xref: /openbmc/linux/mm/ksm.c (revision 15b7cc78)
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40 
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43 
44 #ifdef CONFIG_NUMA
45 #define NUMA(x)		(x)
46 #define DO_NUMA(x)	do { (x); } while (0)
47 #else
48 #define NUMA(x)		(0)
49 #define DO_NUMA(x)	do { } while (0)
50 #endif
51 
52 /*
53  * A few notes about the KSM scanning process,
54  * to make it easier to understand the data structures below:
55  *
56  * In order to reduce excessive scanning, KSM sorts the memory pages by their
57  * contents into a data structure that holds pointers to the pages' locations.
58  *
59  * Since the contents of the pages may change at any moment, KSM cannot just
60  * insert the pages into a normal sorted tree and expect it to find anything.
61  * Therefore KSM uses two data structures - the stable and the unstable tree.
62  *
63  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64  * by their contents.  Because each such page is write-protected, searching on
65  * this tree is fully assured to be working (except when pages are unmapped),
66  * and therefore this tree is called the stable tree.
67  *
68  * In addition to the stable tree, KSM uses a second data structure called the
69  * unstable tree: this tree holds pointers to pages which have been found to
70  * be "unchanged for a period of time".  The unstable tree sorts these pages
71  * by their contents, but since they are not write-protected, KSM cannot rely
72  * upon the unstable tree to work correctly - the unstable tree is liable to
73  * be corrupted as its contents are modified, and so it is called unstable.
74  *
75  * KSM solves this problem by several techniques:
76  *
77  * 1) The unstable tree is flushed every time KSM completes scanning all
78  *    memory areas, and then the tree is rebuilt again from the beginning.
79  * 2) KSM will only insert into the unstable tree, pages whose hash value
80  *    has not changed since the previous scan of all memory areas.
81  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82  *    colors of the nodes and not on their contents, assuring that even when
83  *    the tree gets "corrupted" it won't get out of balance, so scanning time
84  *    remains the same (also, searching and inserting nodes in an rbtree uses
85  *    the same algorithm, so we have no overhead when we flush and rebuild).
86  * 4) KSM never flushes the stable tree, which means that even if it were to
87  *    take 10 attempts to find a page in the unstable tree, once it is found,
88  *    it is secured in the stable tree.  (When we scan a new page, we first
89  *    compare it against the stable tree, and then against the unstable tree.)
90  *
91  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92  * stable trees and multiple unstable trees: one of each for each NUMA node.
93  */
94 
95 /**
96  * struct mm_slot - ksm information per mm that is being scanned
97  * @link: link to the mm_slots hash list
98  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100  * @mm: the mm that this information is valid for
101  */
102 struct mm_slot {
103 	struct hlist_node link;
104 	struct list_head mm_list;
105 	struct rmap_item *rmap_list;
106 	struct mm_struct *mm;
107 };
108 
109 /**
110  * struct ksm_scan - cursor for scanning
111  * @mm_slot: the current mm_slot we are scanning
112  * @address: the next address inside that to be scanned
113  * @rmap_list: link to the next rmap to be scanned in the rmap_list
114  * @seqnr: count of completed full scans (needed when removing unstable node)
115  *
116  * There is only the one ksm_scan instance of this cursor structure.
117  */
118 struct ksm_scan {
119 	struct mm_slot *mm_slot;
120 	unsigned long address;
121 	struct rmap_item **rmap_list;
122 	unsigned long seqnr;
123 };
124 
125 /**
126  * struct stable_node - node of the stable rbtree
127  * @node: rb node of this ksm page in the stable tree
128  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129  * @list: linked into migrate_nodes, pending placement in the proper node tree
130  * @hlist: hlist head of rmap_items using this ksm page
131  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133  */
134 struct stable_node {
135 	union {
136 		struct rb_node node;	/* when node of stable tree */
137 		struct {		/* when listed for migration */
138 			struct list_head *head;
139 			struct list_head list;
140 		};
141 	};
142 	struct hlist_head hlist;
143 	unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145 	int nid;
146 #endif
147 };
148 
149 /**
150  * struct rmap_item - reverse mapping item for virtual addresses
151  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153  * @nid: NUMA node id of unstable tree in which linked (may not match page)
154  * @mm: the memory structure this rmap_item is pointing into
155  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156  * @oldchecksum: previous checksum of the page at that virtual address
157  * @node: rb node of this rmap_item in the unstable tree
158  * @head: pointer to stable_node heading this list in the stable tree
159  * @hlist: link into hlist of rmap_items hanging off that stable_node
160  */
161 struct rmap_item {
162 	struct rmap_item *rmap_list;
163 	union {
164 		struct anon_vma *anon_vma;	/* when stable */
165 #ifdef CONFIG_NUMA
166 		int nid;		/* when node of unstable tree */
167 #endif
168 	};
169 	struct mm_struct *mm;
170 	unsigned long address;		/* + low bits used for flags below */
171 	unsigned int oldchecksum;	/* when unstable */
172 	union {
173 		struct rb_node node;	/* when node of unstable tree */
174 		struct {		/* when listed from stable tree */
175 			struct stable_node *head;
176 			struct hlist_node hlist;
177 		};
178 	};
179 };
180 
181 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
183 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
184 
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
190 
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
193 
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196 
197 static struct mm_slot ksm_mm_head = {
198 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199 };
200 static struct ksm_scan ksm_scan = {
201 	.mm_slot = &ksm_mm_head,
202 };
203 
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
207 
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
210 
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
213 
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
216 
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
219 
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
222 
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
225 
226 #ifdef CONFIG_NUMA
227 /* Zeroed when merging across nodes is not allowed */
228 static unsigned int ksm_merge_across_nodes = 1;
229 static int ksm_nr_node_ids = 1;
230 #else
231 #define ksm_merge_across_nodes	1U
232 #define ksm_nr_node_ids		1
233 #endif
234 
235 #define KSM_RUN_STOP	0
236 #define KSM_RUN_MERGE	1
237 #define KSM_RUN_UNMERGE	2
238 #define KSM_RUN_OFFLINE	4
239 static unsigned long ksm_run = KSM_RUN_STOP;
240 static void wait_while_offlining(void);
241 
242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243 static DEFINE_MUTEX(ksm_thread_mutex);
244 static DEFINE_SPINLOCK(ksm_mmlist_lock);
245 
246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247 		sizeof(struct __struct), __alignof__(struct __struct),\
248 		(__flags), NULL)
249 
250 static int __init ksm_slab_init(void)
251 {
252 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253 	if (!rmap_item_cache)
254 		goto out;
255 
256 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257 	if (!stable_node_cache)
258 		goto out_free1;
259 
260 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261 	if (!mm_slot_cache)
262 		goto out_free2;
263 
264 	return 0;
265 
266 out_free2:
267 	kmem_cache_destroy(stable_node_cache);
268 out_free1:
269 	kmem_cache_destroy(rmap_item_cache);
270 out:
271 	return -ENOMEM;
272 }
273 
274 static void __init ksm_slab_free(void)
275 {
276 	kmem_cache_destroy(mm_slot_cache);
277 	kmem_cache_destroy(stable_node_cache);
278 	kmem_cache_destroy(rmap_item_cache);
279 	mm_slot_cache = NULL;
280 }
281 
282 static inline struct rmap_item *alloc_rmap_item(void)
283 {
284 	struct rmap_item *rmap_item;
285 
286 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
287 	if (rmap_item)
288 		ksm_rmap_items++;
289 	return rmap_item;
290 }
291 
292 static inline void free_rmap_item(struct rmap_item *rmap_item)
293 {
294 	ksm_rmap_items--;
295 	rmap_item->mm = NULL;	/* debug safety */
296 	kmem_cache_free(rmap_item_cache, rmap_item);
297 }
298 
299 static inline struct stable_node *alloc_stable_node(void)
300 {
301 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
302 }
303 
304 static inline void free_stable_node(struct stable_node *stable_node)
305 {
306 	kmem_cache_free(stable_node_cache, stable_node);
307 }
308 
309 static inline struct mm_slot *alloc_mm_slot(void)
310 {
311 	if (!mm_slot_cache)	/* initialization failed */
312 		return NULL;
313 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
314 }
315 
316 static inline void free_mm_slot(struct mm_slot *mm_slot)
317 {
318 	kmem_cache_free(mm_slot_cache, mm_slot);
319 }
320 
321 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
322 {
323 	struct mm_slot *slot;
324 
325 	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
326 		if (slot->mm == mm)
327 			return slot;
328 
329 	return NULL;
330 }
331 
332 static void insert_to_mm_slots_hash(struct mm_struct *mm,
333 				    struct mm_slot *mm_slot)
334 {
335 	mm_slot->mm = mm;
336 	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
337 }
338 
339 /*
340  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
341  * page tables after it has passed through ksm_exit() - which, if necessary,
342  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
343  * a special flag: they can just back out as soon as mm_users goes to zero.
344  * ksm_test_exit() is used throughout to make this test for exit: in some
345  * places for correctness, in some places just to avoid unnecessary work.
346  */
347 static inline bool ksm_test_exit(struct mm_struct *mm)
348 {
349 	return atomic_read(&mm->mm_users) == 0;
350 }
351 
352 /*
353  * We use break_ksm to break COW on a ksm page: it's a stripped down
354  *
355  *	if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
356  *		put_page(page);
357  *
358  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
359  * in case the application has unmapped and remapped mm,addr meanwhile.
360  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
361  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
362  *
363  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
364  * of the process that owns 'vma'.  We also do not want to enforce
365  * protection keys here anyway.
366  */
367 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
368 {
369 	struct page *page;
370 	int ret = 0;
371 
372 	do {
373 		cond_resched();
374 		page = follow_page(vma, addr,
375 				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
376 		if (IS_ERR_OR_NULL(page))
377 			break;
378 		if (PageKsm(page))
379 			ret = handle_mm_fault(vma->vm_mm, vma, addr,
380 							FAULT_FLAG_WRITE |
381 							FAULT_FLAG_REMOTE);
382 		else
383 			ret = VM_FAULT_WRITE;
384 		put_page(page);
385 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
386 	/*
387 	 * We must loop because handle_mm_fault() may back out if there's
388 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
389 	 *
390 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
391 	 * COW has been broken, even if the vma does not permit VM_WRITE;
392 	 * but note that a concurrent fault might break PageKsm for us.
393 	 *
394 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
395 	 * backing file, which also invalidates anonymous pages: that's
396 	 * okay, that truncation will have unmapped the PageKsm for us.
397 	 *
398 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
399 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
400 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
401 	 * to user; and ksmd, having no mm, would never be chosen for that.
402 	 *
403 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
404 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
405 	 * even ksmd can fail in this way - though it's usually breaking ksm
406 	 * just to undo a merge it made a moment before, so unlikely to oom.
407 	 *
408 	 * That's a pity: we might therefore have more kernel pages allocated
409 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
410 	 * will retry to break_cow on each pass, so should recover the page
411 	 * in due course.  The important thing is to not let VM_MERGEABLE
412 	 * be cleared while any such pages might remain in the area.
413 	 */
414 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
415 }
416 
417 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
418 		unsigned long addr)
419 {
420 	struct vm_area_struct *vma;
421 	if (ksm_test_exit(mm))
422 		return NULL;
423 	vma = find_vma(mm, addr);
424 	if (!vma || vma->vm_start > addr)
425 		return NULL;
426 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
427 		return NULL;
428 	return vma;
429 }
430 
431 static void break_cow(struct rmap_item *rmap_item)
432 {
433 	struct mm_struct *mm = rmap_item->mm;
434 	unsigned long addr = rmap_item->address;
435 	struct vm_area_struct *vma;
436 
437 	/*
438 	 * It is not an accident that whenever we want to break COW
439 	 * to undo, we also need to drop a reference to the anon_vma.
440 	 */
441 	put_anon_vma(rmap_item->anon_vma);
442 
443 	down_read(&mm->mmap_sem);
444 	vma = find_mergeable_vma(mm, addr);
445 	if (vma)
446 		break_ksm(vma, addr);
447 	up_read(&mm->mmap_sem);
448 }
449 
450 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
451 {
452 	struct mm_struct *mm = rmap_item->mm;
453 	unsigned long addr = rmap_item->address;
454 	struct vm_area_struct *vma;
455 	struct page *page;
456 
457 	down_read(&mm->mmap_sem);
458 	vma = find_mergeable_vma(mm, addr);
459 	if (!vma)
460 		goto out;
461 
462 	page = follow_page(vma, addr, FOLL_GET);
463 	if (IS_ERR_OR_NULL(page))
464 		goto out;
465 	if (PageAnon(page)) {
466 		flush_anon_page(vma, page, addr);
467 		flush_dcache_page(page);
468 	} else {
469 		put_page(page);
470 out:
471 		page = NULL;
472 	}
473 	up_read(&mm->mmap_sem);
474 	return page;
475 }
476 
477 /*
478  * This helper is used for getting right index into array of tree roots.
479  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
480  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
481  * every node has its own stable and unstable tree.
482  */
483 static inline int get_kpfn_nid(unsigned long kpfn)
484 {
485 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
486 }
487 
488 static void remove_node_from_stable_tree(struct stable_node *stable_node)
489 {
490 	struct rmap_item *rmap_item;
491 
492 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
493 		if (rmap_item->hlist.next)
494 			ksm_pages_sharing--;
495 		else
496 			ksm_pages_shared--;
497 		put_anon_vma(rmap_item->anon_vma);
498 		rmap_item->address &= PAGE_MASK;
499 		cond_resched();
500 	}
501 
502 	if (stable_node->head == &migrate_nodes)
503 		list_del(&stable_node->list);
504 	else
505 		rb_erase(&stable_node->node,
506 			 root_stable_tree + NUMA(stable_node->nid));
507 	free_stable_node(stable_node);
508 }
509 
510 /*
511  * get_ksm_page: checks if the page indicated by the stable node
512  * is still its ksm page, despite having held no reference to it.
513  * In which case we can trust the content of the page, and it
514  * returns the gotten page; but if the page has now been zapped,
515  * remove the stale node from the stable tree and return NULL.
516  * But beware, the stable node's page might be being migrated.
517  *
518  * You would expect the stable_node to hold a reference to the ksm page.
519  * But if it increments the page's count, swapping out has to wait for
520  * ksmd to come around again before it can free the page, which may take
521  * seconds or even minutes: much too unresponsive.  So instead we use a
522  * "keyhole reference": access to the ksm page from the stable node peeps
523  * out through its keyhole to see if that page still holds the right key,
524  * pointing back to this stable node.  This relies on freeing a PageAnon
525  * page to reset its page->mapping to NULL, and relies on no other use of
526  * a page to put something that might look like our key in page->mapping.
527  * is on its way to being freed; but it is an anomaly to bear in mind.
528  */
529 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
530 {
531 	struct page *page;
532 	void *expected_mapping;
533 	unsigned long kpfn;
534 
535 	expected_mapping = (void *)stable_node +
536 				(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
537 again:
538 	kpfn = READ_ONCE(stable_node->kpfn);
539 	page = pfn_to_page(kpfn);
540 
541 	/*
542 	 * page is computed from kpfn, so on most architectures reading
543 	 * page->mapping is naturally ordered after reading node->kpfn,
544 	 * but on Alpha we need to be more careful.
545 	 */
546 	smp_read_barrier_depends();
547 	if (READ_ONCE(page->mapping) != expected_mapping)
548 		goto stale;
549 
550 	/*
551 	 * We cannot do anything with the page while its refcount is 0.
552 	 * Usually 0 means free, or tail of a higher-order page: in which
553 	 * case this node is no longer referenced, and should be freed;
554 	 * however, it might mean that the page is under page_freeze_refs().
555 	 * The __remove_mapping() case is easy, again the node is now stale;
556 	 * but if page is swapcache in migrate_page_move_mapping(), it might
557 	 * still be our page, in which case it's essential to keep the node.
558 	 */
559 	while (!get_page_unless_zero(page)) {
560 		/*
561 		 * Another check for page->mapping != expected_mapping would
562 		 * work here too.  We have chosen the !PageSwapCache test to
563 		 * optimize the common case, when the page is or is about to
564 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
565 		 * in the freeze_refs section of __remove_mapping(); but Anon
566 		 * page->mapping reset to NULL later, in free_pages_prepare().
567 		 */
568 		if (!PageSwapCache(page))
569 			goto stale;
570 		cpu_relax();
571 	}
572 
573 	if (READ_ONCE(page->mapping) != expected_mapping) {
574 		put_page(page);
575 		goto stale;
576 	}
577 
578 	if (lock_it) {
579 		lock_page(page);
580 		if (READ_ONCE(page->mapping) != expected_mapping) {
581 			unlock_page(page);
582 			put_page(page);
583 			goto stale;
584 		}
585 	}
586 	return page;
587 
588 stale:
589 	/*
590 	 * We come here from above when page->mapping or !PageSwapCache
591 	 * suggests that the node is stale; but it might be under migration.
592 	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
593 	 * before checking whether node->kpfn has been changed.
594 	 */
595 	smp_rmb();
596 	if (READ_ONCE(stable_node->kpfn) != kpfn)
597 		goto again;
598 	remove_node_from_stable_tree(stable_node);
599 	return NULL;
600 }
601 
602 /*
603  * Removing rmap_item from stable or unstable tree.
604  * This function will clean the information from the stable/unstable tree.
605  */
606 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
607 {
608 	if (rmap_item->address & STABLE_FLAG) {
609 		struct stable_node *stable_node;
610 		struct page *page;
611 
612 		stable_node = rmap_item->head;
613 		page = get_ksm_page(stable_node, true);
614 		if (!page)
615 			goto out;
616 
617 		hlist_del(&rmap_item->hlist);
618 		unlock_page(page);
619 		put_page(page);
620 
621 		if (!hlist_empty(&stable_node->hlist))
622 			ksm_pages_sharing--;
623 		else
624 			ksm_pages_shared--;
625 
626 		put_anon_vma(rmap_item->anon_vma);
627 		rmap_item->address &= PAGE_MASK;
628 
629 	} else if (rmap_item->address & UNSTABLE_FLAG) {
630 		unsigned char age;
631 		/*
632 		 * Usually ksmd can and must skip the rb_erase, because
633 		 * root_unstable_tree was already reset to RB_ROOT.
634 		 * But be careful when an mm is exiting: do the rb_erase
635 		 * if this rmap_item was inserted by this scan, rather
636 		 * than left over from before.
637 		 */
638 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
639 		BUG_ON(age > 1);
640 		if (!age)
641 			rb_erase(&rmap_item->node,
642 				 root_unstable_tree + NUMA(rmap_item->nid));
643 		ksm_pages_unshared--;
644 		rmap_item->address &= PAGE_MASK;
645 	}
646 out:
647 	cond_resched();		/* we're called from many long loops */
648 }
649 
650 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
651 				       struct rmap_item **rmap_list)
652 {
653 	while (*rmap_list) {
654 		struct rmap_item *rmap_item = *rmap_list;
655 		*rmap_list = rmap_item->rmap_list;
656 		remove_rmap_item_from_tree(rmap_item);
657 		free_rmap_item(rmap_item);
658 	}
659 }
660 
661 /*
662  * Though it's very tempting to unmerge rmap_items from stable tree rather
663  * than check every pte of a given vma, the locking doesn't quite work for
664  * that - an rmap_item is assigned to the stable tree after inserting ksm
665  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
666  * rmap_items from parent to child at fork time (so as not to waste time
667  * if exit comes before the next scan reaches it).
668  *
669  * Similarly, although we'd like to remove rmap_items (so updating counts
670  * and freeing memory) when unmerging an area, it's easier to leave that
671  * to the next pass of ksmd - consider, for example, how ksmd might be
672  * in cmp_and_merge_page on one of the rmap_items we would be removing.
673  */
674 static int unmerge_ksm_pages(struct vm_area_struct *vma,
675 			     unsigned long start, unsigned long end)
676 {
677 	unsigned long addr;
678 	int err = 0;
679 
680 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
681 		if (ksm_test_exit(vma->vm_mm))
682 			break;
683 		if (signal_pending(current))
684 			err = -ERESTARTSYS;
685 		else
686 			err = break_ksm(vma, addr);
687 	}
688 	return err;
689 }
690 
691 #ifdef CONFIG_SYSFS
692 /*
693  * Only called through the sysfs control interface:
694  */
695 static int remove_stable_node(struct stable_node *stable_node)
696 {
697 	struct page *page;
698 	int err;
699 
700 	page = get_ksm_page(stable_node, true);
701 	if (!page) {
702 		/*
703 		 * get_ksm_page did remove_node_from_stable_tree itself.
704 		 */
705 		return 0;
706 	}
707 
708 	if (WARN_ON_ONCE(page_mapped(page))) {
709 		/*
710 		 * This should not happen: but if it does, just refuse to let
711 		 * merge_across_nodes be switched - there is no need to panic.
712 		 */
713 		err = -EBUSY;
714 	} else {
715 		/*
716 		 * The stable node did not yet appear stale to get_ksm_page(),
717 		 * since that allows for an unmapped ksm page to be recognized
718 		 * right up until it is freed; but the node is safe to remove.
719 		 * This page might be in a pagevec waiting to be freed,
720 		 * or it might be PageSwapCache (perhaps under writeback),
721 		 * or it might have been removed from swapcache a moment ago.
722 		 */
723 		set_page_stable_node(page, NULL);
724 		remove_node_from_stable_tree(stable_node);
725 		err = 0;
726 	}
727 
728 	unlock_page(page);
729 	put_page(page);
730 	return err;
731 }
732 
733 static int remove_all_stable_nodes(void)
734 {
735 	struct stable_node *stable_node, *next;
736 	int nid;
737 	int err = 0;
738 
739 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
740 		while (root_stable_tree[nid].rb_node) {
741 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
742 						struct stable_node, node);
743 			if (remove_stable_node(stable_node)) {
744 				err = -EBUSY;
745 				break;	/* proceed to next nid */
746 			}
747 			cond_resched();
748 		}
749 	}
750 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
751 		if (remove_stable_node(stable_node))
752 			err = -EBUSY;
753 		cond_resched();
754 	}
755 	return err;
756 }
757 
758 static int unmerge_and_remove_all_rmap_items(void)
759 {
760 	struct mm_slot *mm_slot;
761 	struct mm_struct *mm;
762 	struct vm_area_struct *vma;
763 	int err = 0;
764 
765 	spin_lock(&ksm_mmlist_lock);
766 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
767 						struct mm_slot, mm_list);
768 	spin_unlock(&ksm_mmlist_lock);
769 
770 	for (mm_slot = ksm_scan.mm_slot;
771 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
772 		mm = mm_slot->mm;
773 		down_read(&mm->mmap_sem);
774 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
775 			if (ksm_test_exit(mm))
776 				break;
777 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
778 				continue;
779 			err = unmerge_ksm_pages(vma,
780 						vma->vm_start, vma->vm_end);
781 			if (err)
782 				goto error;
783 		}
784 
785 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
786 		up_read(&mm->mmap_sem);
787 
788 		spin_lock(&ksm_mmlist_lock);
789 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
790 						struct mm_slot, mm_list);
791 		if (ksm_test_exit(mm)) {
792 			hash_del(&mm_slot->link);
793 			list_del(&mm_slot->mm_list);
794 			spin_unlock(&ksm_mmlist_lock);
795 
796 			free_mm_slot(mm_slot);
797 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
798 			mmdrop(mm);
799 		} else
800 			spin_unlock(&ksm_mmlist_lock);
801 	}
802 
803 	/* Clean up stable nodes, but don't worry if some are still busy */
804 	remove_all_stable_nodes();
805 	ksm_scan.seqnr = 0;
806 	return 0;
807 
808 error:
809 	up_read(&mm->mmap_sem);
810 	spin_lock(&ksm_mmlist_lock);
811 	ksm_scan.mm_slot = &ksm_mm_head;
812 	spin_unlock(&ksm_mmlist_lock);
813 	return err;
814 }
815 #endif /* CONFIG_SYSFS */
816 
817 static u32 calc_checksum(struct page *page)
818 {
819 	u32 checksum;
820 	void *addr = kmap_atomic(page);
821 	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
822 	kunmap_atomic(addr);
823 	return checksum;
824 }
825 
826 static int memcmp_pages(struct page *page1, struct page *page2)
827 {
828 	char *addr1, *addr2;
829 	int ret;
830 
831 	addr1 = kmap_atomic(page1);
832 	addr2 = kmap_atomic(page2);
833 	ret = memcmp(addr1, addr2, PAGE_SIZE);
834 	kunmap_atomic(addr2);
835 	kunmap_atomic(addr1);
836 	return ret;
837 }
838 
839 static inline int pages_identical(struct page *page1, struct page *page2)
840 {
841 	return !memcmp_pages(page1, page2);
842 }
843 
844 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
845 			      pte_t *orig_pte)
846 {
847 	struct mm_struct *mm = vma->vm_mm;
848 	unsigned long addr;
849 	pte_t *ptep;
850 	spinlock_t *ptl;
851 	int swapped;
852 	int err = -EFAULT;
853 	unsigned long mmun_start;	/* For mmu_notifiers */
854 	unsigned long mmun_end;		/* For mmu_notifiers */
855 
856 	addr = page_address_in_vma(page, vma);
857 	if (addr == -EFAULT)
858 		goto out;
859 
860 	BUG_ON(PageTransCompound(page));
861 
862 	mmun_start = addr;
863 	mmun_end   = addr + PAGE_SIZE;
864 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
865 
866 	ptep = page_check_address(page, mm, addr, &ptl, 0);
867 	if (!ptep)
868 		goto out_mn;
869 
870 	if (pte_write(*ptep) || pte_dirty(*ptep)) {
871 		pte_t entry;
872 
873 		swapped = PageSwapCache(page);
874 		flush_cache_page(vma, addr, page_to_pfn(page));
875 		/*
876 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
877 		 * take any lock, therefore the check that we are going to make
878 		 * with the pagecount against the mapcount is racey and
879 		 * O_DIRECT can happen right after the check.
880 		 * So we clear the pte and flush the tlb before the check
881 		 * this assure us that no O_DIRECT can happen after the check
882 		 * or in the middle of the check.
883 		 */
884 		entry = ptep_clear_flush_notify(vma, addr, ptep);
885 		/*
886 		 * Check that no O_DIRECT or similar I/O is in progress on the
887 		 * page
888 		 */
889 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
890 			set_pte_at(mm, addr, ptep, entry);
891 			goto out_unlock;
892 		}
893 		if (pte_dirty(entry))
894 			set_page_dirty(page);
895 		entry = pte_mkclean(pte_wrprotect(entry));
896 		set_pte_at_notify(mm, addr, ptep, entry);
897 	}
898 	*orig_pte = *ptep;
899 	err = 0;
900 
901 out_unlock:
902 	pte_unmap_unlock(ptep, ptl);
903 out_mn:
904 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
905 out:
906 	return err;
907 }
908 
909 /**
910  * replace_page - replace page in vma by new ksm page
911  * @vma:      vma that holds the pte pointing to page
912  * @page:     the page we are replacing by kpage
913  * @kpage:    the ksm page we replace page by
914  * @orig_pte: the original value of the pte
915  *
916  * Returns 0 on success, -EFAULT on failure.
917  */
918 static int replace_page(struct vm_area_struct *vma, struct page *page,
919 			struct page *kpage, pte_t orig_pte)
920 {
921 	struct mm_struct *mm = vma->vm_mm;
922 	pmd_t *pmd;
923 	pte_t *ptep;
924 	spinlock_t *ptl;
925 	unsigned long addr;
926 	int err = -EFAULT;
927 	unsigned long mmun_start;	/* For mmu_notifiers */
928 	unsigned long mmun_end;		/* For mmu_notifiers */
929 
930 	addr = page_address_in_vma(page, vma);
931 	if (addr == -EFAULT)
932 		goto out;
933 
934 	pmd = mm_find_pmd(mm, addr);
935 	if (!pmd)
936 		goto out;
937 
938 	mmun_start = addr;
939 	mmun_end   = addr + PAGE_SIZE;
940 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
941 
942 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
943 	if (!pte_same(*ptep, orig_pte)) {
944 		pte_unmap_unlock(ptep, ptl);
945 		goto out_mn;
946 	}
947 
948 	get_page(kpage);
949 	page_add_anon_rmap(kpage, vma, addr, false);
950 
951 	flush_cache_page(vma, addr, pte_pfn(*ptep));
952 	ptep_clear_flush_notify(vma, addr, ptep);
953 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
954 
955 	page_remove_rmap(page, false);
956 	if (!page_mapped(page))
957 		try_to_free_swap(page);
958 	put_page(page);
959 
960 	pte_unmap_unlock(ptep, ptl);
961 	err = 0;
962 out_mn:
963 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
964 out:
965 	return err;
966 }
967 
968 /*
969  * try_to_merge_one_page - take two pages and merge them into one
970  * @vma: the vma that holds the pte pointing to page
971  * @page: the PageAnon page that we want to replace with kpage
972  * @kpage: the PageKsm page that we want to map instead of page,
973  *         or NULL the first time when we want to use page as kpage.
974  *
975  * This function returns 0 if the pages were merged, -EFAULT otherwise.
976  */
977 static int try_to_merge_one_page(struct vm_area_struct *vma,
978 				 struct page *page, struct page *kpage)
979 {
980 	pte_t orig_pte = __pte(0);
981 	int err = -EFAULT;
982 
983 	if (page == kpage)			/* ksm page forked */
984 		return 0;
985 
986 	if (!PageAnon(page))
987 		goto out;
988 
989 	/*
990 	 * We need the page lock to read a stable PageSwapCache in
991 	 * write_protect_page().  We use trylock_page() instead of
992 	 * lock_page() because we don't want to wait here - we
993 	 * prefer to continue scanning and merging different pages,
994 	 * then come back to this page when it is unlocked.
995 	 */
996 	if (!trylock_page(page))
997 		goto out;
998 
999 	if (PageTransCompound(page)) {
1000 		err = split_huge_page(page);
1001 		if (err)
1002 			goto out_unlock;
1003 	}
1004 
1005 	/*
1006 	 * If this anonymous page is mapped only here, its pte may need
1007 	 * to be write-protected.  If it's mapped elsewhere, all of its
1008 	 * ptes are necessarily already write-protected.  But in either
1009 	 * case, we need to lock and check page_count is not raised.
1010 	 */
1011 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1012 		if (!kpage) {
1013 			/*
1014 			 * While we hold page lock, upgrade page from
1015 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1016 			 * stable_tree_insert() will update stable_node.
1017 			 */
1018 			set_page_stable_node(page, NULL);
1019 			mark_page_accessed(page);
1020 			/*
1021 			 * Page reclaim just frees a clean page with no dirty
1022 			 * ptes: make sure that the ksm page would be swapped.
1023 			 */
1024 			if (!PageDirty(page))
1025 				SetPageDirty(page);
1026 			err = 0;
1027 		} else if (pages_identical(page, kpage))
1028 			err = replace_page(vma, page, kpage, orig_pte);
1029 	}
1030 
1031 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1032 		munlock_vma_page(page);
1033 		if (!PageMlocked(kpage)) {
1034 			unlock_page(page);
1035 			lock_page(kpage);
1036 			mlock_vma_page(kpage);
1037 			page = kpage;		/* for final unlock */
1038 		}
1039 	}
1040 
1041 out_unlock:
1042 	unlock_page(page);
1043 out:
1044 	return err;
1045 }
1046 
1047 /*
1048  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1049  * but no new kernel page is allocated: kpage must already be a ksm page.
1050  *
1051  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1052  */
1053 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1054 				      struct page *page, struct page *kpage)
1055 {
1056 	struct mm_struct *mm = rmap_item->mm;
1057 	struct vm_area_struct *vma;
1058 	int err = -EFAULT;
1059 
1060 	down_read(&mm->mmap_sem);
1061 	vma = find_mergeable_vma(mm, rmap_item->address);
1062 	if (!vma)
1063 		goto out;
1064 
1065 	err = try_to_merge_one_page(vma, page, kpage);
1066 	if (err)
1067 		goto out;
1068 
1069 	/* Unstable nid is in union with stable anon_vma: remove first */
1070 	remove_rmap_item_from_tree(rmap_item);
1071 
1072 	/* Must get reference to anon_vma while still holding mmap_sem */
1073 	rmap_item->anon_vma = vma->anon_vma;
1074 	get_anon_vma(vma->anon_vma);
1075 out:
1076 	up_read(&mm->mmap_sem);
1077 	return err;
1078 }
1079 
1080 /*
1081  * try_to_merge_two_pages - take two identical pages and prepare them
1082  * to be merged into one page.
1083  *
1084  * This function returns the kpage if we successfully merged two identical
1085  * pages into one ksm page, NULL otherwise.
1086  *
1087  * Note that this function upgrades page to ksm page: if one of the pages
1088  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1089  */
1090 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1091 					   struct page *page,
1092 					   struct rmap_item *tree_rmap_item,
1093 					   struct page *tree_page)
1094 {
1095 	int err;
1096 
1097 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1098 	if (!err) {
1099 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1100 							tree_page, page);
1101 		/*
1102 		 * If that fails, we have a ksm page with only one pte
1103 		 * pointing to it: so break it.
1104 		 */
1105 		if (err)
1106 			break_cow(rmap_item);
1107 	}
1108 	return err ? NULL : page;
1109 }
1110 
1111 /*
1112  * stable_tree_search - search for page inside the stable tree
1113  *
1114  * This function checks if there is a page inside the stable tree
1115  * with identical content to the page that we are scanning right now.
1116  *
1117  * This function returns the stable tree node of identical content if found,
1118  * NULL otherwise.
1119  */
1120 static struct page *stable_tree_search(struct page *page)
1121 {
1122 	int nid;
1123 	struct rb_root *root;
1124 	struct rb_node **new;
1125 	struct rb_node *parent;
1126 	struct stable_node *stable_node;
1127 	struct stable_node *page_node;
1128 
1129 	page_node = page_stable_node(page);
1130 	if (page_node && page_node->head != &migrate_nodes) {
1131 		/* ksm page forked */
1132 		get_page(page);
1133 		return page;
1134 	}
1135 
1136 	nid = get_kpfn_nid(page_to_pfn(page));
1137 	root = root_stable_tree + nid;
1138 again:
1139 	new = &root->rb_node;
1140 	parent = NULL;
1141 
1142 	while (*new) {
1143 		struct page *tree_page;
1144 		int ret;
1145 
1146 		cond_resched();
1147 		stable_node = rb_entry(*new, struct stable_node, node);
1148 		tree_page = get_ksm_page(stable_node, false);
1149 		if (!tree_page) {
1150 			/*
1151 			 * If we walked over a stale stable_node,
1152 			 * get_ksm_page() will call rb_erase() and it
1153 			 * may rebalance the tree from under us. So
1154 			 * restart the search from scratch. Returning
1155 			 * NULL would be safe too, but we'd generate
1156 			 * false negative insertions just because some
1157 			 * stable_node was stale.
1158 			 */
1159 			goto again;
1160 		}
1161 
1162 		ret = memcmp_pages(page, tree_page);
1163 		put_page(tree_page);
1164 
1165 		parent = *new;
1166 		if (ret < 0)
1167 			new = &parent->rb_left;
1168 		else if (ret > 0)
1169 			new = &parent->rb_right;
1170 		else {
1171 			/*
1172 			 * Lock and unlock the stable_node's page (which
1173 			 * might already have been migrated) so that page
1174 			 * migration is sure to notice its raised count.
1175 			 * It would be more elegant to return stable_node
1176 			 * than kpage, but that involves more changes.
1177 			 */
1178 			tree_page = get_ksm_page(stable_node, true);
1179 			if (tree_page) {
1180 				unlock_page(tree_page);
1181 				if (get_kpfn_nid(stable_node->kpfn) !=
1182 						NUMA(stable_node->nid)) {
1183 					put_page(tree_page);
1184 					goto replace;
1185 				}
1186 				return tree_page;
1187 			}
1188 			/*
1189 			 * There is now a place for page_node, but the tree may
1190 			 * have been rebalanced, so re-evaluate parent and new.
1191 			 */
1192 			if (page_node)
1193 				goto again;
1194 			return NULL;
1195 		}
1196 	}
1197 
1198 	if (!page_node)
1199 		return NULL;
1200 
1201 	list_del(&page_node->list);
1202 	DO_NUMA(page_node->nid = nid);
1203 	rb_link_node(&page_node->node, parent, new);
1204 	rb_insert_color(&page_node->node, root);
1205 	get_page(page);
1206 	return page;
1207 
1208 replace:
1209 	if (page_node) {
1210 		list_del(&page_node->list);
1211 		DO_NUMA(page_node->nid = nid);
1212 		rb_replace_node(&stable_node->node, &page_node->node, root);
1213 		get_page(page);
1214 	} else {
1215 		rb_erase(&stable_node->node, root);
1216 		page = NULL;
1217 	}
1218 	stable_node->head = &migrate_nodes;
1219 	list_add(&stable_node->list, stable_node->head);
1220 	return page;
1221 }
1222 
1223 /*
1224  * stable_tree_insert - insert stable tree node pointing to new ksm page
1225  * into the stable tree.
1226  *
1227  * This function returns the stable tree node just allocated on success,
1228  * NULL otherwise.
1229  */
1230 static struct stable_node *stable_tree_insert(struct page *kpage)
1231 {
1232 	int nid;
1233 	unsigned long kpfn;
1234 	struct rb_root *root;
1235 	struct rb_node **new;
1236 	struct rb_node *parent;
1237 	struct stable_node *stable_node;
1238 
1239 	kpfn = page_to_pfn(kpage);
1240 	nid = get_kpfn_nid(kpfn);
1241 	root = root_stable_tree + nid;
1242 again:
1243 	parent = NULL;
1244 	new = &root->rb_node;
1245 
1246 	while (*new) {
1247 		struct page *tree_page;
1248 		int ret;
1249 
1250 		cond_resched();
1251 		stable_node = rb_entry(*new, struct stable_node, node);
1252 		tree_page = get_ksm_page(stable_node, false);
1253 		if (!tree_page) {
1254 			/*
1255 			 * If we walked over a stale stable_node,
1256 			 * get_ksm_page() will call rb_erase() and it
1257 			 * may rebalance the tree from under us. So
1258 			 * restart the search from scratch. Returning
1259 			 * NULL would be safe too, but we'd generate
1260 			 * false negative insertions just because some
1261 			 * stable_node was stale.
1262 			 */
1263 			goto again;
1264 		}
1265 
1266 		ret = memcmp_pages(kpage, tree_page);
1267 		put_page(tree_page);
1268 
1269 		parent = *new;
1270 		if (ret < 0)
1271 			new = &parent->rb_left;
1272 		else if (ret > 0)
1273 			new = &parent->rb_right;
1274 		else {
1275 			/*
1276 			 * It is not a bug that stable_tree_search() didn't
1277 			 * find this node: because at that time our page was
1278 			 * not yet write-protected, so may have changed since.
1279 			 */
1280 			return NULL;
1281 		}
1282 	}
1283 
1284 	stable_node = alloc_stable_node();
1285 	if (!stable_node)
1286 		return NULL;
1287 
1288 	INIT_HLIST_HEAD(&stable_node->hlist);
1289 	stable_node->kpfn = kpfn;
1290 	set_page_stable_node(kpage, stable_node);
1291 	DO_NUMA(stable_node->nid = nid);
1292 	rb_link_node(&stable_node->node, parent, new);
1293 	rb_insert_color(&stable_node->node, root);
1294 
1295 	return stable_node;
1296 }
1297 
1298 /*
1299  * unstable_tree_search_insert - search for identical page,
1300  * else insert rmap_item into the unstable tree.
1301  *
1302  * This function searches for a page in the unstable tree identical to the
1303  * page currently being scanned; and if no identical page is found in the
1304  * tree, we insert rmap_item as a new object into the unstable tree.
1305  *
1306  * This function returns pointer to rmap_item found to be identical
1307  * to the currently scanned page, NULL otherwise.
1308  *
1309  * This function does both searching and inserting, because they share
1310  * the same walking algorithm in an rbtree.
1311  */
1312 static
1313 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1314 					      struct page *page,
1315 					      struct page **tree_pagep)
1316 {
1317 	struct rb_node **new;
1318 	struct rb_root *root;
1319 	struct rb_node *parent = NULL;
1320 	int nid;
1321 
1322 	nid = get_kpfn_nid(page_to_pfn(page));
1323 	root = root_unstable_tree + nid;
1324 	new = &root->rb_node;
1325 
1326 	while (*new) {
1327 		struct rmap_item *tree_rmap_item;
1328 		struct page *tree_page;
1329 		int ret;
1330 
1331 		cond_resched();
1332 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1333 		tree_page = get_mergeable_page(tree_rmap_item);
1334 		if (!tree_page)
1335 			return NULL;
1336 
1337 		/*
1338 		 * Don't substitute a ksm page for a forked page.
1339 		 */
1340 		if (page == tree_page) {
1341 			put_page(tree_page);
1342 			return NULL;
1343 		}
1344 
1345 		ret = memcmp_pages(page, tree_page);
1346 
1347 		parent = *new;
1348 		if (ret < 0) {
1349 			put_page(tree_page);
1350 			new = &parent->rb_left;
1351 		} else if (ret > 0) {
1352 			put_page(tree_page);
1353 			new = &parent->rb_right;
1354 		} else if (!ksm_merge_across_nodes &&
1355 			   page_to_nid(tree_page) != nid) {
1356 			/*
1357 			 * If tree_page has been migrated to another NUMA node,
1358 			 * it will be flushed out and put in the right unstable
1359 			 * tree next time: only merge with it when across_nodes.
1360 			 */
1361 			put_page(tree_page);
1362 			return NULL;
1363 		} else {
1364 			*tree_pagep = tree_page;
1365 			return tree_rmap_item;
1366 		}
1367 	}
1368 
1369 	rmap_item->address |= UNSTABLE_FLAG;
1370 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1371 	DO_NUMA(rmap_item->nid = nid);
1372 	rb_link_node(&rmap_item->node, parent, new);
1373 	rb_insert_color(&rmap_item->node, root);
1374 
1375 	ksm_pages_unshared++;
1376 	return NULL;
1377 }
1378 
1379 /*
1380  * stable_tree_append - add another rmap_item to the linked list of
1381  * rmap_items hanging off a given node of the stable tree, all sharing
1382  * the same ksm page.
1383  */
1384 static void stable_tree_append(struct rmap_item *rmap_item,
1385 			       struct stable_node *stable_node)
1386 {
1387 	rmap_item->head = stable_node;
1388 	rmap_item->address |= STABLE_FLAG;
1389 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1390 
1391 	if (rmap_item->hlist.next)
1392 		ksm_pages_sharing++;
1393 	else
1394 		ksm_pages_shared++;
1395 }
1396 
1397 /*
1398  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1399  * if not, compare checksum to previous and if it's the same, see if page can
1400  * be inserted into the unstable tree, or merged with a page already there and
1401  * both transferred to the stable tree.
1402  *
1403  * @page: the page that we are searching identical page to.
1404  * @rmap_item: the reverse mapping into the virtual address of this page
1405  */
1406 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1407 {
1408 	struct rmap_item *tree_rmap_item;
1409 	struct page *tree_page = NULL;
1410 	struct stable_node *stable_node;
1411 	struct page *kpage;
1412 	unsigned int checksum;
1413 	int err;
1414 
1415 	stable_node = page_stable_node(page);
1416 	if (stable_node) {
1417 		if (stable_node->head != &migrate_nodes &&
1418 		    get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1419 			rb_erase(&stable_node->node,
1420 				 root_stable_tree + NUMA(stable_node->nid));
1421 			stable_node->head = &migrate_nodes;
1422 			list_add(&stable_node->list, stable_node->head);
1423 		}
1424 		if (stable_node->head != &migrate_nodes &&
1425 		    rmap_item->head == stable_node)
1426 			return;
1427 	}
1428 
1429 	/* We first start with searching the page inside the stable tree */
1430 	kpage = stable_tree_search(page);
1431 	if (kpage == page && rmap_item->head == stable_node) {
1432 		put_page(kpage);
1433 		return;
1434 	}
1435 
1436 	remove_rmap_item_from_tree(rmap_item);
1437 
1438 	if (kpage) {
1439 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1440 		if (!err) {
1441 			/*
1442 			 * The page was successfully merged:
1443 			 * add its rmap_item to the stable tree.
1444 			 */
1445 			lock_page(kpage);
1446 			stable_tree_append(rmap_item, page_stable_node(kpage));
1447 			unlock_page(kpage);
1448 		}
1449 		put_page(kpage);
1450 		return;
1451 	}
1452 
1453 	/*
1454 	 * If the hash value of the page has changed from the last time
1455 	 * we calculated it, this page is changing frequently: therefore we
1456 	 * don't want to insert it in the unstable tree, and we don't want
1457 	 * to waste our time searching for something identical to it there.
1458 	 */
1459 	checksum = calc_checksum(page);
1460 	if (rmap_item->oldchecksum != checksum) {
1461 		rmap_item->oldchecksum = checksum;
1462 		return;
1463 	}
1464 
1465 	tree_rmap_item =
1466 		unstable_tree_search_insert(rmap_item, page, &tree_page);
1467 	if (tree_rmap_item) {
1468 		kpage = try_to_merge_two_pages(rmap_item, page,
1469 						tree_rmap_item, tree_page);
1470 		put_page(tree_page);
1471 		if (kpage) {
1472 			/*
1473 			 * The pages were successfully merged: insert new
1474 			 * node in the stable tree and add both rmap_items.
1475 			 */
1476 			lock_page(kpage);
1477 			stable_node = stable_tree_insert(kpage);
1478 			if (stable_node) {
1479 				stable_tree_append(tree_rmap_item, stable_node);
1480 				stable_tree_append(rmap_item, stable_node);
1481 			}
1482 			unlock_page(kpage);
1483 
1484 			/*
1485 			 * If we fail to insert the page into the stable tree,
1486 			 * we will have 2 virtual addresses that are pointing
1487 			 * to a ksm page left outside the stable tree,
1488 			 * in which case we need to break_cow on both.
1489 			 */
1490 			if (!stable_node) {
1491 				break_cow(tree_rmap_item);
1492 				break_cow(rmap_item);
1493 			}
1494 		}
1495 	}
1496 }
1497 
1498 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1499 					    struct rmap_item **rmap_list,
1500 					    unsigned long addr)
1501 {
1502 	struct rmap_item *rmap_item;
1503 
1504 	while (*rmap_list) {
1505 		rmap_item = *rmap_list;
1506 		if ((rmap_item->address & PAGE_MASK) == addr)
1507 			return rmap_item;
1508 		if (rmap_item->address > addr)
1509 			break;
1510 		*rmap_list = rmap_item->rmap_list;
1511 		remove_rmap_item_from_tree(rmap_item);
1512 		free_rmap_item(rmap_item);
1513 	}
1514 
1515 	rmap_item = alloc_rmap_item();
1516 	if (rmap_item) {
1517 		/* It has already been zeroed */
1518 		rmap_item->mm = mm_slot->mm;
1519 		rmap_item->address = addr;
1520 		rmap_item->rmap_list = *rmap_list;
1521 		*rmap_list = rmap_item;
1522 	}
1523 	return rmap_item;
1524 }
1525 
1526 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1527 {
1528 	struct mm_struct *mm;
1529 	struct mm_slot *slot;
1530 	struct vm_area_struct *vma;
1531 	struct rmap_item *rmap_item;
1532 	int nid;
1533 
1534 	if (list_empty(&ksm_mm_head.mm_list))
1535 		return NULL;
1536 
1537 	slot = ksm_scan.mm_slot;
1538 	if (slot == &ksm_mm_head) {
1539 		/*
1540 		 * A number of pages can hang around indefinitely on per-cpu
1541 		 * pagevecs, raised page count preventing write_protect_page
1542 		 * from merging them.  Though it doesn't really matter much,
1543 		 * it is puzzling to see some stuck in pages_volatile until
1544 		 * other activity jostles them out, and they also prevented
1545 		 * LTP's KSM test from succeeding deterministically; so drain
1546 		 * them here (here rather than on entry to ksm_do_scan(),
1547 		 * so we don't IPI too often when pages_to_scan is set low).
1548 		 */
1549 		lru_add_drain_all();
1550 
1551 		/*
1552 		 * Whereas stale stable_nodes on the stable_tree itself
1553 		 * get pruned in the regular course of stable_tree_search(),
1554 		 * those moved out to the migrate_nodes list can accumulate:
1555 		 * so prune them once before each full scan.
1556 		 */
1557 		if (!ksm_merge_across_nodes) {
1558 			struct stable_node *stable_node, *next;
1559 			struct page *page;
1560 
1561 			list_for_each_entry_safe(stable_node, next,
1562 						 &migrate_nodes, list) {
1563 				page = get_ksm_page(stable_node, false);
1564 				if (page)
1565 					put_page(page);
1566 				cond_resched();
1567 			}
1568 		}
1569 
1570 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
1571 			root_unstable_tree[nid] = RB_ROOT;
1572 
1573 		spin_lock(&ksm_mmlist_lock);
1574 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1575 		ksm_scan.mm_slot = slot;
1576 		spin_unlock(&ksm_mmlist_lock);
1577 		/*
1578 		 * Although we tested list_empty() above, a racing __ksm_exit
1579 		 * of the last mm on the list may have removed it since then.
1580 		 */
1581 		if (slot == &ksm_mm_head)
1582 			return NULL;
1583 next_mm:
1584 		ksm_scan.address = 0;
1585 		ksm_scan.rmap_list = &slot->rmap_list;
1586 	}
1587 
1588 	mm = slot->mm;
1589 	down_read(&mm->mmap_sem);
1590 	if (ksm_test_exit(mm))
1591 		vma = NULL;
1592 	else
1593 		vma = find_vma(mm, ksm_scan.address);
1594 
1595 	for (; vma; vma = vma->vm_next) {
1596 		if (!(vma->vm_flags & VM_MERGEABLE))
1597 			continue;
1598 		if (ksm_scan.address < vma->vm_start)
1599 			ksm_scan.address = vma->vm_start;
1600 		if (!vma->anon_vma)
1601 			ksm_scan.address = vma->vm_end;
1602 
1603 		while (ksm_scan.address < vma->vm_end) {
1604 			if (ksm_test_exit(mm))
1605 				break;
1606 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1607 			if (IS_ERR_OR_NULL(*page)) {
1608 				ksm_scan.address += PAGE_SIZE;
1609 				cond_resched();
1610 				continue;
1611 			}
1612 			if (PageAnon(*page)) {
1613 				flush_anon_page(vma, *page, ksm_scan.address);
1614 				flush_dcache_page(*page);
1615 				rmap_item = get_next_rmap_item(slot,
1616 					ksm_scan.rmap_list, ksm_scan.address);
1617 				if (rmap_item) {
1618 					ksm_scan.rmap_list =
1619 							&rmap_item->rmap_list;
1620 					ksm_scan.address += PAGE_SIZE;
1621 				} else
1622 					put_page(*page);
1623 				up_read(&mm->mmap_sem);
1624 				return rmap_item;
1625 			}
1626 			put_page(*page);
1627 			ksm_scan.address += PAGE_SIZE;
1628 			cond_resched();
1629 		}
1630 	}
1631 
1632 	if (ksm_test_exit(mm)) {
1633 		ksm_scan.address = 0;
1634 		ksm_scan.rmap_list = &slot->rmap_list;
1635 	}
1636 	/*
1637 	 * Nuke all the rmap_items that are above this current rmap:
1638 	 * because there were no VM_MERGEABLE vmas with such addresses.
1639 	 */
1640 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1641 
1642 	spin_lock(&ksm_mmlist_lock);
1643 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1644 						struct mm_slot, mm_list);
1645 	if (ksm_scan.address == 0) {
1646 		/*
1647 		 * We've completed a full scan of all vmas, holding mmap_sem
1648 		 * throughout, and found no VM_MERGEABLE: so do the same as
1649 		 * __ksm_exit does to remove this mm from all our lists now.
1650 		 * This applies either when cleaning up after __ksm_exit
1651 		 * (but beware: we can reach here even before __ksm_exit),
1652 		 * or when all VM_MERGEABLE areas have been unmapped (and
1653 		 * mmap_sem then protects against race with MADV_MERGEABLE).
1654 		 */
1655 		hash_del(&slot->link);
1656 		list_del(&slot->mm_list);
1657 		spin_unlock(&ksm_mmlist_lock);
1658 
1659 		free_mm_slot(slot);
1660 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1661 		up_read(&mm->mmap_sem);
1662 		mmdrop(mm);
1663 	} else {
1664 		up_read(&mm->mmap_sem);
1665 		/*
1666 		 * up_read(&mm->mmap_sem) first because after
1667 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
1668 		 * already have been freed under us by __ksm_exit()
1669 		 * because the "mm_slot" is still hashed and
1670 		 * ksm_scan.mm_slot doesn't point to it anymore.
1671 		 */
1672 		spin_unlock(&ksm_mmlist_lock);
1673 	}
1674 
1675 	/* Repeat until we've completed scanning the whole list */
1676 	slot = ksm_scan.mm_slot;
1677 	if (slot != &ksm_mm_head)
1678 		goto next_mm;
1679 
1680 	ksm_scan.seqnr++;
1681 	return NULL;
1682 }
1683 
1684 /**
1685  * ksm_do_scan  - the ksm scanner main worker function.
1686  * @scan_npages - number of pages we want to scan before we return.
1687  */
1688 static void ksm_do_scan(unsigned int scan_npages)
1689 {
1690 	struct rmap_item *rmap_item;
1691 	struct page *uninitialized_var(page);
1692 
1693 	while (scan_npages-- && likely(!freezing(current))) {
1694 		cond_resched();
1695 		rmap_item = scan_get_next_rmap_item(&page);
1696 		if (!rmap_item)
1697 			return;
1698 		cmp_and_merge_page(page, rmap_item);
1699 		put_page(page);
1700 	}
1701 }
1702 
1703 static int ksmd_should_run(void)
1704 {
1705 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1706 }
1707 
1708 static int ksm_scan_thread(void *nothing)
1709 {
1710 	set_freezable();
1711 	set_user_nice(current, 5);
1712 
1713 	while (!kthread_should_stop()) {
1714 		mutex_lock(&ksm_thread_mutex);
1715 		wait_while_offlining();
1716 		if (ksmd_should_run())
1717 			ksm_do_scan(ksm_thread_pages_to_scan);
1718 		mutex_unlock(&ksm_thread_mutex);
1719 
1720 		try_to_freeze();
1721 
1722 		if (ksmd_should_run()) {
1723 			schedule_timeout_interruptible(
1724 				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1725 		} else {
1726 			wait_event_freezable(ksm_thread_wait,
1727 				ksmd_should_run() || kthread_should_stop());
1728 		}
1729 	}
1730 	return 0;
1731 }
1732 
1733 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1734 		unsigned long end, int advice, unsigned long *vm_flags)
1735 {
1736 	struct mm_struct *mm = vma->vm_mm;
1737 	int err;
1738 
1739 	switch (advice) {
1740 	case MADV_MERGEABLE:
1741 		/*
1742 		 * Be somewhat over-protective for now!
1743 		 */
1744 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1745 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1746 				 VM_HUGETLB | VM_MIXEDMAP))
1747 			return 0;		/* just ignore the advice */
1748 
1749 #ifdef VM_SAO
1750 		if (*vm_flags & VM_SAO)
1751 			return 0;
1752 #endif
1753 
1754 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1755 			err = __ksm_enter(mm);
1756 			if (err)
1757 				return err;
1758 		}
1759 
1760 		*vm_flags |= VM_MERGEABLE;
1761 		break;
1762 
1763 	case MADV_UNMERGEABLE:
1764 		if (!(*vm_flags & VM_MERGEABLE))
1765 			return 0;		/* just ignore the advice */
1766 
1767 		if (vma->anon_vma) {
1768 			err = unmerge_ksm_pages(vma, start, end);
1769 			if (err)
1770 				return err;
1771 		}
1772 
1773 		*vm_flags &= ~VM_MERGEABLE;
1774 		break;
1775 	}
1776 
1777 	return 0;
1778 }
1779 
1780 int __ksm_enter(struct mm_struct *mm)
1781 {
1782 	struct mm_slot *mm_slot;
1783 	int needs_wakeup;
1784 
1785 	mm_slot = alloc_mm_slot();
1786 	if (!mm_slot)
1787 		return -ENOMEM;
1788 
1789 	/* Check ksm_run too?  Would need tighter locking */
1790 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1791 
1792 	spin_lock(&ksm_mmlist_lock);
1793 	insert_to_mm_slots_hash(mm, mm_slot);
1794 	/*
1795 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1796 	 * insert just behind the scanning cursor, to let the area settle
1797 	 * down a little; when fork is followed by immediate exec, we don't
1798 	 * want ksmd to waste time setting up and tearing down an rmap_list.
1799 	 *
1800 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1801 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
1802 	 * missed: then we might as well insert at the end of the list.
1803 	 */
1804 	if (ksm_run & KSM_RUN_UNMERGE)
1805 		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1806 	else
1807 		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1808 	spin_unlock(&ksm_mmlist_lock);
1809 
1810 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1811 	atomic_inc(&mm->mm_count);
1812 
1813 	if (needs_wakeup)
1814 		wake_up_interruptible(&ksm_thread_wait);
1815 
1816 	return 0;
1817 }
1818 
1819 void __ksm_exit(struct mm_struct *mm)
1820 {
1821 	struct mm_slot *mm_slot;
1822 	int easy_to_free = 0;
1823 
1824 	/*
1825 	 * This process is exiting: if it's straightforward (as is the
1826 	 * case when ksmd was never running), free mm_slot immediately.
1827 	 * But if it's at the cursor or has rmap_items linked to it, use
1828 	 * mmap_sem to synchronize with any break_cows before pagetables
1829 	 * are freed, and leave the mm_slot on the list for ksmd to free.
1830 	 * Beware: ksm may already have noticed it exiting and freed the slot.
1831 	 */
1832 
1833 	spin_lock(&ksm_mmlist_lock);
1834 	mm_slot = get_mm_slot(mm);
1835 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1836 		if (!mm_slot->rmap_list) {
1837 			hash_del(&mm_slot->link);
1838 			list_del(&mm_slot->mm_list);
1839 			easy_to_free = 1;
1840 		} else {
1841 			list_move(&mm_slot->mm_list,
1842 				  &ksm_scan.mm_slot->mm_list);
1843 		}
1844 	}
1845 	spin_unlock(&ksm_mmlist_lock);
1846 
1847 	if (easy_to_free) {
1848 		free_mm_slot(mm_slot);
1849 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1850 		mmdrop(mm);
1851 	} else if (mm_slot) {
1852 		down_write(&mm->mmap_sem);
1853 		up_write(&mm->mmap_sem);
1854 	}
1855 }
1856 
1857 struct page *ksm_might_need_to_copy(struct page *page,
1858 			struct vm_area_struct *vma, unsigned long address)
1859 {
1860 	struct anon_vma *anon_vma = page_anon_vma(page);
1861 	struct page *new_page;
1862 
1863 	if (PageKsm(page)) {
1864 		if (page_stable_node(page) &&
1865 		    !(ksm_run & KSM_RUN_UNMERGE))
1866 			return page;	/* no need to copy it */
1867 	} else if (!anon_vma) {
1868 		return page;		/* no need to copy it */
1869 	} else if (anon_vma->root == vma->anon_vma->root &&
1870 		 page->index == linear_page_index(vma, address)) {
1871 		return page;		/* still no need to copy it */
1872 	}
1873 	if (!PageUptodate(page))
1874 		return page;		/* let do_swap_page report the error */
1875 
1876 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1877 	if (new_page) {
1878 		copy_user_highpage(new_page, page, address, vma);
1879 
1880 		SetPageDirty(new_page);
1881 		__SetPageUptodate(new_page);
1882 		__SetPageLocked(new_page);
1883 	}
1884 
1885 	return new_page;
1886 }
1887 
1888 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1889 {
1890 	struct stable_node *stable_node;
1891 	struct rmap_item *rmap_item;
1892 	int ret = SWAP_AGAIN;
1893 	int search_new_forks = 0;
1894 
1895 	VM_BUG_ON_PAGE(!PageKsm(page), page);
1896 
1897 	/*
1898 	 * Rely on the page lock to protect against concurrent modifications
1899 	 * to that page's node of the stable tree.
1900 	 */
1901 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1902 
1903 	stable_node = page_stable_node(page);
1904 	if (!stable_node)
1905 		return ret;
1906 again:
1907 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1908 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1909 		struct anon_vma_chain *vmac;
1910 		struct vm_area_struct *vma;
1911 
1912 		cond_resched();
1913 		anon_vma_lock_read(anon_vma);
1914 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1915 					       0, ULONG_MAX) {
1916 			cond_resched();
1917 			vma = vmac->vma;
1918 			if (rmap_item->address < vma->vm_start ||
1919 			    rmap_item->address >= vma->vm_end)
1920 				continue;
1921 			/*
1922 			 * Initially we examine only the vma which covers this
1923 			 * rmap_item; but later, if there is still work to do,
1924 			 * we examine covering vmas in other mms: in case they
1925 			 * were forked from the original since ksmd passed.
1926 			 */
1927 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1928 				continue;
1929 
1930 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1931 				continue;
1932 
1933 			ret = rwc->rmap_one(page, vma,
1934 					rmap_item->address, rwc->arg);
1935 			if (ret != SWAP_AGAIN) {
1936 				anon_vma_unlock_read(anon_vma);
1937 				goto out;
1938 			}
1939 			if (rwc->done && rwc->done(page)) {
1940 				anon_vma_unlock_read(anon_vma);
1941 				goto out;
1942 			}
1943 		}
1944 		anon_vma_unlock_read(anon_vma);
1945 	}
1946 	if (!search_new_forks++)
1947 		goto again;
1948 out:
1949 	return ret;
1950 }
1951 
1952 #ifdef CONFIG_MIGRATION
1953 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1954 {
1955 	struct stable_node *stable_node;
1956 
1957 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
1958 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1959 	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
1960 
1961 	stable_node = page_stable_node(newpage);
1962 	if (stable_node) {
1963 		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
1964 		stable_node->kpfn = page_to_pfn(newpage);
1965 		/*
1966 		 * newpage->mapping was set in advance; now we need smp_wmb()
1967 		 * to make sure that the new stable_node->kpfn is visible
1968 		 * to get_ksm_page() before it can see that oldpage->mapping
1969 		 * has gone stale (or that PageSwapCache has been cleared).
1970 		 */
1971 		smp_wmb();
1972 		set_page_stable_node(oldpage, NULL);
1973 	}
1974 }
1975 #endif /* CONFIG_MIGRATION */
1976 
1977 #ifdef CONFIG_MEMORY_HOTREMOVE
1978 static void wait_while_offlining(void)
1979 {
1980 	while (ksm_run & KSM_RUN_OFFLINE) {
1981 		mutex_unlock(&ksm_thread_mutex);
1982 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
1983 			    TASK_UNINTERRUPTIBLE);
1984 		mutex_lock(&ksm_thread_mutex);
1985 	}
1986 }
1987 
1988 static void ksm_check_stable_tree(unsigned long start_pfn,
1989 				  unsigned long end_pfn)
1990 {
1991 	struct stable_node *stable_node, *next;
1992 	struct rb_node *node;
1993 	int nid;
1994 
1995 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1996 		node = rb_first(root_stable_tree + nid);
1997 		while (node) {
1998 			stable_node = rb_entry(node, struct stable_node, node);
1999 			if (stable_node->kpfn >= start_pfn &&
2000 			    stable_node->kpfn < end_pfn) {
2001 				/*
2002 				 * Don't get_ksm_page, page has already gone:
2003 				 * which is why we keep kpfn instead of page*
2004 				 */
2005 				remove_node_from_stable_tree(stable_node);
2006 				node = rb_first(root_stable_tree + nid);
2007 			} else
2008 				node = rb_next(node);
2009 			cond_resched();
2010 		}
2011 	}
2012 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2013 		if (stable_node->kpfn >= start_pfn &&
2014 		    stable_node->kpfn < end_pfn)
2015 			remove_node_from_stable_tree(stable_node);
2016 		cond_resched();
2017 	}
2018 }
2019 
2020 static int ksm_memory_callback(struct notifier_block *self,
2021 			       unsigned long action, void *arg)
2022 {
2023 	struct memory_notify *mn = arg;
2024 
2025 	switch (action) {
2026 	case MEM_GOING_OFFLINE:
2027 		/*
2028 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2029 		 * and remove_all_stable_nodes() while memory is going offline:
2030 		 * it is unsafe for them to touch the stable tree at this time.
2031 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2032 		 * which do not need the ksm_thread_mutex are all safe.
2033 		 */
2034 		mutex_lock(&ksm_thread_mutex);
2035 		ksm_run |= KSM_RUN_OFFLINE;
2036 		mutex_unlock(&ksm_thread_mutex);
2037 		break;
2038 
2039 	case MEM_OFFLINE:
2040 		/*
2041 		 * Most of the work is done by page migration; but there might
2042 		 * be a few stable_nodes left over, still pointing to struct
2043 		 * pages which have been offlined: prune those from the tree,
2044 		 * otherwise get_ksm_page() might later try to access a
2045 		 * non-existent struct page.
2046 		 */
2047 		ksm_check_stable_tree(mn->start_pfn,
2048 				      mn->start_pfn + mn->nr_pages);
2049 		/* fallthrough */
2050 
2051 	case MEM_CANCEL_OFFLINE:
2052 		mutex_lock(&ksm_thread_mutex);
2053 		ksm_run &= ~KSM_RUN_OFFLINE;
2054 		mutex_unlock(&ksm_thread_mutex);
2055 
2056 		smp_mb();	/* wake_up_bit advises this */
2057 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2058 		break;
2059 	}
2060 	return NOTIFY_OK;
2061 }
2062 #else
2063 static void wait_while_offlining(void)
2064 {
2065 }
2066 #endif /* CONFIG_MEMORY_HOTREMOVE */
2067 
2068 #ifdef CONFIG_SYSFS
2069 /*
2070  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2071  */
2072 
2073 #define KSM_ATTR_RO(_name) \
2074 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2075 #define KSM_ATTR(_name) \
2076 	static struct kobj_attribute _name##_attr = \
2077 		__ATTR(_name, 0644, _name##_show, _name##_store)
2078 
2079 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2080 				    struct kobj_attribute *attr, char *buf)
2081 {
2082 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2083 }
2084 
2085 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2086 				     struct kobj_attribute *attr,
2087 				     const char *buf, size_t count)
2088 {
2089 	unsigned long msecs;
2090 	int err;
2091 
2092 	err = kstrtoul(buf, 10, &msecs);
2093 	if (err || msecs > UINT_MAX)
2094 		return -EINVAL;
2095 
2096 	ksm_thread_sleep_millisecs = msecs;
2097 
2098 	return count;
2099 }
2100 KSM_ATTR(sleep_millisecs);
2101 
2102 static ssize_t pages_to_scan_show(struct kobject *kobj,
2103 				  struct kobj_attribute *attr, char *buf)
2104 {
2105 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2106 }
2107 
2108 static ssize_t pages_to_scan_store(struct kobject *kobj,
2109 				   struct kobj_attribute *attr,
2110 				   const char *buf, size_t count)
2111 {
2112 	int err;
2113 	unsigned long nr_pages;
2114 
2115 	err = kstrtoul(buf, 10, &nr_pages);
2116 	if (err || nr_pages > UINT_MAX)
2117 		return -EINVAL;
2118 
2119 	ksm_thread_pages_to_scan = nr_pages;
2120 
2121 	return count;
2122 }
2123 KSM_ATTR(pages_to_scan);
2124 
2125 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2126 			char *buf)
2127 {
2128 	return sprintf(buf, "%lu\n", ksm_run);
2129 }
2130 
2131 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2132 			 const char *buf, size_t count)
2133 {
2134 	int err;
2135 	unsigned long flags;
2136 
2137 	err = kstrtoul(buf, 10, &flags);
2138 	if (err || flags > UINT_MAX)
2139 		return -EINVAL;
2140 	if (flags > KSM_RUN_UNMERGE)
2141 		return -EINVAL;
2142 
2143 	/*
2144 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2145 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2146 	 * breaking COW to free the pages_shared (but leaves mm_slots
2147 	 * on the list for when ksmd may be set running again).
2148 	 */
2149 
2150 	mutex_lock(&ksm_thread_mutex);
2151 	wait_while_offlining();
2152 	if (ksm_run != flags) {
2153 		ksm_run = flags;
2154 		if (flags & KSM_RUN_UNMERGE) {
2155 			set_current_oom_origin();
2156 			err = unmerge_and_remove_all_rmap_items();
2157 			clear_current_oom_origin();
2158 			if (err) {
2159 				ksm_run = KSM_RUN_STOP;
2160 				count = err;
2161 			}
2162 		}
2163 	}
2164 	mutex_unlock(&ksm_thread_mutex);
2165 
2166 	if (flags & KSM_RUN_MERGE)
2167 		wake_up_interruptible(&ksm_thread_wait);
2168 
2169 	return count;
2170 }
2171 KSM_ATTR(run);
2172 
2173 #ifdef CONFIG_NUMA
2174 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2175 				struct kobj_attribute *attr, char *buf)
2176 {
2177 	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2178 }
2179 
2180 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2181 				   struct kobj_attribute *attr,
2182 				   const char *buf, size_t count)
2183 {
2184 	int err;
2185 	unsigned long knob;
2186 
2187 	err = kstrtoul(buf, 10, &knob);
2188 	if (err)
2189 		return err;
2190 	if (knob > 1)
2191 		return -EINVAL;
2192 
2193 	mutex_lock(&ksm_thread_mutex);
2194 	wait_while_offlining();
2195 	if (ksm_merge_across_nodes != knob) {
2196 		if (ksm_pages_shared || remove_all_stable_nodes())
2197 			err = -EBUSY;
2198 		else if (root_stable_tree == one_stable_tree) {
2199 			struct rb_root *buf;
2200 			/*
2201 			 * This is the first time that we switch away from the
2202 			 * default of merging across nodes: must now allocate
2203 			 * a buffer to hold as many roots as may be needed.
2204 			 * Allocate stable and unstable together:
2205 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2206 			 */
2207 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2208 				      GFP_KERNEL);
2209 			/* Let us assume that RB_ROOT is NULL is zero */
2210 			if (!buf)
2211 				err = -ENOMEM;
2212 			else {
2213 				root_stable_tree = buf;
2214 				root_unstable_tree = buf + nr_node_ids;
2215 				/* Stable tree is empty but not the unstable */
2216 				root_unstable_tree[0] = one_unstable_tree[0];
2217 			}
2218 		}
2219 		if (!err) {
2220 			ksm_merge_across_nodes = knob;
2221 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2222 		}
2223 	}
2224 	mutex_unlock(&ksm_thread_mutex);
2225 
2226 	return err ? err : count;
2227 }
2228 KSM_ATTR(merge_across_nodes);
2229 #endif
2230 
2231 static ssize_t pages_shared_show(struct kobject *kobj,
2232 				 struct kobj_attribute *attr, char *buf)
2233 {
2234 	return sprintf(buf, "%lu\n", ksm_pages_shared);
2235 }
2236 KSM_ATTR_RO(pages_shared);
2237 
2238 static ssize_t pages_sharing_show(struct kobject *kobj,
2239 				  struct kobj_attribute *attr, char *buf)
2240 {
2241 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
2242 }
2243 KSM_ATTR_RO(pages_sharing);
2244 
2245 static ssize_t pages_unshared_show(struct kobject *kobj,
2246 				   struct kobj_attribute *attr, char *buf)
2247 {
2248 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
2249 }
2250 KSM_ATTR_RO(pages_unshared);
2251 
2252 static ssize_t pages_volatile_show(struct kobject *kobj,
2253 				   struct kobj_attribute *attr, char *buf)
2254 {
2255 	long ksm_pages_volatile;
2256 
2257 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2258 				- ksm_pages_sharing - ksm_pages_unshared;
2259 	/*
2260 	 * It was not worth any locking to calculate that statistic,
2261 	 * but it might therefore sometimes be negative: conceal that.
2262 	 */
2263 	if (ksm_pages_volatile < 0)
2264 		ksm_pages_volatile = 0;
2265 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
2266 }
2267 KSM_ATTR_RO(pages_volatile);
2268 
2269 static ssize_t full_scans_show(struct kobject *kobj,
2270 			       struct kobj_attribute *attr, char *buf)
2271 {
2272 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2273 }
2274 KSM_ATTR_RO(full_scans);
2275 
2276 static struct attribute *ksm_attrs[] = {
2277 	&sleep_millisecs_attr.attr,
2278 	&pages_to_scan_attr.attr,
2279 	&run_attr.attr,
2280 	&pages_shared_attr.attr,
2281 	&pages_sharing_attr.attr,
2282 	&pages_unshared_attr.attr,
2283 	&pages_volatile_attr.attr,
2284 	&full_scans_attr.attr,
2285 #ifdef CONFIG_NUMA
2286 	&merge_across_nodes_attr.attr,
2287 #endif
2288 	NULL,
2289 };
2290 
2291 static struct attribute_group ksm_attr_group = {
2292 	.attrs = ksm_attrs,
2293 	.name = "ksm",
2294 };
2295 #endif /* CONFIG_SYSFS */
2296 
2297 static int __init ksm_init(void)
2298 {
2299 	struct task_struct *ksm_thread;
2300 	int err;
2301 
2302 	err = ksm_slab_init();
2303 	if (err)
2304 		goto out;
2305 
2306 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2307 	if (IS_ERR(ksm_thread)) {
2308 		pr_err("ksm: creating kthread failed\n");
2309 		err = PTR_ERR(ksm_thread);
2310 		goto out_free;
2311 	}
2312 
2313 #ifdef CONFIG_SYSFS
2314 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2315 	if (err) {
2316 		pr_err("ksm: register sysfs failed\n");
2317 		kthread_stop(ksm_thread);
2318 		goto out_free;
2319 	}
2320 #else
2321 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
2322 
2323 #endif /* CONFIG_SYSFS */
2324 
2325 #ifdef CONFIG_MEMORY_HOTREMOVE
2326 	/* There is no significance to this priority 100 */
2327 	hotplug_memory_notifier(ksm_memory_callback, 100);
2328 #endif
2329 	return 0;
2330 
2331 out_free:
2332 	ksm_slab_free();
2333 out:
2334 	return err;
2335 }
2336 subsys_initcall(ksm_init);
2337