1 /* 2 * Memory merging support. 3 * 4 * This code enables dynamic sharing of identical pages found in different 5 * memory areas, even if they are not shared by fork() 6 * 7 * Copyright (C) 2008-2009 Red Hat, Inc. 8 * Authors: 9 * Izik Eidus 10 * Andrea Arcangeli 11 * Chris Wright 12 * Hugh Dickins 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/coredump.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/xxhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 43 #include <asm/tlbflush.h> 44 #include "internal.h" 45 46 #ifdef CONFIG_NUMA 47 #define NUMA(x) (x) 48 #define DO_NUMA(x) do { (x); } while (0) 49 #else 50 #define NUMA(x) (0) 51 #define DO_NUMA(x) do { } while (0) 52 #endif 53 54 /** 55 * DOC: Overview 56 * 57 * A few notes about the KSM scanning process, 58 * to make it easier to understand the data structures below: 59 * 60 * In order to reduce excessive scanning, KSM sorts the memory pages by their 61 * contents into a data structure that holds pointers to the pages' locations. 62 * 63 * Since the contents of the pages may change at any moment, KSM cannot just 64 * insert the pages into a normal sorted tree and expect it to find anything. 65 * Therefore KSM uses two data structures - the stable and the unstable tree. 66 * 67 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 68 * by their contents. Because each such page is write-protected, searching on 69 * this tree is fully assured to be working (except when pages are unmapped), 70 * and therefore this tree is called the stable tree. 71 * 72 * The stable tree node includes information required for reverse 73 * mapping from a KSM page to virtual addresses that map this page. 74 * 75 * In order to avoid large latencies of the rmap walks on KSM pages, 76 * KSM maintains two types of nodes in the stable tree: 77 * 78 * * the regular nodes that keep the reverse mapping structures in a 79 * linked list 80 * * the "chains" that link nodes ("dups") that represent the same 81 * write protected memory content, but each "dup" corresponds to a 82 * different KSM page copy of that content 83 * 84 * Internally, the regular nodes, "dups" and "chains" are represented 85 * using the same :c:type:`struct stable_node` structure. 86 * 87 * In addition to the stable tree, KSM uses a second data structure called the 88 * unstable tree: this tree holds pointers to pages which have been found to 89 * be "unchanged for a period of time". The unstable tree sorts these pages 90 * by their contents, but since they are not write-protected, KSM cannot rely 91 * upon the unstable tree to work correctly - the unstable tree is liable to 92 * be corrupted as its contents are modified, and so it is called unstable. 93 * 94 * KSM solves this problem by several techniques: 95 * 96 * 1) The unstable tree is flushed every time KSM completes scanning all 97 * memory areas, and then the tree is rebuilt again from the beginning. 98 * 2) KSM will only insert into the unstable tree, pages whose hash value 99 * has not changed since the previous scan of all memory areas. 100 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 101 * colors of the nodes and not on their contents, assuring that even when 102 * the tree gets "corrupted" it won't get out of balance, so scanning time 103 * remains the same (also, searching and inserting nodes in an rbtree uses 104 * the same algorithm, so we have no overhead when we flush and rebuild). 105 * 4) KSM never flushes the stable tree, which means that even if it were to 106 * take 10 attempts to find a page in the unstable tree, once it is found, 107 * it is secured in the stable tree. (When we scan a new page, we first 108 * compare it against the stable tree, and then against the unstable tree.) 109 * 110 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 111 * stable trees and multiple unstable trees: one of each for each NUMA node. 112 */ 113 114 /** 115 * struct mm_slot - ksm information per mm that is being scanned 116 * @link: link to the mm_slots hash list 117 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 119 * @mm: the mm that this information is valid for 120 */ 121 struct mm_slot { 122 struct hlist_node link; 123 struct list_head mm_list; 124 struct rmap_item *rmap_list; 125 struct mm_struct *mm; 126 }; 127 128 /** 129 * struct ksm_scan - cursor for scanning 130 * @mm_slot: the current mm_slot we are scanning 131 * @address: the next address inside that to be scanned 132 * @rmap_list: link to the next rmap to be scanned in the rmap_list 133 * @seqnr: count of completed full scans (needed when removing unstable node) 134 * 135 * There is only the one ksm_scan instance of this cursor structure. 136 */ 137 struct ksm_scan { 138 struct mm_slot *mm_slot; 139 unsigned long address; 140 struct rmap_item **rmap_list; 141 unsigned long seqnr; 142 }; 143 144 /** 145 * struct stable_node - node of the stable rbtree 146 * @node: rb node of this ksm page in the stable tree 147 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 148 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 149 * @list: linked into migrate_nodes, pending placement in the proper node tree 150 * @hlist: hlist head of rmap_items using this ksm page 151 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 152 * @chain_prune_time: time of the last full garbage collection 153 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 154 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 155 */ 156 struct stable_node { 157 union { 158 struct rb_node node; /* when node of stable tree */ 159 struct { /* when listed for migration */ 160 struct list_head *head; 161 struct { 162 struct hlist_node hlist_dup; 163 struct list_head list; 164 }; 165 }; 166 }; 167 struct hlist_head hlist; 168 union { 169 unsigned long kpfn; 170 unsigned long chain_prune_time; 171 }; 172 /* 173 * STABLE_NODE_CHAIN can be any negative number in 174 * rmap_hlist_len negative range, but better not -1 to be able 175 * to reliably detect underflows. 176 */ 177 #define STABLE_NODE_CHAIN -1024 178 int rmap_hlist_len; 179 #ifdef CONFIG_NUMA 180 int nid; 181 #endif 182 }; 183 184 /** 185 * struct rmap_item - reverse mapping item for virtual addresses 186 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 187 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 188 * @nid: NUMA node id of unstable tree in which linked (may not match page) 189 * @mm: the memory structure this rmap_item is pointing into 190 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 191 * @oldchecksum: previous checksum of the page at that virtual address 192 * @node: rb node of this rmap_item in the unstable tree 193 * @head: pointer to stable_node heading this list in the stable tree 194 * @hlist: link into hlist of rmap_items hanging off that stable_node 195 */ 196 struct rmap_item { 197 struct rmap_item *rmap_list; 198 union { 199 struct anon_vma *anon_vma; /* when stable */ 200 #ifdef CONFIG_NUMA 201 int nid; /* when node of unstable tree */ 202 #endif 203 }; 204 struct mm_struct *mm; 205 unsigned long address; /* + low bits used for flags below */ 206 unsigned int oldchecksum; /* when unstable */ 207 union { 208 struct rb_node node; /* when node of unstable tree */ 209 struct { /* when listed from stable tree */ 210 struct stable_node *head; 211 struct hlist_node hlist; 212 }; 213 }; 214 }; 215 216 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 217 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 218 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 219 #define KSM_FLAG_MASK (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG) 220 /* to mask all the flags */ 221 222 /* The stable and unstable tree heads */ 223 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 224 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 225 static struct rb_root *root_stable_tree = one_stable_tree; 226 static struct rb_root *root_unstable_tree = one_unstable_tree; 227 228 /* Recently migrated nodes of stable tree, pending proper placement */ 229 static LIST_HEAD(migrate_nodes); 230 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 231 232 #define MM_SLOTS_HASH_BITS 10 233 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 234 235 static struct mm_slot ksm_mm_head = { 236 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 237 }; 238 static struct ksm_scan ksm_scan = { 239 .mm_slot = &ksm_mm_head, 240 }; 241 242 static struct kmem_cache *rmap_item_cache; 243 static struct kmem_cache *stable_node_cache; 244 static struct kmem_cache *mm_slot_cache; 245 246 /* The number of nodes in the stable tree */ 247 static unsigned long ksm_pages_shared; 248 249 /* The number of page slots additionally sharing those nodes */ 250 static unsigned long ksm_pages_sharing; 251 252 /* The number of nodes in the unstable tree */ 253 static unsigned long ksm_pages_unshared; 254 255 /* The number of rmap_items in use: to calculate pages_volatile */ 256 static unsigned long ksm_rmap_items; 257 258 /* The number of stable_node chains */ 259 static unsigned long ksm_stable_node_chains; 260 261 /* The number of stable_node dups linked to the stable_node chains */ 262 static unsigned long ksm_stable_node_dups; 263 264 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 265 static int ksm_stable_node_chains_prune_millisecs = 2000; 266 267 /* Maximum number of page slots sharing a stable node */ 268 static int ksm_max_page_sharing = 256; 269 270 /* Number of pages ksmd should scan in one batch */ 271 static unsigned int ksm_thread_pages_to_scan = 100; 272 273 /* Milliseconds ksmd should sleep between batches */ 274 static unsigned int ksm_thread_sleep_millisecs = 20; 275 276 /* Checksum of an empty (zeroed) page */ 277 static unsigned int zero_checksum __read_mostly; 278 279 /* Whether to merge empty (zeroed) pages with actual zero pages */ 280 static bool ksm_use_zero_pages __read_mostly; 281 282 #ifdef CONFIG_NUMA 283 /* Zeroed when merging across nodes is not allowed */ 284 static unsigned int ksm_merge_across_nodes = 1; 285 static int ksm_nr_node_ids = 1; 286 #else 287 #define ksm_merge_across_nodes 1U 288 #define ksm_nr_node_ids 1 289 #endif 290 291 #define KSM_RUN_STOP 0 292 #define KSM_RUN_MERGE 1 293 #define KSM_RUN_UNMERGE 2 294 #define KSM_RUN_OFFLINE 4 295 static unsigned long ksm_run = KSM_RUN_STOP; 296 static void wait_while_offlining(void); 297 298 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 299 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 300 static DEFINE_MUTEX(ksm_thread_mutex); 301 static DEFINE_SPINLOCK(ksm_mmlist_lock); 302 303 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 304 sizeof(struct __struct), __alignof__(struct __struct),\ 305 (__flags), NULL) 306 307 static int __init ksm_slab_init(void) 308 { 309 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 310 if (!rmap_item_cache) 311 goto out; 312 313 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 314 if (!stable_node_cache) 315 goto out_free1; 316 317 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 318 if (!mm_slot_cache) 319 goto out_free2; 320 321 return 0; 322 323 out_free2: 324 kmem_cache_destroy(stable_node_cache); 325 out_free1: 326 kmem_cache_destroy(rmap_item_cache); 327 out: 328 return -ENOMEM; 329 } 330 331 static void __init ksm_slab_free(void) 332 { 333 kmem_cache_destroy(mm_slot_cache); 334 kmem_cache_destroy(stable_node_cache); 335 kmem_cache_destroy(rmap_item_cache); 336 mm_slot_cache = NULL; 337 } 338 339 static __always_inline bool is_stable_node_chain(struct stable_node *chain) 340 { 341 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 342 } 343 344 static __always_inline bool is_stable_node_dup(struct stable_node *dup) 345 { 346 return dup->head == STABLE_NODE_DUP_HEAD; 347 } 348 349 static inline void stable_node_chain_add_dup(struct stable_node *dup, 350 struct stable_node *chain) 351 { 352 VM_BUG_ON(is_stable_node_dup(dup)); 353 dup->head = STABLE_NODE_DUP_HEAD; 354 VM_BUG_ON(!is_stable_node_chain(chain)); 355 hlist_add_head(&dup->hlist_dup, &chain->hlist); 356 ksm_stable_node_dups++; 357 } 358 359 static inline void __stable_node_dup_del(struct stable_node *dup) 360 { 361 VM_BUG_ON(!is_stable_node_dup(dup)); 362 hlist_del(&dup->hlist_dup); 363 ksm_stable_node_dups--; 364 } 365 366 static inline void stable_node_dup_del(struct stable_node *dup) 367 { 368 VM_BUG_ON(is_stable_node_chain(dup)); 369 if (is_stable_node_dup(dup)) 370 __stable_node_dup_del(dup); 371 else 372 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 373 #ifdef CONFIG_DEBUG_VM 374 dup->head = NULL; 375 #endif 376 } 377 378 static inline struct rmap_item *alloc_rmap_item(void) 379 { 380 struct rmap_item *rmap_item; 381 382 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 383 __GFP_NORETRY | __GFP_NOWARN); 384 if (rmap_item) 385 ksm_rmap_items++; 386 return rmap_item; 387 } 388 389 static inline void free_rmap_item(struct rmap_item *rmap_item) 390 { 391 ksm_rmap_items--; 392 rmap_item->mm = NULL; /* debug safety */ 393 kmem_cache_free(rmap_item_cache, rmap_item); 394 } 395 396 static inline struct stable_node *alloc_stable_node(void) 397 { 398 /* 399 * The allocation can take too long with GFP_KERNEL when memory is under 400 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 401 * grants access to memory reserves, helping to avoid this problem. 402 */ 403 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 404 } 405 406 static inline void free_stable_node(struct stable_node *stable_node) 407 { 408 VM_BUG_ON(stable_node->rmap_hlist_len && 409 !is_stable_node_chain(stable_node)); 410 kmem_cache_free(stable_node_cache, stable_node); 411 } 412 413 static inline struct mm_slot *alloc_mm_slot(void) 414 { 415 if (!mm_slot_cache) /* initialization failed */ 416 return NULL; 417 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 418 } 419 420 static inline void free_mm_slot(struct mm_slot *mm_slot) 421 { 422 kmem_cache_free(mm_slot_cache, mm_slot); 423 } 424 425 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 426 { 427 struct mm_slot *slot; 428 429 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 430 if (slot->mm == mm) 431 return slot; 432 433 return NULL; 434 } 435 436 static void insert_to_mm_slots_hash(struct mm_struct *mm, 437 struct mm_slot *mm_slot) 438 { 439 mm_slot->mm = mm; 440 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 441 } 442 443 /* 444 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 445 * page tables after it has passed through ksm_exit() - which, if necessary, 446 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set 447 * a special flag: they can just back out as soon as mm_users goes to zero. 448 * ksm_test_exit() is used throughout to make this test for exit: in some 449 * places for correctness, in some places just to avoid unnecessary work. 450 */ 451 static inline bool ksm_test_exit(struct mm_struct *mm) 452 { 453 return atomic_read(&mm->mm_users) == 0; 454 } 455 456 /* 457 * We use break_ksm to break COW on a ksm page: it's a stripped down 458 * 459 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1) 460 * put_page(page); 461 * 462 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 463 * in case the application has unmapped and remapped mm,addr meanwhile. 464 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 465 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. 466 * 467 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 468 * of the process that owns 'vma'. We also do not want to enforce 469 * protection keys here anyway. 470 */ 471 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 472 { 473 struct page *page; 474 vm_fault_t ret = 0; 475 476 do { 477 cond_resched(); 478 page = follow_page(vma, addr, 479 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 480 if (IS_ERR_OR_NULL(page)) 481 break; 482 if (PageKsm(page)) 483 ret = handle_mm_fault(vma, addr, 484 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE); 485 else 486 ret = VM_FAULT_WRITE; 487 put_page(page); 488 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 489 /* 490 * We must loop because handle_mm_fault() may back out if there's 491 * any difficulty e.g. if pte accessed bit gets updated concurrently. 492 * 493 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 494 * COW has been broken, even if the vma does not permit VM_WRITE; 495 * but note that a concurrent fault might break PageKsm for us. 496 * 497 * VM_FAULT_SIGBUS could occur if we race with truncation of the 498 * backing file, which also invalidates anonymous pages: that's 499 * okay, that truncation will have unmapped the PageKsm for us. 500 * 501 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 502 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 503 * current task has TIF_MEMDIE set, and will be OOM killed on return 504 * to user; and ksmd, having no mm, would never be chosen for that. 505 * 506 * But if the mm is in a limited mem_cgroup, then the fault may fail 507 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 508 * even ksmd can fail in this way - though it's usually breaking ksm 509 * just to undo a merge it made a moment before, so unlikely to oom. 510 * 511 * That's a pity: we might therefore have more kernel pages allocated 512 * than we're counting as nodes in the stable tree; but ksm_do_scan 513 * will retry to break_cow on each pass, so should recover the page 514 * in due course. The important thing is to not let VM_MERGEABLE 515 * be cleared while any such pages might remain in the area. 516 */ 517 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 518 } 519 520 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 521 unsigned long addr) 522 { 523 struct vm_area_struct *vma; 524 if (ksm_test_exit(mm)) 525 return NULL; 526 vma = find_vma(mm, addr); 527 if (!vma || vma->vm_start > addr) 528 return NULL; 529 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 530 return NULL; 531 return vma; 532 } 533 534 static void break_cow(struct rmap_item *rmap_item) 535 { 536 struct mm_struct *mm = rmap_item->mm; 537 unsigned long addr = rmap_item->address; 538 struct vm_area_struct *vma; 539 540 /* 541 * It is not an accident that whenever we want to break COW 542 * to undo, we also need to drop a reference to the anon_vma. 543 */ 544 put_anon_vma(rmap_item->anon_vma); 545 546 down_read(&mm->mmap_sem); 547 vma = find_mergeable_vma(mm, addr); 548 if (vma) 549 break_ksm(vma, addr); 550 up_read(&mm->mmap_sem); 551 } 552 553 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 554 { 555 struct mm_struct *mm = rmap_item->mm; 556 unsigned long addr = rmap_item->address; 557 struct vm_area_struct *vma; 558 struct page *page; 559 560 down_read(&mm->mmap_sem); 561 vma = find_mergeable_vma(mm, addr); 562 if (!vma) 563 goto out; 564 565 page = follow_page(vma, addr, FOLL_GET); 566 if (IS_ERR_OR_NULL(page)) 567 goto out; 568 if (PageAnon(page)) { 569 flush_anon_page(vma, page, addr); 570 flush_dcache_page(page); 571 } else { 572 put_page(page); 573 out: 574 page = NULL; 575 } 576 up_read(&mm->mmap_sem); 577 return page; 578 } 579 580 /* 581 * This helper is used for getting right index into array of tree roots. 582 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 583 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 584 * every node has its own stable and unstable tree. 585 */ 586 static inline int get_kpfn_nid(unsigned long kpfn) 587 { 588 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 589 } 590 591 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup, 592 struct rb_root *root) 593 { 594 struct stable_node *chain = alloc_stable_node(); 595 VM_BUG_ON(is_stable_node_chain(dup)); 596 if (likely(chain)) { 597 INIT_HLIST_HEAD(&chain->hlist); 598 chain->chain_prune_time = jiffies; 599 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 600 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 601 chain->nid = NUMA_NO_NODE; /* debug */ 602 #endif 603 ksm_stable_node_chains++; 604 605 /* 606 * Put the stable node chain in the first dimension of 607 * the stable tree and at the same time remove the old 608 * stable node. 609 */ 610 rb_replace_node(&dup->node, &chain->node, root); 611 612 /* 613 * Move the old stable node to the second dimension 614 * queued in the hlist_dup. The invariant is that all 615 * dup stable_nodes in the chain->hlist point to pages 616 * that are wrprotected and have the exact same 617 * content. 618 */ 619 stable_node_chain_add_dup(dup, chain); 620 } 621 return chain; 622 } 623 624 static inline void free_stable_node_chain(struct stable_node *chain, 625 struct rb_root *root) 626 { 627 rb_erase(&chain->node, root); 628 free_stable_node(chain); 629 ksm_stable_node_chains--; 630 } 631 632 static void remove_node_from_stable_tree(struct stable_node *stable_node) 633 { 634 struct rmap_item *rmap_item; 635 636 /* check it's not STABLE_NODE_CHAIN or negative */ 637 BUG_ON(stable_node->rmap_hlist_len < 0); 638 639 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 640 if (rmap_item->hlist.next) 641 ksm_pages_sharing--; 642 else 643 ksm_pages_shared--; 644 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 645 stable_node->rmap_hlist_len--; 646 put_anon_vma(rmap_item->anon_vma); 647 rmap_item->address &= PAGE_MASK; 648 cond_resched(); 649 } 650 651 /* 652 * We need the second aligned pointer of the migrate_nodes 653 * list_head to stay clear from the rb_parent_color union 654 * (aligned and different than any node) and also different 655 * from &migrate_nodes. This will verify that future list.h changes 656 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 657 */ 658 #if defined(GCC_VERSION) && GCC_VERSION >= 40903 659 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 660 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 661 #endif 662 663 if (stable_node->head == &migrate_nodes) 664 list_del(&stable_node->list); 665 else 666 stable_node_dup_del(stable_node); 667 free_stable_node(stable_node); 668 } 669 670 enum get_ksm_page_flags { 671 GET_KSM_PAGE_NOLOCK, 672 GET_KSM_PAGE_LOCK, 673 GET_KSM_PAGE_TRYLOCK 674 }; 675 676 /* 677 * get_ksm_page: checks if the page indicated by the stable node 678 * is still its ksm page, despite having held no reference to it. 679 * In which case we can trust the content of the page, and it 680 * returns the gotten page; but if the page has now been zapped, 681 * remove the stale node from the stable tree and return NULL. 682 * But beware, the stable node's page might be being migrated. 683 * 684 * You would expect the stable_node to hold a reference to the ksm page. 685 * But if it increments the page's count, swapping out has to wait for 686 * ksmd to come around again before it can free the page, which may take 687 * seconds or even minutes: much too unresponsive. So instead we use a 688 * "keyhole reference": access to the ksm page from the stable node peeps 689 * out through its keyhole to see if that page still holds the right key, 690 * pointing back to this stable node. This relies on freeing a PageAnon 691 * page to reset its page->mapping to NULL, and relies on no other use of 692 * a page to put something that might look like our key in page->mapping. 693 * is on its way to being freed; but it is an anomaly to bear in mind. 694 */ 695 static struct page *get_ksm_page(struct stable_node *stable_node, 696 enum get_ksm_page_flags flags) 697 { 698 struct page *page; 699 void *expected_mapping; 700 unsigned long kpfn; 701 702 expected_mapping = (void *)((unsigned long)stable_node | 703 PAGE_MAPPING_KSM); 704 again: 705 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 706 page = pfn_to_page(kpfn); 707 if (READ_ONCE(page->mapping) != expected_mapping) 708 goto stale; 709 710 /* 711 * We cannot do anything with the page while its refcount is 0. 712 * Usually 0 means free, or tail of a higher-order page: in which 713 * case this node is no longer referenced, and should be freed; 714 * however, it might mean that the page is under page_ref_freeze(). 715 * The __remove_mapping() case is easy, again the node is now stale; 716 * the same is in reuse_ksm_page() case; but if page is swapcache 717 * in migrate_page_move_mapping(), it might still be our page, 718 * in which case it's essential to keep the node. 719 */ 720 while (!get_page_unless_zero(page)) { 721 /* 722 * Another check for page->mapping != expected_mapping would 723 * work here too. We have chosen the !PageSwapCache test to 724 * optimize the common case, when the page is or is about to 725 * be freed: PageSwapCache is cleared (under spin_lock_irq) 726 * in the ref_freeze section of __remove_mapping(); but Anon 727 * page->mapping reset to NULL later, in free_pages_prepare(). 728 */ 729 if (!PageSwapCache(page)) 730 goto stale; 731 cpu_relax(); 732 } 733 734 if (READ_ONCE(page->mapping) != expected_mapping) { 735 put_page(page); 736 goto stale; 737 } 738 739 if (flags == GET_KSM_PAGE_TRYLOCK) { 740 if (!trylock_page(page)) { 741 put_page(page); 742 return ERR_PTR(-EBUSY); 743 } 744 } else if (flags == GET_KSM_PAGE_LOCK) 745 lock_page(page); 746 747 if (flags != GET_KSM_PAGE_NOLOCK) { 748 if (READ_ONCE(page->mapping) != expected_mapping) { 749 unlock_page(page); 750 put_page(page); 751 goto stale; 752 } 753 } 754 return page; 755 756 stale: 757 /* 758 * We come here from above when page->mapping or !PageSwapCache 759 * suggests that the node is stale; but it might be under migration. 760 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), 761 * before checking whether node->kpfn has been changed. 762 */ 763 smp_rmb(); 764 if (READ_ONCE(stable_node->kpfn) != kpfn) 765 goto again; 766 remove_node_from_stable_tree(stable_node); 767 return NULL; 768 } 769 770 /* 771 * Removing rmap_item from stable or unstable tree. 772 * This function will clean the information from the stable/unstable tree. 773 */ 774 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 775 { 776 if (rmap_item->address & STABLE_FLAG) { 777 struct stable_node *stable_node; 778 struct page *page; 779 780 stable_node = rmap_item->head; 781 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 782 if (!page) 783 goto out; 784 785 hlist_del(&rmap_item->hlist); 786 unlock_page(page); 787 put_page(page); 788 789 if (!hlist_empty(&stable_node->hlist)) 790 ksm_pages_sharing--; 791 else 792 ksm_pages_shared--; 793 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 794 stable_node->rmap_hlist_len--; 795 796 put_anon_vma(rmap_item->anon_vma); 797 rmap_item->address &= PAGE_MASK; 798 799 } else if (rmap_item->address & UNSTABLE_FLAG) { 800 unsigned char age; 801 /* 802 * Usually ksmd can and must skip the rb_erase, because 803 * root_unstable_tree was already reset to RB_ROOT. 804 * But be careful when an mm is exiting: do the rb_erase 805 * if this rmap_item was inserted by this scan, rather 806 * than left over from before. 807 */ 808 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 809 BUG_ON(age > 1); 810 if (!age) 811 rb_erase(&rmap_item->node, 812 root_unstable_tree + NUMA(rmap_item->nid)); 813 ksm_pages_unshared--; 814 rmap_item->address &= PAGE_MASK; 815 } 816 out: 817 cond_resched(); /* we're called from many long loops */ 818 } 819 820 static void remove_trailing_rmap_items(struct mm_slot *mm_slot, 821 struct rmap_item **rmap_list) 822 { 823 while (*rmap_list) { 824 struct rmap_item *rmap_item = *rmap_list; 825 *rmap_list = rmap_item->rmap_list; 826 remove_rmap_item_from_tree(rmap_item); 827 free_rmap_item(rmap_item); 828 } 829 } 830 831 /* 832 * Though it's very tempting to unmerge rmap_items from stable tree rather 833 * than check every pte of a given vma, the locking doesn't quite work for 834 * that - an rmap_item is assigned to the stable tree after inserting ksm 835 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing 836 * rmap_items from parent to child at fork time (so as not to waste time 837 * if exit comes before the next scan reaches it). 838 * 839 * Similarly, although we'd like to remove rmap_items (so updating counts 840 * and freeing memory) when unmerging an area, it's easier to leave that 841 * to the next pass of ksmd - consider, for example, how ksmd might be 842 * in cmp_and_merge_page on one of the rmap_items we would be removing. 843 */ 844 static int unmerge_ksm_pages(struct vm_area_struct *vma, 845 unsigned long start, unsigned long end) 846 { 847 unsigned long addr; 848 int err = 0; 849 850 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 851 if (ksm_test_exit(vma->vm_mm)) 852 break; 853 if (signal_pending(current)) 854 err = -ERESTARTSYS; 855 else 856 err = break_ksm(vma, addr); 857 } 858 return err; 859 } 860 861 static inline struct stable_node *page_stable_node(struct page *page) 862 { 863 return PageKsm(page) ? page_rmapping(page) : NULL; 864 } 865 866 static inline void set_page_stable_node(struct page *page, 867 struct stable_node *stable_node) 868 { 869 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 870 } 871 872 #ifdef CONFIG_SYSFS 873 /* 874 * Only called through the sysfs control interface: 875 */ 876 static int remove_stable_node(struct stable_node *stable_node) 877 { 878 struct page *page; 879 int err; 880 881 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 882 if (!page) { 883 /* 884 * get_ksm_page did remove_node_from_stable_tree itself. 885 */ 886 return 0; 887 } 888 889 if (WARN_ON_ONCE(page_mapped(page))) { 890 /* 891 * This should not happen: but if it does, just refuse to let 892 * merge_across_nodes be switched - there is no need to panic. 893 */ 894 err = -EBUSY; 895 } else { 896 /* 897 * The stable node did not yet appear stale to get_ksm_page(), 898 * since that allows for an unmapped ksm page to be recognized 899 * right up until it is freed; but the node is safe to remove. 900 * This page might be in a pagevec waiting to be freed, 901 * or it might be PageSwapCache (perhaps under writeback), 902 * or it might have been removed from swapcache a moment ago. 903 */ 904 set_page_stable_node(page, NULL); 905 remove_node_from_stable_tree(stable_node); 906 err = 0; 907 } 908 909 unlock_page(page); 910 put_page(page); 911 return err; 912 } 913 914 static int remove_stable_node_chain(struct stable_node *stable_node, 915 struct rb_root *root) 916 { 917 struct stable_node *dup; 918 struct hlist_node *hlist_safe; 919 920 if (!is_stable_node_chain(stable_node)) { 921 VM_BUG_ON(is_stable_node_dup(stable_node)); 922 if (remove_stable_node(stable_node)) 923 return true; 924 else 925 return false; 926 } 927 928 hlist_for_each_entry_safe(dup, hlist_safe, 929 &stable_node->hlist, hlist_dup) { 930 VM_BUG_ON(!is_stable_node_dup(dup)); 931 if (remove_stable_node(dup)) 932 return true; 933 } 934 BUG_ON(!hlist_empty(&stable_node->hlist)); 935 free_stable_node_chain(stable_node, root); 936 return false; 937 } 938 939 static int remove_all_stable_nodes(void) 940 { 941 struct stable_node *stable_node, *next; 942 int nid; 943 int err = 0; 944 945 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 946 while (root_stable_tree[nid].rb_node) { 947 stable_node = rb_entry(root_stable_tree[nid].rb_node, 948 struct stable_node, node); 949 if (remove_stable_node_chain(stable_node, 950 root_stable_tree + nid)) { 951 err = -EBUSY; 952 break; /* proceed to next nid */ 953 } 954 cond_resched(); 955 } 956 } 957 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 958 if (remove_stable_node(stable_node)) 959 err = -EBUSY; 960 cond_resched(); 961 } 962 return err; 963 } 964 965 static int unmerge_and_remove_all_rmap_items(void) 966 { 967 struct mm_slot *mm_slot; 968 struct mm_struct *mm; 969 struct vm_area_struct *vma; 970 int err = 0; 971 972 spin_lock(&ksm_mmlist_lock); 973 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 974 struct mm_slot, mm_list); 975 spin_unlock(&ksm_mmlist_lock); 976 977 for (mm_slot = ksm_scan.mm_slot; 978 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 979 mm = mm_slot->mm; 980 down_read(&mm->mmap_sem); 981 for (vma = mm->mmap; vma; vma = vma->vm_next) { 982 if (ksm_test_exit(mm)) 983 break; 984 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 985 continue; 986 err = unmerge_ksm_pages(vma, 987 vma->vm_start, vma->vm_end); 988 if (err) 989 goto error; 990 } 991 992 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); 993 up_read(&mm->mmap_sem); 994 995 spin_lock(&ksm_mmlist_lock); 996 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 997 struct mm_slot, mm_list); 998 if (ksm_test_exit(mm)) { 999 hash_del(&mm_slot->link); 1000 list_del(&mm_slot->mm_list); 1001 spin_unlock(&ksm_mmlist_lock); 1002 1003 free_mm_slot(mm_slot); 1004 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1005 mmdrop(mm); 1006 } else 1007 spin_unlock(&ksm_mmlist_lock); 1008 } 1009 1010 /* Clean up stable nodes, but don't worry if some are still busy */ 1011 remove_all_stable_nodes(); 1012 ksm_scan.seqnr = 0; 1013 return 0; 1014 1015 error: 1016 up_read(&mm->mmap_sem); 1017 spin_lock(&ksm_mmlist_lock); 1018 ksm_scan.mm_slot = &ksm_mm_head; 1019 spin_unlock(&ksm_mmlist_lock); 1020 return err; 1021 } 1022 #endif /* CONFIG_SYSFS */ 1023 1024 static u32 calc_checksum(struct page *page) 1025 { 1026 u32 checksum; 1027 void *addr = kmap_atomic(page); 1028 checksum = xxhash(addr, PAGE_SIZE, 0); 1029 kunmap_atomic(addr); 1030 return checksum; 1031 } 1032 1033 static int memcmp_pages(struct page *page1, struct page *page2) 1034 { 1035 char *addr1, *addr2; 1036 int ret; 1037 1038 addr1 = kmap_atomic(page1); 1039 addr2 = kmap_atomic(page2); 1040 ret = memcmp(addr1, addr2, PAGE_SIZE); 1041 kunmap_atomic(addr2); 1042 kunmap_atomic(addr1); 1043 return ret; 1044 } 1045 1046 static inline int pages_identical(struct page *page1, struct page *page2) 1047 { 1048 return !memcmp_pages(page1, page2); 1049 } 1050 1051 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1052 pte_t *orig_pte) 1053 { 1054 struct mm_struct *mm = vma->vm_mm; 1055 struct page_vma_mapped_walk pvmw = { 1056 .page = page, 1057 .vma = vma, 1058 }; 1059 int swapped; 1060 int err = -EFAULT; 1061 struct mmu_notifier_range range; 1062 1063 pvmw.address = page_address_in_vma(page, vma); 1064 if (pvmw.address == -EFAULT) 1065 goto out; 1066 1067 BUG_ON(PageTransCompound(page)); 1068 1069 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 1070 pvmw.address, 1071 pvmw.address + PAGE_SIZE); 1072 mmu_notifier_invalidate_range_start(&range); 1073 1074 if (!page_vma_mapped_walk(&pvmw)) 1075 goto out_mn; 1076 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1077 goto out_unlock; 1078 1079 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1080 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) || 1081 mm_tlb_flush_pending(mm)) { 1082 pte_t entry; 1083 1084 swapped = PageSwapCache(page); 1085 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1086 /* 1087 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1088 * take any lock, therefore the check that we are going to make 1089 * with the pagecount against the mapcount is racey and 1090 * O_DIRECT can happen right after the check. 1091 * So we clear the pte and flush the tlb before the check 1092 * this assure us that no O_DIRECT can happen after the check 1093 * or in the middle of the check. 1094 * 1095 * No need to notify as we are downgrading page table to read 1096 * only not changing it to point to a new page. 1097 * 1098 * See Documentation/vm/mmu_notifier.rst 1099 */ 1100 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1101 /* 1102 * Check that no O_DIRECT or similar I/O is in progress on the 1103 * page 1104 */ 1105 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1106 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1107 goto out_unlock; 1108 } 1109 if (pte_dirty(entry)) 1110 set_page_dirty(page); 1111 1112 if (pte_protnone(entry)) 1113 entry = pte_mkclean(pte_clear_savedwrite(entry)); 1114 else 1115 entry = pte_mkclean(pte_wrprotect(entry)); 1116 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1117 } 1118 *orig_pte = *pvmw.pte; 1119 err = 0; 1120 1121 out_unlock: 1122 page_vma_mapped_walk_done(&pvmw); 1123 out_mn: 1124 mmu_notifier_invalidate_range_end(&range); 1125 out: 1126 return err; 1127 } 1128 1129 /** 1130 * replace_page - replace page in vma by new ksm page 1131 * @vma: vma that holds the pte pointing to page 1132 * @page: the page we are replacing by kpage 1133 * @kpage: the ksm page we replace page by 1134 * @orig_pte: the original value of the pte 1135 * 1136 * Returns 0 on success, -EFAULT on failure. 1137 */ 1138 static int replace_page(struct vm_area_struct *vma, struct page *page, 1139 struct page *kpage, pte_t orig_pte) 1140 { 1141 struct mm_struct *mm = vma->vm_mm; 1142 pmd_t *pmd; 1143 pte_t *ptep; 1144 pte_t newpte; 1145 spinlock_t *ptl; 1146 unsigned long addr; 1147 int err = -EFAULT; 1148 struct mmu_notifier_range range; 1149 1150 addr = page_address_in_vma(page, vma); 1151 if (addr == -EFAULT) 1152 goto out; 1153 1154 pmd = mm_find_pmd(mm, addr); 1155 if (!pmd) 1156 goto out; 1157 1158 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr, 1159 addr + PAGE_SIZE); 1160 mmu_notifier_invalidate_range_start(&range); 1161 1162 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1163 if (!pte_same(*ptep, orig_pte)) { 1164 pte_unmap_unlock(ptep, ptl); 1165 goto out_mn; 1166 } 1167 1168 /* 1169 * No need to check ksm_use_zero_pages here: we can only have a 1170 * zero_page here if ksm_use_zero_pages was enabled alreaady. 1171 */ 1172 if (!is_zero_pfn(page_to_pfn(kpage))) { 1173 get_page(kpage); 1174 page_add_anon_rmap(kpage, vma, addr, false); 1175 newpte = mk_pte(kpage, vma->vm_page_prot); 1176 } else { 1177 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1178 vma->vm_page_prot)); 1179 /* 1180 * We're replacing an anonymous page with a zero page, which is 1181 * not anonymous. We need to do proper accounting otherwise we 1182 * will get wrong values in /proc, and a BUG message in dmesg 1183 * when tearing down the mm. 1184 */ 1185 dec_mm_counter(mm, MM_ANONPAGES); 1186 } 1187 1188 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1189 /* 1190 * No need to notify as we are replacing a read only page with another 1191 * read only page with the same content. 1192 * 1193 * See Documentation/vm/mmu_notifier.rst 1194 */ 1195 ptep_clear_flush(vma, addr, ptep); 1196 set_pte_at_notify(mm, addr, ptep, newpte); 1197 1198 page_remove_rmap(page, false); 1199 if (!page_mapped(page)) 1200 try_to_free_swap(page); 1201 put_page(page); 1202 1203 pte_unmap_unlock(ptep, ptl); 1204 err = 0; 1205 out_mn: 1206 mmu_notifier_invalidate_range_end(&range); 1207 out: 1208 return err; 1209 } 1210 1211 /* 1212 * try_to_merge_one_page - take two pages and merge them into one 1213 * @vma: the vma that holds the pte pointing to page 1214 * @page: the PageAnon page that we want to replace with kpage 1215 * @kpage: the PageKsm page that we want to map instead of page, 1216 * or NULL the first time when we want to use page as kpage. 1217 * 1218 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1219 */ 1220 static int try_to_merge_one_page(struct vm_area_struct *vma, 1221 struct page *page, struct page *kpage) 1222 { 1223 pte_t orig_pte = __pte(0); 1224 int err = -EFAULT; 1225 1226 if (page == kpage) /* ksm page forked */ 1227 return 0; 1228 1229 if (!PageAnon(page)) 1230 goto out; 1231 1232 /* 1233 * We need the page lock to read a stable PageSwapCache in 1234 * write_protect_page(). We use trylock_page() instead of 1235 * lock_page() because we don't want to wait here - we 1236 * prefer to continue scanning and merging different pages, 1237 * then come back to this page when it is unlocked. 1238 */ 1239 if (!trylock_page(page)) 1240 goto out; 1241 1242 if (PageTransCompound(page)) { 1243 if (split_huge_page(page)) 1244 goto out_unlock; 1245 } 1246 1247 /* 1248 * If this anonymous page is mapped only here, its pte may need 1249 * to be write-protected. If it's mapped elsewhere, all of its 1250 * ptes are necessarily already write-protected. But in either 1251 * case, we need to lock and check page_count is not raised. 1252 */ 1253 if (write_protect_page(vma, page, &orig_pte) == 0) { 1254 if (!kpage) { 1255 /* 1256 * While we hold page lock, upgrade page from 1257 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1258 * stable_tree_insert() will update stable_node. 1259 */ 1260 set_page_stable_node(page, NULL); 1261 mark_page_accessed(page); 1262 /* 1263 * Page reclaim just frees a clean page with no dirty 1264 * ptes: make sure that the ksm page would be swapped. 1265 */ 1266 if (!PageDirty(page)) 1267 SetPageDirty(page); 1268 err = 0; 1269 } else if (pages_identical(page, kpage)) 1270 err = replace_page(vma, page, kpage, orig_pte); 1271 } 1272 1273 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1274 munlock_vma_page(page); 1275 if (!PageMlocked(kpage)) { 1276 unlock_page(page); 1277 lock_page(kpage); 1278 mlock_vma_page(kpage); 1279 page = kpage; /* for final unlock */ 1280 } 1281 } 1282 1283 out_unlock: 1284 unlock_page(page); 1285 out: 1286 return err; 1287 } 1288 1289 /* 1290 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1291 * but no new kernel page is allocated: kpage must already be a ksm page. 1292 * 1293 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1294 */ 1295 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1296 struct page *page, struct page *kpage) 1297 { 1298 struct mm_struct *mm = rmap_item->mm; 1299 struct vm_area_struct *vma; 1300 int err = -EFAULT; 1301 1302 down_read(&mm->mmap_sem); 1303 vma = find_mergeable_vma(mm, rmap_item->address); 1304 if (!vma) 1305 goto out; 1306 1307 err = try_to_merge_one_page(vma, page, kpage); 1308 if (err) 1309 goto out; 1310 1311 /* Unstable nid is in union with stable anon_vma: remove first */ 1312 remove_rmap_item_from_tree(rmap_item); 1313 1314 /* Must get reference to anon_vma while still holding mmap_sem */ 1315 rmap_item->anon_vma = vma->anon_vma; 1316 get_anon_vma(vma->anon_vma); 1317 out: 1318 up_read(&mm->mmap_sem); 1319 return err; 1320 } 1321 1322 /* 1323 * try_to_merge_two_pages - take two identical pages and prepare them 1324 * to be merged into one page. 1325 * 1326 * This function returns the kpage if we successfully merged two identical 1327 * pages into one ksm page, NULL otherwise. 1328 * 1329 * Note that this function upgrades page to ksm page: if one of the pages 1330 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1331 */ 1332 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1333 struct page *page, 1334 struct rmap_item *tree_rmap_item, 1335 struct page *tree_page) 1336 { 1337 int err; 1338 1339 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1340 if (!err) { 1341 err = try_to_merge_with_ksm_page(tree_rmap_item, 1342 tree_page, page); 1343 /* 1344 * If that fails, we have a ksm page with only one pte 1345 * pointing to it: so break it. 1346 */ 1347 if (err) 1348 break_cow(rmap_item); 1349 } 1350 return err ? NULL : page; 1351 } 1352 1353 static __always_inline 1354 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset) 1355 { 1356 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1357 /* 1358 * Check that at least one mapping still exists, otherwise 1359 * there's no much point to merge and share with this 1360 * stable_node, as the underlying tree_page of the other 1361 * sharer is going to be freed soon. 1362 */ 1363 return stable_node->rmap_hlist_len && 1364 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1365 } 1366 1367 static __always_inline 1368 bool is_page_sharing_candidate(struct stable_node *stable_node) 1369 { 1370 return __is_page_sharing_candidate(stable_node, 0); 1371 } 1372 1373 static struct page *stable_node_dup(struct stable_node **_stable_node_dup, 1374 struct stable_node **_stable_node, 1375 struct rb_root *root, 1376 bool prune_stale_stable_nodes) 1377 { 1378 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1379 struct hlist_node *hlist_safe; 1380 struct page *_tree_page, *tree_page = NULL; 1381 int nr = 0; 1382 int found_rmap_hlist_len; 1383 1384 if (!prune_stale_stable_nodes || 1385 time_before(jiffies, stable_node->chain_prune_time + 1386 msecs_to_jiffies( 1387 ksm_stable_node_chains_prune_millisecs))) 1388 prune_stale_stable_nodes = false; 1389 else 1390 stable_node->chain_prune_time = jiffies; 1391 1392 hlist_for_each_entry_safe(dup, hlist_safe, 1393 &stable_node->hlist, hlist_dup) { 1394 cond_resched(); 1395 /* 1396 * We must walk all stable_node_dup to prune the stale 1397 * stable nodes during lookup. 1398 * 1399 * get_ksm_page can drop the nodes from the 1400 * stable_node->hlist if they point to freed pages 1401 * (that's why we do a _safe walk). The "dup" 1402 * stable_node parameter itself will be freed from 1403 * under us if it returns NULL. 1404 */ 1405 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK); 1406 if (!_tree_page) 1407 continue; 1408 nr += 1; 1409 if (is_page_sharing_candidate(dup)) { 1410 if (!found || 1411 dup->rmap_hlist_len > found_rmap_hlist_len) { 1412 if (found) 1413 put_page(tree_page); 1414 found = dup; 1415 found_rmap_hlist_len = found->rmap_hlist_len; 1416 tree_page = _tree_page; 1417 1418 /* skip put_page for found dup */ 1419 if (!prune_stale_stable_nodes) 1420 break; 1421 continue; 1422 } 1423 } 1424 put_page(_tree_page); 1425 } 1426 1427 if (found) { 1428 /* 1429 * nr is counting all dups in the chain only if 1430 * prune_stale_stable_nodes is true, otherwise we may 1431 * break the loop at nr == 1 even if there are 1432 * multiple entries. 1433 */ 1434 if (prune_stale_stable_nodes && nr == 1) { 1435 /* 1436 * If there's not just one entry it would 1437 * corrupt memory, better BUG_ON. In KSM 1438 * context with no lock held it's not even 1439 * fatal. 1440 */ 1441 BUG_ON(stable_node->hlist.first->next); 1442 1443 /* 1444 * There's just one entry and it is below the 1445 * deduplication limit so drop the chain. 1446 */ 1447 rb_replace_node(&stable_node->node, &found->node, 1448 root); 1449 free_stable_node(stable_node); 1450 ksm_stable_node_chains--; 1451 ksm_stable_node_dups--; 1452 /* 1453 * NOTE: the caller depends on the stable_node 1454 * to be equal to stable_node_dup if the chain 1455 * was collapsed. 1456 */ 1457 *_stable_node = found; 1458 /* 1459 * Just for robustneess as stable_node is 1460 * otherwise left as a stable pointer, the 1461 * compiler shall optimize it away at build 1462 * time. 1463 */ 1464 stable_node = NULL; 1465 } else if (stable_node->hlist.first != &found->hlist_dup && 1466 __is_page_sharing_candidate(found, 1)) { 1467 /* 1468 * If the found stable_node dup can accept one 1469 * more future merge (in addition to the one 1470 * that is underway) and is not at the head of 1471 * the chain, put it there so next search will 1472 * be quicker in the !prune_stale_stable_nodes 1473 * case. 1474 * 1475 * NOTE: it would be inaccurate to use nr > 1 1476 * instead of checking the hlist.first pointer 1477 * directly, because in the 1478 * prune_stale_stable_nodes case "nr" isn't 1479 * the position of the found dup in the chain, 1480 * but the total number of dups in the chain. 1481 */ 1482 hlist_del(&found->hlist_dup); 1483 hlist_add_head(&found->hlist_dup, 1484 &stable_node->hlist); 1485 } 1486 } 1487 1488 *_stable_node_dup = found; 1489 return tree_page; 1490 } 1491 1492 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node, 1493 struct rb_root *root) 1494 { 1495 if (!is_stable_node_chain(stable_node)) 1496 return stable_node; 1497 if (hlist_empty(&stable_node->hlist)) { 1498 free_stable_node_chain(stable_node, root); 1499 return NULL; 1500 } 1501 return hlist_entry(stable_node->hlist.first, 1502 typeof(*stable_node), hlist_dup); 1503 } 1504 1505 /* 1506 * Like for get_ksm_page, this function can free the *_stable_node and 1507 * *_stable_node_dup if the returned tree_page is NULL. 1508 * 1509 * It can also free and overwrite *_stable_node with the found 1510 * stable_node_dup if the chain is collapsed (in which case 1511 * *_stable_node will be equal to *_stable_node_dup like if the chain 1512 * never existed). It's up to the caller to verify tree_page is not 1513 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1514 * 1515 * *_stable_node_dup is really a second output parameter of this 1516 * function and will be overwritten in all cases, the caller doesn't 1517 * need to initialize it. 1518 */ 1519 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup, 1520 struct stable_node **_stable_node, 1521 struct rb_root *root, 1522 bool prune_stale_stable_nodes) 1523 { 1524 struct stable_node *stable_node = *_stable_node; 1525 if (!is_stable_node_chain(stable_node)) { 1526 if (is_page_sharing_candidate(stable_node)) { 1527 *_stable_node_dup = stable_node; 1528 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); 1529 } 1530 /* 1531 * _stable_node_dup set to NULL means the stable_node 1532 * reached the ksm_max_page_sharing limit. 1533 */ 1534 *_stable_node_dup = NULL; 1535 return NULL; 1536 } 1537 return stable_node_dup(_stable_node_dup, _stable_node, root, 1538 prune_stale_stable_nodes); 1539 } 1540 1541 static __always_inline struct page *chain_prune(struct stable_node **s_n_d, 1542 struct stable_node **s_n, 1543 struct rb_root *root) 1544 { 1545 return __stable_node_chain(s_n_d, s_n, root, true); 1546 } 1547 1548 static __always_inline struct page *chain(struct stable_node **s_n_d, 1549 struct stable_node *s_n, 1550 struct rb_root *root) 1551 { 1552 struct stable_node *old_stable_node = s_n; 1553 struct page *tree_page; 1554 1555 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1556 /* not pruning dups so s_n cannot have changed */ 1557 VM_BUG_ON(s_n != old_stable_node); 1558 return tree_page; 1559 } 1560 1561 /* 1562 * stable_tree_search - search for page inside the stable tree 1563 * 1564 * This function checks if there is a page inside the stable tree 1565 * with identical content to the page that we are scanning right now. 1566 * 1567 * This function returns the stable tree node of identical content if found, 1568 * NULL otherwise. 1569 */ 1570 static struct page *stable_tree_search(struct page *page) 1571 { 1572 int nid; 1573 struct rb_root *root; 1574 struct rb_node **new; 1575 struct rb_node *parent; 1576 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1577 struct stable_node *page_node; 1578 1579 page_node = page_stable_node(page); 1580 if (page_node && page_node->head != &migrate_nodes) { 1581 /* ksm page forked */ 1582 get_page(page); 1583 return page; 1584 } 1585 1586 nid = get_kpfn_nid(page_to_pfn(page)); 1587 root = root_stable_tree + nid; 1588 again: 1589 new = &root->rb_node; 1590 parent = NULL; 1591 1592 while (*new) { 1593 struct page *tree_page; 1594 int ret; 1595 1596 cond_resched(); 1597 stable_node = rb_entry(*new, struct stable_node, node); 1598 stable_node_any = NULL; 1599 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1600 /* 1601 * NOTE: stable_node may have been freed by 1602 * chain_prune() if the returned stable_node_dup is 1603 * not NULL. stable_node_dup may have been inserted in 1604 * the rbtree instead as a regular stable_node (in 1605 * order to collapse the stable_node chain if a single 1606 * stable_node dup was found in it). In such case the 1607 * stable_node is overwritten by the calleee to point 1608 * to the stable_node_dup that was collapsed in the 1609 * stable rbtree and stable_node will be equal to 1610 * stable_node_dup like if the chain never existed. 1611 */ 1612 if (!stable_node_dup) { 1613 /* 1614 * Either all stable_node dups were full in 1615 * this stable_node chain, or this chain was 1616 * empty and should be rb_erased. 1617 */ 1618 stable_node_any = stable_node_dup_any(stable_node, 1619 root); 1620 if (!stable_node_any) { 1621 /* rb_erase just run */ 1622 goto again; 1623 } 1624 /* 1625 * Take any of the stable_node dups page of 1626 * this stable_node chain to let the tree walk 1627 * continue. All KSM pages belonging to the 1628 * stable_node dups in a stable_node chain 1629 * have the same content and they're 1630 * wrprotected at all times. Any will work 1631 * fine to continue the walk. 1632 */ 1633 tree_page = get_ksm_page(stable_node_any, 1634 GET_KSM_PAGE_NOLOCK); 1635 } 1636 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1637 if (!tree_page) { 1638 /* 1639 * If we walked over a stale stable_node, 1640 * get_ksm_page() will call rb_erase() and it 1641 * may rebalance the tree from under us. So 1642 * restart the search from scratch. Returning 1643 * NULL would be safe too, but we'd generate 1644 * false negative insertions just because some 1645 * stable_node was stale. 1646 */ 1647 goto again; 1648 } 1649 1650 ret = memcmp_pages(page, tree_page); 1651 put_page(tree_page); 1652 1653 parent = *new; 1654 if (ret < 0) 1655 new = &parent->rb_left; 1656 else if (ret > 0) 1657 new = &parent->rb_right; 1658 else { 1659 if (page_node) { 1660 VM_BUG_ON(page_node->head != &migrate_nodes); 1661 /* 1662 * Test if the migrated page should be merged 1663 * into a stable node dup. If the mapcount is 1664 * 1 we can migrate it with another KSM page 1665 * without adding it to the chain. 1666 */ 1667 if (page_mapcount(page) > 1) 1668 goto chain_append; 1669 } 1670 1671 if (!stable_node_dup) { 1672 /* 1673 * If the stable_node is a chain and 1674 * we got a payload match in memcmp 1675 * but we cannot merge the scanned 1676 * page in any of the existing 1677 * stable_node dups because they're 1678 * all full, we need to wait the 1679 * scanned page to find itself a match 1680 * in the unstable tree to create a 1681 * brand new KSM page to add later to 1682 * the dups of this stable_node. 1683 */ 1684 return NULL; 1685 } 1686 1687 /* 1688 * Lock and unlock the stable_node's page (which 1689 * might already have been migrated) so that page 1690 * migration is sure to notice its raised count. 1691 * It would be more elegant to return stable_node 1692 * than kpage, but that involves more changes. 1693 */ 1694 tree_page = get_ksm_page(stable_node_dup, 1695 GET_KSM_PAGE_TRYLOCK); 1696 1697 if (PTR_ERR(tree_page) == -EBUSY) 1698 return ERR_PTR(-EBUSY); 1699 1700 if (unlikely(!tree_page)) 1701 /* 1702 * The tree may have been rebalanced, 1703 * so re-evaluate parent and new. 1704 */ 1705 goto again; 1706 unlock_page(tree_page); 1707 1708 if (get_kpfn_nid(stable_node_dup->kpfn) != 1709 NUMA(stable_node_dup->nid)) { 1710 put_page(tree_page); 1711 goto replace; 1712 } 1713 return tree_page; 1714 } 1715 } 1716 1717 if (!page_node) 1718 return NULL; 1719 1720 list_del(&page_node->list); 1721 DO_NUMA(page_node->nid = nid); 1722 rb_link_node(&page_node->node, parent, new); 1723 rb_insert_color(&page_node->node, root); 1724 out: 1725 if (is_page_sharing_candidate(page_node)) { 1726 get_page(page); 1727 return page; 1728 } else 1729 return NULL; 1730 1731 replace: 1732 /* 1733 * If stable_node was a chain and chain_prune collapsed it, 1734 * stable_node has been updated to be the new regular 1735 * stable_node. A collapse of the chain is indistinguishable 1736 * from the case there was no chain in the stable 1737 * rbtree. Otherwise stable_node is the chain and 1738 * stable_node_dup is the dup to replace. 1739 */ 1740 if (stable_node_dup == stable_node) { 1741 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1742 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1743 /* there is no chain */ 1744 if (page_node) { 1745 VM_BUG_ON(page_node->head != &migrate_nodes); 1746 list_del(&page_node->list); 1747 DO_NUMA(page_node->nid = nid); 1748 rb_replace_node(&stable_node_dup->node, 1749 &page_node->node, 1750 root); 1751 if (is_page_sharing_candidate(page_node)) 1752 get_page(page); 1753 else 1754 page = NULL; 1755 } else { 1756 rb_erase(&stable_node_dup->node, root); 1757 page = NULL; 1758 } 1759 } else { 1760 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1761 __stable_node_dup_del(stable_node_dup); 1762 if (page_node) { 1763 VM_BUG_ON(page_node->head != &migrate_nodes); 1764 list_del(&page_node->list); 1765 DO_NUMA(page_node->nid = nid); 1766 stable_node_chain_add_dup(page_node, stable_node); 1767 if (is_page_sharing_candidate(page_node)) 1768 get_page(page); 1769 else 1770 page = NULL; 1771 } else { 1772 page = NULL; 1773 } 1774 } 1775 stable_node_dup->head = &migrate_nodes; 1776 list_add(&stable_node_dup->list, stable_node_dup->head); 1777 return page; 1778 1779 chain_append: 1780 /* stable_node_dup could be null if it reached the limit */ 1781 if (!stable_node_dup) 1782 stable_node_dup = stable_node_any; 1783 /* 1784 * If stable_node was a chain and chain_prune collapsed it, 1785 * stable_node has been updated to be the new regular 1786 * stable_node. A collapse of the chain is indistinguishable 1787 * from the case there was no chain in the stable 1788 * rbtree. Otherwise stable_node is the chain and 1789 * stable_node_dup is the dup to replace. 1790 */ 1791 if (stable_node_dup == stable_node) { 1792 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1793 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1794 /* chain is missing so create it */ 1795 stable_node = alloc_stable_node_chain(stable_node_dup, 1796 root); 1797 if (!stable_node) 1798 return NULL; 1799 } 1800 /* 1801 * Add this stable_node dup that was 1802 * migrated to the stable_node chain 1803 * of the current nid for this page 1804 * content. 1805 */ 1806 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1807 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1808 VM_BUG_ON(page_node->head != &migrate_nodes); 1809 list_del(&page_node->list); 1810 DO_NUMA(page_node->nid = nid); 1811 stable_node_chain_add_dup(page_node, stable_node); 1812 goto out; 1813 } 1814 1815 /* 1816 * stable_tree_insert - insert stable tree node pointing to new ksm page 1817 * into the stable tree. 1818 * 1819 * This function returns the stable tree node just allocated on success, 1820 * NULL otherwise. 1821 */ 1822 static struct stable_node *stable_tree_insert(struct page *kpage) 1823 { 1824 int nid; 1825 unsigned long kpfn; 1826 struct rb_root *root; 1827 struct rb_node **new; 1828 struct rb_node *parent; 1829 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1830 bool need_chain = false; 1831 1832 kpfn = page_to_pfn(kpage); 1833 nid = get_kpfn_nid(kpfn); 1834 root = root_stable_tree + nid; 1835 again: 1836 parent = NULL; 1837 new = &root->rb_node; 1838 1839 while (*new) { 1840 struct page *tree_page; 1841 int ret; 1842 1843 cond_resched(); 1844 stable_node = rb_entry(*new, struct stable_node, node); 1845 stable_node_any = NULL; 1846 tree_page = chain(&stable_node_dup, stable_node, root); 1847 if (!stable_node_dup) { 1848 /* 1849 * Either all stable_node dups were full in 1850 * this stable_node chain, or this chain was 1851 * empty and should be rb_erased. 1852 */ 1853 stable_node_any = stable_node_dup_any(stable_node, 1854 root); 1855 if (!stable_node_any) { 1856 /* rb_erase just run */ 1857 goto again; 1858 } 1859 /* 1860 * Take any of the stable_node dups page of 1861 * this stable_node chain to let the tree walk 1862 * continue. All KSM pages belonging to the 1863 * stable_node dups in a stable_node chain 1864 * have the same content and they're 1865 * wrprotected at all times. Any will work 1866 * fine to continue the walk. 1867 */ 1868 tree_page = get_ksm_page(stable_node_any, 1869 GET_KSM_PAGE_NOLOCK); 1870 } 1871 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1872 if (!tree_page) { 1873 /* 1874 * If we walked over a stale stable_node, 1875 * get_ksm_page() will call rb_erase() and it 1876 * may rebalance the tree from under us. So 1877 * restart the search from scratch. Returning 1878 * NULL would be safe too, but we'd generate 1879 * false negative insertions just because some 1880 * stable_node was stale. 1881 */ 1882 goto again; 1883 } 1884 1885 ret = memcmp_pages(kpage, tree_page); 1886 put_page(tree_page); 1887 1888 parent = *new; 1889 if (ret < 0) 1890 new = &parent->rb_left; 1891 else if (ret > 0) 1892 new = &parent->rb_right; 1893 else { 1894 need_chain = true; 1895 break; 1896 } 1897 } 1898 1899 stable_node_dup = alloc_stable_node(); 1900 if (!stable_node_dup) 1901 return NULL; 1902 1903 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1904 stable_node_dup->kpfn = kpfn; 1905 set_page_stable_node(kpage, stable_node_dup); 1906 stable_node_dup->rmap_hlist_len = 0; 1907 DO_NUMA(stable_node_dup->nid = nid); 1908 if (!need_chain) { 1909 rb_link_node(&stable_node_dup->node, parent, new); 1910 rb_insert_color(&stable_node_dup->node, root); 1911 } else { 1912 if (!is_stable_node_chain(stable_node)) { 1913 struct stable_node *orig = stable_node; 1914 /* chain is missing so create it */ 1915 stable_node = alloc_stable_node_chain(orig, root); 1916 if (!stable_node) { 1917 free_stable_node(stable_node_dup); 1918 return NULL; 1919 } 1920 } 1921 stable_node_chain_add_dup(stable_node_dup, stable_node); 1922 } 1923 1924 return stable_node_dup; 1925 } 1926 1927 /* 1928 * unstable_tree_search_insert - search for identical page, 1929 * else insert rmap_item into the unstable tree. 1930 * 1931 * This function searches for a page in the unstable tree identical to the 1932 * page currently being scanned; and if no identical page is found in the 1933 * tree, we insert rmap_item as a new object into the unstable tree. 1934 * 1935 * This function returns pointer to rmap_item found to be identical 1936 * to the currently scanned page, NULL otherwise. 1937 * 1938 * This function does both searching and inserting, because they share 1939 * the same walking algorithm in an rbtree. 1940 */ 1941 static 1942 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1943 struct page *page, 1944 struct page **tree_pagep) 1945 { 1946 struct rb_node **new; 1947 struct rb_root *root; 1948 struct rb_node *parent = NULL; 1949 int nid; 1950 1951 nid = get_kpfn_nid(page_to_pfn(page)); 1952 root = root_unstable_tree + nid; 1953 new = &root->rb_node; 1954 1955 while (*new) { 1956 struct rmap_item *tree_rmap_item; 1957 struct page *tree_page; 1958 int ret; 1959 1960 cond_resched(); 1961 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1962 tree_page = get_mergeable_page(tree_rmap_item); 1963 if (!tree_page) 1964 return NULL; 1965 1966 /* 1967 * Don't substitute a ksm page for a forked page. 1968 */ 1969 if (page == tree_page) { 1970 put_page(tree_page); 1971 return NULL; 1972 } 1973 1974 ret = memcmp_pages(page, tree_page); 1975 1976 parent = *new; 1977 if (ret < 0) { 1978 put_page(tree_page); 1979 new = &parent->rb_left; 1980 } else if (ret > 0) { 1981 put_page(tree_page); 1982 new = &parent->rb_right; 1983 } else if (!ksm_merge_across_nodes && 1984 page_to_nid(tree_page) != nid) { 1985 /* 1986 * If tree_page has been migrated to another NUMA node, 1987 * it will be flushed out and put in the right unstable 1988 * tree next time: only merge with it when across_nodes. 1989 */ 1990 put_page(tree_page); 1991 return NULL; 1992 } else { 1993 *tree_pagep = tree_page; 1994 return tree_rmap_item; 1995 } 1996 } 1997 1998 rmap_item->address |= UNSTABLE_FLAG; 1999 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 2000 DO_NUMA(rmap_item->nid = nid); 2001 rb_link_node(&rmap_item->node, parent, new); 2002 rb_insert_color(&rmap_item->node, root); 2003 2004 ksm_pages_unshared++; 2005 return NULL; 2006 } 2007 2008 /* 2009 * stable_tree_append - add another rmap_item to the linked list of 2010 * rmap_items hanging off a given node of the stable tree, all sharing 2011 * the same ksm page. 2012 */ 2013 static void stable_tree_append(struct rmap_item *rmap_item, 2014 struct stable_node *stable_node, 2015 bool max_page_sharing_bypass) 2016 { 2017 /* 2018 * rmap won't find this mapping if we don't insert the 2019 * rmap_item in the right stable_node 2020 * duplicate. page_migration could break later if rmap breaks, 2021 * so we can as well crash here. We really need to check for 2022 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2023 * for other negative values as an undeflow if detected here 2024 * for the first time (and not when decreasing rmap_hlist_len) 2025 * would be sign of memory corruption in the stable_node. 2026 */ 2027 BUG_ON(stable_node->rmap_hlist_len < 0); 2028 2029 stable_node->rmap_hlist_len++; 2030 if (!max_page_sharing_bypass) 2031 /* possibly non fatal but unexpected overflow, only warn */ 2032 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2033 ksm_max_page_sharing); 2034 2035 rmap_item->head = stable_node; 2036 rmap_item->address |= STABLE_FLAG; 2037 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2038 2039 if (rmap_item->hlist.next) 2040 ksm_pages_sharing++; 2041 else 2042 ksm_pages_shared++; 2043 } 2044 2045 /* 2046 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2047 * if not, compare checksum to previous and if it's the same, see if page can 2048 * be inserted into the unstable tree, or merged with a page already there and 2049 * both transferred to the stable tree. 2050 * 2051 * @page: the page that we are searching identical page to. 2052 * @rmap_item: the reverse mapping into the virtual address of this page 2053 */ 2054 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 2055 { 2056 struct mm_struct *mm = rmap_item->mm; 2057 struct rmap_item *tree_rmap_item; 2058 struct page *tree_page = NULL; 2059 struct stable_node *stable_node; 2060 struct page *kpage; 2061 unsigned int checksum; 2062 int err; 2063 bool max_page_sharing_bypass = false; 2064 2065 stable_node = page_stable_node(page); 2066 if (stable_node) { 2067 if (stable_node->head != &migrate_nodes && 2068 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2069 NUMA(stable_node->nid)) { 2070 stable_node_dup_del(stable_node); 2071 stable_node->head = &migrate_nodes; 2072 list_add(&stable_node->list, stable_node->head); 2073 } 2074 if (stable_node->head != &migrate_nodes && 2075 rmap_item->head == stable_node) 2076 return; 2077 /* 2078 * If it's a KSM fork, allow it to go over the sharing limit 2079 * without warnings. 2080 */ 2081 if (!is_page_sharing_candidate(stable_node)) 2082 max_page_sharing_bypass = true; 2083 } 2084 2085 /* We first start with searching the page inside the stable tree */ 2086 kpage = stable_tree_search(page); 2087 if (kpage == page && rmap_item->head == stable_node) { 2088 put_page(kpage); 2089 return; 2090 } 2091 2092 remove_rmap_item_from_tree(rmap_item); 2093 2094 if (kpage) { 2095 if (PTR_ERR(kpage) == -EBUSY) 2096 return; 2097 2098 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2099 if (!err) { 2100 /* 2101 * The page was successfully merged: 2102 * add its rmap_item to the stable tree. 2103 */ 2104 lock_page(kpage); 2105 stable_tree_append(rmap_item, page_stable_node(kpage), 2106 max_page_sharing_bypass); 2107 unlock_page(kpage); 2108 } 2109 put_page(kpage); 2110 return; 2111 } 2112 2113 /* 2114 * If the hash value of the page has changed from the last time 2115 * we calculated it, this page is changing frequently: therefore we 2116 * don't want to insert it in the unstable tree, and we don't want 2117 * to waste our time searching for something identical to it there. 2118 */ 2119 checksum = calc_checksum(page); 2120 if (rmap_item->oldchecksum != checksum) { 2121 rmap_item->oldchecksum = checksum; 2122 return; 2123 } 2124 2125 /* 2126 * Same checksum as an empty page. We attempt to merge it with the 2127 * appropriate zero page if the user enabled this via sysfs. 2128 */ 2129 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2130 struct vm_area_struct *vma; 2131 2132 down_read(&mm->mmap_sem); 2133 vma = find_mergeable_vma(mm, rmap_item->address); 2134 err = try_to_merge_one_page(vma, page, 2135 ZERO_PAGE(rmap_item->address)); 2136 up_read(&mm->mmap_sem); 2137 /* 2138 * In case of failure, the page was not really empty, so we 2139 * need to continue. Otherwise we're done. 2140 */ 2141 if (!err) 2142 return; 2143 } 2144 tree_rmap_item = 2145 unstable_tree_search_insert(rmap_item, page, &tree_page); 2146 if (tree_rmap_item) { 2147 bool split; 2148 2149 kpage = try_to_merge_two_pages(rmap_item, page, 2150 tree_rmap_item, tree_page); 2151 /* 2152 * If both pages we tried to merge belong to the same compound 2153 * page, then we actually ended up increasing the reference 2154 * count of the same compound page twice, and split_huge_page 2155 * failed. 2156 * Here we set a flag if that happened, and we use it later to 2157 * try split_huge_page again. Since we call put_page right 2158 * afterwards, the reference count will be correct and 2159 * split_huge_page should succeed. 2160 */ 2161 split = PageTransCompound(page) 2162 && compound_head(page) == compound_head(tree_page); 2163 put_page(tree_page); 2164 if (kpage) { 2165 /* 2166 * The pages were successfully merged: insert new 2167 * node in the stable tree and add both rmap_items. 2168 */ 2169 lock_page(kpage); 2170 stable_node = stable_tree_insert(kpage); 2171 if (stable_node) { 2172 stable_tree_append(tree_rmap_item, stable_node, 2173 false); 2174 stable_tree_append(rmap_item, stable_node, 2175 false); 2176 } 2177 unlock_page(kpage); 2178 2179 /* 2180 * If we fail to insert the page into the stable tree, 2181 * we will have 2 virtual addresses that are pointing 2182 * to a ksm page left outside the stable tree, 2183 * in which case we need to break_cow on both. 2184 */ 2185 if (!stable_node) { 2186 break_cow(tree_rmap_item); 2187 break_cow(rmap_item); 2188 } 2189 } else if (split) { 2190 /* 2191 * We are here if we tried to merge two pages and 2192 * failed because they both belonged to the same 2193 * compound page. We will split the page now, but no 2194 * merging will take place. 2195 * We do not want to add the cost of a full lock; if 2196 * the page is locked, it is better to skip it and 2197 * perhaps try again later. 2198 */ 2199 if (!trylock_page(page)) 2200 return; 2201 split_huge_page(page); 2202 unlock_page(page); 2203 } 2204 } 2205 } 2206 2207 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 2208 struct rmap_item **rmap_list, 2209 unsigned long addr) 2210 { 2211 struct rmap_item *rmap_item; 2212 2213 while (*rmap_list) { 2214 rmap_item = *rmap_list; 2215 if ((rmap_item->address & PAGE_MASK) == addr) 2216 return rmap_item; 2217 if (rmap_item->address > addr) 2218 break; 2219 *rmap_list = rmap_item->rmap_list; 2220 remove_rmap_item_from_tree(rmap_item); 2221 free_rmap_item(rmap_item); 2222 } 2223 2224 rmap_item = alloc_rmap_item(); 2225 if (rmap_item) { 2226 /* It has already been zeroed */ 2227 rmap_item->mm = mm_slot->mm; 2228 rmap_item->address = addr; 2229 rmap_item->rmap_list = *rmap_list; 2230 *rmap_list = rmap_item; 2231 } 2232 return rmap_item; 2233 } 2234 2235 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 2236 { 2237 struct mm_struct *mm; 2238 struct mm_slot *slot; 2239 struct vm_area_struct *vma; 2240 struct rmap_item *rmap_item; 2241 int nid; 2242 2243 if (list_empty(&ksm_mm_head.mm_list)) 2244 return NULL; 2245 2246 slot = ksm_scan.mm_slot; 2247 if (slot == &ksm_mm_head) { 2248 /* 2249 * A number of pages can hang around indefinitely on per-cpu 2250 * pagevecs, raised page count preventing write_protect_page 2251 * from merging them. Though it doesn't really matter much, 2252 * it is puzzling to see some stuck in pages_volatile until 2253 * other activity jostles them out, and they also prevented 2254 * LTP's KSM test from succeeding deterministically; so drain 2255 * them here (here rather than on entry to ksm_do_scan(), 2256 * so we don't IPI too often when pages_to_scan is set low). 2257 */ 2258 lru_add_drain_all(); 2259 2260 /* 2261 * Whereas stale stable_nodes on the stable_tree itself 2262 * get pruned in the regular course of stable_tree_search(), 2263 * those moved out to the migrate_nodes list can accumulate: 2264 * so prune them once before each full scan. 2265 */ 2266 if (!ksm_merge_across_nodes) { 2267 struct stable_node *stable_node, *next; 2268 struct page *page; 2269 2270 list_for_each_entry_safe(stable_node, next, 2271 &migrate_nodes, list) { 2272 page = get_ksm_page(stable_node, 2273 GET_KSM_PAGE_NOLOCK); 2274 if (page) 2275 put_page(page); 2276 cond_resched(); 2277 } 2278 } 2279 2280 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2281 root_unstable_tree[nid] = RB_ROOT; 2282 2283 spin_lock(&ksm_mmlist_lock); 2284 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 2285 ksm_scan.mm_slot = slot; 2286 spin_unlock(&ksm_mmlist_lock); 2287 /* 2288 * Although we tested list_empty() above, a racing __ksm_exit 2289 * of the last mm on the list may have removed it since then. 2290 */ 2291 if (slot == &ksm_mm_head) 2292 return NULL; 2293 next_mm: 2294 ksm_scan.address = 0; 2295 ksm_scan.rmap_list = &slot->rmap_list; 2296 } 2297 2298 mm = slot->mm; 2299 down_read(&mm->mmap_sem); 2300 if (ksm_test_exit(mm)) 2301 vma = NULL; 2302 else 2303 vma = find_vma(mm, ksm_scan.address); 2304 2305 for (; vma; vma = vma->vm_next) { 2306 if (!(vma->vm_flags & VM_MERGEABLE)) 2307 continue; 2308 if (ksm_scan.address < vma->vm_start) 2309 ksm_scan.address = vma->vm_start; 2310 if (!vma->anon_vma) 2311 ksm_scan.address = vma->vm_end; 2312 2313 while (ksm_scan.address < vma->vm_end) { 2314 if (ksm_test_exit(mm)) 2315 break; 2316 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2317 if (IS_ERR_OR_NULL(*page)) { 2318 ksm_scan.address += PAGE_SIZE; 2319 cond_resched(); 2320 continue; 2321 } 2322 if (PageAnon(*page)) { 2323 flush_anon_page(vma, *page, ksm_scan.address); 2324 flush_dcache_page(*page); 2325 rmap_item = get_next_rmap_item(slot, 2326 ksm_scan.rmap_list, ksm_scan.address); 2327 if (rmap_item) { 2328 ksm_scan.rmap_list = 2329 &rmap_item->rmap_list; 2330 ksm_scan.address += PAGE_SIZE; 2331 } else 2332 put_page(*page); 2333 up_read(&mm->mmap_sem); 2334 return rmap_item; 2335 } 2336 put_page(*page); 2337 ksm_scan.address += PAGE_SIZE; 2338 cond_resched(); 2339 } 2340 } 2341 2342 if (ksm_test_exit(mm)) { 2343 ksm_scan.address = 0; 2344 ksm_scan.rmap_list = &slot->rmap_list; 2345 } 2346 /* 2347 * Nuke all the rmap_items that are above this current rmap: 2348 * because there were no VM_MERGEABLE vmas with such addresses. 2349 */ 2350 remove_trailing_rmap_items(slot, ksm_scan.rmap_list); 2351 2352 spin_lock(&ksm_mmlist_lock); 2353 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 2354 struct mm_slot, mm_list); 2355 if (ksm_scan.address == 0) { 2356 /* 2357 * We've completed a full scan of all vmas, holding mmap_sem 2358 * throughout, and found no VM_MERGEABLE: so do the same as 2359 * __ksm_exit does to remove this mm from all our lists now. 2360 * This applies either when cleaning up after __ksm_exit 2361 * (but beware: we can reach here even before __ksm_exit), 2362 * or when all VM_MERGEABLE areas have been unmapped (and 2363 * mmap_sem then protects against race with MADV_MERGEABLE). 2364 */ 2365 hash_del(&slot->link); 2366 list_del(&slot->mm_list); 2367 spin_unlock(&ksm_mmlist_lock); 2368 2369 free_mm_slot(slot); 2370 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2371 up_read(&mm->mmap_sem); 2372 mmdrop(mm); 2373 } else { 2374 up_read(&mm->mmap_sem); 2375 /* 2376 * up_read(&mm->mmap_sem) first because after 2377 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2378 * already have been freed under us by __ksm_exit() 2379 * because the "mm_slot" is still hashed and 2380 * ksm_scan.mm_slot doesn't point to it anymore. 2381 */ 2382 spin_unlock(&ksm_mmlist_lock); 2383 } 2384 2385 /* Repeat until we've completed scanning the whole list */ 2386 slot = ksm_scan.mm_slot; 2387 if (slot != &ksm_mm_head) 2388 goto next_mm; 2389 2390 ksm_scan.seqnr++; 2391 return NULL; 2392 } 2393 2394 /** 2395 * ksm_do_scan - the ksm scanner main worker function. 2396 * @scan_npages: number of pages we want to scan before we return. 2397 */ 2398 static void ksm_do_scan(unsigned int scan_npages) 2399 { 2400 struct rmap_item *rmap_item; 2401 struct page *uninitialized_var(page); 2402 2403 while (scan_npages-- && likely(!freezing(current))) { 2404 cond_resched(); 2405 rmap_item = scan_get_next_rmap_item(&page); 2406 if (!rmap_item) 2407 return; 2408 cmp_and_merge_page(page, rmap_item); 2409 put_page(page); 2410 } 2411 } 2412 2413 static int ksmd_should_run(void) 2414 { 2415 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 2416 } 2417 2418 static int ksm_scan_thread(void *nothing) 2419 { 2420 unsigned int sleep_ms; 2421 2422 set_freezable(); 2423 set_user_nice(current, 5); 2424 2425 while (!kthread_should_stop()) { 2426 mutex_lock(&ksm_thread_mutex); 2427 wait_while_offlining(); 2428 if (ksmd_should_run()) 2429 ksm_do_scan(ksm_thread_pages_to_scan); 2430 mutex_unlock(&ksm_thread_mutex); 2431 2432 try_to_freeze(); 2433 2434 if (ksmd_should_run()) { 2435 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2436 wait_event_interruptible_timeout(ksm_iter_wait, 2437 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2438 msecs_to_jiffies(sleep_ms)); 2439 } else { 2440 wait_event_freezable(ksm_thread_wait, 2441 ksmd_should_run() || kthread_should_stop()); 2442 } 2443 } 2444 return 0; 2445 } 2446 2447 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2448 unsigned long end, int advice, unsigned long *vm_flags) 2449 { 2450 struct mm_struct *mm = vma->vm_mm; 2451 int err; 2452 2453 switch (advice) { 2454 case MADV_MERGEABLE: 2455 /* 2456 * Be somewhat over-protective for now! 2457 */ 2458 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 2459 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 2460 VM_HUGETLB | VM_MIXEDMAP)) 2461 return 0; /* just ignore the advice */ 2462 2463 if (vma_is_dax(vma)) 2464 return 0; 2465 2466 #ifdef VM_SAO 2467 if (*vm_flags & VM_SAO) 2468 return 0; 2469 #endif 2470 #ifdef VM_SPARC_ADI 2471 if (*vm_flags & VM_SPARC_ADI) 2472 return 0; 2473 #endif 2474 2475 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2476 err = __ksm_enter(mm); 2477 if (err) 2478 return err; 2479 } 2480 2481 *vm_flags |= VM_MERGEABLE; 2482 break; 2483 2484 case MADV_UNMERGEABLE: 2485 if (!(*vm_flags & VM_MERGEABLE)) 2486 return 0; /* just ignore the advice */ 2487 2488 if (vma->anon_vma) { 2489 err = unmerge_ksm_pages(vma, start, end); 2490 if (err) 2491 return err; 2492 } 2493 2494 *vm_flags &= ~VM_MERGEABLE; 2495 break; 2496 } 2497 2498 return 0; 2499 } 2500 2501 int __ksm_enter(struct mm_struct *mm) 2502 { 2503 struct mm_slot *mm_slot; 2504 int needs_wakeup; 2505 2506 mm_slot = alloc_mm_slot(); 2507 if (!mm_slot) 2508 return -ENOMEM; 2509 2510 /* Check ksm_run too? Would need tighter locking */ 2511 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 2512 2513 spin_lock(&ksm_mmlist_lock); 2514 insert_to_mm_slots_hash(mm, mm_slot); 2515 /* 2516 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2517 * insert just behind the scanning cursor, to let the area settle 2518 * down a little; when fork is followed by immediate exec, we don't 2519 * want ksmd to waste time setting up and tearing down an rmap_list. 2520 * 2521 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2522 * scanning cursor, otherwise KSM pages in newly forked mms will be 2523 * missed: then we might as well insert at the end of the list. 2524 */ 2525 if (ksm_run & KSM_RUN_UNMERGE) 2526 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 2527 else 2528 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 2529 spin_unlock(&ksm_mmlist_lock); 2530 2531 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2532 mmgrab(mm); 2533 2534 if (needs_wakeup) 2535 wake_up_interruptible(&ksm_thread_wait); 2536 2537 return 0; 2538 } 2539 2540 void __ksm_exit(struct mm_struct *mm) 2541 { 2542 struct mm_slot *mm_slot; 2543 int easy_to_free = 0; 2544 2545 /* 2546 * This process is exiting: if it's straightforward (as is the 2547 * case when ksmd was never running), free mm_slot immediately. 2548 * But if it's at the cursor or has rmap_items linked to it, use 2549 * mmap_sem to synchronize with any break_cows before pagetables 2550 * are freed, and leave the mm_slot on the list for ksmd to free. 2551 * Beware: ksm may already have noticed it exiting and freed the slot. 2552 */ 2553 2554 spin_lock(&ksm_mmlist_lock); 2555 mm_slot = get_mm_slot(mm); 2556 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2557 if (!mm_slot->rmap_list) { 2558 hash_del(&mm_slot->link); 2559 list_del(&mm_slot->mm_list); 2560 easy_to_free = 1; 2561 } else { 2562 list_move(&mm_slot->mm_list, 2563 &ksm_scan.mm_slot->mm_list); 2564 } 2565 } 2566 spin_unlock(&ksm_mmlist_lock); 2567 2568 if (easy_to_free) { 2569 free_mm_slot(mm_slot); 2570 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2571 mmdrop(mm); 2572 } else if (mm_slot) { 2573 down_write(&mm->mmap_sem); 2574 up_write(&mm->mmap_sem); 2575 } 2576 } 2577 2578 struct page *ksm_might_need_to_copy(struct page *page, 2579 struct vm_area_struct *vma, unsigned long address) 2580 { 2581 struct anon_vma *anon_vma = page_anon_vma(page); 2582 struct page *new_page; 2583 2584 if (PageKsm(page)) { 2585 if (page_stable_node(page) && 2586 !(ksm_run & KSM_RUN_UNMERGE)) 2587 return page; /* no need to copy it */ 2588 } else if (!anon_vma) { 2589 return page; /* no need to copy it */ 2590 } else if (anon_vma->root == vma->anon_vma->root && 2591 page->index == linear_page_index(vma, address)) { 2592 return page; /* still no need to copy it */ 2593 } 2594 if (!PageUptodate(page)) 2595 return page; /* let do_swap_page report the error */ 2596 2597 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2598 if (new_page) { 2599 copy_user_highpage(new_page, page, address, vma); 2600 2601 SetPageDirty(new_page); 2602 __SetPageUptodate(new_page); 2603 __SetPageLocked(new_page); 2604 } 2605 2606 return new_page; 2607 } 2608 2609 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 2610 { 2611 struct stable_node *stable_node; 2612 struct rmap_item *rmap_item; 2613 int search_new_forks = 0; 2614 2615 VM_BUG_ON_PAGE(!PageKsm(page), page); 2616 2617 /* 2618 * Rely on the page lock to protect against concurrent modifications 2619 * to that page's node of the stable tree. 2620 */ 2621 VM_BUG_ON_PAGE(!PageLocked(page), page); 2622 2623 stable_node = page_stable_node(page); 2624 if (!stable_node) 2625 return; 2626 again: 2627 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2628 struct anon_vma *anon_vma = rmap_item->anon_vma; 2629 struct anon_vma_chain *vmac; 2630 struct vm_area_struct *vma; 2631 2632 cond_resched(); 2633 anon_vma_lock_read(anon_vma); 2634 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2635 0, ULONG_MAX) { 2636 unsigned long addr; 2637 2638 cond_resched(); 2639 vma = vmac->vma; 2640 2641 /* Ignore the stable/unstable/sqnr flags */ 2642 addr = rmap_item->address & ~KSM_FLAG_MASK; 2643 2644 if (addr < vma->vm_start || addr >= vma->vm_end) 2645 continue; 2646 /* 2647 * Initially we examine only the vma which covers this 2648 * rmap_item; but later, if there is still work to do, 2649 * we examine covering vmas in other mms: in case they 2650 * were forked from the original since ksmd passed. 2651 */ 2652 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2653 continue; 2654 2655 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2656 continue; 2657 2658 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) { 2659 anon_vma_unlock_read(anon_vma); 2660 return; 2661 } 2662 if (rwc->done && rwc->done(page)) { 2663 anon_vma_unlock_read(anon_vma); 2664 return; 2665 } 2666 } 2667 anon_vma_unlock_read(anon_vma); 2668 } 2669 if (!search_new_forks++) 2670 goto again; 2671 } 2672 2673 bool reuse_ksm_page(struct page *page, 2674 struct vm_area_struct *vma, 2675 unsigned long address) 2676 { 2677 #ifdef CONFIG_DEBUG_VM 2678 if (WARN_ON(is_zero_pfn(page_to_pfn(page))) || 2679 WARN_ON(!page_mapped(page)) || 2680 WARN_ON(!PageLocked(page))) { 2681 dump_page(page, "reuse_ksm_page"); 2682 return false; 2683 } 2684 #endif 2685 2686 if (PageSwapCache(page) || !page_stable_node(page)) 2687 return false; 2688 /* Prohibit parallel get_ksm_page() */ 2689 if (!page_ref_freeze(page, 1)) 2690 return false; 2691 2692 page_move_anon_rmap(page, vma); 2693 page->index = linear_page_index(vma, address); 2694 page_ref_unfreeze(page, 1); 2695 2696 return true; 2697 } 2698 #ifdef CONFIG_MIGRATION 2699 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 2700 { 2701 struct stable_node *stable_node; 2702 2703 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 2704 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 2705 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); 2706 2707 stable_node = page_stable_node(newpage); 2708 if (stable_node) { 2709 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); 2710 stable_node->kpfn = page_to_pfn(newpage); 2711 /* 2712 * newpage->mapping was set in advance; now we need smp_wmb() 2713 * to make sure that the new stable_node->kpfn is visible 2714 * to get_ksm_page() before it can see that oldpage->mapping 2715 * has gone stale (or that PageSwapCache has been cleared). 2716 */ 2717 smp_wmb(); 2718 set_page_stable_node(oldpage, NULL); 2719 } 2720 } 2721 #endif /* CONFIG_MIGRATION */ 2722 2723 #ifdef CONFIG_MEMORY_HOTREMOVE 2724 static void wait_while_offlining(void) 2725 { 2726 while (ksm_run & KSM_RUN_OFFLINE) { 2727 mutex_unlock(&ksm_thread_mutex); 2728 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2729 TASK_UNINTERRUPTIBLE); 2730 mutex_lock(&ksm_thread_mutex); 2731 } 2732 } 2733 2734 static bool stable_node_dup_remove_range(struct stable_node *stable_node, 2735 unsigned long start_pfn, 2736 unsigned long end_pfn) 2737 { 2738 if (stable_node->kpfn >= start_pfn && 2739 stable_node->kpfn < end_pfn) { 2740 /* 2741 * Don't get_ksm_page, page has already gone: 2742 * which is why we keep kpfn instead of page* 2743 */ 2744 remove_node_from_stable_tree(stable_node); 2745 return true; 2746 } 2747 return false; 2748 } 2749 2750 static bool stable_node_chain_remove_range(struct stable_node *stable_node, 2751 unsigned long start_pfn, 2752 unsigned long end_pfn, 2753 struct rb_root *root) 2754 { 2755 struct stable_node *dup; 2756 struct hlist_node *hlist_safe; 2757 2758 if (!is_stable_node_chain(stable_node)) { 2759 VM_BUG_ON(is_stable_node_dup(stable_node)); 2760 return stable_node_dup_remove_range(stable_node, start_pfn, 2761 end_pfn); 2762 } 2763 2764 hlist_for_each_entry_safe(dup, hlist_safe, 2765 &stable_node->hlist, hlist_dup) { 2766 VM_BUG_ON(!is_stable_node_dup(dup)); 2767 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2768 } 2769 if (hlist_empty(&stable_node->hlist)) { 2770 free_stable_node_chain(stable_node, root); 2771 return true; /* notify caller that tree was rebalanced */ 2772 } else 2773 return false; 2774 } 2775 2776 static void ksm_check_stable_tree(unsigned long start_pfn, 2777 unsigned long end_pfn) 2778 { 2779 struct stable_node *stable_node, *next; 2780 struct rb_node *node; 2781 int nid; 2782 2783 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2784 node = rb_first(root_stable_tree + nid); 2785 while (node) { 2786 stable_node = rb_entry(node, struct stable_node, node); 2787 if (stable_node_chain_remove_range(stable_node, 2788 start_pfn, end_pfn, 2789 root_stable_tree + 2790 nid)) 2791 node = rb_first(root_stable_tree + nid); 2792 else 2793 node = rb_next(node); 2794 cond_resched(); 2795 } 2796 } 2797 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2798 if (stable_node->kpfn >= start_pfn && 2799 stable_node->kpfn < end_pfn) 2800 remove_node_from_stable_tree(stable_node); 2801 cond_resched(); 2802 } 2803 } 2804 2805 static int ksm_memory_callback(struct notifier_block *self, 2806 unsigned long action, void *arg) 2807 { 2808 struct memory_notify *mn = arg; 2809 2810 switch (action) { 2811 case MEM_GOING_OFFLINE: 2812 /* 2813 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2814 * and remove_all_stable_nodes() while memory is going offline: 2815 * it is unsafe for them to touch the stable tree at this time. 2816 * But unmerge_ksm_pages(), rmap lookups and other entry points 2817 * which do not need the ksm_thread_mutex are all safe. 2818 */ 2819 mutex_lock(&ksm_thread_mutex); 2820 ksm_run |= KSM_RUN_OFFLINE; 2821 mutex_unlock(&ksm_thread_mutex); 2822 break; 2823 2824 case MEM_OFFLINE: 2825 /* 2826 * Most of the work is done by page migration; but there might 2827 * be a few stable_nodes left over, still pointing to struct 2828 * pages which have been offlined: prune those from the tree, 2829 * otherwise get_ksm_page() might later try to access a 2830 * non-existent struct page. 2831 */ 2832 ksm_check_stable_tree(mn->start_pfn, 2833 mn->start_pfn + mn->nr_pages); 2834 /* fallthrough */ 2835 2836 case MEM_CANCEL_OFFLINE: 2837 mutex_lock(&ksm_thread_mutex); 2838 ksm_run &= ~KSM_RUN_OFFLINE; 2839 mutex_unlock(&ksm_thread_mutex); 2840 2841 smp_mb(); /* wake_up_bit advises this */ 2842 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2843 break; 2844 } 2845 return NOTIFY_OK; 2846 } 2847 #else 2848 static void wait_while_offlining(void) 2849 { 2850 } 2851 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2852 2853 #ifdef CONFIG_SYSFS 2854 /* 2855 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2856 */ 2857 2858 #define KSM_ATTR_RO(_name) \ 2859 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2860 #define KSM_ATTR(_name) \ 2861 static struct kobj_attribute _name##_attr = \ 2862 __ATTR(_name, 0644, _name##_show, _name##_store) 2863 2864 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2865 struct kobj_attribute *attr, char *buf) 2866 { 2867 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); 2868 } 2869 2870 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2871 struct kobj_attribute *attr, 2872 const char *buf, size_t count) 2873 { 2874 unsigned long msecs; 2875 int err; 2876 2877 err = kstrtoul(buf, 10, &msecs); 2878 if (err || msecs > UINT_MAX) 2879 return -EINVAL; 2880 2881 ksm_thread_sleep_millisecs = msecs; 2882 wake_up_interruptible(&ksm_iter_wait); 2883 2884 return count; 2885 } 2886 KSM_ATTR(sleep_millisecs); 2887 2888 static ssize_t pages_to_scan_show(struct kobject *kobj, 2889 struct kobj_attribute *attr, char *buf) 2890 { 2891 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); 2892 } 2893 2894 static ssize_t pages_to_scan_store(struct kobject *kobj, 2895 struct kobj_attribute *attr, 2896 const char *buf, size_t count) 2897 { 2898 int err; 2899 unsigned long nr_pages; 2900 2901 err = kstrtoul(buf, 10, &nr_pages); 2902 if (err || nr_pages > UINT_MAX) 2903 return -EINVAL; 2904 2905 ksm_thread_pages_to_scan = nr_pages; 2906 2907 return count; 2908 } 2909 KSM_ATTR(pages_to_scan); 2910 2911 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2912 char *buf) 2913 { 2914 return sprintf(buf, "%lu\n", ksm_run); 2915 } 2916 2917 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2918 const char *buf, size_t count) 2919 { 2920 int err; 2921 unsigned long flags; 2922 2923 err = kstrtoul(buf, 10, &flags); 2924 if (err || flags > UINT_MAX) 2925 return -EINVAL; 2926 if (flags > KSM_RUN_UNMERGE) 2927 return -EINVAL; 2928 2929 /* 2930 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2931 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2932 * breaking COW to free the pages_shared (but leaves mm_slots 2933 * on the list for when ksmd may be set running again). 2934 */ 2935 2936 mutex_lock(&ksm_thread_mutex); 2937 wait_while_offlining(); 2938 if (ksm_run != flags) { 2939 ksm_run = flags; 2940 if (flags & KSM_RUN_UNMERGE) { 2941 set_current_oom_origin(); 2942 err = unmerge_and_remove_all_rmap_items(); 2943 clear_current_oom_origin(); 2944 if (err) { 2945 ksm_run = KSM_RUN_STOP; 2946 count = err; 2947 } 2948 } 2949 } 2950 mutex_unlock(&ksm_thread_mutex); 2951 2952 if (flags & KSM_RUN_MERGE) 2953 wake_up_interruptible(&ksm_thread_wait); 2954 2955 return count; 2956 } 2957 KSM_ATTR(run); 2958 2959 #ifdef CONFIG_NUMA 2960 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2961 struct kobj_attribute *attr, char *buf) 2962 { 2963 return sprintf(buf, "%u\n", ksm_merge_across_nodes); 2964 } 2965 2966 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2967 struct kobj_attribute *attr, 2968 const char *buf, size_t count) 2969 { 2970 int err; 2971 unsigned long knob; 2972 2973 err = kstrtoul(buf, 10, &knob); 2974 if (err) 2975 return err; 2976 if (knob > 1) 2977 return -EINVAL; 2978 2979 mutex_lock(&ksm_thread_mutex); 2980 wait_while_offlining(); 2981 if (ksm_merge_across_nodes != knob) { 2982 if (ksm_pages_shared || remove_all_stable_nodes()) 2983 err = -EBUSY; 2984 else if (root_stable_tree == one_stable_tree) { 2985 struct rb_root *buf; 2986 /* 2987 * This is the first time that we switch away from the 2988 * default of merging across nodes: must now allocate 2989 * a buffer to hold as many roots as may be needed. 2990 * Allocate stable and unstable together: 2991 * MAXSMP NODES_SHIFT 10 will use 16kB. 2992 */ 2993 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2994 GFP_KERNEL); 2995 /* Let us assume that RB_ROOT is NULL is zero */ 2996 if (!buf) 2997 err = -ENOMEM; 2998 else { 2999 root_stable_tree = buf; 3000 root_unstable_tree = buf + nr_node_ids; 3001 /* Stable tree is empty but not the unstable */ 3002 root_unstable_tree[0] = one_unstable_tree[0]; 3003 } 3004 } 3005 if (!err) { 3006 ksm_merge_across_nodes = knob; 3007 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 3008 } 3009 } 3010 mutex_unlock(&ksm_thread_mutex); 3011 3012 return err ? err : count; 3013 } 3014 KSM_ATTR(merge_across_nodes); 3015 #endif 3016 3017 static ssize_t use_zero_pages_show(struct kobject *kobj, 3018 struct kobj_attribute *attr, char *buf) 3019 { 3020 return sprintf(buf, "%u\n", ksm_use_zero_pages); 3021 } 3022 static ssize_t use_zero_pages_store(struct kobject *kobj, 3023 struct kobj_attribute *attr, 3024 const char *buf, size_t count) 3025 { 3026 int err; 3027 bool value; 3028 3029 err = kstrtobool(buf, &value); 3030 if (err) 3031 return -EINVAL; 3032 3033 ksm_use_zero_pages = value; 3034 3035 return count; 3036 } 3037 KSM_ATTR(use_zero_pages); 3038 3039 static ssize_t max_page_sharing_show(struct kobject *kobj, 3040 struct kobj_attribute *attr, char *buf) 3041 { 3042 return sprintf(buf, "%u\n", ksm_max_page_sharing); 3043 } 3044 3045 static ssize_t max_page_sharing_store(struct kobject *kobj, 3046 struct kobj_attribute *attr, 3047 const char *buf, size_t count) 3048 { 3049 int err; 3050 int knob; 3051 3052 err = kstrtoint(buf, 10, &knob); 3053 if (err) 3054 return err; 3055 /* 3056 * When a KSM page is created it is shared by 2 mappings. This 3057 * being a signed comparison, it implicitly verifies it's not 3058 * negative. 3059 */ 3060 if (knob < 2) 3061 return -EINVAL; 3062 3063 if (READ_ONCE(ksm_max_page_sharing) == knob) 3064 return count; 3065 3066 mutex_lock(&ksm_thread_mutex); 3067 wait_while_offlining(); 3068 if (ksm_max_page_sharing != knob) { 3069 if (ksm_pages_shared || remove_all_stable_nodes()) 3070 err = -EBUSY; 3071 else 3072 ksm_max_page_sharing = knob; 3073 } 3074 mutex_unlock(&ksm_thread_mutex); 3075 3076 return err ? err : count; 3077 } 3078 KSM_ATTR(max_page_sharing); 3079 3080 static ssize_t pages_shared_show(struct kobject *kobj, 3081 struct kobj_attribute *attr, char *buf) 3082 { 3083 return sprintf(buf, "%lu\n", ksm_pages_shared); 3084 } 3085 KSM_ATTR_RO(pages_shared); 3086 3087 static ssize_t pages_sharing_show(struct kobject *kobj, 3088 struct kobj_attribute *attr, char *buf) 3089 { 3090 return sprintf(buf, "%lu\n", ksm_pages_sharing); 3091 } 3092 KSM_ATTR_RO(pages_sharing); 3093 3094 static ssize_t pages_unshared_show(struct kobject *kobj, 3095 struct kobj_attribute *attr, char *buf) 3096 { 3097 return sprintf(buf, "%lu\n", ksm_pages_unshared); 3098 } 3099 KSM_ATTR_RO(pages_unshared); 3100 3101 static ssize_t pages_volatile_show(struct kobject *kobj, 3102 struct kobj_attribute *attr, char *buf) 3103 { 3104 long ksm_pages_volatile; 3105 3106 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3107 - ksm_pages_sharing - ksm_pages_unshared; 3108 /* 3109 * It was not worth any locking to calculate that statistic, 3110 * but it might therefore sometimes be negative: conceal that. 3111 */ 3112 if (ksm_pages_volatile < 0) 3113 ksm_pages_volatile = 0; 3114 return sprintf(buf, "%ld\n", ksm_pages_volatile); 3115 } 3116 KSM_ATTR_RO(pages_volatile); 3117 3118 static ssize_t stable_node_dups_show(struct kobject *kobj, 3119 struct kobj_attribute *attr, char *buf) 3120 { 3121 return sprintf(buf, "%lu\n", ksm_stable_node_dups); 3122 } 3123 KSM_ATTR_RO(stable_node_dups); 3124 3125 static ssize_t stable_node_chains_show(struct kobject *kobj, 3126 struct kobj_attribute *attr, char *buf) 3127 { 3128 return sprintf(buf, "%lu\n", ksm_stable_node_chains); 3129 } 3130 KSM_ATTR_RO(stable_node_chains); 3131 3132 static ssize_t 3133 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3134 struct kobj_attribute *attr, 3135 char *buf) 3136 { 3137 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3138 } 3139 3140 static ssize_t 3141 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3142 struct kobj_attribute *attr, 3143 const char *buf, size_t count) 3144 { 3145 unsigned long msecs; 3146 int err; 3147 3148 err = kstrtoul(buf, 10, &msecs); 3149 if (err || msecs > UINT_MAX) 3150 return -EINVAL; 3151 3152 ksm_stable_node_chains_prune_millisecs = msecs; 3153 3154 return count; 3155 } 3156 KSM_ATTR(stable_node_chains_prune_millisecs); 3157 3158 static ssize_t full_scans_show(struct kobject *kobj, 3159 struct kobj_attribute *attr, char *buf) 3160 { 3161 return sprintf(buf, "%lu\n", ksm_scan.seqnr); 3162 } 3163 KSM_ATTR_RO(full_scans); 3164 3165 static struct attribute *ksm_attrs[] = { 3166 &sleep_millisecs_attr.attr, 3167 &pages_to_scan_attr.attr, 3168 &run_attr.attr, 3169 &pages_shared_attr.attr, 3170 &pages_sharing_attr.attr, 3171 &pages_unshared_attr.attr, 3172 &pages_volatile_attr.attr, 3173 &full_scans_attr.attr, 3174 #ifdef CONFIG_NUMA 3175 &merge_across_nodes_attr.attr, 3176 #endif 3177 &max_page_sharing_attr.attr, 3178 &stable_node_chains_attr.attr, 3179 &stable_node_dups_attr.attr, 3180 &stable_node_chains_prune_millisecs_attr.attr, 3181 &use_zero_pages_attr.attr, 3182 NULL, 3183 }; 3184 3185 static const struct attribute_group ksm_attr_group = { 3186 .attrs = ksm_attrs, 3187 .name = "ksm", 3188 }; 3189 #endif /* CONFIG_SYSFS */ 3190 3191 static int __init ksm_init(void) 3192 { 3193 struct task_struct *ksm_thread; 3194 int err; 3195 3196 /* The correct value depends on page size and endianness */ 3197 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3198 /* Default to false for backwards compatibility */ 3199 ksm_use_zero_pages = false; 3200 3201 err = ksm_slab_init(); 3202 if (err) 3203 goto out; 3204 3205 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3206 if (IS_ERR(ksm_thread)) { 3207 pr_err("ksm: creating kthread failed\n"); 3208 err = PTR_ERR(ksm_thread); 3209 goto out_free; 3210 } 3211 3212 #ifdef CONFIG_SYSFS 3213 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3214 if (err) { 3215 pr_err("ksm: register sysfs failed\n"); 3216 kthread_stop(ksm_thread); 3217 goto out_free; 3218 } 3219 #else 3220 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3221 3222 #endif /* CONFIG_SYSFS */ 3223 3224 #ifdef CONFIG_MEMORY_HOTREMOVE 3225 /* There is no significance to this priority 100 */ 3226 hotplug_memory_notifier(ksm_memory_callback, 100); 3227 #endif 3228 return 0; 3229 3230 out_free: 3231 ksm_slab_free(); 3232 out: 3233 return err; 3234 } 3235 subsys_initcall(ksm_init); 3236