same
2193 			 * compound page. We will split the page now, but no
2194 			 * merging will take place.
2195 			 * We do not want to add the cost of a full lock; if
2196 			 * the page is locked, it is better to skip it and
2197 			 * perhaps try again later.
2198 			 */
2199 			if (!trylock_page(page))
2200 				return;
2201 			split_huge_page(page);
2202 			unlock_page(page);
2203 		}
2204 	}
2205 }
2206 
2207 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2208 					    struct rmap_item **rmap_list,
2209 					    unsigned long addr)
2210 {
2211 	struct rmap_item *rmap_item;
2212 
2213 	while (*rmap_list) {
2214 		rmap_item = *rmap_list;
2215 		if ((rmap_item->address & PAGE_MASK) == addr)
2216 			return rmap_item;
2217 		if (rmap_item->address > addr)
2218 			break;
2219 		*rmap_list = rmap_item->rmap_list;
2220 		remove_rmap_item_from_tree(rmap_item);
2221 		free_rmap_item(rmap_item);
2222 	}
2223 
2224 	rmap_item = alloc_rmap_item();
2225 	if (rmap_item) {
2226 		/* It has already been zeroed */
2227 		rmap_item->mm = mm_slot->mm;
2228 		rmap_item->address = addr;
2229 		rmap_item->rmap_list = *rmap_list;
2230 		*rmap_list = rmap_item;
2231 	}
2232 	return rmap_item;
2233 }
2234 
2235 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2236 {
2237 	struct mm_struct *mm;
2238 	struct mm_slot *slot;
2239 	struct vm_area_struct *vma;
2240 	struct rmap_item *rmap_item;
2241 	int nid;
2242 
2243 	if (list_empty(&ksm_mm_head.mm_list))
2244 		return NULL;
2245 
2246 	slot = ksm_scan.mm_slot;
2247 	if (slot == &ksm_mm_head) {
2248 		/*
2249 		 * A number of pages can hang around indefinitely on per-cpu
2250 		 * pagevecs, raised page count preventing write_protect_page
2251 		 * from merging them.  Though it doesn't really matter much,
2252 		 * it is puzzling to see some stuck in pages_volatile until
2253 		 * other activity jostles them out, and they also prevented
2254 		 * LTP's KSM test from succeeding deterministically; so drain
2255 		 * them here (here rather than on entry to ksm_do_scan(),
2256 		 * so we don't IPI too often when pages_to_scan is set low).
2257 		 */
2258 		lru_add_drain_all();
2259 
2260 		/*
2261 		 * Whereas stale stable_nodes on the stable_tree itself
2262 		 * get pruned in the regular course of stable_tree_search(),
2263 		 * those moved out to the migrate_nodes list can accumulate:
2264 		 * so prune them once before each full scan.
2265 		 */
2266 		if (!ksm_merge_across_nodes) {
2267 			struct stable_node *stable_node, *next;
2268 			struct page *page;
2269 
2270 			list_for_each_entry_safe(stable_node, next,
2271 						 &migrate_nodes, list) {
2272 				page = get_ksm_page(stable_node,
2273 						    GET_KSM_PAGE_NOLOCK);
2274 				if (page)
2275 					put_page(page);
2276 				cond_resched();
2277 			}
2278 		}
2279 
2280 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2281 			root_unstable_tree[nid] = RB_ROOT;
2282 
2283 		spin_lock(&ksm_mmlist_lock);
2284 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2285 		ksm_scan.mm_slot = slot;
2286 		spin_unlock(&ksm_mmlist_lock);
2287 		/*
2288 		 * Although we tested list_empty() above, a racing __ksm_exit
2289 		 * of the last mm on the list may have removed it since then.
2290 		 */
2291 		if (slot == &ksm_mm_head)
2292 			return NULL;
2293 next_mm:
2294 		ksm_scan.address = 0;
2295 		ksm_scan.rmap_list = &slot->rmap_list;
2296 	}
2297 
2298 	mm = slot->mm;
2299 	down_read(&mm->mmap_sem);
2300 	if (ksm_test_exit(mm))
2301 		vma = NULL;
2302 	else
2303 		vma = find_vma(mm, ksm_scan.address);
2304 
2305 	for (; vma; vma = vma->vm_next) {
2306 		if (!(vma->vm_flags & VM_MERGEABLE))
2307 			continue;
2308 		if (ksm_scan.address < vma->vm_start)
2309 			ksm_scan.address = vma->vm_start;
2310 		if (!vma->anon_vma)
2311 			ksm_scan.address = vma->vm_end;
2312 
2313 		while (ksm_scan.address < vma->vm_end) {
2314 			if (ksm_test_exit(mm))
2315 				break;
2316 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2317 			if (IS_ERR_OR_NULL(*page)) {
2318 				ksm_scan.address += PAGE_SIZE;
2319 				cond_resched();
2320 				continue;
2321 			}
2322 			if (PageAnon(*page)) {
2323 				flush_anon_page(vma, *page, ksm_scan.address);
2324 				flush_dcache_page(*page);
2325 				rmap_item = get_next_rmap_item(slot,
2326 					ksm_scan.rmap_list, ksm_scan.address);
2327 				if (rmap_item) {
2328 					ksm_scan.rmap_list =
2329 							&rmap_item->rmap_list;
2330 					ksm_scan.address += PAGE_SIZE;
2331 				} else
2332 					put_page(*page);
2333 				up_read(&mm->mmap_sem);
2334 				return rmap_item;
2335 			}
2336 			put_page(*page);
2337 			ksm_scan.address += PAGE_SIZE;
2338 			cond_resched();
2339 		}
2340 	}
2341 
2342 	if (ksm_test_exit(mm)) {
2343 		ksm_scan.address = 0;
2344 		ksm_scan.rmap_list = &slot->rmap_list;
2345 	}
2346 	/*
2347 	 * Nuke all the rmap_items that are above this current rmap:
2348 	 * because there were no VM_MERGEABLE vmas with such addresses.
2349 	 */
2350 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2351 
2352 	spin_lock(&ksm_mmlist_lock);
2353 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2354 						struct mm_slot, mm_list);
2355 	if (ksm_scan.address == 0) {
2356 		/*
2357 		 * We've completed a full scan of all vmas, holding mmap_sem
2358 		 * throughout, and found no VM_MERGEABLE: so do the same as
2359 		 * __ksm_exit does to remove this mm from all our lists now.
2360 		 * This applies either when cleaning up after __ksm_exit
2361 		 * (but beware: we can reach here even before __ksm_exit),
2362 		 * or when all VM_MERGEABLE areas have been unmapped (and
2363 		 * mmap_sem then protects against race with MADV_MERGEABLE).
2364 		 */
2365 		hash_del(&slot->link);
2366 		list_del(&slot->mm_list);
2367 		spin_unlock(&ksm_mmlist_lock);
2368 
2369 		free_mm_slot(slot);
2370 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2371 		up_read(&mm->mmap_sem);
2372 		mmdrop(mm);
2373 	} else {
2374 		up_read(&mm->mmap_sem);
2375 		/*
2376 		 * up_read(&mm->mmap_sem) first because after
2377 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2378 		 * already have been freed under us by __ksm_exit()
2379 		 * because the "mm_slot" is still hashed and
2380 		 * ksm_scan.mm_slot doesn't point to it anymore.
2381 		 */
2382 		spin_unlock(&ksm_mmlist_lock);
2383 	}
2384 
2385 	/* Repeat until we've completed scanning the whole list */
2386 	slot = ksm_scan.mm_slot;
2387 	if (slot != &ksm_mm_head)
2388 		goto next_mm;
2389 
2390 	ksm_scan.seqnr++;
2391 	return NULL;
2392 }
2393 
2394 /**
2395  * ksm_do_scan  - the ksm scanner main worker function.
2396  * @scan_npages:  number of pages we want to scan before we return.
2397  */
2398 static void ksm_do_scan(unsigned int scan_npages)
2399 {
2400 	struct rmap_item *rmap_item;
2401 	struct page *uninitialized_var(page);
2402 
2403 	while (scan_npages-- && likely(!freezing(current))) {
2404 		cond_resched();
2405 		rmap_item = scan_get_next_rmap_item(&page);
2406 		if (!rmap_item)
2407 			return;
2408 		cmp_and_merge_page(page, rmap_item);
2409 		put_page(page);
2410 	}
2411 }
2412 
2413 static int ksmd_should_run(void)
2414 {
2415 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2416 }
2417 
2418 static int ksm_scan_thread(void *nothing)
2419 {
2420 	unsigned int sleep_ms;
2421 
2422 	set_freezable();
2423 	set_user_nice(current, 5);
2424 
2425 	while (!kthread_should_stop()) {
2426 		mutex_lock(&ksm_thread_mutex);
2427 		wait_while_offlining();
2428 		if (ksmd_should_run())
2429 			ksm_do_scan(ksm_thread_pages_to_scan);
2430 		mutex_unlock(&ksm_thread_mutex);
2431 
2432 		try_to_freeze();
2433 
2434 		if (ksmd_should_run()) {
2435 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2436 			wait_event_interruptible_timeout(ksm_iter_wait,
2437 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2438 				msecs_to_jiffies(sleep_ms));
2439 		} else {
2440 			wait_event_freezable(ksm_thread_wait,
2441 				ksmd_should_run() || kthread_should_stop());
2442 		}
2443 	}
2444 	return 0;
2445 }
2446 
2447 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2448 		unsigned long end, int advice, unsigned long *vm_flags)
2449 {
2450 	struct mm_struct *mm = vma->vm_mm;
2451 	int err;
2452 
2453 	switch (advice) {
2454 	case MADV_MERGEABLE:
2455 		/*
2456 		 * Be somewhat over-protective for now!
2457 		 */
2458 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2459 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2460 				 VM_HUGETLB | VM_MIXEDMAP))
2461 			return 0;		/* just ignore the advice */
2462 
2463 		if (vma_is_dax(vma))
2464 			return 0;
2465 
2466 #ifdef VM_SAO
2467 		if (*vm_flags & VM_SAO)
2468 			return 0;
2469 #endif
2470 #ifdef VM_SPARC_ADI
2471 		if (*vm_flags & VM_SPARC_ADI)
2472 			return 0;
2473 #endif
2474 
2475 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2476 			err = __ksm_enter(mm);
2477 			if (err)
2478 				return err;
2479 		}
2480 
2481 		*vm_flags |= VM_MERGEABLE;
2482 		break;
2483 
2484 	case MADV_UNMERGEABLE:
2485 		if (!(*vm_flags & VM_MERGEABLE))
2486 			return 0;		/* just ignore the advice */
2487 
2488 		if (vma->anon_vma) {
2489 			err = unmerge_ksm_pages(vma, start, end);
2490 			if (err)
2491 				return err;
2492 		}
2493 
2494 		*vm_flags &= ~VM_MERGEABLE;
2495 		break;
2496 	}
2497 
2498 	return 0;
2499 }
2500 
2501 int __ksm_enter(struct mm_struct *mm)
2502 {
2503 	struct mm_slot *mm_slot;
2504 	int needs_wakeup;
2505 
2506 	mm_slot = alloc_mm_slot();
2507 	if (!mm_slot)
2508 		return -ENOMEM;
2509 
2510 	/* Check ksm_run too?  Would need tighter locking */
2511 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2512 
2513 	spin_lock(&ksm_mmlist_lock);
2514 	insert_to_mm_slots_hash(mm, mm_slot);
2515 	/*
2516 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2517 	 * insert just behind the scanning cursor, to let the area settle
2518 	 * down a little; when fork is followed by immediate exec, we don't
2519 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2520 	 *
2521 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2522 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2523 	 * missed: then we might as well insert at the end of the list.
2524 	 */
2525 	if (ksm_run & KSM_RUN_UNMERGE)
2526 		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2527 	else
2528 		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2529 	spin_unlock(&ksm_mmlist_lock);
2530 
2531 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2532 	mmgrab(mm);
2533 
2534 	if (needs_wakeup)
2535 		wake_up_interruptible(&ksm_thread_wait);
2536 
2537 	return 0;
2538 }
2539 
2540 void __ksm_exit(struct mm_struct *mm)
2541 {
2542 	struct mm_slot *mm_slot;
2543 	int easy_to_free = 0;
2544 
2545 	/*
2546 	 * This process is exiting: if it's straightforward (as is the
2547 	 * case when ksmd was never running), free mm_slot immediately.
2548 	 * But if it's at the cursor or has rmap_items linked to it, use
2549 	 * mmap_sem to synchronize with any break_cows before pagetables
2550 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2551 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2552 	 */
2553 
2554 	spin_lock(&ksm_mmlist_lock);
2555 	mm_slot = get_mm_slot(mm);
2556 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2557 		if (!mm_slot->rmap_list) {
2558 			hash_del(&mm_slot->link);
2559 			list_del(&mm_slot->mm_list);
2560 			easy_to_free = 1;
2561 		} else {
2562 			list_move(&mm_slot->mm_list,
2563 				  &ksm_scan.mm_slot->mm_list);
2564 		}
2565 	}
2566 	spin_unlock(&ksm_mmlist_lock);
2567 
2568 	if (easy_to_free) {
2569 		free_mm_slot(mm_slot);
2570 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2571 		mmdrop(mm);
2572 	} else if (mm_slot) {
2573 		down_write(&mm->mmap_sem);
2574 		up_write(&mm->mmap_sem);
2575 	}
2576 }
2577 
2578 struct page *ksm_might_need_to_copy(struct page *page,
2579 			struct vm_area_struct *vma, unsigned long address)
2580 {
2581 	struct anon_vma *anon_vma = page_anon_vma(page);
2582 	struct page *new_page;
2583 
2584 	if (PageKsm(page)) {
2585 		if (page_stable_node(page) &&
2586 		    !(ksm_run & KSM_RUN_UNMERGE))
2587 			return page;	/* no need to copy it */
2588 	} else if (!anon_vma) {
2589 		return page;		/* no need to copy it */
2590 	} else if (anon_vma->root == vma->anon_vma->root &&
2591 		 page->index == linear_page_index(vma, address)) {
2592 		return page;		/* still no need to copy it */
2593 	}
2594 	if (!PageUptodate(page))
2595 		return page;		/* let do_swap_page report the error */
2596 
2597 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2598 	if (new_page) {
2599 		copy_user_highpage(new_page, page, address, vma);
2600 
2601 		SetPageDirty(new_page);
2602 		__SetPageUptodate(new_page);
2603 		__SetPageLocked(new_page);
2604 	}
2605 
2606 	return new_page;
2607 }
2608 
2609 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2610 {
2611 	struct stable_node *stable_node;
2612 	struct rmap_item *rmap_item;
2613 	int search_new_forks = 0;
2614 
2615 	VM_BUG_ON_PAGE(!PageKsm(page), page);
2616 
2617 	/*
2618 	 * Rely on the page lock to protect against concurrent modifications
2619 	 * to that page's node of the stable tree.
2620 	 */
2621 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2622 
2623 	stable_node = page_stable_node(page);
2624 	if (!stable_node)
2625 		return;
2626 again:
2627 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2628 		struct anon_vma *anon_vma = rmap_item->anon_vma;
2629 		struct anon_vma_chain *vmac;
2630 		struct vm_area_struct *vma;
2631 
2632 		cond_resched();
2633 		anon_vma_lock_read(anon_vma);
2634 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2635 					       0, ULONG_MAX) {
2636 			unsigned long addr;
2637 
2638 			cond_resched();
2639 			vma = vmac->vma;
2640 
2641 			/* Ignore the stable/unstable/sqnr flags */
2642 			addr = rmap_item->address & ~KSM_FLAG_MASK;
2643 
2644 			if (addr < vma->vm_start || addr >= vma->vm_end)
2645 				continue;
2646 			/*
2647 			 * Initially we examine only the vma which covers this
2648 			 * rmap_item; but later, if there is still work to do,
2649 			 * we examine covering vmas in other mms: in case they
2650 			 * were forked from the original since ksmd passed.
2651 			 */
2652 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2653 				continue;
2654 
2655 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2656 				continue;
2657 
2658 			if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2659 				anon_vma_unlock_read(anon_vma);
2660 				return;
2661 			}
2662 			if (rwc->done && rwc->done(page)) {
2663 				anon_vma_unlock_read(anon_vma);
2664 				return;
2665 			}
2666 		}
2667 		anon_vma_unlock_read(anon_vma);
2668 	}
2669 	if (!search_new_forks++)
2670 		goto again;
2671 }
2672 
2673 bool reuse_ksm_page(struct page *page,
2674 		    struct vm_area_struct *vma,
2675 		    unsigned long address)
2676 {
2677 #ifdef CONFIG_DEBUG_VM
2678 	if (WARN_ON(is_zero_pfn(page_to_pfn(page))) ||
2679 			WARN_ON(!page_mapped(page)) ||
2680 			WARN_ON(!PageLocked(page))) {
2681 		dump_page(page, "reuse_ksm_page");
2682 		return false;
2683 	}
2684 #endif
2685 
2686 	if (PageSwapCache(page) || !page_stable_node(page))
2687 		return false;
2688 	/* Prohibit parallel get_ksm_page() */
2689 	if (!page_ref_freeze(page, 1))
2690 		return false;
2691 
2692 	page_move_anon_rmap(page, vma);
2693 	page->index = linear_page_index(vma, address);
2694 	page_ref_unfreeze(page, 1);
2695 
2696 	return true;
2697 }
2698 #ifdef CONFIG_MIGRATION
2699 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2700 {
2701 	struct stable_node *stable_node;
2702 
2703 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2704 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2705 	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2706 
2707 	stable_node = page_stable_node(newpage);
2708 	if (stable_node) {
2709 		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2710 		stable_node->kpfn = page_to_pfn(newpage);
2711 		/*
2712 		 * newpage->mapping was set in advance; now we need smp_wmb()
2713 		 * to make sure that the new stable_node->kpfn is visible
2714 		 * to get_ksm_page() before it can see that oldpage->mapping
2715 		 * has gone stale (or that PageSwapCache has been cleared).
2716 		 */
2717 		smp_wmb();
2718 		set_page_stable_node(oldpage, NULL);
2719 	}
2720 }
2721 #endif /* CONFIG_MIGRATION */
2722 
2723 #ifdef CONFIG_MEMORY_HOTREMOVE
2724 static void wait_while_offlining(void)
2725 {
2726 	while (ksm_run & KSM_RUN_OFFLINE) {
2727 		mutex_unlock(&ksm_thread_mutex);
2728 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2729 			    TASK_UNINTERRUPTIBLE);
2730 		mutex_lock(&ksm_thread_mutex);
2731 	}
2732 }
2733 
2734 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2735 					 unsigned long start_pfn,
2736 					 unsigned long end_pfn)
2737 {
2738 	if (stable_node->kpfn >= start_pfn &&
2739 	    stable_node->kpfn < end_pfn) {
2740 		/*
2741 		 * Don't get_ksm_page, page has already gone:
2742 		 * which is why we keep kpfn instead of page*
2743 		 */
2744 		remove_node_from_stable_tree(stable_node);
2745 		return true;
2746 	}
2747 	return false;
2748 }
2749 
2750 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2751 					   unsigned long start_pfn,
2752 					   unsigned long end_pfn,
2753 					   struct rb_root *root)
2754 {
2755 	struct stable_node *dup;
2756 	struct hlist_node *hlist_safe;
2757 
2758 	if (!is_stable_node_chain(stable_node)) {
2759 		VM_BUG_ON(is_stable_node_dup(stable_node));
2760 		return stable_node_dup_remove_range(stable_node, start_pfn,
2761 						    end_pfn);
2762 	}
2763 
2764 	hlist_for_each_entry_safe(dup, hlist_safe,
2765 				  &stable_node->hlist, hlist_dup) {
2766 		VM_BUG_ON(!is_stable_node_dup(dup));
2767 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2768 	}
2769 	if (hlist_empty(&stable_node->hlist)) {
2770 		free_stable_node_chain(stable_node, root);
2771 		return true; /* notify caller that tree was rebalanced */
2772 	} else
2773 		return false;
2774 }
2775 
2776 static void ksm_check_stable_tree(unsigned long start_pfn,
2777 				  unsigned long end_pfn)
2778 {
2779 	struct stable_node *stable_node, *next;
2780 	struct rb_node *node;
2781 	int nid;
2782 
2783 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2784 		node = rb_first(root_stable_tree + nid);
2785 		while (node) {
2786 			stable_node = rb_entry(node, struct stable_node, node);
2787 			if (stable_node_chain_remove_range(stable_node,
2788 							   start_pfn, end_pfn,
2789 							   root_stable_tree +
2790 							   nid))
2791 				node = rb_first(root_stable_tree + nid);
2792 			else
2793 				node = rb_next(node);
2794 			cond_resched();
2795 		}
2796 	}
2797 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2798 		if (stable_node->kpfn >= start_pfn &&
2799 		    stable_node->kpfn < end_pfn)
2800 			remove_node_from_stable_tree(stable_node);
2801 		cond_resched();
2802 	}
2803 }
2804 
2805 static int ksm_memory_callback(struct notifier_block *self,
2806 			       unsigned long action, void *arg)
2807 {
2808 	struct memory_notify *mn = arg;
2809 
2810 	switch (action) {
2811 	case MEM_GOING_OFFLINE:
2812 		/*
2813 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2814 		 * and remove_all_stable_nodes() while memory is going offline:
2815 		 * it is unsafe for them to touch the stable tree at this time.
2816 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2817 		 * which do not need the ksm_thread_mutex are all safe.
2818 		 */
2819 		mutex_lock(&ksm_thread_mutex);
2820 		ksm_run |= KSM_RUN_OFFLINE;
2821 		mutex_unlock(&ksm_thread_mutex);
2822 		break;
2823 
2824 	case MEM_OFFLINE:
2825 		/*
2826 		 * Most of the work is done by page migration; but there might
2827 		 * be a few stable_nodes left over, still pointing to struct
2828 		 * pages which have been offlined: prune those from the tree,
2829 		 * otherwise get_ksm_page() might later try to access a
2830 		 * non-existent struct page.
2831 		 */
2832 		ksm_check_stable_tree(mn->start_pfn,
2833 				      mn->start_pfn + mn->nr_pages);
2834 		/* fallthrough */
2835 
2836 	case MEM_CANCEL_OFFLINE:
2837 		mutex_lock(&ksm_thread_mutex);
2838 		ksm_run &= ~KSM_RUN_OFFLINE;
2839 		mutex_unlock(&ksm_thread_mutex);
2840 
2841 		smp_mb();	/* wake_up_bit advises this */
2842 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2843 		break;
2844 	}
2845 	return NOTIFY_OK;
2846 }
2847 #else
2848 static void wait_while_offlining(void)
2849 {
2850 }
2851 #endif /* CONFIG_MEMORY_HOTREMOVE */
2852 
2853 #ifdef CONFIG_SYSFS
2854 /*
2855  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2856  */
2857 
2858 #define KSM_ATTR_RO(_name) \
2859 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2860 #define KSM_ATTR(_name) \
2861 	static struct kobj_attribute _name##_attr = \
2862 		__ATTR(_name, 0644, _name##_show, _name##_store)
2863 
2864 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2865 				    struct kobj_attribute *attr, char *buf)
2866 {
2867 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2868 }
2869 
2870 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2871 				     struct kobj_attribute *attr,
2872 				     const char *buf, size_t count)
2873 {
2874 	unsigned long msecs;
2875 	int err;
2876 
2877 	err = kstrtoul(buf, 10, &msecs);
2878 	if (err || msecs > UINT_MAX)
2879 		return -EINVAL;
2880 
2881 	ksm_thread_sleep_millisecs = msecs;
2882 	wake_up_interruptible(&ksm_iter_wait);
2883 
2884 	return count;
2885 }
2886 KSM_ATTR(sleep_millisecs);
2887 
2888 static ssize_t pages_to_scan_show(struct kobject *kobj,
2889 				  struct kobj_attribute *attr, char *buf)
2890 {
2891 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2892 }
2893 
2894 static ssize_t pages_to_scan_store(struct kobject *kobj,
2895 				   struct kobj_attribute *attr,
2896 				   const char *buf, size_t count)
2897 {
2898 	int err;
2899 	unsigned long nr_pages;
2900 
2901 	err = kstrtoul(buf, 10, &nr_pages);
2902 	if (err || nr_pages > UINT_MAX)
2903 		return -EINVAL;
2904 
2905 	ksm_thread_pages_to_scan = nr_pages;
2906 
2907 	return count;
2908 }
2909 KSM_ATTR(pages_to_scan);
2910 
2911 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2912 			char *buf)
2913 {
2914 	return sprintf(buf, "%lu\n", ksm_run);
2915 }
2916 
2917 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2918 			 const char *buf, size_t count)
2919 {
2920 	int err;
2921 	unsigned long flags;
2922 
2923 	err = kstrtoul(buf, 10, &flags);
2924 	if (err || flags > UINT_MAX)
2925 		return -EINVAL;
2926 	if (flags > KSM_RUN_UNMERGE)
2927 		return -EINVAL;
2928 
2929 	/*
2930 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2931 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2932 	 * breaking COW to free the pages_shared (but leaves mm_slots
2933 	 * on the list for when ksmd may be set running again).
2934 	 */
2935 
2936 	mutex_lock(&ksm_thread_mutex);
2937 	wait_while_offlining();
2938 	if (ksm_run != flags) {
2939 		ksm_run = flags;
2940 		if (flags & KSM_RUN_UNMERGE) {
2941 			set_current_oom_origin();
2942 			err = unmerge_and_remove_all_rmap_items();
2943 			clear_current_oom_origin();
2944 			if (err) {
2945 				ksm_run = KSM_RUN_STOP;
2946 				count = err;
2947 			}
2948 		}
2949 	}
2950 	mutex_unlock(&ksm_thread_mutex);
2951 
2952 	if (flags & KSM_RUN_MERGE)
2953 		wake_up_interruptible(&ksm_thread_wait);
2954 
2955 	return count;
2956 }
2957 KSM_ATTR(run);
2958 
2959 #ifdef CONFIG_NUMA
2960 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2961 				struct kobj_attribute *attr, char *buf)
2962 {
2963 	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2964 }
2965 
2966 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2967 				   struct kobj_attribute *attr,
2968 				   const char *buf, size_t count)
2969 {
2970 	int err;
2971 	unsigned long knob;
2972 
2973 	err = kstrtoul(buf, 10, &knob);
2974 	if (err)
2975 		return err;
2976 	if (knob > 1)
2977 		return -EINVAL;
2978 
2979 	mutex_lock(&ksm_thread_mutex);
2980 	wait_while_offlining();
2981 	if (ksm_merge_across_nodes != knob) {
2982 		if (ksm_pages_shared || remove_all_stable_nodes())
2983 			err = -EBUSY;
2984 		else if (root_stable_tree == one_stable_tree) {
2985 			struct rb_root *buf;
2986 			/*
2987 			 * This is the first time that we switch away from the
2988 			 * default of merging across nodes: must now allocate
2989 			 * a buffer to hold as many roots as may be needed.
2990 			 * Allocate stable and unstable together:
2991 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2992 			 */
2993 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2994 				      GFP_KERNEL);
2995 			/* Let us assume that RB_ROOT is NULL is zero */
2996 			if (!buf)
2997 				err = -ENOMEM;
2998 			else {
2999 				root_stable_tree = buf;
3000 				root_unstable_tree = buf + nr_node_ids;
3001 				/* Stable tree is empty but not the unstable */
3002 				root_unstable_tree[0] = one_unstable_tree[0];
3003 			}
3004 		}
3005 		if (!err) {
3006 			ksm_merge_across_nodes = knob;
3007 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3008 		}
3009 	}
3010 	mutex_unlock(&ksm_thread_mutex);
3011 
3012 	return err ? err : count;
3013 }
3014 KSM_ATTR(merge_across_nodes);
3015 #endif
3016 
3017 static ssize_t use_zero_pages_show(struct kobject *kobj,
3018 				struct kobj_attribute *attr, char *buf)
3019 {
3020 	return sprintf(buf, "%u\n", ksm_use_zero_pages);
3021 }
3022 static ssize_t use_zero_pages_store(struct kobject *kobj,
3023 				   struct kobj_attribute *attr,
3024 				   const char *buf, size_t count)
3025 {
3026 	int err;
3027 	bool value;
3028 
3029 	err = kstrtobool(buf, &value);
3030 	if (err)
3031 		return -EINVAL;
3032 
3033 	ksm_use_zero_pages = value;
3034 
3035 	return count;
3036 }
3037 KSM_ATTR(use_zero_pages);
3038 
3039 static ssize_t max_page_sharing_show(struct kobject *kobj,
3040 				     struct kobj_attribute *attr, char *buf)
3041 {
3042 	return sprintf(buf, "%u\n", ksm_max_page_sharing);
3043 }
3044 
3045 static ssize_t max_page_sharing_store(struct kobject *kobj,
3046 				      struct kobj_attribute *attr,
3047 				      const char *buf, size_t count)
3048 {
3049 	int err;
3050 	int knob;
3051 
3052 	err = kstrtoint(buf, 10, &knob);
3053 	if (err)
3054 		return err;
3055 	/*
3056 	 * When a KSM page is created it is shared by 2 mappings. This
3057 	 * being a signed comparison, it implicitly verifies it's not
3058 	 * negative.
3059 	 */
3060 	if (knob < 2)
3061 		return -EINVAL;
3062 
3063 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3064 		return count;
3065 
3066 	mutex_lock(&ksm_thread_mutex);
3067 	wait_while_offlining();
3068 	if (ksm_max_page_sharing != knob) {
3069 		if (ksm_pages_shared || remove_all_stable_nodes())
3070 			err = -EBUSY;
3071 		else
3072 			ksm_max_page_sharing = knob;
3073 	}
3074 	mutex_unlock(&ksm_thread_mutex);
3075 
3076 	return err ? err : count;
3077 }
3078 KSM_ATTR(max_page_sharing);
3079 
3080 static ssize_t pages_shared_show(struct kobject *kobj,
3081 				 struct kobj_attribute *attr, char *buf)
3082 {
3083 	return sprintf(buf, "%lu\n", ksm_pages_shared);
3084 }
3085 KSM_ATTR_RO(pages_shared);
3086 
3087 static ssize_t pages_sharing_show(struct kobject *kobj,
3088 				  struct kobj_attribute *attr, char *buf)
3089 {
3090 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
3091 }
3092 KSM_ATTR_RO(pages_sharing);
3093 
3094 static ssize_t pages_unshared_show(struct kobject *kobj,
3095 				   struct kobj_attribute *attr, char *buf)
3096 {
3097 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
3098 }
3099 KSM_ATTR_RO(pages_unshared);
3100 
3101 static ssize_t pages_volatile_show(struct kobject *kobj,
3102 				   struct kobj_attribute *attr, char *buf)
3103 {
3104 	long ksm_pages_volatile;
3105 
3106 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3107 				- ksm_pages_sharing - ksm_pages_unshared;
3108 	/*
3109 	 * It was not worth any locking to calculate that statistic,
3110 	 * but it might therefore sometimes be negative: conceal that.
3111 	 */
3112 	if (ksm_pages_volatile < 0)
3113 		ksm_pages_volatile = 0;
3114 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
3115 }
3116 KSM_ATTR_RO(pages_volatile);
3117 
3118 static ssize_t stable_node_dups_show(struct kobject *kobj,
3119 				     struct kobj_attribute *attr, char *buf)
3120 {
3121 	return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3122 }
3123 KSM_ATTR_RO(stable_node_dups);
3124 
3125 static ssize_t stable_node_chains_show(struct kobject *kobj,
3126 				       struct kobj_attribute *attr, char *buf)
3127 {
3128 	return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3129 }
3130 KSM_ATTR_RO(stable_node_chains);
3131 
3132 static ssize_t
3133 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3134 					struct kobj_attribute *attr,
3135 					char *buf)
3136 {
3137 	return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3138 }
3139 
3140 static ssize_t
3141 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3142 					 struct kobj_attribute *attr,
3143 					 const char *buf, size_t count)
3144 {
3145 	unsigned long msecs;
3146 	int err;
3147 
3148 	err = kstrtoul(buf, 10, &msecs);
3149 	if (err || msecs > UINT_MAX)
3150 		return -EINVAL;
3151 
3152 	ksm_stable_node_chains_prune_millisecs = msecs;
3153 
3154 	return count;
3155 }
3156 KSM_ATTR(stable_node_chains_prune_millisecs);
3157 
3158 static ssize_t full_scans_show(struct kobject *kobj,
3159 			       struct kobj_attribute *attr, char *buf)
3160 {
3161 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3162 }
3163 KSM_ATTR_RO(full_scans);
3164 
3165 static struct attribute *ksm_attrs[] = {
3166 	&sleep_millisecs_attr.attr,
3167 	&pages_to_scan_attr.attr,
3168 	&run_attr.attr,
3169 	&pages_shared_attr.attr,
3170 	&pages_sharing_attr.attr,
3171 	&pages_unshared_attr.attr,
3172 	&pages_volatile_attr.attr,
3173 	&full_scans_attr.attr,
3174 #ifdef CONFIG_NUMA
3175 	&merge_across_nodes_attr.attr,
3176 #endif
3177 	&max_page_sharing_attr.attr,
3178 	&stable_node_chains_attr.attr,
3179 	&stable_node_dups_attr.attr,
3180 	&stable_node_chains_prune_millisecs_attr.attr,
3181 	&use_zero_pages_attr.attr,
3182 	NULL,
3183 };
3184 
3185 static const struct attribute_group ksm_attr_group = {
3186 	.attrs = ksm_attrs,
3187 	.name = "ksm",
3188 };
3189 #endif /* CONFIG_SYSFS */
3190 
3191 static int __init ksm_init(void)
3192 {
3193 	struct task_struct *ksm_thread;
3194 	int err;
3195 
3196 	/* The correct value depends on page size and endianness */
3197 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3198 	/* Default to false for backwards compatibility */
3199 	ksm_use_zero_pages = false;
3200 
3201 	err = ksm_slab_init();
3202 	if (err)
3203 		goto out;
3204 
3205 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3206 	if (IS_ERR(ksm_thread)) {
3207 		pr_err("ksm: creating kthread failed\n");
3208 		err = PTR_ERR(ksm_thread);
3209 		goto out_free;
3210 	}
3211 
3212 #ifdef CONFIG_SYSFS
3213 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3214 	if (err) {
3215 		pr_err("ksm: register sysfs failed\n");
3216 		kthread_stop(ksm_thread);
3217 		goto out_free;
3218 	}
3219 #else
3220 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3221 
3222 #endif /* CONFIG_SYSFS */
3223 
3224 #ifdef CONFIG_MEMORY_HOTREMOVE
3225 	/* There is no significance to this priority 100 */
3226 	hotplug_memory_notifier(ksm_memory_callback, 100);
3227 #endif
3228 	return 0;
3229 
3230 out_free:
3231 	ksm_slab_free();
3232 out:
3233 	return err;
3234 }
3235 subsys_initcall(ksm_init);
3236