xref: /openbmc/linux/mm/ksm.c (revision 110e6f26)
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40 
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43 
44 #ifdef CONFIG_NUMA
45 #define NUMA(x)		(x)
46 #define DO_NUMA(x)	do { (x); } while (0)
47 #else
48 #define NUMA(x)		(0)
49 #define DO_NUMA(x)	do { } while (0)
50 #endif
51 
52 /*
53  * A few notes about the KSM scanning process,
54  * to make it easier to understand the data structures below:
55  *
56  * In order to reduce excessive scanning, KSM sorts the memory pages by their
57  * contents into a data structure that holds pointers to the pages' locations.
58  *
59  * Since the contents of the pages may change at any moment, KSM cannot just
60  * insert the pages into a normal sorted tree and expect it to find anything.
61  * Therefore KSM uses two data structures - the stable and the unstable tree.
62  *
63  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64  * by their contents.  Because each such page is write-protected, searching on
65  * this tree is fully assured to be working (except when pages are unmapped),
66  * and therefore this tree is called the stable tree.
67  *
68  * In addition to the stable tree, KSM uses a second data structure called the
69  * unstable tree: this tree holds pointers to pages which have been found to
70  * be "unchanged for a period of time".  The unstable tree sorts these pages
71  * by their contents, but since they are not write-protected, KSM cannot rely
72  * upon the unstable tree to work correctly - the unstable tree is liable to
73  * be corrupted as its contents are modified, and so it is called unstable.
74  *
75  * KSM solves this problem by several techniques:
76  *
77  * 1) The unstable tree is flushed every time KSM completes scanning all
78  *    memory areas, and then the tree is rebuilt again from the beginning.
79  * 2) KSM will only insert into the unstable tree, pages whose hash value
80  *    has not changed since the previous scan of all memory areas.
81  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82  *    colors of the nodes and not on their contents, assuring that even when
83  *    the tree gets "corrupted" it won't get out of balance, so scanning time
84  *    remains the same (also, searching and inserting nodes in an rbtree uses
85  *    the same algorithm, so we have no overhead when we flush and rebuild).
86  * 4) KSM never flushes the stable tree, which means that even if it were to
87  *    take 10 attempts to find a page in the unstable tree, once it is found,
88  *    it is secured in the stable tree.  (When we scan a new page, we first
89  *    compare it against the stable tree, and then against the unstable tree.)
90  *
91  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92  * stable trees and multiple unstable trees: one of each for each NUMA node.
93  */
94 
95 /**
96  * struct mm_slot - ksm information per mm that is being scanned
97  * @link: link to the mm_slots hash list
98  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100  * @mm: the mm that this information is valid for
101  */
102 struct mm_slot {
103 	struct hlist_node link;
104 	struct list_head mm_list;
105 	struct rmap_item *rmap_list;
106 	struct mm_struct *mm;
107 };
108 
109 /**
110  * struct ksm_scan - cursor for scanning
111  * @mm_slot: the current mm_slot we are scanning
112  * @address: the next address inside that to be scanned
113  * @rmap_list: link to the next rmap to be scanned in the rmap_list
114  * @seqnr: count of completed full scans (needed when removing unstable node)
115  *
116  * There is only the one ksm_scan instance of this cursor structure.
117  */
118 struct ksm_scan {
119 	struct mm_slot *mm_slot;
120 	unsigned long address;
121 	struct rmap_item **rmap_list;
122 	unsigned long seqnr;
123 };
124 
125 /**
126  * struct stable_node - node of the stable rbtree
127  * @node: rb node of this ksm page in the stable tree
128  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129  * @list: linked into migrate_nodes, pending placement in the proper node tree
130  * @hlist: hlist head of rmap_items using this ksm page
131  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133  */
134 struct stable_node {
135 	union {
136 		struct rb_node node;	/* when node of stable tree */
137 		struct {		/* when listed for migration */
138 			struct list_head *head;
139 			struct list_head list;
140 		};
141 	};
142 	struct hlist_head hlist;
143 	unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145 	int nid;
146 #endif
147 };
148 
149 /**
150  * struct rmap_item - reverse mapping item for virtual addresses
151  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153  * @nid: NUMA node id of unstable tree in which linked (may not match page)
154  * @mm: the memory structure this rmap_item is pointing into
155  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156  * @oldchecksum: previous checksum of the page at that virtual address
157  * @node: rb node of this rmap_item in the unstable tree
158  * @head: pointer to stable_node heading this list in the stable tree
159  * @hlist: link into hlist of rmap_items hanging off that stable_node
160  */
161 struct rmap_item {
162 	struct rmap_item *rmap_list;
163 	union {
164 		struct anon_vma *anon_vma;	/* when stable */
165 #ifdef CONFIG_NUMA
166 		int nid;		/* when node of unstable tree */
167 #endif
168 	};
169 	struct mm_struct *mm;
170 	unsigned long address;		/* + low bits used for flags below */
171 	unsigned int oldchecksum;	/* when unstable */
172 	union {
173 		struct rb_node node;	/* when node of unstable tree */
174 		struct {		/* when listed from stable tree */
175 			struct stable_node *head;
176 			struct hlist_node hlist;
177 		};
178 	};
179 };
180 
181 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
183 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
184 
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
190 
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
193 
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196 
197 static struct mm_slot ksm_mm_head = {
198 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199 };
200 static struct ksm_scan ksm_scan = {
201 	.mm_slot = &ksm_mm_head,
202 };
203 
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
207 
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
210 
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
213 
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
216 
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
219 
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
222 
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
225 
226 #ifdef CONFIG_NUMA
227 /* Zeroed when merging across nodes is not allowed */
228 static unsigned int ksm_merge_across_nodes = 1;
229 static int ksm_nr_node_ids = 1;
230 #else
231 #define ksm_merge_across_nodes	1U
232 #define ksm_nr_node_ids		1
233 #endif
234 
235 #define KSM_RUN_STOP	0
236 #define KSM_RUN_MERGE	1
237 #define KSM_RUN_UNMERGE	2
238 #define KSM_RUN_OFFLINE	4
239 static unsigned long ksm_run = KSM_RUN_STOP;
240 static void wait_while_offlining(void);
241 
242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243 static DEFINE_MUTEX(ksm_thread_mutex);
244 static DEFINE_SPINLOCK(ksm_mmlist_lock);
245 
246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247 		sizeof(struct __struct), __alignof__(struct __struct),\
248 		(__flags), NULL)
249 
250 static int __init ksm_slab_init(void)
251 {
252 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253 	if (!rmap_item_cache)
254 		goto out;
255 
256 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257 	if (!stable_node_cache)
258 		goto out_free1;
259 
260 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261 	if (!mm_slot_cache)
262 		goto out_free2;
263 
264 	return 0;
265 
266 out_free2:
267 	kmem_cache_destroy(stable_node_cache);
268 out_free1:
269 	kmem_cache_destroy(rmap_item_cache);
270 out:
271 	return -ENOMEM;
272 }
273 
274 static void __init ksm_slab_free(void)
275 {
276 	kmem_cache_destroy(mm_slot_cache);
277 	kmem_cache_destroy(stable_node_cache);
278 	kmem_cache_destroy(rmap_item_cache);
279 	mm_slot_cache = NULL;
280 }
281 
282 static inline struct rmap_item *alloc_rmap_item(void)
283 {
284 	struct rmap_item *rmap_item;
285 
286 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
287 	if (rmap_item)
288 		ksm_rmap_items++;
289 	return rmap_item;
290 }
291 
292 static inline void free_rmap_item(struct rmap_item *rmap_item)
293 {
294 	ksm_rmap_items--;
295 	rmap_item->mm = NULL;	/* debug safety */
296 	kmem_cache_free(rmap_item_cache, rmap_item);
297 }
298 
299 static inline struct stable_node *alloc_stable_node(void)
300 {
301 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
302 }
303 
304 static inline void free_stable_node(struct stable_node *stable_node)
305 {
306 	kmem_cache_free(stable_node_cache, stable_node);
307 }
308 
309 static inline struct mm_slot *alloc_mm_slot(void)
310 {
311 	if (!mm_slot_cache)	/* initialization failed */
312 		return NULL;
313 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
314 }
315 
316 static inline void free_mm_slot(struct mm_slot *mm_slot)
317 {
318 	kmem_cache_free(mm_slot_cache, mm_slot);
319 }
320 
321 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
322 {
323 	struct mm_slot *slot;
324 
325 	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
326 		if (slot->mm == mm)
327 			return slot;
328 
329 	return NULL;
330 }
331 
332 static void insert_to_mm_slots_hash(struct mm_struct *mm,
333 				    struct mm_slot *mm_slot)
334 {
335 	mm_slot->mm = mm;
336 	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
337 }
338 
339 /*
340  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
341  * page tables after it has passed through ksm_exit() - which, if necessary,
342  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
343  * a special flag: they can just back out as soon as mm_users goes to zero.
344  * ksm_test_exit() is used throughout to make this test for exit: in some
345  * places for correctness, in some places just to avoid unnecessary work.
346  */
347 static inline bool ksm_test_exit(struct mm_struct *mm)
348 {
349 	return atomic_read(&mm->mm_users) == 0;
350 }
351 
352 /*
353  * We use break_ksm to break COW on a ksm page: it's a stripped down
354  *
355  *	if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
356  *		put_page(page);
357  *
358  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
359  * in case the application has unmapped and remapped mm,addr meanwhile.
360  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
361  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
362  *
363  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
364  * of the process that owns 'vma'.  We also do not want to enforce
365  * protection keys here anyway.
366  */
367 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
368 {
369 	struct page *page;
370 	int ret = 0;
371 
372 	do {
373 		cond_resched();
374 		page = follow_page(vma, addr,
375 				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
376 		if (IS_ERR_OR_NULL(page))
377 			break;
378 		if (PageKsm(page))
379 			ret = handle_mm_fault(vma->vm_mm, vma, addr,
380 							FAULT_FLAG_WRITE |
381 							FAULT_FLAG_REMOTE);
382 		else
383 			ret = VM_FAULT_WRITE;
384 		put_page(page);
385 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
386 	/*
387 	 * We must loop because handle_mm_fault() may back out if there's
388 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
389 	 *
390 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
391 	 * COW has been broken, even if the vma does not permit VM_WRITE;
392 	 * but note that a concurrent fault might break PageKsm for us.
393 	 *
394 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
395 	 * backing file, which also invalidates anonymous pages: that's
396 	 * okay, that truncation will have unmapped the PageKsm for us.
397 	 *
398 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
399 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
400 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
401 	 * to user; and ksmd, having no mm, would never be chosen for that.
402 	 *
403 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
404 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
405 	 * even ksmd can fail in this way - though it's usually breaking ksm
406 	 * just to undo a merge it made a moment before, so unlikely to oom.
407 	 *
408 	 * That's a pity: we might therefore have more kernel pages allocated
409 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
410 	 * will retry to break_cow on each pass, so should recover the page
411 	 * in due course.  The important thing is to not let VM_MERGEABLE
412 	 * be cleared while any such pages might remain in the area.
413 	 */
414 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
415 }
416 
417 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
418 		unsigned long addr)
419 {
420 	struct vm_area_struct *vma;
421 	if (ksm_test_exit(mm))
422 		return NULL;
423 	vma = find_vma(mm, addr);
424 	if (!vma || vma->vm_start > addr)
425 		return NULL;
426 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
427 		return NULL;
428 	return vma;
429 }
430 
431 static void break_cow(struct rmap_item *rmap_item)
432 {
433 	struct mm_struct *mm = rmap_item->mm;
434 	unsigned long addr = rmap_item->address;
435 	struct vm_area_struct *vma;
436 
437 	/*
438 	 * It is not an accident that whenever we want to break COW
439 	 * to undo, we also need to drop a reference to the anon_vma.
440 	 */
441 	put_anon_vma(rmap_item->anon_vma);
442 
443 	down_read(&mm->mmap_sem);
444 	vma = find_mergeable_vma(mm, addr);
445 	if (vma)
446 		break_ksm(vma, addr);
447 	up_read(&mm->mmap_sem);
448 }
449 
450 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
451 {
452 	struct mm_struct *mm = rmap_item->mm;
453 	unsigned long addr = rmap_item->address;
454 	struct vm_area_struct *vma;
455 	struct page *page;
456 
457 	down_read(&mm->mmap_sem);
458 	vma = find_mergeable_vma(mm, addr);
459 	if (!vma)
460 		goto out;
461 
462 	page = follow_page(vma, addr, FOLL_GET);
463 	if (IS_ERR_OR_NULL(page))
464 		goto out;
465 	if (PageAnon(page)) {
466 		flush_anon_page(vma, page, addr);
467 		flush_dcache_page(page);
468 	} else {
469 		put_page(page);
470 out:
471 		page = NULL;
472 	}
473 	up_read(&mm->mmap_sem);
474 	return page;
475 }
476 
477 /*
478  * This helper is used for getting right index into array of tree roots.
479  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
480  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
481  * every node has its own stable and unstable tree.
482  */
483 static inline int get_kpfn_nid(unsigned long kpfn)
484 {
485 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
486 }
487 
488 static void remove_node_from_stable_tree(struct stable_node *stable_node)
489 {
490 	struct rmap_item *rmap_item;
491 
492 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
493 		if (rmap_item->hlist.next)
494 			ksm_pages_sharing--;
495 		else
496 			ksm_pages_shared--;
497 		put_anon_vma(rmap_item->anon_vma);
498 		rmap_item->address &= PAGE_MASK;
499 		cond_resched();
500 	}
501 
502 	if (stable_node->head == &migrate_nodes)
503 		list_del(&stable_node->list);
504 	else
505 		rb_erase(&stable_node->node,
506 			 root_stable_tree + NUMA(stable_node->nid));
507 	free_stable_node(stable_node);
508 }
509 
510 /*
511  * get_ksm_page: checks if the page indicated by the stable node
512  * is still its ksm page, despite having held no reference to it.
513  * In which case we can trust the content of the page, and it
514  * returns the gotten page; but if the page has now been zapped,
515  * remove the stale node from the stable tree and return NULL.
516  * But beware, the stable node's page might be being migrated.
517  *
518  * You would expect the stable_node to hold a reference to the ksm page.
519  * But if it increments the page's count, swapping out has to wait for
520  * ksmd to come around again before it can free the page, which may take
521  * seconds or even minutes: much too unresponsive.  So instead we use a
522  * "keyhole reference": access to the ksm page from the stable node peeps
523  * out through its keyhole to see if that page still holds the right key,
524  * pointing back to this stable node.  This relies on freeing a PageAnon
525  * page to reset its page->mapping to NULL, and relies on no other use of
526  * a page to put something that might look like our key in page->mapping.
527  * is on its way to being freed; but it is an anomaly to bear in mind.
528  */
529 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
530 {
531 	struct page *page;
532 	void *expected_mapping;
533 	unsigned long kpfn;
534 
535 	expected_mapping = (void *)stable_node +
536 				(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
537 again:
538 	kpfn = READ_ONCE(stable_node->kpfn);
539 	page = pfn_to_page(kpfn);
540 
541 	/*
542 	 * page is computed from kpfn, so on most architectures reading
543 	 * page->mapping is naturally ordered after reading node->kpfn,
544 	 * but on Alpha we need to be more careful.
545 	 */
546 	smp_read_barrier_depends();
547 	if (READ_ONCE(page->mapping) != expected_mapping)
548 		goto stale;
549 
550 	/*
551 	 * We cannot do anything with the page while its refcount is 0.
552 	 * Usually 0 means free, or tail of a higher-order page: in which
553 	 * case this node is no longer referenced, and should be freed;
554 	 * however, it might mean that the page is under page_freeze_refs().
555 	 * The __remove_mapping() case is easy, again the node is now stale;
556 	 * but if page is swapcache in migrate_page_move_mapping(), it might
557 	 * still be our page, in which case it's essential to keep the node.
558 	 */
559 	while (!get_page_unless_zero(page)) {
560 		/*
561 		 * Another check for page->mapping != expected_mapping would
562 		 * work here too.  We have chosen the !PageSwapCache test to
563 		 * optimize the common case, when the page is or is about to
564 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
565 		 * in the freeze_refs section of __remove_mapping(); but Anon
566 		 * page->mapping reset to NULL later, in free_pages_prepare().
567 		 */
568 		if (!PageSwapCache(page))
569 			goto stale;
570 		cpu_relax();
571 	}
572 
573 	if (READ_ONCE(page->mapping) != expected_mapping) {
574 		put_page(page);
575 		goto stale;
576 	}
577 
578 	if (lock_it) {
579 		lock_page(page);
580 		if (READ_ONCE(page->mapping) != expected_mapping) {
581 			unlock_page(page);
582 			put_page(page);
583 			goto stale;
584 		}
585 	}
586 	return page;
587 
588 stale:
589 	/*
590 	 * We come here from above when page->mapping or !PageSwapCache
591 	 * suggests that the node is stale; but it might be under migration.
592 	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
593 	 * before checking whether node->kpfn has been changed.
594 	 */
595 	smp_rmb();
596 	if (READ_ONCE(stable_node->kpfn) != kpfn)
597 		goto again;
598 	remove_node_from_stable_tree(stable_node);
599 	return NULL;
600 }
601 
602 /*
603  * Removing rmap_item from stable or unstable tree.
604  * This function will clean the information from the stable/unstable tree.
605  */
606 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
607 {
608 	if (rmap_item->address & STABLE_FLAG) {
609 		struct stable_node *stable_node;
610 		struct page *page;
611 
612 		stable_node = rmap_item->head;
613 		page = get_ksm_page(stable_node, true);
614 		if (!page)
615 			goto out;
616 
617 		hlist_del(&rmap_item->hlist);
618 		unlock_page(page);
619 		put_page(page);
620 
621 		if (!hlist_empty(&stable_node->hlist))
622 			ksm_pages_sharing--;
623 		else
624 			ksm_pages_shared--;
625 
626 		put_anon_vma(rmap_item->anon_vma);
627 		rmap_item->address &= PAGE_MASK;
628 
629 	} else if (rmap_item->address & UNSTABLE_FLAG) {
630 		unsigned char age;
631 		/*
632 		 * Usually ksmd can and must skip the rb_erase, because
633 		 * root_unstable_tree was already reset to RB_ROOT.
634 		 * But be careful when an mm is exiting: do the rb_erase
635 		 * if this rmap_item was inserted by this scan, rather
636 		 * than left over from before.
637 		 */
638 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
639 		BUG_ON(age > 1);
640 		if (!age)
641 			rb_erase(&rmap_item->node,
642 				 root_unstable_tree + NUMA(rmap_item->nid));
643 		ksm_pages_unshared--;
644 		rmap_item->address &= PAGE_MASK;
645 	}
646 out:
647 	cond_resched();		/* we're called from many long loops */
648 }
649 
650 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
651 				       struct rmap_item **rmap_list)
652 {
653 	while (*rmap_list) {
654 		struct rmap_item *rmap_item = *rmap_list;
655 		*rmap_list = rmap_item->rmap_list;
656 		remove_rmap_item_from_tree(rmap_item);
657 		free_rmap_item(rmap_item);
658 	}
659 }
660 
661 /*
662  * Though it's very tempting to unmerge rmap_items from stable tree rather
663  * than check every pte of a given vma, the locking doesn't quite work for
664  * that - an rmap_item is assigned to the stable tree after inserting ksm
665  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
666  * rmap_items from parent to child at fork time (so as not to waste time
667  * if exit comes before the next scan reaches it).
668  *
669  * Similarly, although we'd like to remove rmap_items (so updating counts
670  * and freeing memory) when unmerging an area, it's easier to leave that
671  * to the next pass of ksmd - consider, for example, how ksmd might be
672  * in cmp_and_merge_page on one of the rmap_items we would be removing.
673  */
674 static int unmerge_ksm_pages(struct vm_area_struct *vma,
675 			     unsigned long start, unsigned long end)
676 {
677 	unsigned long addr;
678 	int err = 0;
679 
680 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
681 		if (ksm_test_exit(vma->vm_mm))
682 			break;
683 		if (signal_pending(current))
684 			err = -ERESTARTSYS;
685 		else
686 			err = break_ksm(vma, addr);
687 	}
688 	return err;
689 }
690 
691 #ifdef CONFIG_SYSFS
692 /*
693  * Only called through the sysfs control interface:
694  */
695 static int remove_stable_node(struct stable_node *stable_node)
696 {
697 	struct page *page;
698 	int err;
699 
700 	page = get_ksm_page(stable_node, true);
701 	if (!page) {
702 		/*
703 		 * get_ksm_page did remove_node_from_stable_tree itself.
704 		 */
705 		return 0;
706 	}
707 
708 	if (WARN_ON_ONCE(page_mapped(page))) {
709 		/*
710 		 * This should not happen: but if it does, just refuse to let
711 		 * merge_across_nodes be switched - there is no need to panic.
712 		 */
713 		err = -EBUSY;
714 	} else {
715 		/*
716 		 * The stable node did not yet appear stale to get_ksm_page(),
717 		 * since that allows for an unmapped ksm page to be recognized
718 		 * right up until it is freed; but the node is safe to remove.
719 		 * This page might be in a pagevec waiting to be freed,
720 		 * or it might be PageSwapCache (perhaps under writeback),
721 		 * or it might have been removed from swapcache a moment ago.
722 		 */
723 		set_page_stable_node(page, NULL);
724 		remove_node_from_stable_tree(stable_node);
725 		err = 0;
726 	}
727 
728 	unlock_page(page);
729 	put_page(page);
730 	return err;
731 }
732 
733 static int remove_all_stable_nodes(void)
734 {
735 	struct stable_node *stable_node, *next;
736 	int nid;
737 	int err = 0;
738 
739 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
740 		while (root_stable_tree[nid].rb_node) {
741 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
742 						struct stable_node, node);
743 			if (remove_stable_node(stable_node)) {
744 				err = -EBUSY;
745 				break;	/* proceed to next nid */
746 			}
747 			cond_resched();
748 		}
749 	}
750 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
751 		if (remove_stable_node(stable_node))
752 			err = -EBUSY;
753 		cond_resched();
754 	}
755 	return err;
756 }
757 
758 static int unmerge_and_remove_all_rmap_items(void)
759 {
760 	struct mm_slot *mm_slot;
761 	struct mm_struct *mm;
762 	struct vm_area_struct *vma;
763 	int err = 0;
764 
765 	spin_lock(&ksm_mmlist_lock);
766 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
767 						struct mm_slot, mm_list);
768 	spin_unlock(&ksm_mmlist_lock);
769 
770 	for (mm_slot = ksm_scan.mm_slot;
771 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
772 		mm = mm_slot->mm;
773 		down_read(&mm->mmap_sem);
774 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
775 			if (ksm_test_exit(mm))
776 				break;
777 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
778 				continue;
779 			err = unmerge_ksm_pages(vma,
780 						vma->vm_start, vma->vm_end);
781 			if (err)
782 				goto error;
783 		}
784 
785 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
786 
787 		spin_lock(&ksm_mmlist_lock);
788 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
789 						struct mm_slot, mm_list);
790 		if (ksm_test_exit(mm)) {
791 			hash_del(&mm_slot->link);
792 			list_del(&mm_slot->mm_list);
793 			spin_unlock(&ksm_mmlist_lock);
794 
795 			free_mm_slot(mm_slot);
796 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
797 			up_read(&mm->mmap_sem);
798 			mmdrop(mm);
799 		} else {
800 			spin_unlock(&ksm_mmlist_lock);
801 			up_read(&mm->mmap_sem);
802 		}
803 	}
804 
805 	/* Clean up stable nodes, but don't worry if some are still busy */
806 	remove_all_stable_nodes();
807 	ksm_scan.seqnr = 0;
808 	return 0;
809 
810 error:
811 	up_read(&mm->mmap_sem);
812 	spin_lock(&ksm_mmlist_lock);
813 	ksm_scan.mm_slot = &ksm_mm_head;
814 	spin_unlock(&ksm_mmlist_lock);
815 	return err;
816 }
817 #endif /* CONFIG_SYSFS */
818 
819 static u32 calc_checksum(struct page *page)
820 {
821 	u32 checksum;
822 	void *addr = kmap_atomic(page);
823 	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
824 	kunmap_atomic(addr);
825 	return checksum;
826 }
827 
828 static int memcmp_pages(struct page *page1, struct page *page2)
829 {
830 	char *addr1, *addr2;
831 	int ret;
832 
833 	addr1 = kmap_atomic(page1);
834 	addr2 = kmap_atomic(page2);
835 	ret = memcmp(addr1, addr2, PAGE_SIZE);
836 	kunmap_atomic(addr2);
837 	kunmap_atomic(addr1);
838 	return ret;
839 }
840 
841 static inline int pages_identical(struct page *page1, struct page *page2)
842 {
843 	return !memcmp_pages(page1, page2);
844 }
845 
846 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
847 			      pte_t *orig_pte)
848 {
849 	struct mm_struct *mm = vma->vm_mm;
850 	unsigned long addr;
851 	pte_t *ptep;
852 	spinlock_t *ptl;
853 	int swapped;
854 	int err = -EFAULT;
855 	unsigned long mmun_start;	/* For mmu_notifiers */
856 	unsigned long mmun_end;		/* For mmu_notifiers */
857 
858 	addr = page_address_in_vma(page, vma);
859 	if (addr == -EFAULT)
860 		goto out;
861 
862 	BUG_ON(PageTransCompound(page));
863 
864 	mmun_start = addr;
865 	mmun_end   = addr + PAGE_SIZE;
866 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
867 
868 	ptep = page_check_address(page, mm, addr, &ptl, 0);
869 	if (!ptep)
870 		goto out_mn;
871 
872 	if (pte_write(*ptep) || pte_dirty(*ptep)) {
873 		pte_t entry;
874 
875 		swapped = PageSwapCache(page);
876 		flush_cache_page(vma, addr, page_to_pfn(page));
877 		/*
878 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
879 		 * take any lock, therefore the check that we are going to make
880 		 * with the pagecount against the mapcount is racey and
881 		 * O_DIRECT can happen right after the check.
882 		 * So we clear the pte and flush the tlb before the check
883 		 * this assure us that no O_DIRECT can happen after the check
884 		 * or in the middle of the check.
885 		 */
886 		entry = ptep_clear_flush_notify(vma, addr, ptep);
887 		/*
888 		 * Check that no O_DIRECT or similar I/O is in progress on the
889 		 * page
890 		 */
891 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
892 			set_pte_at(mm, addr, ptep, entry);
893 			goto out_unlock;
894 		}
895 		if (pte_dirty(entry))
896 			set_page_dirty(page);
897 		entry = pte_mkclean(pte_wrprotect(entry));
898 		set_pte_at_notify(mm, addr, ptep, entry);
899 	}
900 	*orig_pte = *ptep;
901 	err = 0;
902 
903 out_unlock:
904 	pte_unmap_unlock(ptep, ptl);
905 out_mn:
906 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
907 out:
908 	return err;
909 }
910 
911 /**
912  * replace_page - replace page in vma by new ksm page
913  * @vma:      vma that holds the pte pointing to page
914  * @page:     the page we are replacing by kpage
915  * @kpage:    the ksm page we replace page by
916  * @orig_pte: the original value of the pte
917  *
918  * Returns 0 on success, -EFAULT on failure.
919  */
920 static int replace_page(struct vm_area_struct *vma, struct page *page,
921 			struct page *kpage, pte_t orig_pte)
922 {
923 	struct mm_struct *mm = vma->vm_mm;
924 	pmd_t *pmd;
925 	pte_t *ptep;
926 	spinlock_t *ptl;
927 	unsigned long addr;
928 	int err = -EFAULT;
929 	unsigned long mmun_start;	/* For mmu_notifiers */
930 	unsigned long mmun_end;		/* For mmu_notifiers */
931 
932 	addr = page_address_in_vma(page, vma);
933 	if (addr == -EFAULT)
934 		goto out;
935 
936 	pmd = mm_find_pmd(mm, addr);
937 	if (!pmd)
938 		goto out;
939 
940 	mmun_start = addr;
941 	mmun_end   = addr + PAGE_SIZE;
942 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
943 
944 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
945 	if (!pte_same(*ptep, orig_pte)) {
946 		pte_unmap_unlock(ptep, ptl);
947 		goto out_mn;
948 	}
949 
950 	get_page(kpage);
951 	page_add_anon_rmap(kpage, vma, addr, false);
952 
953 	flush_cache_page(vma, addr, pte_pfn(*ptep));
954 	ptep_clear_flush_notify(vma, addr, ptep);
955 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
956 
957 	page_remove_rmap(page, false);
958 	if (!page_mapped(page))
959 		try_to_free_swap(page);
960 	put_page(page);
961 
962 	pte_unmap_unlock(ptep, ptl);
963 	err = 0;
964 out_mn:
965 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
966 out:
967 	return err;
968 }
969 
970 /*
971  * try_to_merge_one_page - take two pages and merge them into one
972  * @vma: the vma that holds the pte pointing to page
973  * @page: the PageAnon page that we want to replace with kpage
974  * @kpage: the PageKsm page that we want to map instead of page,
975  *         or NULL the first time when we want to use page as kpage.
976  *
977  * This function returns 0 if the pages were merged, -EFAULT otherwise.
978  */
979 static int try_to_merge_one_page(struct vm_area_struct *vma,
980 				 struct page *page, struct page *kpage)
981 {
982 	pte_t orig_pte = __pte(0);
983 	int err = -EFAULT;
984 
985 	if (page == kpage)			/* ksm page forked */
986 		return 0;
987 
988 	if (!PageAnon(page))
989 		goto out;
990 
991 	/*
992 	 * We need the page lock to read a stable PageSwapCache in
993 	 * write_protect_page().  We use trylock_page() instead of
994 	 * lock_page() because we don't want to wait here - we
995 	 * prefer to continue scanning and merging different pages,
996 	 * then come back to this page when it is unlocked.
997 	 */
998 	if (!trylock_page(page))
999 		goto out;
1000 
1001 	if (PageTransCompound(page)) {
1002 		err = split_huge_page(page);
1003 		if (err)
1004 			goto out_unlock;
1005 	}
1006 
1007 	/*
1008 	 * If this anonymous page is mapped only here, its pte may need
1009 	 * to be write-protected.  If it's mapped elsewhere, all of its
1010 	 * ptes are necessarily already write-protected.  But in either
1011 	 * case, we need to lock and check page_count is not raised.
1012 	 */
1013 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1014 		if (!kpage) {
1015 			/*
1016 			 * While we hold page lock, upgrade page from
1017 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1018 			 * stable_tree_insert() will update stable_node.
1019 			 */
1020 			set_page_stable_node(page, NULL);
1021 			mark_page_accessed(page);
1022 			/*
1023 			 * Page reclaim just frees a clean page with no dirty
1024 			 * ptes: make sure that the ksm page would be swapped.
1025 			 */
1026 			if (!PageDirty(page))
1027 				SetPageDirty(page);
1028 			err = 0;
1029 		} else if (pages_identical(page, kpage))
1030 			err = replace_page(vma, page, kpage, orig_pte);
1031 	}
1032 
1033 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1034 		munlock_vma_page(page);
1035 		if (!PageMlocked(kpage)) {
1036 			unlock_page(page);
1037 			lock_page(kpage);
1038 			mlock_vma_page(kpage);
1039 			page = kpage;		/* for final unlock */
1040 		}
1041 	}
1042 
1043 out_unlock:
1044 	unlock_page(page);
1045 out:
1046 	return err;
1047 }
1048 
1049 /*
1050  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1051  * but no new kernel page is allocated: kpage must already be a ksm page.
1052  *
1053  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1054  */
1055 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1056 				      struct page *page, struct page *kpage)
1057 {
1058 	struct mm_struct *mm = rmap_item->mm;
1059 	struct vm_area_struct *vma;
1060 	int err = -EFAULT;
1061 
1062 	down_read(&mm->mmap_sem);
1063 	vma = find_mergeable_vma(mm, rmap_item->address);
1064 	if (!vma)
1065 		goto out;
1066 
1067 	err = try_to_merge_one_page(vma, page, kpage);
1068 	if (err)
1069 		goto out;
1070 
1071 	/* Unstable nid is in union with stable anon_vma: remove first */
1072 	remove_rmap_item_from_tree(rmap_item);
1073 
1074 	/* Must get reference to anon_vma while still holding mmap_sem */
1075 	rmap_item->anon_vma = vma->anon_vma;
1076 	get_anon_vma(vma->anon_vma);
1077 out:
1078 	up_read(&mm->mmap_sem);
1079 	return err;
1080 }
1081 
1082 /*
1083  * try_to_merge_two_pages - take two identical pages and prepare them
1084  * to be merged into one page.
1085  *
1086  * This function returns the kpage if we successfully merged two identical
1087  * pages into one ksm page, NULL otherwise.
1088  *
1089  * Note that this function upgrades page to ksm page: if one of the pages
1090  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1091  */
1092 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1093 					   struct page *page,
1094 					   struct rmap_item *tree_rmap_item,
1095 					   struct page *tree_page)
1096 {
1097 	int err;
1098 
1099 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1100 	if (!err) {
1101 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1102 							tree_page, page);
1103 		/*
1104 		 * If that fails, we have a ksm page with only one pte
1105 		 * pointing to it: so break it.
1106 		 */
1107 		if (err)
1108 			break_cow(rmap_item);
1109 	}
1110 	return err ? NULL : page;
1111 }
1112 
1113 /*
1114  * stable_tree_search - search for page inside the stable tree
1115  *
1116  * This function checks if there is a page inside the stable tree
1117  * with identical content to the page that we are scanning right now.
1118  *
1119  * This function returns the stable tree node of identical content if found,
1120  * NULL otherwise.
1121  */
1122 static struct page *stable_tree_search(struct page *page)
1123 {
1124 	int nid;
1125 	struct rb_root *root;
1126 	struct rb_node **new;
1127 	struct rb_node *parent;
1128 	struct stable_node *stable_node;
1129 	struct stable_node *page_node;
1130 
1131 	page_node = page_stable_node(page);
1132 	if (page_node && page_node->head != &migrate_nodes) {
1133 		/* ksm page forked */
1134 		get_page(page);
1135 		return page;
1136 	}
1137 
1138 	nid = get_kpfn_nid(page_to_pfn(page));
1139 	root = root_stable_tree + nid;
1140 again:
1141 	new = &root->rb_node;
1142 	parent = NULL;
1143 
1144 	while (*new) {
1145 		struct page *tree_page;
1146 		int ret;
1147 
1148 		cond_resched();
1149 		stable_node = rb_entry(*new, struct stable_node, node);
1150 		tree_page = get_ksm_page(stable_node, false);
1151 		if (!tree_page) {
1152 			/*
1153 			 * If we walked over a stale stable_node,
1154 			 * get_ksm_page() will call rb_erase() and it
1155 			 * may rebalance the tree from under us. So
1156 			 * restart the search from scratch. Returning
1157 			 * NULL would be safe too, but we'd generate
1158 			 * false negative insertions just because some
1159 			 * stable_node was stale.
1160 			 */
1161 			goto again;
1162 		}
1163 
1164 		ret = memcmp_pages(page, tree_page);
1165 		put_page(tree_page);
1166 
1167 		parent = *new;
1168 		if (ret < 0)
1169 			new = &parent->rb_left;
1170 		else if (ret > 0)
1171 			new = &parent->rb_right;
1172 		else {
1173 			/*
1174 			 * Lock and unlock the stable_node's page (which
1175 			 * might already have been migrated) so that page
1176 			 * migration is sure to notice its raised count.
1177 			 * It would be more elegant to return stable_node
1178 			 * than kpage, but that involves more changes.
1179 			 */
1180 			tree_page = get_ksm_page(stable_node, true);
1181 			if (tree_page) {
1182 				unlock_page(tree_page);
1183 				if (get_kpfn_nid(stable_node->kpfn) !=
1184 						NUMA(stable_node->nid)) {
1185 					put_page(tree_page);
1186 					goto replace;
1187 				}
1188 				return tree_page;
1189 			}
1190 			/*
1191 			 * There is now a place for page_node, but the tree may
1192 			 * have been rebalanced, so re-evaluate parent and new.
1193 			 */
1194 			if (page_node)
1195 				goto again;
1196 			return NULL;
1197 		}
1198 	}
1199 
1200 	if (!page_node)
1201 		return NULL;
1202 
1203 	list_del(&page_node->list);
1204 	DO_NUMA(page_node->nid = nid);
1205 	rb_link_node(&page_node->node, parent, new);
1206 	rb_insert_color(&page_node->node, root);
1207 	get_page(page);
1208 	return page;
1209 
1210 replace:
1211 	if (page_node) {
1212 		list_del(&page_node->list);
1213 		DO_NUMA(page_node->nid = nid);
1214 		rb_replace_node(&stable_node->node, &page_node->node, root);
1215 		get_page(page);
1216 	} else {
1217 		rb_erase(&stable_node->node, root);
1218 		page = NULL;
1219 	}
1220 	stable_node->head = &migrate_nodes;
1221 	list_add(&stable_node->list, stable_node->head);
1222 	return page;
1223 }
1224 
1225 /*
1226  * stable_tree_insert - insert stable tree node pointing to new ksm page
1227  * into the stable tree.
1228  *
1229  * This function returns the stable tree node just allocated on success,
1230  * NULL otherwise.
1231  */
1232 static struct stable_node *stable_tree_insert(struct page *kpage)
1233 {
1234 	int nid;
1235 	unsigned long kpfn;
1236 	struct rb_root *root;
1237 	struct rb_node **new;
1238 	struct rb_node *parent;
1239 	struct stable_node *stable_node;
1240 
1241 	kpfn = page_to_pfn(kpage);
1242 	nid = get_kpfn_nid(kpfn);
1243 	root = root_stable_tree + nid;
1244 again:
1245 	parent = NULL;
1246 	new = &root->rb_node;
1247 
1248 	while (*new) {
1249 		struct page *tree_page;
1250 		int ret;
1251 
1252 		cond_resched();
1253 		stable_node = rb_entry(*new, struct stable_node, node);
1254 		tree_page = get_ksm_page(stable_node, false);
1255 		if (!tree_page) {
1256 			/*
1257 			 * If we walked over a stale stable_node,
1258 			 * get_ksm_page() will call rb_erase() and it
1259 			 * may rebalance the tree from under us. So
1260 			 * restart the search from scratch. Returning
1261 			 * NULL would be safe too, but we'd generate
1262 			 * false negative insertions just because some
1263 			 * stable_node was stale.
1264 			 */
1265 			goto again;
1266 		}
1267 
1268 		ret = memcmp_pages(kpage, tree_page);
1269 		put_page(tree_page);
1270 
1271 		parent = *new;
1272 		if (ret < 0)
1273 			new = &parent->rb_left;
1274 		else if (ret > 0)
1275 			new = &parent->rb_right;
1276 		else {
1277 			/*
1278 			 * It is not a bug that stable_tree_search() didn't
1279 			 * find this node: because at that time our page was
1280 			 * not yet write-protected, so may have changed since.
1281 			 */
1282 			return NULL;
1283 		}
1284 	}
1285 
1286 	stable_node = alloc_stable_node();
1287 	if (!stable_node)
1288 		return NULL;
1289 
1290 	INIT_HLIST_HEAD(&stable_node->hlist);
1291 	stable_node->kpfn = kpfn;
1292 	set_page_stable_node(kpage, stable_node);
1293 	DO_NUMA(stable_node->nid = nid);
1294 	rb_link_node(&stable_node->node, parent, new);
1295 	rb_insert_color(&stable_node->node, root);
1296 
1297 	return stable_node;
1298 }
1299 
1300 /*
1301  * unstable_tree_search_insert - search for identical page,
1302  * else insert rmap_item into the unstable tree.
1303  *
1304  * This function searches for a page in the unstable tree identical to the
1305  * page currently being scanned; and if no identical page is found in the
1306  * tree, we insert rmap_item as a new object into the unstable tree.
1307  *
1308  * This function returns pointer to rmap_item found to be identical
1309  * to the currently scanned page, NULL otherwise.
1310  *
1311  * This function does both searching and inserting, because they share
1312  * the same walking algorithm in an rbtree.
1313  */
1314 static
1315 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1316 					      struct page *page,
1317 					      struct page **tree_pagep)
1318 {
1319 	struct rb_node **new;
1320 	struct rb_root *root;
1321 	struct rb_node *parent = NULL;
1322 	int nid;
1323 
1324 	nid = get_kpfn_nid(page_to_pfn(page));
1325 	root = root_unstable_tree + nid;
1326 	new = &root->rb_node;
1327 
1328 	while (*new) {
1329 		struct rmap_item *tree_rmap_item;
1330 		struct page *tree_page;
1331 		int ret;
1332 
1333 		cond_resched();
1334 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1335 		tree_page = get_mergeable_page(tree_rmap_item);
1336 		if (!tree_page)
1337 			return NULL;
1338 
1339 		/*
1340 		 * Don't substitute a ksm page for a forked page.
1341 		 */
1342 		if (page == tree_page) {
1343 			put_page(tree_page);
1344 			return NULL;
1345 		}
1346 
1347 		ret = memcmp_pages(page, tree_page);
1348 
1349 		parent = *new;
1350 		if (ret < 0) {
1351 			put_page(tree_page);
1352 			new = &parent->rb_left;
1353 		} else if (ret > 0) {
1354 			put_page(tree_page);
1355 			new = &parent->rb_right;
1356 		} else if (!ksm_merge_across_nodes &&
1357 			   page_to_nid(tree_page) != nid) {
1358 			/*
1359 			 * If tree_page has been migrated to another NUMA node,
1360 			 * it will be flushed out and put in the right unstable
1361 			 * tree next time: only merge with it when across_nodes.
1362 			 */
1363 			put_page(tree_page);
1364 			return NULL;
1365 		} else {
1366 			*tree_pagep = tree_page;
1367 			return tree_rmap_item;
1368 		}
1369 	}
1370 
1371 	rmap_item->address |= UNSTABLE_FLAG;
1372 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1373 	DO_NUMA(rmap_item->nid = nid);
1374 	rb_link_node(&rmap_item->node, parent, new);
1375 	rb_insert_color(&rmap_item->node, root);
1376 
1377 	ksm_pages_unshared++;
1378 	return NULL;
1379 }
1380 
1381 /*
1382  * stable_tree_append - add another rmap_item to the linked list of
1383  * rmap_items hanging off a given node of the stable tree, all sharing
1384  * the same ksm page.
1385  */
1386 static void stable_tree_append(struct rmap_item *rmap_item,
1387 			       struct stable_node *stable_node)
1388 {
1389 	rmap_item->head = stable_node;
1390 	rmap_item->address |= STABLE_FLAG;
1391 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1392 
1393 	if (rmap_item->hlist.next)
1394 		ksm_pages_sharing++;
1395 	else
1396 		ksm_pages_shared++;
1397 }
1398 
1399 /*
1400  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1401  * if not, compare checksum to previous and if it's the same, see if page can
1402  * be inserted into the unstable tree, or merged with a page already there and
1403  * both transferred to the stable tree.
1404  *
1405  * @page: the page that we are searching identical page to.
1406  * @rmap_item: the reverse mapping into the virtual address of this page
1407  */
1408 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1409 {
1410 	struct rmap_item *tree_rmap_item;
1411 	struct page *tree_page = NULL;
1412 	struct stable_node *stable_node;
1413 	struct page *kpage;
1414 	unsigned int checksum;
1415 	int err;
1416 
1417 	stable_node = page_stable_node(page);
1418 	if (stable_node) {
1419 		if (stable_node->head != &migrate_nodes &&
1420 		    get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1421 			rb_erase(&stable_node->node,
1422 				 root_stable_tree + NUMA(stable_node->nid));
1423 			stable_node->head = &migrate_nodes;
1424 			list_add(&stable_node->list, stable_node->head);
1425 		}
1426 		if (stable_node->head != &migrate_nodes &&
1427 		    rmap_item->head == stable_node)
1428 			return;
1429 	}
1430 
1431 	/* We first start with searching the page inside the stable tree */
1432 	kpage = stable_tree_search(page);
1433 	if (kpage == page && rmap_item->head == stable_node) {
1434 		put_page(kpage);
1435 		return;
1436 	}
1437 
1438 	remove_rmap_item_from_tree(rmap_item);
1439 
1440 	if (kpage) {
1441 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1442 		if (!err) {
1443 			/*
1444 			 * The page was successfully merged:
1445 			 * add its rmap_item to the stable tree.
1446 			 */
1447 			lock_page(kpage);
1448 			stable_tree_append(rmap_item, page_stable_node(kpage));
1449 			unlock_page(kpage);
1450 		}
1451 		put_page(kpage);
1452 		return;
1453 	}
1454 
1455 	/*
1456 	 * If the hash value of the page has changed from the last time
1457 	 * we calculated it, this page is changing frequently: therefore we
1458 	 * don't want to insert it in the unstable tree, and we don't want
1459 	 * to waste our time searching for something identical to it there.
1460 	 */
1461 	checksum = calc_checksum(page);
1462 	if (rmap_item->oldchecksum != checksum) {
1463 		rmap_item->oldchecksum = checksum;
1464 		return;
1465 	}
1466 
1467 	tree_rmap_item =
1468 		unstable_tree_search_insert(rmap_item, page, &tree_page);
1469 	if (tree_rmap_item) {
1470 		kpage = try_to_merge_two_pages(rmap_item, page,
1471 						tree_rmap_item, tree_page);
1472 		put_page(tree_page);
1473 		if (kpage) {
1474 			/*
1475 			 * The pages were successfully merged: insert new
1476 			 * node in the stable tree and add both rmap_items.
1477 			 */
1478 			lock_page(kpage);
1479 			stable_node = stable_tree_insert(kpage);
1480 			if (stable_node) {
1481 				stable_tree_append(tree_rmap_item, stable_node);
1482 				stable_tree_append(rmap_item, stable_node);
1483 			}
1484 			unlock_page(kpage);
1485 
1486 			/*
1487 			 * If we fail to insert the page into the stable tree,
1488 			 * we will have 2 virtual addresses that are pointing
1489 			 * to a ksm page left outside the stable tree,
1490 			 * in which case we need to break_cow on both.
1491 			 */
1492 			if (!stable_node) {
1493 				break_cow(tree_rmap_item);
1494 				break_cow(rmap_item);
1495 			}
1496 		}
1497 	}
1498 }
1499 
1500 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1501 					    struct rmap_item **rmap_list,
1502 					    unsigned long addr)
1503 {
1504 	struct rmap_item *rmap_item;
1505 
1506 	while (*rmap_list) {
1507 		rmap_item = *rmap_list;
1508 		if ((rmap_item->address & PAGE_MASK) == addr)
1509 			return rmap_item;
1510 		if (rmap_item->address > addr)
1511 			break;
1512 		*rmap_list = rmap_item->rmap_list;
1513 		remove_rmap_item_from_tree(rmap_item);
1514 		free_rmap_item(rmap_item);
1515 	}
1516 
1517 	rmap_item = alloc_rmap_item();
1518 	if (rmap_item) {
1519 		/* It has already been zeroed */
1520 		rmap_item->mm = mm_slot->mm;
1521 		rmap_item->address = addr;
1522 		rmap_item->rmap_list = *rmap_list;
1523 		*rmap_list = rmap_item;
1524 	}
1525 	return rmap_item;
1526 }
1527 
1528 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1529 {
1530 	struct mm_struct *mm;
1531 	struct mm_slot *slot;
1532 	struct vm_area_struct *vma;
1533 	struct rmap_item *rmap_item;
1534 	int nid;
1535 
1536 	if (list_empty(&ksm_mm_head.mm_list))
1537 		return NULL;
1538 
1539 	slot = ksm_scan.mm_slot;
1540 	if (slot == &ksm_mm_head) {
1541 		/*
1542 		 * A number of pages can hang around indefinitely on per-cpu
1543 		 * pagevecs, raised page count preventing write_protect_page
1544 		 * from merging them.  Though it doesn't really matter much,
1545 		 * it is puzzling to see some stuck in pages_volatile until
1546 		 * other activity jostles them out, and they also prevented
1547 		 * LTP's KSM test from succeeding deterministically; so drain
1548 		 * them here (here rather than on entry to ksm_do_scan(),
1549 		 * so we don't IPI too often when pages_to_scan is set low).
1550 		 */
1551 		lru_add_drain_all();
1552 
1553 		/*
1554 		 * Whereas stale stable_nodes on the stable_tree itself
1555 		 * get pruned in the regular course of stable_tree_search(),
1556 		 * those moved out to the migrate_nodes list can accumulate:
1557 		 * so prune them once before each full scan.
1558 		 */
1559 		if (!ksm_merge_across_nodes) {
1560 			struct stable_node *stable_node, *next;
1561 			struct page *page;
1562 
1563 			list_for_each_entry_safe(stable_node, next,
1564 						 &migrate_nodes, list) {
1565 				page = get_ksm_page(stable_node, false);
1566 				if (page)
1567 					put_page(page);
1568 				cond_resched();
1569 			}
1570 		}
1571 
1572 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
1573 			root_unstable_tree[nid] = RB_ROOT;
1574 
1575 		spin_lock(&ksm_mmlist_lock);
1576 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1577 		ksm_scan.mm_slot = slot;
1578 		spin_unlock(&ksm_mmlist_lock);
1579 		/*
1580 		 * Although we tested list_empty() above, a racing __ksm_exit
1581 		 * of the last mm on the list may have removed it since then.
1582 		 */
1583 		if (slot == &ksm_mm_head)
1584 			return NULL;
1585 next_mm:
1586 		ksm_scan.address = 0;
1587 		ksm_scan.rmap_list = &slot->rmap_list;
1588 	}
1589 
1590 	mm = slot->mm;
1591 	down_read(&mm->mmap_sem);
1592 	if (ksm_test_exit(mm))
1593 		vma = NULL;
1594 	else
1595 		vma = find_vma(mm, ksm_scan.address);
1596 
1597 	for (; vma; vma = vma->vm_next) {
1598 		if (!(vma->vm_flags & VM_MERGEABLE))
1599 			continue;
1600 		if (ksm_scan.address < vma->vm_start)
1601 			ksm_scan.address = vma->vm_start;
1602 		if (!vma->anon_vma)
1603 			ksm_scan.address = vma->vm_end;
1604 
1605 		while (ksm_scan.address < vma->vm_end) {
1606 			if (ksm_test_exit(mm))
1607 				break;
1608 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1609 			if (IS_ERR_OR_NULL(*page)) {
1610 				ksm_scan.address += PAGE_SIZE;
1611 				cond_resched();
1612 				continue;
1613 			}
1614 			if (PageAnon(*page)) {
1615 				flush_anon_page(vma, *page, ksm_scan.address);
1616 				flush_dcache_page(*page);
1617 				rmap_item = get_next_rmap_item(slot,
1618 					ksm_scan.rmap_list, ksm_scan.address);
1619 				if (rmap_item) {
1620 					ksm_scan.rmap_list =
1621 							&rmap_item->rmap_list;
1622 					ksm_scan.address += PAGE_SIZE;
1623 				} else
1624 					put_page(*page);
1625 				up_read(&mm->mmap_sem);
1626 				return rmap_item;
1627 			}
1628 			put_page(*page);
1629 			ksm_scan.address += PAGE_SIZE;
1630 			cond_resched();
1631 		}
1632 	}
1633 
1634 	if (ksm_test_exit(mm)) {
1635 		ksm_scan.address = 0;
1636 		ksm_scan.rmap_list = &slot->rmap_list;
1637 	}
1638 	/*
1639 	 * Nuke all the rmap_items that are above this current rmap:
1640 	 * because there were no VM_MERGEABLE vmas with such addresses.
1641 	 */
1642 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1643 
1644 	spin_lock(&ksm_mmlist_lock);
1645 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1646 						struct mm_slot, mm_list);
1647 	if (ksm_scan.address == 0) {
1648 		/*
1649 		 * We've completed a full scan of all vmas, holding mmap_sem
1650 		 * throughout, and found no VM_MERGEABLE: so do the same as
1651 		 * __ksm_exit does to remove this mm from all our lists now.
1652 		 * This applies either when cleaning up after __ksm_exit
1653 		 * (but beware: we can reach here even before __ksm_exit),
1654 		 * or when all VM_MERGEABLE areas have been unmapped (and
1655 		 * mmap_sem then protects against race with MADV_MERGEABLE).
1656 		 */
1657 		hash_del(&slot->link);
1658 		list_del(&slot->mm_list);
1659 		spin_unlock(&ksm_mmlist_lock);
1660 
1661 		free_mm_slot(slot);
1662 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1663 		up_read(&mm->mmap_sem);
1664 		mmdrop(mm);
1665 	} else {
1666 		spin_unlock(&ksm_mmlist_lock);
1667 		up_read(&mm->mmap_sem);
1668 	}
1669 
1670 	/* Repeat until we've completed scanning the whole list */
1671 	slot = ksm_scan.mm_slot;
1672 	if (slot != &ksm_mm_head)
1673 		goto next_mm;
1674 
1675 	ksm_scan.seqnr++;
1676 	return NULL;
1677 }
1678 
1679 /**
1680  * ksm_do_scan  - the ksm scanner main worker function.
1681  * @scan_npages - number of pages we want to scan before we return.
1682  */
1683 static void ksm_do_scan(unsigned int scan_npages)
1684 {
1685 	struct rmap_item *rmap_item;
1686 	struct page *uninitialized_var(page);
1687 
1688 	while (scan_npages-- && likely(!freezing(current))) {
1689 		cond_resched();
1690 		rmap_item = scan_get_next_rmap_item(&page);
1691 		if (!rmap_item)
1692 			return;
1693 		cmp_and_merge_page(page, rmap_item);
1694 		put_page(page);
1695 	}
1696 }
1697 
1698 static int ksmd_should_run(void)
1699 {
1700 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1701 }
1702 
1703 static int ksm_scan_thread(void *nothing)
1704 {
1705 	set_freezable();
1706 	set_user_nice(current, 5);
1707 
1708 	while (!kthread_should_stop()) {
1709 		mutex_lock(&ksm_thread_mutex);
1710 		wait_while_offlining();
1711 		if (ksmd_should_run())
1712 			ksm_do_scan(ksm_thread_pages_to_scan);
1713 		mutex_unlock(&ksm_thread_mutex);
1714 
1715 		try_to_freeze();
1716 
1717 		if (ksmd_should_run()) {
1718 			schedule_timeout_interruptible(
1719 				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1720 		} else {
1721 			wait_event_freezable(ksm_thread_wait,
1722 				ksmd_should_run() || kthread_should_stop());
1723 		}
1724 	}
1725 	return 0;
1726 }
1727 
1728 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1729 		unsigned long end, int advice, unsigned long *vm_flags)
1730 {
1731 	struct mm_struct *mm = vma->vm_mm;
1732 	int err;
1733 
1734 	switch (advice) {
1735 	case MADV_MERGEABLE:
1736 		/*
1737 		 * Be somewhat over-protective for now!
1738 		 */
1739 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1740 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1741 				 VM_HUGETLB | VM_MIXEDMAP))
1742 			return 0;		/* just ignore the advice */
1743 
1744 #ifdef VM_SAO
1745 		if (*vm_flags & VM_SAO)
1746 			return 0;
1747 #endif
1748 
1749 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1750 			err = __ksm_enter(mm);
1751 			if (err)
1752 				return err;
1753 		}
1754 
1755 		*vm_flags |= VM_MERGEABLE;
1756 		break;
1757 
1758 	case MADV_UNMERGEABLE:
1759 		if (!(*vm_flags & VM_MERGEABLE))
1760 			return 0;		/* just ignore the advice */
1761 
1762 		if (vma->anon_vma) {
1763 			err = unmerge_ksm_pages(vma, start, end);
1764 			if (err)
1765 				return err;
1766 		}
1767 
1768 		*vm_flags &= ~VM_MERGEABLE;
1769 		break;
1770 	}
1771 
1772 	return 0;
1773 }
1774 
1775 int __ksm_enter(struct mm_struct *mm)
1776 {
1777 	struct mm_slot *mm_slot;
1778 	int needs_wakeup;
1779 
1780 	mm_slot = alloc_mm_slot();
1781 	if (!mm_slot)
1782 		return -ENOMEM;
1783 
1784 	/* Check ksm_run too?  Would need tighter locking */
1785 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1786 
1787 	spin_lock(&ksm_mmlist_lock);
1788 	insert_to_mm_slots_hash(mm, mm_slot);
1789 	/*
1790 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1791 	 * insert just behind the scanning cursor, to let the area settle
1792 	 * down a little; when fork is followed by immediate exec, we don't
1793 	 * want ksmd to waste time setting up and tearing down an rmap_list.
1794 	 *
1795 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1796 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
1797 	 * missed: then we might as well insert at the end of the list.
1798 	 */
1799 	if (ksm_run & KSM_RUN_UNMERGE)
1800 		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1801 	else
1802 		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1803 	spin_unlock(&ksm_mmlist_lock);
1804 
1805 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1806 	atomic_inc(&mm->mm_count);
1807 
1808 	if (needs_wakeup)
1809 		wake_up_interruptible(&ksm_thread_wait);
1810 
1811 	return 0;
1812 }
1813 
1814 void __ksm_exit(struct mm_struct *mm)
1815 {
1816 	struct mm_slot *mm_slot;
1817 	int easy_to_free = 0;
1818 
1819 	/*
1820 	 * This process is exiting: if it's straightforward (as is the
1821 	 * case when ksmd was never running), free mm_slot immediately.
1822 	 * But if it's at the cursor or has rmap_items linked to it, use
1823 	 * mmap_sem to synchronize with any break_cows before pagetables
1824 	 * are freed, and leave the mm_slot on the list for ksmd to free.
1825 	 * Beware: ksm may already have noticed it exiting and freed the slot.
1826 	 */
1827 
1828 	spin_lock(&ksm_mmlist_lock);
1829 	mm_slot = get_mm_slot(mm);
1830 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1831 		if (!mm_slot->rmap_list) {
1832 			hash_del(&mm_slot->link);
1833 			list_del(&mm_slot->mm_list);
1834 			easy_to_free = 1;
1835 		} else {
1836 			list_move(&mm_slot->mm_list,
1837 				  &ksm_scan.mm_slot->mm_list);
1838 		}
1839 	}
1840 	spin_unlock(&ksm_mmlist_lock);
1841 
1842 	if (easy_to_free) {
1843 		free_mm_slot(mm_slot);
1844 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1845 		mmdrop(mm);
1846 	} else if (mm_slot) {
1847 		down_write(&mm->mmap_sem);
1848 		up_write(&mm->mmap_sem);
1849 	}
1850 }
1851 
1852 struct page *ksm_might_need_to_copy(struct page *page,
1853 			struct vm_area_struct *vma, unsigned long address)
1854 {
1855 	struct anon_vma *anon_vma = page_anon_vma(page);
1856 	struct page *new_page;
1857 
1858 	if (PageKsm(page)) {
1859 		if (page_stable_node(page) &&
1860 		    !(ksm_run & KSM_RUN_UNMERGE))
1861 			return page;	/* no need to copy it */
1862 	} else if (!anon_vma) {
1863 		return page;		/* no need to copy it */
1864 	} else if (anon_vma->root == vma->anon_vma->root &&
1865 		 page->index == linear_page_index(vma, address)) {
1866 		return page;		/* still no need to copy it */
1867 	}
1868 	if (!PageUptodate(page))
1869 		return page;		/* let do_swap_page report the error */
1870 
1871 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1872 	if (new_page) {
1873 		copy_user_highpage(new_page, page, address, vma);
1874 
1875 		SetPageDirty(new_page);
1876 		__SetPageUptodate(new_page);
1877 		__SetPageLocked(new_page);
1878 	}
1879 
1880 	return new_page;
1881 }
1882 
1883 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1884 {
1885 	struct stable_node *stable_node;
1886 	struct rmap_item *rmap_item;
1887 	int ret = SWAP_AGAIN;
1888 	int search_new_forks = 0;
1889 
1890 	VM_BUG_ON_PAGE(!PageKsm(page), page);
1891 
1892 	/*
1893 	 * Rely on the page lock to protect against concurrent modifications
1894 	 * to that page's node of the stable tree.
1895 	 */
1896 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1897 
1898 	stable_node = page_stable_node(page);
1899 	if (!stable_node)
1900 		return ret;
1901 again:
1902 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1903 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1904 		struct anon_vma_chain *vmac;
1905 		struct vm_area_struct *vma;
1906 
1907 		cond_resched();
1908 		anon_vma_lock_read(anon_vma);
1909 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1910 					       0, ULONG_MAX) {
1911 			cond_resched();
1912 			vma = vmac->vma;
1913 			if (rmap_item->address < vma->vm_start ||
1914 			    rmap_item->address >= vma->vm_end)
1915 				continue;
1916 			/*
1917 			 * Initially we examine only the vma which covers this
1918 			 * rmap_item; but later, if there is still work to do,
1919 			 * we examine covering vmas in other mms: in case they
1920 			 * were forked from the original since ksmd passed.
1921 			 */
1922 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1923 				continue;
1924 
1925 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1926 				continue;
1927 
1928 			ret = rwc->rmap_one(page, vma,
1929 					rmap_item->address, rwc->arg);
1930 			if (ret != SWAP_AGAIN) {
1931 				anon_vma_unlock_read(anon_vma);
1932 				goto out;
1933 			}
1934 			if (rwc->done && rwc->done(page)) {
1935 				anon_vma_unlock_read(anon_vma);
1936 				goto out;
1937 			}
1938 		}
1939 		anon_vma_unlock_read(anon_vma);
1940 	}
1941 	if (!search_new_forks++)
1942 		goto again;
1943 out:
1944 	return ret;
1945 }
1946 
1947 #ifdef CONFIG_MIGRATION
1948 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1949 {
1950 	struct stable_node *stable_node;
1951 
1952 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
1953 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1954 	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
1955 
1956 	stable_node = page_stable_node(newpage);
1957 	if (stable_node) {
1958 		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
1959 		stable_node->kpfn = page_to_pfn(newpage);
1960 		/*
1961 		 * newpage->mapping was set in advance; now we need smp_wmb()
1962 		 * to make sure that the new stable_node->kpfn is visible
1963 		 * to get_ksm_page() before it can see that oldpage->mapping
1964 		 * has gone stale (or that PageSwapCache has been cleared).
1965 		 */
1966 		smp_wmb();
1967 		set_page_stable_node(oldpage, NULL);
1968 	}
1969 }
1970 #endif /* CONFIG_MIGRATION */
1971 
1972 #ifdef CONFIG_MEMORY_HOTREMOVE
1973 static void wait_while_offlining(void)
1974 {
1975 	while (ksm_run & KSM_RUN_OFFLINE) {
1976 		mutex_unlock(&ksm_thread_mutex);
1977 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
1978 			    TASK_UNINTERRUPTIBLE);
1979 		mutex_lock(&ksm_thread_mutex);
1980 	}
1981 }
1982 
1983 static void ksm_check_stable_tree(unsigned long start_pfn,
1984 				  unsigned long end_pfn)
1985 {
1986 	struct stable_node *stable_node, *next;
1987 	struct rb_node *node;
1988 	int nid;
1989 
1990 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1991 		node = rb_first(root_stable_tree + nid);
1992 		while (node) {
1993 			stable_node = rb_entry(node, struct stable_node, node);
1994 			if (stable_node->kpfn >= start_pfn &&
1995 			    stable_node->kpfn < end_pfn) {
1996 				/*
1997 				 * Don't get_ksm_page, page has already gone:
1998 				 * which is why we keep kpfn instead of page*
1999 				 */
2000 				remove_node_from_stable_tree(stable_node);
2001 				node = rb_first(root_stable_tree + nid);
2002 			} else
2003 				node = rb_next(node);
2004 			cond_resched();
2005 		}
2006 	}
2007 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2008 		if (stable_node->kpfn >= start_pfn &&
2009 		    stable_node->kpfn < end_pfn)
2010 			remove_node_from_stable_tree(stable_node);
2011 		cond_resched();
2012 	}
2013 }
2014 
2015 static int ksm_memory_callback(struct notifier_block *self,
2016 			       unsigned long action, void *arg)
2017 {
2018 	struct memory_notify *mn = arg;
2019 
2020 	switch (action) {
2021 	case MEM_GOING_OFFLINE:
2022 		/*
2023 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2024 		 * and remove_all_stable_nodes() while memory is going offline:
2025 		 * it is unsafe for them to touch the stable tree at this time.
2026 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2027 		 * which do not need the ksm_thread_mutex are all safe.
2028 		 */
2029 		mutex_lock(&ksm_thread_mutex);
2030 		ksm_run |= KSM_RUN_OFFLINE;
2031 		mutex_unlock(&ksm_thread_mutex);
2032 		break;
2033 
2034 	case MEM_OFFLINE:
2035 		/*
2036 		 * Most of the work is done by page migration; but there might
2037 		 * be a few stable_nodes left over, still pointing to struct
2038 		 * pages which have been offlined: prune those from the tree,
2039 		 * otherwise get_ksm_page() might later try to access a
2040 		 * non-existent struct page.
2041 		 */
2042 		ksm_check_stable_tree(mn->start_pfn,
2043 				      mn->start_pfn + mn->nr_pages);
2044 		/* fallthrough */
2045 
2046 	case MEM_CANCEL_OFFLINE:
2047 		mutex_lock(&ksm_thread_mutex);
2048 		ksm_run &= ~KSM_RUN_OFFLINE;
2049 		mutex_unlock(&ksm_thread_mutex);
2050 
2051 		smp_mb();	/* wake_up_bit advises this */
2052 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2053 		break;
2054 	}
2055 	return NOTIFY_OK;
2056 }
2057 #else
2058 static void wait_while_offlining(void)
2059 {
2060 }
2061 #endif /* CONFIG_MEMORY_HOTREMOVE */
2062 
2063 #ifdef CONFIG_SYSFS
2064 /*
2065  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2066  */
2067 
2068 #define KSM_ATTR_RO(_name) \
2069 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2070 #define KSM_ATTR(_name) \
2071 	static struct kobj_attribute _name##_attr = \
2072 		__ATTR(_name, 0644, _name##_show, _name##_store)
2073 
2074 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2075 				    struct kobj_attribute *attr, char *buf)
2076 {
2077 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2078 }
2079 
2080 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2081 				     struct kobj_attribute *attr,
2082 				     const char *buf, size_t count)
2083 {
2084 	unsigned long msecs;
2085 	int err;
2086 
2087 	err = kstrtoul(buf, 10, &msecs);
2088 	if (err || msecs > UINT_MAX)
2089 		return -EINVAL;
2090 
2091 	ksm_thread_sleep_millisecs = msecs;
2092 
2093 	return count;
2094 }
2095 KSM_ATTR(sleep_millisecs);
2096 
2097 static ssize_t pages_to_scan_show(struct kobject *kobj,
2098 				  struct kobj_attribute *attr, char *buf)
2099 {
2100 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2101 }
2102 
2103 static ssize_t pages_to_scan_store(struct kobject *kobj,
2104 				   struct kobj_attribute *attr,
2105 				   const char *buf, size_t count)
2106 {
2107 	int err;
2108 	unsigned long nr_pages;
2109 
2110 	err = kstrtoul(buf, 10, &nr_pages);
2111 	if (err || nr_pages > UINT_MAX)
2112 		return -EINVAL;
2113 
2114 	ksm_thread_pages_to_scan = nr_pages;
2115 
2116 	return count;
2117 }
2118 KSM_ATTR(pages_to_scan);
2119 
2120 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2121 			char *buf)
2122 {
2123 	return sprintf(buf, "%lu\n", ksm_run);
2124 }
2125 
2126 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2127 			 const char *buf, size_t count)
2128 {
2129 	int err;
2130 	unsigned long flags;
2131 
2132 	err = kstrtoul(buf, 10, &flags);
2133 	if (err || flags > UINT_MAX)
2134 		return -EINVAL;
2135 	if (flags > KSM_RUN_UNMERGE)
2136 		return -EINVAL;
2137 
2138 	/*
2139 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2140 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2141 	 * breaking COW to free the pages_shared (but leaves mm_slots
2142 	 * on the list for when ksmd may be set running again).
2143 	 */
2144 
2145 	mutex_lock(&ksm_thread_mutex);
2146 	wait_while_offlining();
2147 	if (ksm_run != flags) {
2148 		ksm_run = flags;
2149 		if (flags & KSM_RUN_UNMERGE) {
2150 			set_current_oom_origin();
2151 			err = unmerge_and_remove_all_rmap_items();
2152 			clear_current_oom_origin();
2153 			if (err) {
2154 				ksm_run = KSM_RUN_STOP;
2155 				count = err;
2156 			}
2157 		}
2158 	}
2159 	mutex_unlock(&ksm_thread_mutex);
2160 
2161 	if (flags & KSM_RUN_MERGE)
2162 		wake_up_interruptible(&ksm_thread_wait);
2163 
2164 	return count;
2165 }
2166 KSM_ATTR(run);
2167 
2168 #ifdef CONFIG_NUMA
2169 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2170 				struct kobj_attribute *attr, char *buf)
2171 {
2172 	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2173 }
2174 
2175 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2176 				   struct kobj_attribute *attr,
2177 				   const char *buf, size_t count)
2178 {
2179 	int err;
2180 	unsigned long knob;
2181 
2182 	err = kstrtoul(buf, 10, &knob);
2183 	if (err)
2184 		return err;
2185 	if (knob > 1)
2186 		return -EINVAL;
2187 
2188 	mutex_lock(&ksm_thread_mutex);
2189 	wait_while_offlining();
2190 	if (ksm_merge_across_nodes != knob) {
2191 		if (ksm_pages_shared || remove_all_stable_nodes())
2192 			err = -EBUSY;
2193 		else if (root_stable_tree == one_stable_tree) {
2194 			struct rb_root *buf;
2195 			/*
2196 			 * This is the first time that we switch away from the
2197 			 * default of merging across nodes: must now allocate
2198 			 * a buffer to hold as many roots as may be needed.
2199 			 * Allocate stable and unstable together:
2200 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2201 			 */
2202 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2203 				      GFP_KERNEL);
2204 			/* Let us assume that RB_ROOT is NULL is zero */
2205 			if (!buf)
2206 				err = -ENOMEM;
2207 			else {
2208 				root_stable_tree = buf;
2209 				root_unstable_tree = buf + nr_node_ids;
2210 				/* Stable tree is empty but not the unstable */
2211 				root_unstable_tree[0] = one_unstable_tree[0];
2212 			}
2213 		}
2214 		if (!err) {
2215 			ksm_merge_across_nodes = knob;
2216 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2217 		}
2218 	}
2219 	mutex_unlock(&ksm_thread_mutex);
2220 
2221 	return err ? err : count;
2222 }
2223 KSM_ATTR(merge_across_nodes);
2224 #endif
2225 
2226 static ssize_t pages_shared_show(struct kobject *kobj,
2227 				 struct kobj_attribute *attr, char *buf)
2228 {
2229 	return sprintf(buf, "%lu\n", ksm_pages_shared);
2230 }
2231 KSM_ATTR_RO(pages_shared);
2232 
2233 static ssize_t pages_sharing_show(struct kobject *kobj,
2234 				  struct kobj_attribute *attr, char *buf)
2235 {
2236 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
2237 }
2238 KSM_ATTR_RO(pages_sharing);
2239 
2240 static ssize_t pages_unshared_show(struct kobject *kobj,
2241 				   struct kobj_attribute *attr, char *buf)
2242 {
2243 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
2244 }
2245 KSM_ATTR_RO(pages_unshared);
2246 
2247 static ssize_t pages_volatile_show(struct kobject *kobj,
2248 				   struct kobj_attribute *attr, char *buf)
2249 {
2250 	long ksm_pages_volatile;
2251 
2252 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2253 				- ksm_pages_sharing - ksm_pages_unshared;
2254 	/*
2255 	 * It was not worth any locking to calculate that statistic,
2256 	 * but it might therefore sometimes be negative: conceal that.
2257 	 */
2258 	if (ksm_pages_volatile < 0)
2259 		ksm_pages_volatile = 0;
2260 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
2261 }
2262 KSM_ATTR_RO(pages_volatile);
2263 
2264 static ssize_t full_scans_show(struct kobject *kobj,
2265 			       struct kobj_attribute *attr, char *buf)
2266 {
2267 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2268 }
2269 KSM_ATTR_RO(full_scans);
2270 
2271 static struct attribute *ksm_attrs[] = {
2272 	&sleep_millisecs_attr.attr,
2273 	&pages_to_scan_attr.attr,
2274 	&run_attr.attr,
2275 	&pages_shared_attr.attr,
2276 	&pages_sharing_attr.attr,
2277 	&pages_unshared_attr.attr,
2278 	&pages_volatile_attr.attr,
2279 	&full_scans_attr.attr,
2280 #ifdef CONFIG_NUMA
2281 	&merge_across_nodes_attr.attr,
2282 #endif
2283 	NULL,
2284 };
2285 
2286 static struct attribute_group ksm_attr_group = {
2287 	.attrs = ksm_attrs,
2288 	.name = "ksm",
2289 };
2290 #endif /* CONFIG_SYSFS */
2291 
2292 static int __init ksm_init(void)
2293 {
2294 	struct task_struct *ksm_thread;
2295 	int err;
2296 
2297 	err = ksm_slab_init();
2298 	if (err)
2299 		goto out;
2300 
2301 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2302 	if (IS_ERR(ksm_thread)) {
2303 		pr_err("ksm: creating kthread failed\n");
2304 		err = PTR_ERR(ksm_thread);
2305 		goto out_free;
2306 	}
2307 
2308 #ifdef CONFIG_SYSFS
2309 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2310 	if (err) {
2311 		pr_err("ksm: register sysfs failed\n");
2312 		kthread_stop(ksm_thread);
2313 		goto out_free;
2314 	}
2315 #else
2316 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
2317 
2318 #endif /* CONFIG_SYSFS */
2319 
2320 #ifdef CONFIG_MEMORY_HOTREMOVE
2321 	/* There is no significance to this priority 100 */
2322 	hotplug_memory_notifier(ksm_memory_callback, 100);
2323 #endif
2324 	return 0;
2325 
2326 out_free:
2327 	ksm_slab_free();
2328 out:
2329 	return err;
2330 }
2331 subsys_initcall(ksm_init);
2332