xref: /openbmc/linux/mm/ksm.c (revision 0d456bad)
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hash.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 
40 #include <asm/tlbflush.h>
41 #include "internal.h"
42 
43 /*
44  * A few notes about the KSM scanning process,
45  * to make it easier to understand the data structures below:
46  *
47  * In order to reduce excessive scanning, KSM sorts the memory pages by their
48  * contents into a data structure that holds pointers to the pages' locations.
49  *
50  * Since the contents of the pages may change at any moment, KSM cannot just
51  * insert the pages into a normal sorted tree and expect it to find anything.
52  * Therefore KSM uses two data structures - the stable and the unstable tree.
53  *
54  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
55  * by their contents.  Because each such page is write-protected, searching on
56  * this tree is fully assured to be working (except when pages are unmapped),
57  * and therefore this tree is called the stable tree.
58  *
59  * In addition to the stable tree, KSM uses a second data structure called the
60  * unstable tree: this tree holds pointers to pages which have been found to
61  * be "unchanged for a period of time".  The unstable tree sorts these pages
62  * by their contents, but since they are not write-protected, KSM cannot rely
63  * upon the unstable tree to work correctly - the unstable tree is liable to
64  * be corrupted as its contents are modified, and so it is called unstable.
65  *
66  * KSM solves this problem by several techniques:
67  *
68  * 1) The unstable tree is flushed every time KSM completes scanning all
69  *    memory areas, and then the tree is rebuilt again from the beginning.
70  * 2) KSM will only insert into the unstable tree, pages whose hash value
71  *    has not changed since the previous scan of all memory areas.
72  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
73  *    colors of the nodes and not on their contents, assuring that even when
74  *    the tree gets "corrupted" it won't get out of balance, so scanning time
75  *    remains the same (also, searching and inserting nodes in an rbtree uses
76  *    the same algorithm, so we have no overhead when we flush and rebuild).
77  * 4) KSM never flushes the stable tree, which means that even if it were to
78  *    take 10 attempts to find a page in the unstable tree, once it is found,
79  *    it is secured in the stable tree.  (When we scan a new page, we first
80  *    compare it against the stable tree, and then against the unstable tree.)
81  */
82 
83 /**
84  * struct mm_slot - ksm information per mm that is being scanned
85  * @link: link to the mm_slots hash list
86  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
87  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
88  * @mm: the mm that this information is valid for
89  */
90 struct mm_slot {
91 	struct hlist_node link;
92 	struct list_head mm_list;
93 	struct rmap_item *rmap_list;
94 	struct mm_struct *mm;
95 };
96 
97 /**
98  * struct ksm_scan - cursor for scanning
99  * @mm_slot: the current mm_slot we are scanning
100  * @address: the next address inside that to be scanned
101  * @rmap_list: link to the next rmap to be scanned in the rmap_list
102  * @seqnr: count of completed full scans (needed when removing unstable node)
103  *
104  * There is only the one ksm_scan instance of this cursor structure.
105  */
106 struct ksm_scan {
107 	struct mm_slot *mm_slot;
108 	unsigned long address;
109 	struct rmap_item **rmap_list;
110 	unsigned long seqnr;
111 };
112 
113 /**
114  * struct stable_node - node of the stable rbtree
115  * @node: rb node of this ksm page in the stable tree
116  * @hlist: hlist head of rmap_items using this ksm page
117  * @kpfn: page frame number of this ksm page
118  */
119 struct stable_node {
120 	struct rb_node node;
121 	struct hlist_head hlist;
122 	unsigned long kpfn;
123 };
124 
125 /**
126  * struct rmap_item - reverse mapping item for virtual addresses
127  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
128  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
129  * @mm: the memory structure this rmap_item is pointing into
130  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
131  * @oldchecksum: previous checksum of the page at that virtual address
132  * @node: rb node of this rmap_item in the unstable tree
133  * @head: pointer to stable_node heading this list in the stable tree
134  * @hlist: link into hlist of rmap_items hanging off that stable_node
135  */
136 struct rmap_item {
137 	struct rmap_item *rmap_list;
138 	struct anon_vma *anon_vma;	/* when stable */
139 	struct mm_struct *mm;
140 	unsigned long address;		/* + low bits used for flags below */
141 	unsigned int oldchecksum;	/* when unstable */
142 	union {
143 		struct rb_node node;	/* when node of unstable tree */
144 		struct {		/* when listed from stable tree */
145 			struct stable_node *head;
146 			struct hlist_node hlist;
147 		};
148 	};
149 };
150 
151 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
152 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
153 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
154 
155 /* The stable and unstable tree heads */
156 static struct rb_root root_stable_tree = RB_ROOT;
157 static struct rb_root root_unstable_tree = RB_ROOT;
158 
159 #define MM_SLOTS_HASH_SHIFT 10
160 #define MM_SLOTS_HASH_HEADS (1 << MM_SLOTS_HASH_SHIFT)
161 static struct hlist_head mm_slots_hash[MM_SLOTS_HASH_HEADS];
162 
163 static struct mm_slot ksm_mm_head = {
164 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
165 };
166 static struct ksm_scan ksm_scan = {
167 	.mm_slot = &ksm_mm_head,
168 };
169 
170 static struct kmem_cache *rmap_item_cache;
171 static struct kmem_cache *stable_node_cache;
172 static struct kmem_cache *mm_slot_cache;
173 
174 /* The number of nodes in the stable tree */
175 static unsigned long ksm_pages_shared;
176 
177 /* The number of page slots additionally sharing those nodes */
178 static unsigned long ksm_pages_sharing;
179 
180 /* The number of nodes in the unstable tree */
181 static unsigned long ksm_pages_unshared;
182 
183 /* The number of rmap_items in use: to calculate pages_volatile */
184 static unsigned long ksm_rmap_items;
185 
186 /* Number of pages ksmd should scan in one batch */
187 static unsigned int ksm_thread_pages_to_scan = 100;
188 
189 /* Milliseconds ksmd should sleep between batches */
190 static unsigned int ksm_thread_sleep_millisecs = 20;
191 
192 #define KSM_RUN_STOP	0
193 #define KSM_RUN_MERGE	1
194 #define KSM_RUN_UNMERGE	2
195 static unsigned int ksm_run = KSM_RUN_STOP;
196 
197 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
198 static DEFINE_MUTEX(ksm_thread_mutex);
199 static DEFINE_SPINLOCK(ksm_mmlist_lock);
200 
201 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
202 		sizeof(struct __struct), __alignof__(struct __struct),\
203 		(__flags), NULL)
204 
205 static int __init ksm_slab_init(void)
206 {
207 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
208 	if (!rmap_item_cache)
209 		goto out;
210 
211 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
212 	if (!stable_node_cache)
213 		goto out_free1;
214 
215 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
216 	if (!mm_slot_cache)
217 		goto out_free2;
218 
219 	return 0;
220 
221 out_free2:
222 	kmem_cache_destroy(stable_node_cache);
223 out_free1:
224 	kmem_cache_destroy(rmap_item_cache);
225 out:
226 	return -ENOMEM;
227 }
228 
229 static void __init ksm_slab_free(void)
230 {
231 	kmem_cache_destroy(mm_slot_cache);
232 	kmem_cache_destroy(stable_node_cache);
233 	kmem_cache_destroy(rmap_item_cache);
234 	mm_slot_cache = NULL;
235 }
236 
237 static inline struct rmap_item *alloc_rmap_item(void)
238 {
239 	struct rmap_item *rmap_item;
240 
241 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
242 	if (rmap_item)
243 		ksm_rmap_items++;
244 	return rmap_item;
245 }
246 
247 static inline void free_rmap_item(struct rmap_item *rmap_item)
248 {
249 	ksm_rmap_items--;
250 	rmap_item->mm = NULL;	/* debug safety */
251 	kmem_cache_free(rmap_item_cache, rmap_item);
252 }
253 
254 static inline struct stable_node *alloc_stable_node(void)
255 {
256 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
257 }
258 
259 static inline void free_stable_node(struct stable_node *stable_node)
260 {
261 	kmem_cache_free(stable_node_cache, stable_node);
262 }
263 
264 static inline struct mm_slot *alloc_mm_slot(void)
265 {
266 	if (!mm_slot_cache)	/* initialization failed */
267 		return NULL;
268 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
269 }
270 
271 static inline void free_mm_slot(struct mm_slot *mm_slot)
272 {
273 	kmem_cache_free(mm_slot_cache, mm_slot);
274 }
275 
276 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
277 {
278 	struct mm_slot *mm_slot;
279 	struct hlist_head *bucket;
280 	struct hlist_node *node;
281 
282 	bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
283 	hlist_for_each_entry(mm_slot, node, bucket, link) {
284 		if (mm == mm_slot->mm)
285 			return mm_slot;
286 	}
287 	return NULL;
288 }
289 
290 static void insert_to_mm_slots_hash(struct mm_struct *mm,
291 				    struct mm_slot *mm_slot)
292 {
293 	struct hlist_head *bucket;
294 
295 	bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
296 	mm_slot->mm = mm;
297 	hlist_add_head(&mm_slot->link, bucket);
298 }
299 
300 static inline int in_stable_tree(struct rmap_item *rmap_item)
301 {
302 	return rmap_item->address & STABLE_FLAG;
303 }
304 
305 /*
306  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
307  * page tables after it has passed through ksm_exit() - which, if necessary,
308  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
309  * a special flag: they can just back out as soon as mm_users goes to zero.
310  * ksm_test_exit() is used throughout to make this test for exit: in some
311  * places for correctness, in some places just to avoid unnecessary work.
312  */
313 static inline bool ksm_test_exit(struct mm_struct *mm)
314 {
315 	return atomic_read(&mm->mm_users) == 0;
316 }
317 
318 /*
319  * We use break_ksm to break COW on a ksm page: it's a stripped down
320  *
321  *	if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
322  *		put_page(page);
323  *
324  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
325  * in case the application has unmapped and remapped mm,addr meanwhile.
326  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
327  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
328  */
329 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
330 {
331 	struct page *page;
332 	int ret = 0;
333 
334 	do {
335 		cond_resched();
336 		page = follow_page(vma, addr, FOLL_GET);
337 		if (IS_ERR_OR_NULL(page))
338 			break;
339 		if (PageKsm(page))
340 			ret = handle_mm_fault(vma->vm_mm, vma, addr,
341 							FAULT_FLAG_WRITE);
342 		else
343 			ret = VM_FAULT_WRITE;
344 		put_page(page);
345 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
346 	/*
347 	 * We must loop because handle_mm_fault() may back out if there's
348 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
349 	 *
350 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
351 	 * COW has been broken, even if the vma does not permit VM_WRITE;
352 	 * but note that a concurrent fault might break PageKsm for us.
353 	 *
354 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
355 	 * backing file, which also invalidates anonymous pages: that's
356 	 * okay, that truncation will have unmapped the PageKsm for us.
357 	 *
358 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
359 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
360 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
361 	 * to user; and ksmd, having no mm, would never be chosen for that.
362 	 *
363 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
364 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
365 	 * even ksmd can fail in this way - though it's usually breaking ksm
366 	 * just to undo a merge it made a moment before, so unlikely to oom.
367 	 *
368 	 * That's a pity: we might therefore have more kernel pages allocated
369 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
370 	 * will retry to break_cow on each pass, so should recover the page
371 	 * in due course.  The important thing is to not let VM_MERGEABLE
372 	 * be cleared while any such pages might remain in the area.
373 	 */
374 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
375 }
376 
377 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
378 		unsigned long addr)
379 {
380 	struct vm_area_struct *vma;
381 	if (ksm_test_exit(mm))
382 		return NULL;
383 	vma = find_vma(mm, addr);
384 	if (!vma || vma->vm_start > addr)
385 		return NULL;
386 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
387 		return NULL;
388 	return vma;
389 }
390 
391 static void break_cow(struct rmap_item *rmap_item)
392 {
393 	struct mm_struct *mm = rmap_item->mm;
394 	unsigned long addr = rmap_item->address;
395 	struct vm_area_struct *vma;
396 
397 	/*
398 	 * It is not an accident that whenever we want to break COW
399 	 * to undo, we also need to drop a reference to the anon_vma.
400 	 */
401 	put_anon_vma(rmap_item->anon_vma);
402 
403 	down_read(&mm->mmap_sem);
404 	vma = find_mergeable_vma(mm, addr);
405 	if (vma)
406 		break_ksm(vma, addr);
407 	up_read(&mm->mmap_sem);
408 }
409 
410 static struct page *page_trans_compound_anon(struct page *page)
411 {
412 	if (PageTransCompound(page)) {
413 		struct page *head = compound_trans_head(page);
414 		/*
415 		 * head may actually be splitted and freed from under
416 		 * us but it's ok here.
417 		 */
418 		if (PageAnon(head))
419 			return head;
420 	}
421 	return NULL;
422 }
423 
424 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
425 {
426 	struct mm_struct *mm = rmap_item->mm;
427 	unsigned long addr = rmap_item->address;
428 	struct vm_area_struct *vma;
429 	struct page *page;
430 
431 	down_read(&mm->mmap_sem);
432 	vma = find_mergeable_vma(mm, addr);
433 	if (!vma)
434 		goto out;
435 
436 	page = follow_page(vma, addr, FOLL_GET);
437 	if (IS_ERR_OR_NULL(page))
438 		goto out;
439 	if (PageAnon(page) || page_trans_compound_anon(page)) {
440 		flush_anon_page(vma, page, addr);
441 		flush_dcache_page(page);
442 	} else {
443 		put_page(page);
444 out:		page = NULL;
445 	}
446 	up_read(&mm->mmap_sem);
447 	return page;
448 }
449 
450 static void remove_node_from_stable_tree(struct stable_node *stable_node)
451 {
452 	struct rmap_item *rmap_item;
453 	struct hlist_node *hlist;
454 
455 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
456 		if (rmap_item->hlist.next)
457 			ksm_pages_sharing--;
458 		else
459 			ksm_pages_shared--;
460 		put_anon_vma(rmap_item->anon_vma);
461 		rmap_item->address &= PAGE_MASK;
462 		cond_resched();
463 	}
464 
465 	rb_erase(&stable_node->node, &root_stable_tree);
466 	free_stable_node(stable_node);
467 }
468 
469 /*
470  * get_ksm_page: checks if the page indicated by the stable node
471  * is still its ksm page, despite having held no reference to it.
472  * In which case we can trust the content of the page, and it
473  * returns the gotten page; but if the page has now been zapped,
474  * remove the stale node from the stable tree and return NULL.
475  *
476  * You would expect the stable_node to hold a reference to the ksm page.
477  * But if it increments the page's count, swapping out has to wait for
478  * ksmd to come around again before it can free the page, which may take
479  * seconds or even minutes: much too unresponsive.  So instead we use a
480  * "keyhole reference": access to the ksm page from the stable node peeps
481  * out through its keyhole to see if that page still holds the right key,
482  * pointing back to this stable node.  This relies on freeing a PageAnon
483  * page to reset its page->mapping to NULL, and relies on no other use of
484  * a page to put something that might look like our key in page->mapping.
485  *
486  * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
487  * but this is different - made simpler by ksm_thread_mutex being held, but
488  * interesting for assuming that no other use of the struct page could ever
489  * put our expected_mapping into page->mapping (or a field of the union which
490  * coincides with page->mapping).  The RCU calls are not for KSM at all, but
491  * to keep the page_count protocol described with page_cache_get_speculative.
492  *
493  * Note: it is possible that get_ksm_page() will return NULL one moment,
494  * then page the next, if the page is in between page_freeze_refs() and
495  * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
496  * is on its way to being freed; but it is an anomaly to bear in mind.
497  */
498 static struct page *get_ksm_page(struct stable_node *stable_node)
499 {
500 	struct page *page;
501 	void *expected_mapping;
502 
503 	page = pfn_to_page(stable_node->kpfn);
504 	expected_mapping = (void *)stable_node +
505 				(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
506 	rcu_read_lock();
507 	if (page->mapping != expected_mapping)
508 		goto stale;
509 	if (!get_page_unless_zero(page))
510 		goto stale;
511 	if (page->mapping != expected_mapping) {
512 		put_page(page);
513 		goto stale;
514 	}
515 	rcu_read_unlock();
516 	return page;
517 stale:
518 	rcu_read_unlock();
519 	remove_node_from_stable_tree(stable_node);
520 	return NULL;
521 }
522 
523 /*
524  * Removing rmap_item from stable or unstable tree.
525  * This function will clean the information from the stable/unstable tree.
526  */
527 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
528 {
529 	if (rmap_item->address & STABLE_FLAG) {
530 		struct stable_node *stable_node;
531 		struct page *page;
532 
533 		stable_node = rmap_item->head;
534 		page = get_ksm_page(stable_node);
535 		if (!page)
536 			goto out;
537 
538 		lock_page(page);
539 		hlist_del(&rmap_item->hlist);
540 		unlock_page(page);
541 		put_page(page);
542 
543 		if (stable_node->hlist.first)
544 			ksm_pages_sharing--;
545 		else
546 			ksm_pages_shared--;
547 
548 		put_anon_vma(rmap_item->anon_vma);
549 		rmap_item->address &= PAGE_MASK;
550 
551 	} else if (rmap_item->address & UNSTABLE_FLAG) {
552 		unsigned char age;
553 		/*
554 		 * Usually ksmd can and must skip the rb_erase, because
555 		 * root_unstable_tree was already reset to RB_ROOT.
556 		 * But be careful when an mm is exiting: do the rb_erase
557 		 * if this rmap_item was inserted by this scan, rather
558 		 * than left over from before.
559 		 */
560 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
561 		BUG_ON(age > 1);
562 		if (!age)
563 			rb_erase(&rmap_item->node, &root_unstable_tree);
564 
565 		ksm_pages_unshared--;
566 		rmap_item->address &= PAGE_MASK;
567 	}
568 out:
569 	cond_resched();		/* we're called from many long loops */
570 }
571 
572 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
573 				       struct rmap_item **rmap_list)
574 {
575 	while (*rmap_list) {
576 		struct rmap_item *rmap_item = *rmap_list;
577 		*rmap_list = rmap_item->rmap_list;
578 		remove_rmap_item_from_tree(rmap_item);
579 		free_rmap_item(rmap_item);
580 	}
581 }
582 
583 /*
584  * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
585  * than check every pte of a given vma, the locking doesn't quite work for
586  * that - an rmap_item is assigned to the stable tree after inserting ksm
587  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
588  * rmap_items from parent to child at fork time (so as not to waste time
589  * if exit comes before the next scan reaches it).
590  *
591  * Similarly, although we'd like to remove rmap_items (so updating counts
592  * and freeing memory) when unmerging an area, it's easier to leave that
593  * to the next pass of ksmd - consider, for example, how ksmd might be
594  * in cmp_and_merge_page on one of the rmap_items we would be removing.
595  */
596 static int unmerge_ksm_pages(struct vm_area_struct *vma,
597 			     unsigned long start, unsigned long end)
598 {
599 	unsigned long addr;
600 	int err = 0;
601 
602 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
603 		if (ksm_test_exit(vma->vm_mm))
604 			break;
605 		if (signal_pending(current))
606 			err = -ERESTARTSYS;
607 		else
608 			err = break_ksm(vma, addr);
609 	}
610 	return err;
611 }
612 
613 #ifdef CONFIG_SYSFS
614 /*
615  * Only called through the sysfs control interface:
616  */
617 static int unmerge_and_remove_all_rmap_items(void)
618 {
619 	struct mm_slot *mm_slot;
620 	struct mm_struct *mm;
621 	struct vm_area_struct *vma;
622 	int err = 0;
623 
624 	spin_lock(&ksm_mmlist_lock);
625 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
626 						struct mm_slot, mm_list);
627 	spin_unlock(&ksm_mmlist_lock);
628 
629 	for (mm_slot = ksm_scan.mm_slot;
630 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
631 		mm = mm_slot->mm;
632 		down_read(&mm->mmap_sem);
633 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
634 			if (ksm_test_exit(mm))
635 				break;
636 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
637 				continue;
638 			err = unmerge_ksm_pages(vma,
639 						vma->vm_start, vma->vm_end);
640 			if (err)
641 				goto error;
642 		}
643 
644 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
645 
646 		spin_lock(&ksm_mmlist_lock);
647 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
648 						struct mm_slot, mm_list);
649 		if (ksm_test_exit(mm)) {
650 			hlist_del(&mm_slot->link);
651 			list_del(&mm_slot->mm_list);
652 			spin_unlock(&ksm_mmlist_lock);
653 
654 			free_mm_slot(mm_slot);
655 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
656 			up_read(&mm->mmap_sem);
657 			mmdrop(mm);
658 		} else {
659 			spin_unlock(&ksm_mmlist_lock);
660 			up_read(&mm->mmap_sem);
661 		}
662 	}
663 
664 	ksm_scan.seqnr = 0;
665 	return 0;
666 
667 error:
668 	up_read(&mm->mmap_sem);
669 	spin_lock(&ksm_mmlist_lock);
670 	ksm_scan.mm_slot = &ksm_mm_head;
671 	spin_unlock(&ksm_mmlist_lock);
672 	return err;
673 }
674 #endif /* CONFIG_SYSFS */
675 
676 static u32 calc_checksum(struct page *page)
677 {
678 	u32 checksum;
679 	void *addr = kmap_atomic(page);
680 	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
681 	kunmap_atomic(addr);
682 	return checksum;
683 }
684 
685 static int memcmp_pages(struct page *page1, struct page *page2)
686 {
687 	char *addr1, *addr2;
688 	int ret;
689 
690 	addr1 = kmap_atomic(page1);
691 	addr2 = kmap_atomic(page2);
692 	ret = memcmp(addr1, addr2, PAGE_SIZE);
693 	kunmap_atomic(addr2);
694 	kunmap_atomic(addr1);
695 	return ret;
696 }
697 
698 static inline int pages_identical(struct page *page1, struct page *page2)
699 {
700 	return !memcmp_pages(page1, page2);
701 }
702 
703 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
704 			      pte_t *orig_pte)
705 {
706 	struct mm_struct *mm = vma->vm_mm;
707 	unsigned long addr;
708 	pte_t *ptep;
709 	spinlock_t *ptl;
710 	int swapped;
711 	int err = -EFAULT;
712 	unsigned long mmun_start;	/* For mmu_notifiers */
713 	unsigned long mmun_end;		/* For mmu_notifiers */
714 
715 	addr = page_address_in_vma(page, vma);
716 	if (addr == -EFAULT)
717 		goto out;
718 
719 	BUG_ON(PageTransCompound(page));
720 
721 	mmun_start = addr;
722 	mmun_end   = addr + PAGE_SIZE;
723 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
724 
725 	ptep = page_check_address(page, mm, addr, &ptl, 0);
726 	if (!ptep)
727 		goto out_mn;
728 
729 	if (pte_write(*ptep) || pte_dirty(*ptep)) {
730 		pte_t entry;
731 
732 		swapped = PageSwapCache(page);
733 		flush_cache_page(vma, addr, page_to_pfn(page));
734 		/*
735 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
736 		 * take any lock, therefore the check that we are going to make
737 		 * with the pagecount against the mapcount is racey and
738 		 * O_DIRECT can happen right after the check.
739 		 * So we clear the pte and flush the tlb before the check
740 		 * this assure us that no O_DIRECT can happen after the check
741 		 * or in the middle of the check.
742 		 */
743 		entry = ptep_clear_flush(vma, addr, ptep);
744 		/*
745 		 * Check that no O_DIRECT or similar I/O is in progress on the
746 		 * page
747 		 */
748 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
749 			set_pte_at(mm, addr, ptep, entry);
750 			goto out_unlock;
751 		}
752 		if (pte_dirty(entry))
753 			set_page_dirty(page);
754 		entry = pte_mkclean(pte_wrprotect(entry));
755 		set_pte_at_notify(mm, addr, ptep, entry);
756 	}
757 	*orig_pte = *ptep;
758 	err = 0;
759 
760 out_unlock:
761 	pte_unmap_unlock(ptep, ptl);
762 out_mn:
763 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
764 out:
765 	return err;
766 }
767 
768 /**
769  * replace_page - replace page in vma by new ksm page
770  * @vma:      vma that holds the pte pointing to page
771  * @page:     the page we are replacing by kpage
772  * @kpage:    the ksm page we replace page by
773  * @orig_pte: the original value of the pte
774  *
775  * Returns 0 on success, -EFAULT on failure.
776  */
777 static int replace_page(struct vm_area_struct *vma, struct page *page,
778 			struct page *kpage, pte_t orig_pte)
779 {
780 	struct mm_struct *mm = vma->vm_mm;
781 	pmd_t *pmd;
782 	pte_t *ptep;
783 	spinlock_t *ptl;
784 	unsigned long addr;
785 	int err = -EFAULT;
786 	unsigned long mmun_start;	/* For mmu_notifiers */
787 	unsigned long mmun_end;		/* For mmu_notifiers */
788 
789 	addr = page_address_in_vma(page, vma);
790 	if (addr == -EFAULT)
791 		goto out;
792 
793 	pmd = mm_find_pmd(mm, addr);
794 	if (!pmd)
795 		goto out;
796 	BUG_ON(pmd_trans_huge(*pmd));
797 
798 	mmun_start = addr;
799 	mmun_end   = addr + PAGE_SIZE;
800 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
801 
802 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
803 	if (!pte_same(*ptep, orig_pte)) {
804 		pte_unmap_unlock(ptep, ptl);
805 		goto out_mn;
806 	}
807 
808 	get_page(kpage);
809 	page_add_anon_rmap(kpage, vma, addr);
810 
811 	flush_cache_page(vma, addr, pte_pfn(*ptep));
812 	ptep_clear_flush(vma, addr, ptep);
813 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
814 
815 	page_remove_rmap(page);
816 	if (!page_mapped(page))
817 		try_to_free_swap(page);
818 	put_page(page);
819 
820 	pte_unmap_unlock(ptep, ptl);
821 	err = 0;
822 out_mn:
823 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
824 out:
825 	return err;
826 }
827 
828 static int page_trans_compound_anon_split(struct page *page)
829 {
830 	int ret = 0;
831 	struct page *transhuge_head = page_trans_compound_anon(page);
832 	if (transhuge_head) {
833 		/* Get the reference on the head to split it. */
834 		if (get_page_unless_zero(transhuge_head)) {
835 			/*
836 			 * Recheck we got the reference while the head
837 			 * was still anonymous.
838 			 */
839 			if (PageAnon(transhuge_head))
840 				ret = split_huge_page(transhuge_head);
841 			else
842 				/*
843 				 * Retry later if split_huge_page run
844 				 * from under us.
845 				 */
846 				ret = 1;
847 			put_page(transhuge_head);
848 		} else
849 			/* Retry later if split_huge_page run from under us. */
850 			ret = 1;
851 	}
852 	return ret;
853 }
854 
855 /*
856  * try_to_merge_one_page - take two pages and merge them into one
857  * @vma: the vma that holds the pte pointing to page
858  * @page: the PageAnon page that we want to replace with kpage
859  * @kpage: the PageKsm page that we want to map instead of page,
860  *         or NULL the first time when we want to use page as kpage.
861  *
862  * This function returns 0 if the pages were merged, -EFAULT otherwise.
863  */
864 static int try_to_merge_one_page(struct vm_area_struct *vma,
865 				 struct page *page, struct page *kpage)
866 {
867 	pte_t orig_pte = __pte(0);
868 	int err = -EFAULT;
869 
870 	if (page == kpage)			/* ksm page forked */
871 		return 0;
872 
873 	if (!(vma->vm_flags & VM_MERGEABLE))
874 		goto out;
875 	if (PageTransCompound(page) && page_trans_compound_anon_split(page))
876 		goto out;
877 	BUG_ON(PageTransCompound(page));
878 	if (!PageAnon(page))
879 		goto out;
880 
881 	/*
882 	 * We need the page lock to read a stable PageSwapCache in
883 	 * write_protect_page().  We use trylock_page() instead of
884 	 * lock_page() because we don't want to wait here - we
885 	 * prefer to continue scanning and merging different pages,
886 	 * then come back to this page when it is unlocked.
887 	 */
888 	if (!trylock_page(page))
889 		goto out;
890 	/*
891 	 * If this anonymous page is mapped only here, its pte may need
892 	 * to be write-protected.  If it's mapped elsewhere, all of its
893 	 * ptes are necessarily already write-protected.  But in either
894 	 * case, we need to lock and check page_count is not raised.
895 	 */
896 	if (write_protect_page(vma, page, &orig_pte) == 0) {
897 		if (!kpage) {
898 			/*
899 			 * While we hold page lock, upgrade page from
900 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
901 			 * stable_tree_insert() will update stable_node.
902 			 */
903 			set_page_stable_node(page, NULL);
904 			mark_page_accessed(page);
905 			err = 0;
906 		} else if (pages_identical(page, kpage))
907 			err = replace_page(vma, page, kpage, orig_pte);
908 	}
909 
910 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
911 		munlock_vma_page(page);
912 		if (!PageMlocked(kpage)) {
913 			unlock_page(page);
914 			lock_page(kpage);
915 			mlock_vma_page(kpage);
916 			page = kpage;		/* for final unlock */
917 		}
918 	}
919 
920 	unlock_page(page);
921 out:
922 	return err;
923 }
924 
925 /*
926  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
927  * but no new kernel page is allocated: kpage must already be a ksm page.
928  *
929  * This function returns 0 if the pages were merged, -EFAULT otherwise.
930  */
931 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
932 				      struct page *page, struct page *kpage)
933 {
934 	struct mm_struct *mm = rmap_item->mm;
935 	struct vm_area_struct *vma;
936 	int err = -EFAULT;
937 
938 	down_read(&mm->mmap_sem);
939 	if (ksm_test_exit(mm))
940 		goto out;
941 	vma = find_vma(mm, rmap_item->address);
942 	if (!vma || vma->vm_start > rmap_item->address)
943 		goto out;
944 
945 	err = try_to_merge_one_page(vma, page, kpage);
946 	if (err)
947 		goto out;
948 
949 	/* Must get reference to anon_vma while still holding mmap_sem */
950 	rmap_item->anon_vma = vma->anon_vma;
951 	get_anon_vma(vma->anon_vma);
952 out:
953 	up_read(&mm->mmap_sem);
954 	return err;
955 }
956 
957 /*
958  * try_to_merge_two_pages - take two identical pages and prepare them
959  * to be merged into one page.
960  *
961  * This function returns the kpage if we successfully merged two identical
962  * pages into one ksm page, NULL otherwise.
963  *
964  * Note that this function upgrades page to ksm page: if one of the pages
965  * is already a ksm page, try_to_merge_with_ksm_page should be used.
966  */
967 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
968 					   struct page *page,
969 					   struct rmap_item *tree_rmap_item,
970 					   struct page *tree_page)
971 {
972 	int err;
973 
974 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
975 	if (!err) {
976 		err = try_to_merge_with_ksm_page(tree_rmap_item,
977 							tree_page, page);
978 		/*
979 		 * If that fails, we have a ksm page with only one pte
980 		 * pointing to it: so break it.
981 		 */
982 		if (err)
983 			break_cow(rmap_item);
984 	}
985 	return err ? NULL : page;
986 }
987 
988 /*
989  * stable_tree_search - search for page inside the stable tree
990  *
991  * This function checks if there is a page inside the stable tree
992  * with identical content to the page that we are scanning right now.
993  *
994  * This function returns the stable tree node of identical content if found,
995  * NULL otherwise.
996  */
997 static struct page *stable_tree_search(struct page *page)
998 {
999 	struct rb_node *node = root_stable_tree.rb_node;
1000 	struct stable_node *stable_node;
1001 
1002 	stable_node = page_stable_node(page);
1003 	if (stable_node) {			/* ksm page forked */
1004 		get_page(page);
1005 		return page;
1006 	}
1007 
1008 	while (node) {
1009 		struct page *tree_page;
1010 		int ret;
1011 
1012 		cond_resched();
1013 		stable_node = rb_entry(node, struct stable_node, node);
1014 		tree_page = get_ksm_page(stable_node);
1015 		if (!tree_page)
1016 			return NULL;
1017 
1018 		ret = memcmp_pages(page, tree_page);
1019 
1020 		if (ret < 0) {
1021 			put_page(tree_page);
1022 			node = node->rb_left;
1023 		} else if (ret > 0) {
1024 			put_page(tree_page);
1025 			node = node->rb_right;
1026 		} else
1027 			return tree_page;
1028 	}
1029 
1030 	return NULL;
1031 }
1032 
1033 /*
1034  * stable_tree_insert - insert rmap_item pointing to new ksm page
1035  * into the stable tree.
1036  *
1037  * This function returns the stable tree node just allocated on success,
1038  * NULL otherwise.
1039  */
1040 static struct stable_node *stable_tree_insert(struct page *kpage)
1041 {
1042 	struct rb_node **new = &root_stable_tree.rb_node;
1043 	struct rb_node *parent = NULL;
1044 	struct stable_node *stable_node;
1045 
1046 	while (*new) {
1047 		struct page *tree_page;
1048 		int ret;
1049 
1050 		cond_resched();
1051 		stable_node = rb_entry(*new, struct stable_node, node);
1052 		tree_page = get_ksm_page(stable_node);
1053 		if (!tree_page)
1054 			return NULL;
1055 
1056 		ret = memcmp_pages(kpage, tree_page);
1057 		put_page(tree_page);
1058 
1059 		parent = *new;
1060 		if (ret < 0)
1061 			new = &parent->rb_left;
1062 		else if (ret > 0)
1063 			new = &parent->rb_right;
1064 		else {
1065 			/*
1066 			 * It is not a bug that stable_tree_search() didn't
1067 			 * find this node: because at that time our page was
1068 			 * not yet write-protected, so may have changed since.
1069 			 */
1070 			return NULL;
1071 		}
1072 	}
1073 
1074 	stable_node = alloc_stable_node();
1075 	if (!stable_node)
1076 		return NULL;
1077 
1078 	rb_link_node(&stable_node->node, parent, new);
1079 	rb_insert_color(&stable_node->node, &root_stable_tree);
1080 
1081 	INIT_HLIST_HEAD(&stable_node->hlist);
1082 
1083 	stable_node->kpfn = page_to_pfn(kpage);
1084 	set_page_stable_node(kpage, stable_node);
1085 
1086 	return stable_node;
1087 }
1088 
1089 /*
1090  * unstable_tree_search_insert - search for identical page,
1091  * else insert rmap_item into the unstable tree.
1092  *
1093  * This function searches for a page in the unstable tree identical to the
1094  * page currently being scanned; and if no identical page is found in the
1095  * tree, we insert rmap_item as a new object into the unstable tree.
1096  *
1097  * This function returns pointer to rmap_item found to be identical
1098  * to the currently scanned page, NULL otherwise.
1099  *
1100  * This function does both searching and inserting, because they share
1101  * the same walking algorithm in an rbtree.
1102  */
1103 static
1104 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1105 					      struct page *page,
1106 					      struct page **tree_pagep)
1107 
1108 {
1109 	struct rb_node **new = &root_unstable_tree.rb_node;
1110 	struct rb_node *parent = NULL;
1111 
1112 	while (*new) {
1113 		struct rmap_item *tree_rmap_item;
1114 		struct page *tree_page;
1115 		int ret;
1116 
1117 		cond_resched();
1118 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1119 		tree_page = get_mergeable_page(tree_rmap_item);
1120 		if (IS_ERR_OR_NULL(tree_page))
1121 			return NULL;
1122 
1123 		/*
1124 		 * Don't substitute a ksm page for a forked page.
1125 		 */
1126 		if (page == tree_page) {
1127 			put_page(tree_page);
1128 			return NULL;
1129 		}
1130 
1131 		ret = memcmp_pages(page, tree_page);
1132 
1133 		parent = *new;
1134 		if (ret < 0) {
1135 			put_page(tree_page);
1136 			new = &parent->rb_left;
1137 		} else if (ret > 0) {
1138 			put_page(tree_page);
1139 			new = &parent->rb_right;
1140 		} else {
1141 			*tree_pagep = tree_page;
1142 			return tree_rmap_item;
1143 		}
1144 	}
1145 
1146 	rmap_item->address |= UNSTABLE_FLAG;
1147 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1148 	rb_link_node(&rmap_item->node, parent, new);
1149 	rb_insert_color(&rmap_item->node, &root_unstable_tree);
1150 
1151 	ksm_pages_unshared++;
1152 	return NULL;
1153 }
1154 
1155 /*
1156  * stable_tree_append - add another rmap_item to the linked list of
1157  * rmap_items hanging off a given node of the stable tree, all sharing
1158  * the same ksm page.
1159  */
1160 static void stable_tree_append(struct rmap_item *rmap_item,
1161 			       struct stable_node *stable_node)
1162 {
1163 	rmap_item->head = stable_node;
1164 	rmap_item->address |= STABLE_FLAG;
1165 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1166 
1167 	if (rmap_item->hlist.next)
1168 		ksm_pages_sharing++;
1169 	else
1170 		ksm_pages_shared++;
1171 }
1172 
1173 /*
1174  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1175  * if not, compare checksum to previous and if it's the same, see if page can
1176  * be inserted into the unstable tree, or merged with a page already there and
1177  * both transferred to the stable tree.
1178  *
1179  * @page: the page that we are searching identical page to.
1180  * @rmap_item: the reverse mapping into the virtual address of this page
1181  */
1182 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1183 {
1184 	struct rmap_item *tree_rmap_item;
1185 	struct page *tree_page = NULL;
1186 	struct stable_node *stable_node;
1187 	struct page *kpage;
1188 	unsigned int checksum;
1189 	int err;
1190 
1191 	remove_rmap_item_from_tree(rmap_item);
1192 
1193 	/* We first start with searching the page inside the stable tree */
1194 	kpage = stable_tree_search(page);
1195 	if (kpage) {
1196 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1197 		if (!err) {
1198 			/*
1199 			 * The page was successfully merged:
1200 			 * add its rmap_item to the stable tree.
1201 			 */
1202 			lock_page(kpage);
1203 			stable_tree_append(rmap_item, page_stable_node(kpage));
1204 			unlock_page(kpage);
1205 		}
1206 		put_page(kpage);
1207 		return;
1208 	}
1209 
1210 	/*
1211 	 * If the hash value of the page has changed from the last time
1212 	 * we calculated it, this page is changing frequently: therefore we
1213 	 * don't want to insert it in the unstable tree, and we don't want
1214 	 * to waste our time searching for something identical to it there.
1215 	 */
1216 	checksum = calc_checksum(page);
1217 	if (rmap_item->oldchecksum != checksum) {
1218 		rmap_item->oldchecksum = checksum;
1219 		return;
1220 	}
1221 
1222 	tree_rmap_item =
1223 		unstable_tree_search_insert(rmap_item, page, &tree_page);
1224 	if (tree_rmap_item) {
1225 		kpage = try_to_merge_two_pages(rmap_item, page,
1226 						tree_rmap_item, tree_page);
1227 		put_page(tree_page);
1228 		/*
1229 		 * As soon as we merge this page, we want to remove the
1230 		 * rmap_item of the page we have merged with from the unstable
1231 		 * tree, and insert it instead as new node in the stable tree.
1232 		 */
1233 		if (kpage) {
1234 			remove_rmap_item_from_tree(tree_rmap_item);
1235 
1236 			lock_page(kpage);
1237 			stable_node = stable_tree_insert(kpage);
1238 			if (stable_node) {
1239 				stable_tree_append(tree_rmap_item, stable_node);
1240 				stable_tree_append(rmap_item, stable_node);
1241 			}
1242 			unlock_page(kpage);
1243 
1244 			/*
1245 			 * If we fail to insert the page into the stable tree,
1246 			 * we will have 2 virtual addresses that are pointing
1247 			 * to a ksm page left outside the stable tree,
1248 			 * in which case we need to break_cow on both.
1249 			 */
1250 			if (!stable_node) {
1251 				break_cow(tree_rmap_item);
1252 				break_cow(rmap_item);
1253 			}
1254 		}
1255 	}
1256 }
1257 
1258 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1259 					    struct rmap_item **rmap_list,
1260 					    unsigned long addr)
1261 {
1262 	struct rmap_item *rmap_item;
1263 
1264 	while (*rmap_list) {
1265 		rmap_item = *rmap_list;
1266 		if ((rmap_item->address & PAGE_MASK) == addr)
1267 			return rmap_item;
1268 		if (rmap_item->address > addr)
1269 			break;
1270 		*rmap_list = rmap_item->rmap_list;
1271 		remove_rmap_item_from_tree(rmap_item);
1272 		free_rmap_item(rmap_item);
1273 	}
1274 
1275 	rmap_item = alloc_rmap_item();
1276 	if (rmap_item) {
1277 		/* It has already been zeroed */
1278 		rmap_item->mm = mm_slot->mm;
1279 		rmap_item->address = addr;
1280 		rmap_item->rmap_list = *rmap_list;
1281 		*rmap_list = rmap_item;
1282 	}
1283 	return rmap_item;
1284 }
1285 
1286 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1287 {
1288 	struct mm_struct *mm;
1289 	struct mm_slot *slot;
1290 	struct vm_area_struct *vma;
1291 	struct rmap_item *rmap_item;
1292 
1293 	if (list_empty(&ksm_mm_head.mm_list))
1294 		return NULL;
1295 
1296 	slot = ksm_scan.mm_slot;
1297 	if (slot == &ksm_mm_head) {
1298 		/*
1299 		 * A number of pages can hang around indefinitely on per-cpu
1300 		 * pagevecs, raised page count preventing write_protect_page
1301 		 * from merging them.  Though it doesn't really matter much,
1302 		 * it is puzzling to see some stuck in pages_volatile until
1303 		 * other activity jostles them out, and they also prevented
1304 		 * LTP's KSM test from succeeding deterministically; so drain
1305 		 * them here (here rather than on entry to ksm_do_scan(),
1306 		 * so we don't IPI too often when pages_to_scan is set low).
1307 		 */
1308 		lru_add_drain_all();
1309 
1310 		root_unstable_tree = RB_ROOT;
1311 
1312 		spin_lock(&ksm_mmlist_lock);
1313 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1314 		ksm_scan.mm_slot = slot;
1315 		spin_unlock(&ksm_mmlist_lock);
1316 		/*
1317 		 * Although we tested list_empty() above, a racing __ksm_exit
1318 		 * of the last mm on the list may have removed it since then.
1319 		 */
1320 		if (slot == &ksm_mm_head)
1321 			return NULL;
1322 next_mm:
1323 		ksm_scan.address = 0;
1324 		ksm_scan.rmap_list = &slot->rmap_list;
1325 	}
1326 
1327 	mm = slot->mm;
1328 	down_read(&mm->mmap_sem);
1329 	if (ksm_test_exit(mm))
1330 		vma = NULL;
1331 	else
1332 		vma = find_vma(mm, ksm_scan.address);
1333 
1334 	for (; vma; vma = vma->vm_next) {
1335 		if (!(vma->vm_flags & VM_MERGEABLE))
1336 			continue;
1337 		if (ksm_scan.address < vma->vm_start)
1338 			ksm_scan.address = vma->vm_start;
1339 		if (!vma->anon_vma)
1340 			ksm_scan.address = vma->vm_end;
1341 
1342 		while (ksm_scan.address < vma->vm_end) {
1343 			if (ksm_test_exit(mm))
1344 				break;
1345 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1346 			if (IS_ERR_OR_NULL(*page)) {
1347 				ksm_scan.address += PAGE_SIZE;
1348 				cond_resched();
1349 				continue;
1350 			}
1351 			if (PageAnon(*page) ||
1352 			    page_trans_compound_anon(*page)) {
1353 				flush_anon_page(vma, *page, ksm_scan.address);
1354 				flush_dcache_page(*page);
1355 				rmap_item = get_next_rmap_item(slot,
1356 					ksm_scan.rmap_list, ksm_scan.address);
1357 				if (rmap_item) {
1358 					ksm_scan.rmap_list =
1359 							&rmap_item->rmap_list;
1360 					ksm_scan.address += PAGE_SIZE;
1361 				} else
1362 					put_page(*page);
1363 				up_read(&mm->mmap_sem);
1364 				return rmap_item;
1365 			}
1366 			put_page(*page);
1367 			ksm_scan.address += PAGE_SIZE;
1368 			cond_resched();
1369 		}
1370 	}
1371 
1372 	if (ksm_test_exit(mm)) {
1373 		ksm_scan.address = 0;
1374 		ksm_scan.rmap_list = &slot->rmap_list;
1375 	}
1376 	/*
1377 	 * Nuke all the rmap_items that are above this current rmap:
1378 	 * because there were no VM_MERGEABLE vmas with such addresses.
1379 	 */
1380 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1381 
1382 	spin_lock(&ksm_mmlist_lock);
1383 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1384 						struct mm_slot, mm_list);
1385 	if (ksm_scan.address == 0) {
1386 		/*
1387 		 * We've completed a full scan of all vmas, holding mmap_sem
1388 		 * throughout, and found no VM_MERGEABLE: so do the same as
1389 		 * __ksm_exit does to remove this mm from all our lists now.
1390 		 * This applies either when cleaning up after __ksm_exit
1391 		 * (but beware: we can reach here even before __ksm_exit),
1392 		 * or when all VM_MERGEABLE areas have been unmapped (and
1393 		 * mmap_sem then protects against race with MADV_MERGEABLE).
1394 		 */
1395 		hlist_del(&slot->link);
1396 		list_del(&slot->mm_list);
1397 		spin_unlock(&ksm_mmlist_lock);
1398 
1399 		free_mm_slot(slot);
1400 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1401 		up_read(&mm->mmap_sem);
1402 		mmdrop(mm);
1403 	} else {
1404 		spin_unlock(&ksm_mmlist_lock);
1405 		up_read(&mm->mmap_sem);
1406 	}
1407 
1408 	/* Repeat until we've completed scanning the whole list */
1409 	slot = ksm_scan.mm_slot;
1410 	if (slot != &ksm_mm_head)
1411 		goto next_mm;
1412 
1413 	ksm_scan.seqnr++;
1414 	return NULL;
1415 }
1416 
1417 /**
1418  * ksm_do_scan  - the ksm scanner main worker function.
1419  * @scan_npages - number of pages we want to scan before we return.
1420  */
1421 static void ksm_do_scan(unsigned int scan_npages)
1422 {
1423 	struct rmap_item *rmap_item;
1424 	struct page *uninitialized_var(page);
1425 
1426 	while (scan_npages-- && likely(!freezing(current))) {
1427 		cond_resched();
1428 		rmap_item = scan_get_next_rmap_item(&page);
1429 		if (!rmap_item)
1430 			return;
1431 		if (!PageKsm(page) || !in_stable_tree(rmap_item))
1432 			cmp_and_merge_page(page, rmap_item);
1433 		put_page(page);
1434 	}
1435 }
1436 
1437 static int ksmd_should_run(void)
1438 {
1439 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1440 }
1441 
1442 static int ksm_scan_thread(void *nothing)
1443 {
1444 	set_freezable();
1445 	set_user_nice(current, 5);
1446 
1447 	while (!kthread_should_stop()) {
1448 		mutex_lock(&ksm_thread_mutex);
1449 		if (ksmd_should_run())
1450 			ksm_do_scan(ksm_thread_pages_to_scan);
1451 		mutex_unlock(&ksm_thread_mutex);
1452 
1453 		try_to_freeze();
1454 
1455 		if (ksmd_should_run()) {
1456 			schedule_timeout_interruptible(
1457 				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1458 		} else {
1459 			wait_event_freezable(ksm_thread_wait,
1460 				ksmd_should_run() || kthread_should_stop());
1461 		}
1462 	}
1463 	return 0;
1464 }
1465 
1466 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1467 		unsigned long end, int advice, unsigned long *vm_flags)
1468 {
1469 	struct mm_struct *mm = vma->vm_mm;
1470 	int err;
1471 
1472 	switch (advice) {
1473 	case MADV_MERGEABLE:
1474 		/*
1475 		 * Be somewhat over-protective for now!
1476 		 */
1477 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1478 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1479 				 VM_HUGETLB | VM_NONLINEAR | VM_MIXEDMAP))
1480 			return 0;		/* just ignore the advice */
1481 
1482 #ifdef VM_SAO
1483 		if (*vm_flags & VM_SAO)
1484 			return 0;
1485 #endif
1486 
1487 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1488 			err = __ksm_enter(mm);
1489 			if (err)
1490 				return err;
1491 		}
1492 
1493 		*vm_flags |= VM_MERGEABLE;
1494 		break;
1495 
1496 	case MADV_UNMERGEABLE:
1497 		if (!(*vm_flags & VM_MERGEABLE))
1498 			return 0;		/* just ignore the advice */
1499 
1500 		if (vma->anon_vma) {
1501 			err = unmerge_ksm_pages(vma, start, end);
1502 			if (err)
1503 				return err;
1504 		}
1505 
1506 		*vm_flags &= ~VM_MERGEABLE;
1507 		break;
1508 	}
1509 
1510 	return 0;
1511 }
1512 
1513 int __ksm_enter(struct mm_struct *mm)
1514 {
1515 	struct mm_slot *mm_slot;
1516 	int needs_wakeup;
1517 
1518 	mm_slot = alloc_mm_slot();
1519 	if (!mm_slot)
1520 		return -ENOMEM;
1521 
1522 	/* Check ksm_run too?  Would need tighter locking */
1523 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1524 
1525 	spin_lock(&ksm_mmlist_lock);
1526 	insert_to_mm_slots_hash(mm, mm_slot);
1527 	/*
1528 	 * Insert just behind the scanning cursor, to let the area settle
1529 	 * down a little; when fork is followed by immediate exec, we don't
1530 	 * want ksmd to waste time setting up and tearing down an rmap_list.
1531 	 */
1532 	list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1533 	spin_unlock(&ksm_mmlist_lock);
1534 
1535 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1536 	atomic_inc(&mm->mm_count);
1537 
1538 	if (needs_wakeup)
1539 		wake_up_interruptible(&ksm_thread_wait);
1540 
1541 	return 0;
1542 }
1543 
1544 void __ksm_exit(struct mm_struct *mm)
1545 {
1546 	struct mm_slot *mm_slot;
1547 	int easy_to_free = 0;
1548 
1549 	/*
1550 	 * This process is exiting: if it's straightforward (as is the
1551 	 * case when ksmd was never running), free mm_slot immediately.
1552 	 * But if it's at the cursor or has rmap_items linked to it, use
1553 	 * mmap_sem to synchronize with any break_cows before pagetables
1554 	 * are freed, and leave the mm_slot on the list for ksmd to free.
1555 	 * Beware: ksm may already have noticed it exiting and freed the slot.
1556 	 */
1557 
1558 	spin_lock(&ksm_mmlist_lock);
1559 	mm_slot = get_mm_slot(mm);
1560 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1561 		if (!mm_slot->rmap_list) {
1562 			hlist_del(&mm_slot->link);
1563 			list_del(&mm_slot->mm_list);
1564 			easy_to_free = 1;
1565 		} else {
1566 			list_move(&mm_slot->mm_list,
1567 				  &ksm_scan.mm_slot->mm_list);
1568 		}
1569 	}
1570 	spin_unlock(&ksm_mmlist_lock);
1571 
1572 	if (easy_to_free) {
1573 		free_mm_slot(mm_slot);
1574 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1575 		mmdrop(mm);
1576 	} else if (mm_slot) {
1577 		down_write(&mm->mmap_sem);
1578 		up_write(&mm->mmap_sem);
1579 	}
1580 }
1581 
1582 struct page *ksm_does_need_to_copy(struct page *page,
1583 			struct vm_area_struct *vma, unsigned long address)
1584 {
1585 	struct page *new_page;
1586 
1587 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1588 	if (new_page) {
1589 		copy_user_highpage(new_page, page, address, vma);
1590 
1591 		SetPageDirty(new_page);
1592 		__SetPageUptodate(new_page);
1593 		SetPageSwapBacked(new_page);
1594 		__set_page_locked(new_page);
1595 
1596 		if (!mlocked_vma_newpage(vma, new_page))
1597 			lru_cache_add_lru(new_page, LRU_ACTIVE_ANON);
1598 		else
1599 			add_page_to_unevictable_list(new_page);
1600 	}
1601 
1602 	return new_page;
1603 }
1604 
1605 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1606 			unsigned long *vm_flags)
1607 {
1608 	struct stable_node *stable_node;
1609 	struct rmap_item *rmap_item;
1610 	struct hlist_node *hlist;
1611 	unsigned int mapcount = page_mapcount(page);
1612 	int referenced = 0;
1613 	int search_new_forks = 0;
1614 
1615 	VM_BUG_ON(!PageKsm(page));
1616 	VM_BUG_ON(!PageLocked(page));
1617 
1618 	stable_node = page_stable_node(page);
1619 	if (!stable_node)
1620 		return 0;
1621 again:
1622 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1623 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1624 		struct anon_vma_chain *vmac;
1625 		struct vm_area_struct *vma;
1626 
1627 		anon_vma_lock_write(anon_vma);
1628 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1629 					       0, ULONG_MAX) {
1630 			vma = vmac->vma;
1631 			if (rmap_item->address < vma->vm_start ||
1632 			    rmap_item->address >= vma->vm_end)
1633 				continue;
1634 			/*
1635 			 * Initially we examine only the vma which covers this
1636 			 * rmap_item; but later, if there is still work to do,
1637 			 * we examine covering vmas in other mms: in case they
1638 			 * were forked from the original since ksmd passed.
1639 			 */
1640 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1641 				continue;
1642 
1643 			if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1644 				continue;
1645 
1646 			referenced += page_referenced_one(page, vma,
1647 				rmap_item->address, &mapcount, vm_flags);
1648 			if (!search_new_forks || !mapcount)
1649 				break;
1650 		}
1651 		anon_vma_unlock(anon_vma);
1652 		if (!mapcount)
1653 			goto out;
1654 	}
1655 	if (!search_new_forks++)
1656 		goto again;
1657 out:
1658 	return referenced;
1659 }
1660 
1661 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1662 {
1663 	struct stable_node *stable_node;
1664 	struct hlist_node *hlist;
1665 	struct rmap_item *rmap_item;
1666 	int ret = SWAP_AGAIN;
1667 	int search_new_forks = 0;
1668 
1669 	VM_BUG_ON(!PageKsm(page));
1670 	VM_BUG_ON(!PageLocked(page));
1671 
1672 	stable_node = page_stable_node(page);
1673 	if (!stable_node)
1674 		return SWAP_FAIL;
1675 again:
1676 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1677 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1678 		struct anon_vma_chain *vmac;
1679 		struct vm_area_struct *vma;
1680 
1681 		anon_vma_lock_write(anon_vma);
1682 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1683 					       0, ULONG_MAX) {
1684 			vma = vmac->vma;
1685 			if (rmap_item->address < vma->vm_start ||
1686 			    rmap_item->address >= vma->vm_end)
1687 				continue;
1688 			/*
1689 			 * Initially we examine only the vma which covers this
1690 			 * rmap_item; but later, if there is still work to do,
1691 			 * we examine covering vmas in other mms: in case they
1692 			 * were forked from the original since ksmd passed.
1693 			 */
1694 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1695 				continue;
1696 
1697 			ret = try_to_unmap_one(page, vma,
1698 					rmap_item->address, flags);
1699 			if (ret != SWAP_AGAIN || !page_mapped(page)) {
1700 				anon_vma_unlock(anon_vma);
1701 				goto out;
1702 			}
1703 		}
1704 		anon_vma_unlock(anon_vma);
1705 	}
1706 	if (!search_new_forks++)
1707 		goto again;
1708 out:
1709 	return ret;
1710 }
1711 
1712 #ifdef CONFIG_MIGRATION
1713 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1714 		  struct vm_area_struct *, unsigned long, void *), void *arg)
1715 {
1716 	struct stable_node *stable_node;
1717 	struct hlist_node *hlist;
1718 	struct rmap_item *rmap_item;
1719 	int ret = SWAP_AGAIN;
1720 	int search_new_forks = 0;
1721 
1722 	VM_BUG_ON(!PageKsm(page));
1723 	VM_BUG_ON(!PageLocked(page));
1724 
1725 	stable_node = page_stable_node(page);
1726 	if (!stable_node)
1727 		return ret;
1728 again:
1729 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1730 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1731 		struct anon_vma_chain *vmac;
1732 		struct vm_area_struct *vma;
1733 
1734 		anon_vma_lock_write(anon_vma);
1735 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1736 					       0, ULONG_MAX) {
1737 			vma = vmac->vma;
1738 			if (rmap_item->address < vma->vm_start ||
1739 			    rmap_item->address >= vma->vm_end)
1740 				continue;
1741 			/*
1742 			 * Initially we examine only the vma which covers this
1743 			 * rmap_item; but later, if there is still work to do,
1744 			 * we examine covering vmas in other mms: in case they
1745 			 * were forked from the original since ksmd passed.
1746 			 */
1747 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1748 				continue;
1749 
1750 			ret = rmap_one(page, vma, rmap_item->address, arg);
1751 			if (ret != SWAP_AGAIN) {
1752 				anon_vma_unlock(anon_vma);
1753 				goto out;
1754 			}
1755 		}
1756 		anon_vma_unlock(anon_vma);
1757 	}
1758 	if (!search_new_forks++)
1759 		goto again;
1760 out:
1761 	return ret;
1762 }
1763 
1764 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1765 {
1766 	struct stable_node *stable_node;
1767 
1768 	VM_BUG_ON(!PageLocked(oldpage));
1769 	VM_BUG_ON(!PageLocked(newpage));
1770 	VM_BUG_ON(newpage->mapping != oldpage->mapping);
1771 
1772 	stable_node = page_stable_node(newpage);
1773 	if (stable_node) {
1774 		VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
1775 		stable_node->kpfn = page_to_pfn(newpage);
1776 	}
1777 }
1778 #endif /* CONFIG_MIGRATION */
1779 
1780 #ifdef CONFIG_MEMORY_HOTREMOVE
1781 static struct stable_node *ksm_check_stable_tree(unsigned long start_pfn,
1782 						 unsigned long end_pfn)
1783 {
1784 	struct rb_node *node;
1785 
1786 	for (node = rb_first(&root_stable_tree); node; node = rb_next(node)) {
1787 		struct stable_node *stable_node;
1788 
1789 		stable_node = rb_entry(node, struct stable_node, node);
1790 		if (stable_node->kpfn >= start_pfn &&
1791 		    stable_node->kpfn < end_pfn)
1792 			return stable_node;
1793 	}
1794 	return NULL;
1795 }
1796 
1797 static int ksm_memory_callback(struct notifier_block *self,
1798 			       unsigned long action, void *arg)
1799 {
1800 	struct memory_notify *mn = arg;
1801 	struct stable_node *stable_node;
1802 
1803 	switch (action) {
1804 	case MEM_GOING_OFFLINE:
1805 		/*
1806 		 * Keep it very simple for now: just lock out ksmd and
1807 		 * MADV_UNMERGEABLE while any memory is going offline.
1808 		 * mutex_lock_nested() is necessary because lockdep was alarmed
1809 		 * that here we take ksm_thread_mutex inside notifier chain
1810 		 * mutex, and later take notifier chain mutex inside
1811 		 * ksm_thread_mutex to unlock it.   But that's safe because both
1812 		 * are inside mem_hotplug_mutex.
1813 		 */
1814 		mutex_lock_nested(&ksm_thread_mutex, SINGLE_DEPTH_NESTING);
1815 		break;
1816 
1817 	case MEM_OFFLINE:
1818 		/*
1819 		 * Most of the work is done by page migration; but there might
1820 		 * be a few stable_nodes left over, still pointing to struct
1821 		 * pages which have been offlined: prune those from the tree.
1822 		 */
1823 		while ((stable_node = ksm_check_stable_tree(mn->start_pfn,
1824 					mn->start_pfn + mn->nr_pages)) != NULL)
1825 			remove_node_from_stable_tree(stable_node);
1826 		/* fallthrough */
1827 
1828 	case MEM_CANCEL_OFFLINE:
1829 		mutex_unlock(&ksm_thread_mutex);
1830 		break;
1831 	}
1832 	return NOTIFY_OK;
1833 }
1834 #endif /* CONFIG_MEMORY_HOTREMOVE */
1835 
1836 #ifdef CONFIG_SYSFS
1837 /*
1838  * This all compiles without CONFIG_SYSFS, but is a waste of space.
1839  */
1840 
1841 #define KSM_ATTR_RO(_name) \
1842 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1843 #define KSM_ATTR(_name) \
1844 	static struct kobj_attribute _name##_attr = \
1845 		__ATTR(_name, 0644, _name##_show, _name##_store)
1846 
1847 static ssize_t sleep_millisecs_show(struct kobject *kobj,
1848 				    struct kobj_attribute *attr, char *buf)
1849 {
1850 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1851 }
1852 
1853 static ssize_t sleep_millisecs_store(struct kobject *kobj,
1854 				     struct kobj_attribute *attr,
1855 				     const char *buf, size_t count)
1856 {
1857 	unsigned long msecs;
1858 	int err;
1859 
1860 	err = strict_strtoul(buf, 10, &msecs);
1861 	if (err || msecs > UINT_MAX)
1862 		return -EINVAL;
1863 
1864 	ksm_thread_sleep_millisecs = msecs;
1865 
1866 	return count;
1867 }
1868 KSM_ATTR(sleep_millisecs);
1869 
1870 static ssize_t pages_to_scan_show(struct kobject *kobj,
1871 				  struct kobj_attribute *attr, char *buf)
1872 {
1873 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1874 }
1875 
1876 static ssize_t pages_to_scan_store(struct kobject *kobj,
1877 				   struct kobj_attribute *attr,
1878 				   const char *buf, size_t count)
1879 {
1880 	int err;
1881 	unsigned long nr_pages;
1882 
1883 	err = strict_strtoul(buf, 10, &nr_pages);
1884 	if (err || nr_pages > UINT_MAX)
1885 		return -EINVAL;
1886 
1887 	ksm_thread_pages_to_scan = nr_pages;
1888 
1889 	return count;
1890 }
1891 KSM_ATTR(pages_to_scan);
1892 
1893 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1894 			char *buf)
1895 {
1896 	return sprintf(buf, "%u\n", ksm_run);
1897 }
1898 
1899 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1900 			 const char *buf, size_t count)
1901 {
1902 	int err;
1903 	unsigned long flags;
1904 
1905 	err = strict_strtoul(buf, 10, &flags);
1906 	if (err || flags > UINT_MAX)
1907 		return -EINVAL;
1908 	if (flags > KSM_RUN_UNMERGE)
1909 		return -EINVAL;
1910 
1911 	/*
1912 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1913 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1914 	 * breaking COW to free the pages_shared (but leaves mm_slots
1915 	 * on the list for when ksmd may be set running again).
1916 	 */
1917 
1918 	mutex_lock(&ksm_thread_mutex);
1919 	if (ksm_run != flags) {
1920 		ksm_run = flags;
1921 		if (flags & KSM_RUN_UNMERGE) {
1922 			set_current_oom_origin();
1923 			err = unmerge_and_remove_all_rmap_items();
1924 			clear_current_oom_origin();
1925 			if (err) {
1926 				ksm_run = KSM_RUN_STOP;
1927 				count = err;
1928 			}
1929 		}
1930 	}
1931 	mutex_unlock(&ksm_thread_mutex);
1932 
1933 	if (flags & KSM_RUN_MERGE)
1934 		wake_up_interruptible(&ksm_thread_wait);
1935 
1936 	return count;
1937 }
1938 KSM_ATTR(run);
1939 
1940 static ssize_t pages_shared_show(struct kobject *kobj,
1941 				 struct kobj_attribute *attr, char *buf)
1942 {
1943 	return sprintf(buf, "%lu\n", ksm_pages_shared);
1944 }
1945 KSM_ATTR_RO(pages_shared);
1946 
1947 static ssize_t pages_sharing_show(struct kobject *kobj,
1948 				  struct kobj_attribute *attr, char *buf)
1949 {
1950 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
1951 }
1952 KSM_ATTR_RO(pages_sharing);
1953 
1954 static ssize_t pages_unshared_show(struct kobject *kobj,
1955 				   struct kobj_attribute *attr, char *buf)
1956 {
1957 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
1958 }
1959 KSM_ATTR_RO(pages_unshared);
1960 
1961 static ssize_t pages_volatile_show(struct kobject *kobj,
1962 				   struct kobj_attribute *attr, char *buf)
1963 {
1964 	long ksm_pages_volatile;
1965 
1966 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1967 				- ksm_pages_sharing - ksm_pages_unshared;
1968 	/*
1969 	 * It was not worth any locking to calculate that statistic,
1970 	 * but it might therefore sometimes be negative: conceal that.
1971 	 */
1972 	if (ksm_pages_volatile < 0)
1973 		ksm_pages_volatile = 0;
1974 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
1975 }
1976 KSM_ATTR_RO(pages_volatile);
1977 
1978 static ssize_t full_scans_show(struct kobject *kobj,
1979 			       struct kobj_attribute *attr, char *buf)
1980 {
1981 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1982 }
1983 KSM_ATTR_RO(full_scans);
1984 
1985 static struct attribute *ksm_attrs[] = {
1986 	&sleep_millisecs_attr.attr,
1987 	&pages_to_scan_attr.attr,
1988 	&run_attr.attr,
1989 	&pages_shared_attr.attr,
1990 	&pages_sharing_attr.attr,
1991 	&pages_unshared_attr.attr,
1992 	&pages_volatile_attr.attr,
1993 	&full_scans_attr.attr,
1994 	NULL,
1995 };
1996 
1997 static struct attribute_group ksm_attr_group = {
1998 	.attrs = ksm_attrs,
1999 	.name = "ksm",
2000 };
2001 #endif /* CONFIG_SYSFS */
2002 
2003 static int __init ksm_init(void)
2004 {
2005 	struct task_struct *ksm_thread;
2006 	int err;
2007 
2008 	err = ksm_slab_init();
2009 	if (err)
2010 		goto out;
2011 
2012 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2013 	if (IS_ERR(ksm_thread)) {
2014 		printk(KERN_ERR "ksm: creating kthread failed\n");
2015 		err = PTR_ERR(ksm_thread);
2016 		goto out_free;
2017 	}
2018 
2019 #ifdef CONFIG_SYSFS
2020 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2021 	if (err) {
2022 		printk(KERN_ERR "ksm: register sysfs failed\n");
2023 		kthread_stop(ksm_thread);
2024 		goto out_free;
2025 	}
2026 #else
2027 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
2028 
2029 #endif /* CONFIG_SYSFS */
2030 
2031 #ifdef CONFIG_MEMORY_HOTREMOVE
2032 	/*
2033 	 * Choose a high priority since the callback takes ksm_thread_mutex:
2034 	 * later callbacks could only be taking locks which nest within that.
2035 	 */
2036 	hotplug_memory_notifier(ksm_memory_callback, 100);
2037 #endif
2038 	return 0;
2039 
2040 out_free:
2041 	ksm_slab_free();
2042 out:
2043 	return err;
2044 }
2045 module_init(ksm_init)
2046