1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
8 * Copyright (C) 2008-2009 Red Hat, Inc.
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
13 * Hugh Dickins
14 */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
43
44 #include <asm/tlbflush.h>
45 #include "internal.h"
46 #include "mm_slot.h"
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/ksm.h>
50
51 #ifdef CONFIG_NUMA
52 #define NUMA(x) (x)
53 #define DO_NUMA(x) do { (x); } while (0)
54 #else
55 #define NUMA(x) (0)
56 #define DO_NUMA(x) do { } while (0)
57 #endif
58
59 /**
60 * DOC: Overview
61 *
62 * A few notes about the KSM scanning process,
63 * to make it easier to understand the data structures below:
64 *
65 * In order to reduce excessive scanning, KSM sorts the memory pages by their
66 * contents into a data structure that holds pointers to the pages' locations.
67 *
68 * Since the contents of the pages may change at any moment, KSM cannot just
69 * insert the pages into a normal sorted tree and expect it to find anything.
70 * Therefore KSM uses two data structures - the stable and the unstable tree.
71 *
72 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
73 * by their contents. Because each such page is write-protected, searching on
74 * this tree is fully assured to be working (except when pages are unmapped),
75 * and therefore this tree is called the stable tree.
76 *
77 * The stable tree node includes information required for reverse
78 * mapping from a KSM page to virtual addresses that map this page.
79 *
80 * In order to avoid large latencies of the rmap walks on KSM pages,
81 * KSM maintains two types of nodes in the stable tree:
82 *
83 * * the regular nodes that keep the reverse mapping structures in a
84 * linked list
85 * * the "chains" that link nodes ("dups") that represent the same
86 * write protected memory content, but each "dup" corresponds to a
87 * different KSM page copy of that content
88 *
89 * Internally, the regular nodes, "dups" and "chains" are represented
90 * using the same struct ksm_stable_node structure.
91 *
92 * In addition to the stable tree, KSM uses a second data structure called the
93 * unstable tree: this tree holds pointers to pages which have been found to
94 * be "unchanged for a period of time". The unstable tree sorts these pages
95 * by their contents, but since they are not write-protected, KSM cannot rely
96 * upon the unstable tree to work correctly - the unstable tree is liable to
97 * be corrupted as its contents are modified, and so it is called unstable.
98 *
99 * KSM solves this problem by several techniques:
100 *
101 * 1) The unstable tree is flushed every time KSM completes scanning all
102 * memory areas, and then the tree is rebuilt again from the beginning.
103 * 2) KSM will only insert into the unstable tree, pages whose hash value
104 * has not changed since the previous scan of all memory areas.
105 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
106 * colors of the nodes and not on their contents, assuring that even when
107 * the tree gets "corrupted" it won't get out of balance, so scanning time
108 * remains the same (also, searching and inserting nodes in an rbtree uses
109 * the same algorithm, so we have no overhead when we flush and rebuild).
110 * 4) KSM never flushes the stable tree, which means that even if it were to
111 * take 10 attempts to find a page in the unstable tree, once it is found,
112 * it is secured in the stable tree. (When we scan a new page, we first
113 * compare it against the stable tree, and then against the unstable tree.)
114 *
115 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
116 * stable trees and multiple unstable trees: one of each for each NUMA node.
117 */
118
119 /**
120 * struct ksm_mm_slot - ksm information per mm that is being scanned
121 * @slot: hash lookup from mm to mm_slot
122 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
123 */
124 struct ksm_mm_slot {
125 struct mm_slot slot;
126 struct ksm_rmap_item *rmap_list;
127 };
128
129 /**
130 * struct ksm_scan - cursor for scanning
131 * @mm_slot: the current mm_slot we are scanning
132 * @address: the next address inside that to be scanned
133 * @rmap_list: link to the next rmap to be scanned in the rmap_list
134 * @seqnr: count of completed full scans (needed when removing unstable node)
135 *
136 * There is only the one ksm_scan instance of this cursor structure.
137 */
138 struct ksm_scan {
139 struct ksm_mm_slot *mm_slot;
140 unsigned long address;
141 struct ksm_rmap_item **rmap_list;
142 unsigned long seqnr;
143 };
144
145 /**
146 * struct ksm_stable_node - node of the stable rbtree
147 * @node: rb node of this ksm page in the stable tree
148 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
149 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
150 * @list: linked into migrate_nodes, pending placement in the proper node tree
151 * @hlist: hlist head of rmap_items using this ksm page
152 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
153 * @chain_prune_time: time of the last full garbage collection
154 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
155 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
156 */
157 struct ksm_stable_node {
158 union {
159 struct rb_node node; /* when node of stable tree */
160 struct { /* when listed for migration */
161 struct list_head *head;
162 struct {
163 struct hlist_node hlist_dup;
164 struct list_head list;
165 };
166 };
167 };
168 struct hlist_head hlist;
169 union {
170 unsigned long kpfn;
171 unsigned long chain_prune_time;
172 };
173 /*
174 * STABLE_NODE_CHAIN can be any negative number in
175 * rmap_hlist_len negative range, but better not -1 to be able
176 * to reliably detect underflows.
177 */
178 #define STABLE_NODE_CHAIN -1024
179 int rmap_hlist_len;
180 #ifdef CONFIG_NUMA
181 int nid;
182 #endif
183 };
184
185 /**
186 * struct ksm_rmap_item - reverse mapping item for virtual addresses
187 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
188 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
189 * @nid: NUMA node id of unstable tree in which linked (may not match page)
190 * @mm: the memory structure this rmap_item is pointing into
191 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
192 * @oldchecksum: previous checksum of the page at that virtual address
193 * @node: rb node of this rmap_item in the unstable tree
194 * @head: pointer to stable_node heading this list in the stable tree
195 * @hlist: link into hlist of rmap_items hanging off that stable_node
196 */
197 struct ksm_rmap_item {
198 struct ksm_rmap_item *rmap_list;
199 union {
200 struct anon_vma *anon_vma; /* when stable */
201 #ifdef CONFIG_NUMA
202 int nid; /* when node of unstable tree */
203 #endif
204 };
205 struct mm_struct *mm;
206 unsigned long address; /* + low bits used for flags below */
207 unsigned int oldchecksum; /* when unstable */
208 union {
209 struct rb_node node; /* when node of unstable tree */
210 struct { /* when listed from stable tree */
211 struct ksm_stable_node *head;
212 struct hlist_node hlist;
213 };
214 };
215 };
216
217 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
218 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
219 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
220
221 /* The stable and unstable tree heads */
222 static struct rb_root one_stable_tree[1] = { RB_ROOT };
223 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224 static struct rb_root *root_stable_tree = one_stable_tree;
225 static struct rb_root *root_unstable_tree = one_unstable_tree;
226
227 /* Recently migrated nodes of stable tree, pending proper placement */
228 static LIST_HEAD(migrate_nodes);
229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
230
231 #define MM_SLOTS_HASH_BITS 10
232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
233
234 static struct ksm_mm_slot ksm_mm_head = {
235 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
236 };
237 static struct ksm_scan ksm_scan = {
238 .mm_slot = &ksm_mm_head,
239 };
240
241 static struct kmem_cache *rmap_item_cache;
242 static struct kmem_cache *stable_node_cache;
243 static struct kmem_cache *mm_slot_cache;
244
245 /* The number of pages scanned */
246 static unsigned long ksm_pages_scanned;
247
248 /* The number of nodes in the stable tree */
249 static unsigned long ksm_pages_shared;
250
251 /* The number of page slots additionally sharing those nodes */
252 static unsigned long ksm_pages_sharing;
253
254 /* The number of nodes in the unstable tree */
255 static unsigned long ksm_pages_unshared;
256
257 /* The number of rmap_items in use: to calculate pages_volatile */
258 static unsigned long ksm_rmap_items;
259
260 /* The number of stable_node chains */
261 static unsigned long ksm_stable_node_chains;
262
263 /* The number of stable_node dups linked to the stable_node chains */
264 static unsigned long ksm_stable_node_dups;
265
266 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
267 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
268
269 /* Maximum number of page slots sharing a stable node */
270 static int ksm_max_page_sharing = 256;
271
272 /* Number of pages ksmd should scan in one batch */
273 static unsigned int ksm_thread_pages_to_scan = 100;
274
275 /* Milliseconds ksmd should sleep between batches */
276 static unsigned int ksm_thread_sleep_millisecs = 20;
277
278 /* Checksum of an empty (zeroed) page */
279 static unsigned int zero_checksum __read_mostly;
280
281 /* Whether to merge empty (zeroed) pages with actual zero pages */
282 static bool ksm_use_zero_pages __read_mostly;
283
284 /* The number of zero pages which is placed by KSM */
285 atomic_long_t ksm_zero_pages = ATOMIC_LONG_INIT(0);
286
287 #ifdef CONFIG_NUMA
288 /* Zeroed when merging across nodes is not allowed */
289 static unsigned int ksm_merge_across_nodes = 1;
290 static int ksm_nr_node_ids = 1;
291 #else
292 #define ksm_merge_across_nodes 1U
293 #define ksm_nr_node_ids 1
294 #endif
295
296 #define KSM_RUN_STOP 0
297 #define KSM_RUN_MERGE 1
298 #define KSM_RUN_UNMERGE 2
299 #define KSM_RUN_OFFLINE 4
300 static unsigned long ksm_run = KSM_RUN_STOP;
301 static void wait_while_offlining(void);
302
303 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
304 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
305 static DEFINE_MUTEX(ksm_thread_mutex);
306 static DEFINE_SPINLOCK(ksm_mmlist_lock);
307
308 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
309 sizeof(struct __struct), __alignof__(struct __struct),\
310 (__flags), NULL)
311
ksm_slab_init(void)312 static int __init ksm_slab_init(void)
313 {
314 rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
315 if (!rmap_item_cache)
316 goto out;
317
318 stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
319 if (!stable_node_cache)
320 goto out_free1;
321
322 mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
323 if (!mm_slot_cache)
324 goto out_free2;
325
326 return 0;
327
328 out_free2:
329 kmem_cache_destroy(stable_node_cache);
330 out_free1:
331 kmem_cache_destroy(rmap_item_cache);
332 out:
333 return -ENOMEM;
334 }
335
ksm_slab_free(void)336 static void __init ksm_slab_free(void)
337 {
338 kmem_cache_destroy(mm_slot_cache);
339 kmem_cache_destroy(stable_node_cache);
340 kmem_cache_destroy(rmap_item_cache);
341 mm_slot_cache = NULL;
342 }
343
is_stable_node_chain(struct ksm_stable_node * chain)344 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
345 {
346 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
347 }
348
is_stable_node_dup(struct ksm_stable_node * dup)349 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
350 {
351 return dup->head == STABLE_NODE_DUP_HEAD;
352 }
353
stable_node_chain_add_dup(struct ksm_stable_node * dup,struct ksm_stable_node * chain)354 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
355 struct ksm_stable_node *chain)
356 {
357 VM_BUG_ON(is_stable_node_dup(dup));
358 dup->head = STABLE_NODE_DUP_HEAD;
359 VM_BUG_ON(!is_stable_node_chain(chain));
360 hlist_add_head(&dup->hlist_dup, &chain->hlist);
361 ksm_stable_node_dups++;
362 }
363
__stable_node_dup_del(struct ksm_stable_node * dup)364 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
365 {
366 VM_BUG_ON(!is_stable_node_dup(dup));
367 hlist_del(&dup->hlist_dup);
368 ksm_stable_node_dups--;
369 }
370
stable_node_dup_del(struct ksm_stable_node * dup)371 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
372 {
373 VM_BUG_ON(is_stable_node_chain(dup));
374 if (is_stable_node_dup(dup))
375 __stable_node_dup_del(dup);
376 else
377 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
378 #ifdef CONFIG_DEBUG_VM
379 dup->head = NULL;
380 #endif
381 }
382
alloc_rmap_item(void)383 static inline struct ksm_rmap_item *alloc_rmap_item(void)
384 {
385 struct ksm_rmap_item *rmap_item;
386
387 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
388 __GFP_NORETRY | __GFP_NOWARN);
389 if (rmap_item)
390 ksm_rmap_items++;
391 return rmap_item;
392 }
393
free_rmap_item(struct ksm_rmap_item * rmap_item)394 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
395 {
396 ksm_rmap_items--;
397 rmap_item->mm->ksm_rmap_items--;
398 rmap_item->mm = NULL; /* debug safety */
399 kmem_cache_free(rmap_item_cache, rmap_item);
400 }
401
alloc_stable_node(void)402 static inline struct ksm_stable_node *alloc_stable_node(void)
403 {
404 /*
405 * The allocation can take too long with GFP_KERNEL when memory is under
406 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
407 * grants access to memory reserves, helping to avoid this problem.
408 */
409 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
410 }
411
free_stable_node(struct ksm_stable_node * stable_node)412 static inline void free_stable_node(struct ksm_stable_node *stable_node)
413 {
414 VM_BUG_ON(stable_node->rmap_hlist_len &&
415 !is_stable_node_chain(stable_node));
416 kmem_cache_free(stable_node_cache, stable_node);
417 }
418
419 /*
420 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
421 * page tables after it has passed through ksm_exit() - which, if necessary,
422 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
423 * a special flag: they can just back out as soon as mm_users goes to zero.
424 * ksm_test_exit() is used throughout to make this test for exit: in some
425 * places for correctness, in some places just to avoid unnecessary work.
426 */
ksm_test_exit(struct mm_struct * mm)427 static inline bool ksm_test_exit(struct mm_struct *mm)
428 {
429 return atomic_read(&mm->mm_users) == 0;
430 }
431
break_ksm_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)432 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
433 struct mm_walk *walk)
434 {
435 struct page *page = NULL;
436 spinlock_t *ptl;
437 pte_t *pte;
438 pte_t ptent;
439 int ret;
440
441 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
442 if (!pte)
443 return 0;
444 ptent = ptep_get(pte);
445 if (pte_present(ptent)) {
446 page = vm_normal_page(walk->vma, addr, ptent);
447 } else if (!pte_none(ptent)) {
448 swp_entry_t entry = pte_to_swp_entry(ptent);
449
450 /*
451 * As KSM pages remain KSM pages until freed, no need to wait
452 * here for migration to end.
453 */
454 if (is_migration_entry(entry))
455 page = pfn_swap_entry_to_page(entry);
456 }
457 /* return 1 if the page is an normal ksm page or KSM-placed zero page */
458 ret = (page && PageKsm(page)) || is_ksm_zero_pte(*pte);
459 pte_unmap_unlock(pte, ptl);
460 return ret;
461 }
462
463 static const struct mm_walk_ops break_ksm_ops = {
464 .pmd_entry = break_ksm_pmd_entry,
465 .walk_lock = PGWALK_RDLOCK,
466 };
467
468 static const struct mm_walk_ops break_ksm_lock_vma_ops = {
469 .pmd_entry = break_ksm_pmd_entry,
470 .walk_lock = PGWALK_WRLOCK,
471 };
472
473 /*
474 * We use break_ksm to break COW on a ksm page by triggering unsharing,
475 * such that the ksm page will get replaced by an exclusive anonymous page.
476 *
477 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
478 * in case the application has unmapped and remapped mm,addr meanwhile.
479 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
480 * mmap of /dev/mem, where we would not want to touch it.
481 *
482 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
483 * of the process that owns 'vma'. We also do not want to enforce
484 * protection keys here anyway.
485 */
break_ksm(struct vm_area_struct * vma,unsigned long addr,bool lock_vma)486 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
487 {
488 vm_fault_t ret = 0;
489 const struct mm_walk_ops *ops = lock_vma ?
490 &break_ksm_lock_vma_ops : &break_ksm_ops;
491
492 do {
493 int ksm_page;
494
495 cond_resched();
496 ksm_page = walk_page_range_vma(vma, addr, addr + 1, ops, NULL);
497 if (WARN_ON_ONCE(ksm_page < 0))
498 return ksm_page;
499 if (!ksm_page)
500 return 0;
501 ret = handle_mm_fault(vma, addr,
502 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
503 NULL);
504 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
505 /*
506 * We must loop until we no longer find a KSM page because
507 * handle_mm_fault() may back out if there's any difficulty e.g. if
508 * pte accessed bit gets updated concurrently.
509 *
510 * VM_FAULT_SIGBUS could occur if we race with truncation of the
511 * backing file, which also invalidates anonymous pages: that's
512 * okay, that truncation will have unmapped the PageKsm for us.
513 *
514 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
515 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
516 * current task has TIF_MEMDIE set, and will be OOM killed on return
517 * to user; and ksmd, having no mm, would never be chosen for that.
518 *
519 * But if the mm is in a limited mem_cgroup, then the fault may fail
520 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
521 * even ksmd can fail in this way - though it's usually breaking ksm
522 * just to undo a merge it made a moment before, so unlikely to oom.
523 *
524 * That's a pity: we might therefore have more kernel pages allocated
525 * than we're counting as nodes in the stable tree; but ksm_do_scan
526 * will retry to break_cow on each pass, so should recover the page
527 * in due course. The important thing is to not let VM_MERGEABLE
528 * be cleared while any such pages might remain in the area.
529 */
530 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
531 }
532
vma_ksm_compatible(struct vm_area_struct * vma)533 static bool vma_ksm_compatible(struct vm_area_struct *vma)
534 {
535 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE | VM_PFNMAP |
536 VM_IO | VM_DONTEXPAND | VM_HUGETLB |
537 VM_MIXEDMAP))
538 return false; /* just ignore the advice */
539
540 if (vma_is_dax(vma))
541 return false;
542
543 #ifdef VM_SAO
544 if (vma->vm_flags & VM_SAO)
545 return false;
546 #endif
547 #ifdef VM_SPARC_ADI
548 if (vma->vm_flags & VM_SPARC_ADI)
549 return false;
550 #endif
551
552 return true;
553 }
554
find_mergeable_vma(struct mm_struct * mm,unsigned long addr)555 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
556 unsigned long addr)
557 {
558 struct vm_area_struct *vma;
559 if (ksm_test_exit(mm))
560 return NULL;
561 vma = vma_lookup(mm, addr);
562 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
563 return NULL;
564 return vma;
565 }
566
break_cow(struct ksm_rmap_item * rmap_item)567 static void break_cow(struct ksm_rmap_item *rmap_item)
568 {
569 struct mm_struct *mm = rmap_item->mm;
570 unsigned long addr = rmap_item->address;
571 struct vm_area_struct *vma;
572
573 /*
574 * It is not an accident that whenever we want to break COW
575 * to undo, we also need to drop a reference to the anon_vma.
576 */
577 put_anon_vma(rmap_item->anon_vma);
578
579 mmap_read_lock(mm);
580 vma = find_mergeable_vma(mm, addr);
581 if (vma)
582 break_ksm(vma, addr, false);
583 mmap_read_unlock(mm);
584 }
585
get_mergeable_page(struct ksm_rmap_item * rmap_item)586 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
587 {
588 struct mm_struct *mm = rmap_item->mm;
589 unsigned long addr = rmap_item->address;
590 struct vm_area_struct *vma;
591 struct page *page;
592
593 mmap_read_lock(mm);
594 vma = find_mergeable_vma(mm, addr);
595 if (!vma)
596 goto out;
597
598 page = follow_page(vma, addr, FOLL_GET);
599 if (IS_ERR_OR_NULL(page))
600 goto out;
601 if (is_zone_device_page(page))
602 goto out_putpage;
603 if (PageAnon(page)) {
604 flush_anon_page(vma, page, addr);
605 flush_dcache_page(page);
606 } else {
607 out_putpage:
608 put_page(page);
609 out:
610 page = NULL;
611 }
612 mmap_read_unlock(mm);
613 return page;
614 }
615
616 /*
617 * This helper is used for getting right index into array of tree roots.
618 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
619 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
620 * every node has its own stable and unstable tree.
621 */
get_kpfn_nid(unsigned long kpfn)622 static inline int get_kpfn_nid(unsigned long kpfn)
623 {
624 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
625 }
626
alloc_stable_node_chain(struct ksm_stable_node * dup,struct rb_root * root)627 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
628 struct rb_root *root)
629 {
630 struct ksm_stable_node *chain = alloc_stable_node();
631 VM_BUG_ON(is_stable_node_chain(dup));
632 if (likely(chain)) {
633 INIT_HLIST_HEAD(&chain->hlist);
634 chain->chain_prune_time = jiffies;
635 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
636 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
637 chain->nid = NUMA_NO_NODE; /* debug */
638 #endif
639 ksm_stable_node_chains++;
640
641 /*
642 * Put the stable node chain in the first dimension of
643 * the stable tree and at the same time remove the old
644 * stable node.
645 */
646 rb_replace_node(&dup->node, &chain->node, root);
647
648 /*
649 * Move the old stable node to the second dimension
650 * queued in the hlist_dup. The invariant is that all
651 * dup stable_nodes in the chain->hlist point to pages
652 * that are write protected and have the exact same
653 * content.
654 */
655 stable_node_chain_add_dup(dup, chain);
656 }
657 return chain;
658 }
659
free_stable_node_chain(struct ksm_stable_node * chain,struct rb_root * root)660 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
661 struct rb_root *root)
662 {
663 rb_erase(&chain->node, root);
664 free_stable_node(chain);
665 ksm_stable_node_chains--;
666 }
667
remove_node_from_stable_tree(struct ksm_stable_node * stable_node)668 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
669 {
670 struct ksm_rmap_item *rmap_item;
671
672 /* check it's not STABLE_NODE_CHAIN or negative */
673 BUG_ON(stable_node->rmap_hlist_len < 0);
674
675 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
676 if (rmap_item->hlist.next) {
677 ksm_pages_sharing--;
678 trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
679 } else {
680 ksm_pages_shared--;
681 }
682
683 rmap_item->mm->ksm_merging_pages--;
684
685 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
686 stable_node->rmap_hlist_len--;
687 put_anon_vma(rmap_item->anon_vma);
688 rmap_item->address &= PAGE_MASK;
689 cond_resched();
690 }
691
692 /*
693 * We need the second aligned pointer of the migrate_nodes
694 * list_head to stay clear from the rb_parent_color union
695 * (aligned and different than any node) and also different
696 * from &migrate_nodes. This will verify that future list.h changes
697 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
698 */
699 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
700 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
701
702 trace_ksm_remove_ksm_page(stable_node->kpfn);
703 if (stable_node->head == &migrate_nodes)
704 list_del(&stable_node->list);
705 else
706 stable_node_dup_del(stable_node);
707 free_stable_node(stable_node);
708 }
709
710 enum get_ksm_page_flags {
711 GET_KSM_PAGE_NOLOCK,
712 GET_KSM_PAGE_LOCK,
713 GET_KSM_PAGE_TRYLOCK
714 };
715
716 /*
717 * get_ksm_page: checks if the page indicated by the stable node
718 * is still its ksm page, despite having held no reference to it.
719 * In which case we can trust the content of the page, and it
720 * returns the gotten page; but if the page has now been zapped,
721 * remove the stale node from the stable tree and return NULL.
722 * But beware, the stable node's page might be being migrated.
723 *
724 * You would expect the stable_node to hold a reference to the ksm page.
725 * But if it increments the page's count, swapping out has to wait for
726 * ksmd to come around again before it can free the page, which may take
727 * seconds or even minutes: much too unresponsive. So instead we use a
728 * "keyhole reference": access to the ksm page from the stable node peeps
729 * out through its keyhole to see if that page still holds the right key,
730 * pointing back to this stable node. This relies on freeing a PageAnon
731 * page to reset its page->mapping to NULL, and relies on no other use of
732 * a page to put something that might look like our key in page->mapping.
733 * is on its way to being freed; but it is an anomaly to bear in mind.
734 */
get_ksm_page(struct ksm_stable_node * stable_node,enum get_ksm_page_flags flags)735 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
736 enum get_ksm_page_flags flags)
737 {
738 struct page *page;
739 void *expected_mapping;
740 unsigned long kpfn;
741
742 expected_mapping = (void *)((unsigned long)stable_node |
743 PAGE_MAPPING_KSM);
744 again:
745 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
746 page = pfn_to_page(kpfn);
747 if (READ_ONCE(page->mapping) != expected_mapping)
748 goto stale;
749
750 /*
751 * We cannot do anything with the page while its refcount is 0.
752 * Usually 0 means free, or tail of a higher-order page: in which
753 * case this node is no longer referenced, and should be freed;
754 * however, it might mean that the page is under page_ref_freeze().
755 * The __remove_mapping() case is easy, again the node is now stale;
756 * the same is in reuse_ksm_page() case; but if page is swapcache
757 * in folio_migrate_mapping(), it might still be our page,
758 * in which case it's essential to keep the node.
759 */
760 while (!get_page_unless_zero(page)) {
761 /*
762 * Another check for page->mapping != expected_mapping would
763 * work here too. We have chosen the !PageSwapCache test to
764 * optimize the common case, when the page is or is about to
765 * be freed: PageSwapCache is cleared (under spin_lock_irq)
766 * in the ref_freeze section of __remove_mapping(); but Anon
767 * page->mapping reset to NULL later, in free_pages_prepare().
768 */
769 if (!PageSwapCache(page))
770 goto stale;
771 cpu_relax();
772 }
773
774 if (READ_ONCE(page->mapping) != expected_mapping) {
775 put_page(page);
776 goto stale;
777 }
778
779 if (flags == GET_KSM_PAGE_TRYLOCK) {
780 if (!trylock_page(page)) {
781 put_page(page);
782 return ERR_PTR(-EBUSY);
783 }
784 } else if (flags == GET_KSM_PAGE_LOCK)
785 lock_page(page);
786
787 if (flags != GET_KSM_PAGE_NOLOCK) {
788 if (READ_ONCE(page->mapping) != expected_mapping) {
789 unlock_page(page);
790 put_page(page);
791 goto stale;
792 }
793 }
794 return page;
795
796 stale:
797 /*
798 * We come here from above when page->mapping or !PageSwapCache
799 * suggests that the node is stale; but it might be under migration.
800 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
801 * before checking whether node->kpfn has been changed.
802 */
803 smp_rmb();
804 if (READ_ONCE(stable_node->kpfn) != kpfn)
805 goto again;
806 remove_node_from_stable_tree(stable_node);
807 return NULL;
808 }
809
810 /*
811 * Removing rmap_item from stable or unstable tree.
812 * This function will clean the information from the stable/unstable tree.
813 */
remove_rmap_item_from_tree(struct ksm_rmap_item * rmap_item)814 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
815 {
816 if (rmap_item->address & STABLE_FLAG) {
817 struct ksm_stable_node *stable_node;
818 struct page *page;
819
820 stable_node = rmap_item->head;
821 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
822 if (!page)
823 goto out;
824
825 hlist_del(&rmap_item->hlist);
826 unlock_page(page);
827 put_page(page);
828
829 if (!hlist_empty(&stable_node->hlist))
830 ksm_pages_sharing--;
831 else
832 ksm_pages_shared--;
833
834 rmap_item->mm->ksm_merging_pages--;
835
836 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
837 stable_node->rmap_hlist_len--;
838
839 put_anon_vma(rmap_item->anon_vma);
840 rmap_item->head = NULL;
841 rmap_item->address &= PAGE_MASK;
842
843 } else if (rmap_item->address & UNSTABLE_FLAG) {
844 unsigned char age;
845 /*
846 * Usually ksmd can and must skip the rb_erase, because
847 * root_unstable_tree was already reset to RB_ROOT.
848 * But be careful when an mm is exiting: do the rb_erase
849 * if this rmap_item was inserted by this scan, rather
850 * than left over from before.
851 */
852 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
853 BUG_ON(age > 1);
854 if (!age)
855 rb_erase(&rmap_item->node,
856 root_unstable_tree + NUMA(rmap_item->nid));
857 ksm_pages_unshared--;
858 rmap_item->address &= PAGE_MASK;
859 }
860 out:
861 cond_resched(); /* we're called from many long loops */
862 }
863
remove_trailing_rmap_items(struct ksm_rmap_item ** rmap_list)864 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
865 {
866 while (*rmap_list) {
867 struct ksm_rmap_item *rmap_item = *rmap_list;
868 *rmap_list = rmap_item->rmap_list;
869 remove_rmap_item_from_tree(rmap_item);
870 free_rmap_item(rmap_item);
871 }
872 }
873
874 /*
875 * Though it's very tempting to unmerge rmap_items from stable tree rather
876 * than check every pte of a given vma, the locking doesn't quite work for
877 * that - an rmap_item is assigned to the stable tree after inserting ksm
878 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
879 * rmap_items from parent to child at fork time (so as not to waste time
880 * if exit comes before the next scan reaches it).
881 *
882 * Similarly, although we'd like to remove rmap_items (so updating counts
883 * and freeing memory) when unmerging an area, it's easier to leave that
884 * to the next pass of ksmd - consider, for example, how ksmd might be
885 * in cmp_and_merge_page on one of the rmap_items we would be removing.
886 */
unmerge_ksm_pages(struct vm_area_struct * vma,unsigned long start,unsigned long end,bool lock_vma)887 static int unmerge_ksm_pages(struct vm_area_struct *vma,
888 unsigned long start, unsigned long end, bool lock_vma)
889 {
890 unsigned long addr;
891 int err = 0;
892
893 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
894 if (ksm_test_exit(vma->vm_mm))
895 break;
896 if (signal_pending(current))
897 err = -ERESTARTSYS;
898 else
899 err = break_ksm(vma, addr, lock_vma);
900 }
901 return err;
902 }
903
folio_stable_node(struct folio * folio)904 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
905 {
906 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
907 }
908
page_stable_node(struct page * page)909 static inline struct ksm_stable_node *page_stable_node(struct page *page)
910 {
911 return folio_stable_node(page_folio(page));
912 }
913
set_page_stable_node(struct page * page,struct ksm_stable_node * stable_node)914 static inline void set_page_stable_node(struct page *page,
915 struct ksm_stable_node *stable_node)
916 {
917 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
918 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
919 }
920
921 #ifdef CONFIG_SYSFS
922 /*
923 * Only called through the sysfs control interface:
924 */
remove_stable_node(struct ksm_stable_node * stable_node)925 static int remove_stable_node(struct ksm_stable_node *stable_node)
926 {
927 struct page *page;
928 int err;
929
930 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
931 if (!page) {
932 /*
933 * get_ksm_page did remove_node_from_stable_tree itself.
934 */
935 return 0;
936 }
937
938 /*
939 * Page could be still mapped if this races with __mmput() running in
940 * between ksm_exit() and exit_mmap(). Just refuse to let
941 * merge_across_nodes/max_page_sharing be switched.
942 */
943 err = -EBUSY;
944 if (!page_mapped(page)) {
945 /*
946 * The stable node did not yet appear stale to get_ksm_page(),
947 * since that allows for an unmapped ksm page to be recognized
948 * right up until it is freed; but the node is safe to remove.
949 * This page might be in an LRU cache waiting to be freed,
950 * or it might be PageSwapCache (perhaps under writeback),
951 * or it might have been removed from swapcache a moment ago.
952 */
953 set_page_stable_node(page, NULL);
954 remove_node_from_stable_tree(stable_node);
955 err = 0;
956 }
957
958 unlock_page(page);
959 put_page(page);
960 return err;
961 }
962
remove_stable_node_chain(struct ksm_stable_node * stable_node,struct rb_root * root)963 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
964 struct rb_root *root)
965 {
966 struct ksm_stable_node *dup;
967 struct hlist_node *hlist_safe;
968
969 if (!is_stable_node_chain(stable_node)) {
970 VM_BUG_ON(is_stable_node_dup(stable_node));
971 if (remove_stable_node(stable_node))
972 return true;
973 else
974 return false;
975 }
976
977 hlist_for_each_entry_safe(dup, hlist_safe,
978 &stable_node->hlist, hlist_dup) {
979 VM_BUG_ON(!is_stable_node_dup(dup));
980 if (remove_stable_node(dup))
981 return true;
982 }
983 BUG_ON(!hlist_empty(&stable_node->hlist));
984 free_stable_node_chain(stable_node, root);
985 return false;
986 }
987
remove_all_stable_nodes(void)988 static int remove_all_stable_nodes(void)
989 {
990 struct ksm_stable_node *stable_node, *next;
991 int nid;
992 int err = 0;
993
994 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
995 while (root_stable_tree[nid].rb_node) {
996 stable_node = rb_entry(root_stable_tree[nid].rb_node,
997 struct ksm_stable_node, node);
998 if (remove_stable_node_chain(stable_node,
999 root_stable_tree + nid)) {
1000 err = -EBUSY;
1001 break; /* proceed to next nid */
1002 }
1003 cond_resched();
1004 }
1005 }
1006 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1007 if (remove_stable_node(stable_node))
1008 err = -EBUSY;
1009 cond_resched();
1010 }
1011 return err;
1012 }
1013
unmerge_and_remove_all_rmap_items(void)1014 static int unmerge_and_remove_all_rmap_items(void)
1015 {
1016 struct ksm_mm_slot *mm_slot;
1017 struct mm_slot *slot;
1018 struct mm_struct *mm;
1019 struct vm_area_struct *vma;
1020 int err = 0;
1021
1022 spin_lock(&ksm_mmlist_lock);
1023 slot = list_entry(ksm_mm_head.slot.mm_node.next,
1024 struct mm_slot, mm_node);
1025 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1026 spin_unlock(&ksm_mmlist_lock);
1027
1028 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1029 mm_slot = ksm_scan.mm_slot) {
1030 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1031
1032 mm = mm_slot->slot.mm;
1033 mmap_read_lock(mm);
1034
1035 /*
1036 * Exit right away if mm is exiting to avoid lockdep issue in
1037 * the maple tree
1038 */
1039 if (ksm_test_exit(mm))
1040 goto mm_exiting;
1041
1042 for_each_vma(vmi, vma) {
1043 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1044 continue;
1045 err = unmerge_ksm_pages(vma,
1046 vma->vm_start, vma->vm_end, false);
1047 if (err)
1048 goto error;
1049 }
1050
1051 mm_exiting:
1052 remove_trailing_rmap_items(&mm_slot->rmap_list);
1053 mmap_read_unlock(mm);
1054
1055 spin_lock(&ksm_mmlist_lock);
1056 slot = list_entry(mm_slot->slot.mm_node.next,
1057 struct mm_slot, mm_node);
1058 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1059 if (ksm_test_exit(mm)) {
1060 hash_del(&mm_slot->slot.hash);
1061 list_del(&mm_slot->slot.mm_node);
1062 spin_unlock(&ksm_mmlist_lock);
1063
1064 mm_slot_free(mm_slot_cache, mm_slot);
1065 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1066 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1067 mmdrop(mm);
1068 } else
1069 spin_unlock(&ksm_mmlist_lock);
1070 }
1071
1072 /* Clean up stable nodes, but don't worry if some are still busy */
1073 remove_all_stable_nodes();
1074 ksm_scan.seqnr = 0;
1075 return 0;
1076
1077 error:
1078 mmap_read_unlock(mm);
1079 spin_lock(&ksm_mmlist_lock);
1080 ksm_scan.mm_slot = &ksm_mm_head;
1081 spin_unlock(&ksm_mmlist_lock);
1082 return err;
1083 }
1084 #endif /* CONFIG_SYSFS */
1085
calc_checksum(struct page * page)1086 static u32 calc_checksum(struct page *page)
1087 {
1088 u32 checksum;
1089 void *addr = kmap_atomic(page);
1090 checksum = xxhash(addr, PAGE_SIZE, 0);
1091 kunmap_atomic(addr);
1092 return checksum;
1093 }
1094
write_protect_page(struct vm_area_struct * vma,struct page * page,pte_t * orig_pte)1095 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1096 pte_t *orig_pte)
1097 {
1098 struct mm_struct *mm = vma->vm_mm;
1099 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1100 int swapped;
1101 int err = -EFAULT;
1102 struct mmu_notifier_range range;
1103 bool anon_exclusive;
1104 pte_t entry;
1105
1106 pvmw.address = page_address_in_vma(page, vma);
1107 if (pvmw.address == -EFAULT)
1108 goto out;
1109
1110 BUG_ON(PageTransCompound(page));
1111
1112 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1113 pvmw.address + PAGE_SIZE);
1114 mmu_notifier_invalidate_range_start(&range);
1115
1116 if (!page_vma_mapped_walk(&pvmw))
1117 goto out_mn;
1118 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1119 goto out_unlock;
1120
1121 anon_exclusive = PageAnonExclusive(page);
1122 entry = ptep_get(pvmw.pte);
1123 if (pte_write(entry) || pte_dirty(entry) ||
1124 anon_exclusive || mm_tlb_flush_pending(mm)) {
1125 swapped = PageSwapCache(page);
1126 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1127 /*
1128 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1129 * take any lock, therefore the check that we are going to make
1130 * with the pagecount against the mapcount is racy and
1131 * O_DIRECT can happen right after the check.
1132 * So we clear the pte and flush the tlb before the check
1133 * this assure us that no O_DIRECT can happen after the check
1134 * or in the middle of the check.
1135 *
1136 * No need to notify as we are downgrading page table to read
1137 * only not changing it to point to a new page.
1138 *
1139 * See Documentation/mm/mmu_notifier.rst
1140 */
1141 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1142 /*
1143 * Check that no O_DIRECT or similar I/O is in progress on the
1144 * page
1145 */
1146 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1147 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1148 goto out_unlock;
1149 }
1150
1151 /* See page_try_share_anon_rmap(): clear PTE first. */
1152 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1153 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1154 goto out_unlock;
1155 }
1156
1157 if (pte_dirty(entry))
1158 set_page_dirty(page);
1159 entry = pte_mkclean(entry);
1160
1161 if (pte_write(entry))
1162 entry = pte_wrprotect(entry);
1163
1164 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1165 }
1166 *orig_pte = entry;
1167 err = 0;
1168
1169 out_unlock:
1170 page_vma_mapped_walk_done(&pvmw);
1171 out_mn:
1172 mmu_notifier_invalidate_range_end(&range);
1173 out:
1174 return err;
1175 }
1176
1177 /**
1178 * replace_page - replace page in vma by new ksm page
1179 * @vma: vma that holds the pte pointing to page
1180 * @page: the page we are replacing by kpage
1181 * @kpage: the ksm page we replace page by
1182 * @orig_pte: the original value of the pte
1183 *
1184 * Returns 0 on success, -EFAULT on failure.
1185 */
replace_page(struct vm_area_struct * vma,struct page * page,struct page * kpage,pte_t orig_pte)1186 static int replace_page(struct vm_area_struct *vma, struct page *page,
1187 struct page *kpage, pte_t orig_pte)
1188 {
1189 struct mm_struct *mm = vma->vm_mm;
1190 struct folio *folio;
1191 pmd_t *pmd;
1192 pmd_t pmde;
1193 pte_t *ptep;
1194 pte_t newpte;
1195 spinlock_t *ptl;
1196 unsigned long addr;
1197 int err = -EFAULT;
1198 struct mmu_notifier_range range;
1199
1200 addr = page_address_in_vma(page, vma);
1201 if (addr == -EFAULT)
1202 goto out;
1203
1204 pmd = mm_find_pmd(mm, addr);
1205 if (!pmd)
1206 goto out;
1207 /*
1208 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1209 * without holding anon_vma lock for write. So when looking for a
1210 * genuine pmde (in which to find pte), test present and !THP together.
1211 */
1212 pmde = pmdp_get_lockless(pmd);
1213 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1214 goto out;
1215
1216 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1217 addr + PAGE_SIZE);
1218 mmu_notifier_invalidate_range_start(&range);
1219
1220 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1221 if (!ptep)
1222 goto out_mn;
1223 if (!pte_same(ptep_get(ptep), orig_pte)) {
1224 pte_unmap_unlock(ptep, ptl);
1225 goto out_mn;
1226 }
1227 VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1228 VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1229
1230 /*
1231 * No need to check ksm_use_zero_pages here: we can only have a
1232 * zero_page here if ksm_use_zero_pages was enabled already.
1233 */
1234 if (!is_zero_pfn(page_to_pfn(kpage))) {
1235 get_page(kpage);
1236 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1237 newpte = mk_pte(kpage, vma->vm_page_prot);
1238 } else {
1239 /*
1240 * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1241 * we can easily track all KSM-placed zero pages by checking if
1242 * the dirty bit in zero page's PTE is set.
1243 */
1244 newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1245 ksm_map_zero_page(mm);
1246 /*
1247 * We're replacing an anonymous page with a zero page, which is
1248 * not anonymous. We need to do proper accounting otherwise we
1249 * will get wrong values in /proc, and a BUG message in dmesg
1250 * when tearing down the mm.
1251 */
1252 dec_mm_counter(mm, MM_ANONPAGES);
1253 }
1254
1255 flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1256 /*
1257 * No need to notify as we are replacing a read only page with another
1258 * read only page with the same content.
1259 *
1260 * See Documentation/mm/mmu_notifier.rst
1261 */
1262 ptep_clear_flush(vma, addr, ptep);
1263 set_pte_at_notify(mm, addr, ptep, newpte);
1264
1265 folio = page_folio(page);
1266 page_remove_rmap(page, vma, false);
1267 if (!folio_mapped(folio))
1268 folio_free_swap(folio);
1269 folio_put(folio);
1270
1271 pte_unmap_unlock(ptep, ptl);
1272 err = 0;
1273 out_mn:
1274 mmu_notifier_invalidate_range_end(&range);
1275 out:
1276 return err;
1277 }
1278
1279 /*
1280 * try_to_merge_one_page - take two pages and merge them into one
1281 * @vma: the vma that holds the pte pointing to page
1282 * @page: the PageAnon page that we want to replace with kpage
1283 * @kpage: the PageKsm page that we want to map instead of page,
1284 * or NULL the first time when we want to use page as kpage.
1285 *
1286 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1287 */
try_to_merge_one_page(struct vm_area_struct * vma,struct page * page,struct page * kpage)1288 static int try_to_merge_one_page(struct vm_area_struct *vma,
1289 struct page *page, struct page *kpage)
1290 {
1291 pte_t orig_pte = __pte(0);
1292 int err = -EFAULT;
1293
1294 if (page == kpage) /* ksm page forked */
1295 return 0;
1296
1297 if (!PageAnon(page))
1298 goto out;
1299
1300 /*
1301 * We need the page lock to read a stable PageSwapCache in
1302 * write_protect_page(). We use trylock_page() instead of
1303 * lock_page() because we don't want to wait here - we
1304 * prefer to continue scanning and merging different pages,
1305 * then come back to this page when it is unlocked.
1306 */
1307 if (!trylock_page(page))
1308 goto out;
1309
1310 if (PageTransCompound(page)) {
1311 if (split_huge_page(page))
1312 goto out_unlock;
1313 }
1314
1315 /*
1316 * If this anonymous page is mapped only here, its pte may need
1317 * to be write-protected. If it's mapped elsewhere, all of its
1318 * ptes are necessarily already write-protected. But in either
1319 * case, we need to lock and check page_count is not raised.
1320 */
1321 if (write_protect_page(vma, page, &orig_pte) == 0) {
1322 if (!kpage) {
1323 /*
1324 * While we hold page lock, upgrade page from
1325 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1326 * stable_tree_insert() will update stable_node.
1327 */
1328 set_page_stable_node(page, NULL);
1329 mark_page_accessed(page);
1330 /*
1331 * Page reclaim just frees a clean page with no dirty
1332 * ptes: make sure that the ksm page would be swapped.
1333 */
1334 if (!PageDirty(page))
1335 SetPageDirty(page);
1336 err = 0;
1337 } else if (pages_identical(page, kpage))
1338 err = replace_page(vma, page, kpage, orig_pte);
1339 }
1340
1341 out_unlock:
1342 unlock_page(page);
1343 out:
1344 return err;
1345 }
1346
1347 /*
1348 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1349 * but no new kernel page is allocated: kpage must already be a ksm page.
1350 *
1351 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1352 */
try_to_merge_with_ksm_page(struct ksm_rmap_item * rmap_item,struct page * page,struct page * kpage)1353 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1354 struct page *page, struct page *kpage)
1355 {
1356 struct mm_struct *mm = rmap_item->mm;
1357 struct vm_area_struct *vma;
1358 int err = -EFAULT;
1359
1360 mmap_read_lock(mm);
1361 vma = find_mergeable_vma(mm, rmap_item->address);
1362 if (!vma)
1363 goto out;
1364
1365 err = try_to_merge_one_page(vma, page, kpage);
1366 if (err)
1367 goto out;
1368
1369 /* Unstable nid is in union with stable anon_vma: remove first */
1370 remove_rmap_item_from_tree(rmap_item);
1371
1372 /* Must get reference to anon_vma while still holding mmap_lock */
1373 rmap_item->anon_vma = vma->anon_vma;
1374 get_anon_vma(vma->anon_vma);
1375 out:
1376 mmap_read_unlock(mm);
1377 trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1378 rmap_item, mm, err);
1379 return err;
1380 }
1381
1382 /*
1383 * try_to_merge_two_pages - take two identical pages and prepare them
1384 * to be merged into one page.
1385 *
1386 * This function returns the kpage if we successfully merged two identical
1387 * pages into one ksm page, NULL otherwise.
1388 *
1389 * Note that this function upgrades page to ksm page: if one of the pages
1390 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1391 */
try_to_merge_two_pages(struct ksm_rmap_item * rmap_item,struct page * page,struct ksm_rmap_item * tree_rmap_item,struct page * tree_page)1392 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1393 struct page *page,
1394 struct ksm_rmap_item *tree_rmap_item,
1395 struct page *tree_page)
1396 {
1397 int err;
1398
1399 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1400 if (!err) {
1401 err = try_to_merge_with_ksm_page(tree_rmap_item,
1402 tree_page, page);
1403 /*
1404 * If that fails, we have a ksm page with only one pte
1405 * pointing to it: so break it.
1406 */
1407 if (err)
1408 break_cow(rmap_item);
1409 }
1410 return err ? NULL : page;
1411 }
1412
1413 static __always_inline
__is_page_sharing_candidate(struct ksm_stable_node * stable_node,int offset)1414 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1415 {
1416 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1417 /*
1418 * Check that at least one mapping still exists, otherwise
1419 * there's no much point to merge and share with this
1420 * stable_node, as the underlying tree_page of the other
1421 * sharer is going to be freed soon.
1422 */
1423 return stable_node->rmap_hlist_len &&
1424 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1425 }
1426
1427 static __always_inline
is_page_sharing_candidate(struct ksm_stable_node * stable_node)1428 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1429 {
1430 return __is_page_sharing_candidate(stable_node, 0);
1431 }
1432
stable_node_dup(struct ksm_stable_node ** _stable_node_dup,struct ksm_stable_node ** _stable_node,struct rb_root * root,bool prune_stale_stable_nodes)1433 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1434 struct ksm_stable_node **_stable_node,
1435 struct rb_root *root,
1436 bool prune_stale_stable_nodes)
1437 {
1438 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1439 struct hlist_node *hlist_safe;
1440 struct page *_tree_page, *tree_page = NULL;
1441 int nr = 0;
1442 int found_rmap_hlist_len;
1443
1444 if (!prune_stale_stable_nodes ||
1445 time_before(jiffies, stable_node->chain_prune_time +
1446 msecs_to_jiffies(
1447 ksm_stable_node_chains_prune_millisecs)))
1448 prune_stale_stable_nodes = false;
1449 else
1450 stable_node->chain_prune_time = jiffies;
1451
1452 hlist_for_each_entry_safe(dup, hlist_safe,
1453 &stable_node->hlist, hlist_dup) {
1454 cond_resched();
1455 /*
1456 * We must walk all stable_node_dup to prune the stale
1457 * stable nodes during lookup.
1458 *
1459 * get_ksm_page can drop the nodes from the
1460 * stable_node->hlist if they point to freed pages
1461 * (that's why we do a _safe walk). The "dup"
1462 * stable_node parameter itself will be freed from
1463 * under us if it returns NULL.
1464 */
1465 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1466 if (!_tree_page)
1467 continue;
1468 nr += 1;
1469 if (is_page_sharing_candidate(dup)) {
1470 if (!found ||
1471 dup->rmap_hlist_len > found_rmap_hlist_len) {
1472 if (found)
1473 put_page(tree_page);
1474 found = dup;
1475 found_rmap_hlist_len = found->rmap_hlist_len;
1476 tree_page = _tree_page;
1477
1478 /* skip put_page for found dup */
1479 if (!prune_stale_stable_nodes)
1480 break;
1481 continue;
1482 }
1483 }
1484 put_page(_tree_page);
1485 }
1486
1487 if (found) {
1488 /*
1489 * nr is counting all dups in the chain only if
1490 * prune_stale_stable_nodes is true, otherwise we may
1491 * break the loop at nr == 1 even if there are
1492 * multiple entries.
1493 */
1494 if (prune_stale_stable_nodes && nr == 1) {
1495 /*
1496 * If there's not just one entry it would
1497 * corrupt memory, better BUG_ON. In KSM
1498 * context with no lock held it's not even
1499 * fatal.
1500 */
1501 BUG_ON(stable_node->hlist.first->next);
1502
1503 /*
1504 * There's just one entry and it is below the
1505 * deduplication limit so drop the chain.
1506 */
1507 rb_replace_node(&stable_node->node, &found->node,
1508 root);
1509 free_stable_node(stable_node);
1510 ksm_stable_node_chains--;
1511 ksm_stable_node_dups--;
1512 /*
1513 * NOTE: the caller depends on the stable_node
1514 * to be equal to stable_node_dup if the chain
1515 * was collapsed.
1516 */
1517 *_stable_node = found;
1518 /*
1519 * Just for robustness, as stable_node is
1520 * otherwise left as a stable pointer, the
1521 * compiler shall optimize it away at build
1522 * time.
1523 */
1524 stable_node = NULL;
1525 } else if (stable_node->hlist.first != &found->hlist_dup &&
1526 __is_page_sharing_candidate(found, 1)) {
1527 /*
1528 * If the found stable_node dup can accept one
1529 * more future merge (in addition to the one
1530 * that is underway) and is not at the head of
1531 * the chain, put it there so next search will
1532 * be quicker in the !prune_stale_stable_nodes
1533 * case.
1534 *
1535 * NOTE: it would be inaccurate to use nr > 1
1536 * instead of checking the hlist.first pointer
1537 * directly, because in the
1538 * prune_stale_stable_nodes case "nr" isn't
1539 * the position of the found dup in the chain,
1540 * but the total number of dups in the chain.
1541 */
1542 hlist_del(&found->hlist_dup);
1543 hlist_add_head(&found->hlist_dup,
1544 &stable_node->hlist);
1545 }
1546 }
1547
1548 *_stable_node_dup = found;
1549 return tree_page;
1550 }
1551
stable_node_dup_any(struct ksm_stable_node * stable_node,struct rb_root * root)1552 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1553 struct rb_root *root)
1554 {
1555 if (!is_stable_node_chain(stable_node))
1556 return stable_node;
1557 if (hlist_empty(&stable_node->hlist)) {
1558 free_stable_node_chain(stable_node, root);
1559 return NULL;
1560 }
1561 return hlist_entry(stable_node->hlist.first,
1562 typeof(*stable_node), hlist_dup);
1563 }
1564
1565 /*
1566 * Like for get_ksm_page, this function can free the *_stable_node and
1567 * *_stable_node_dup if the returned tree_page is NULL.
1568 *
1569 * It can also free and overwrite *_stable_node with the found
1570 * stable_node_dup if the chain is collapsed (in which case
1571 * *_stable_node will be equal to *_stable_node_dup like if the chain
1572 * never existed). It's up to the caller to verify tree_page is not
1573 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1574 *
1575 * *_stable_node_dup is really a second output parameter of this
1576 * function and will be overwritten in all cases, the caller doesn't
1577 * need to initialize it.
1578 */
__stable_node_chain(struct ksm_stable_node ** _stable_node_dup,struct ksm_stable_node ** _stable_node,struct rb_root * root,bool prune_stale_stable_nodes)1579 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1580 struct ksm_stable_node **_stable_node,
1581 struct rb_root *root,
1582 bool prune_stale_stable_nodes)
1583 {
1584 struct ksm_stable_node *stable_node = *_stable_node;
1585 if (!is_stable_node_chain(stable_node)) {
1586 if (is_page_sharing_candidate(stable_node)) {
1587 *_stable_node_dup = stable_node;
1588 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1589 }
1590 /*
1591 * _stable_node_dup set to NULL means the stable_node
1592 * reached the ksm_max_page_sharing limit.
1593 */
1594 *_stable_node_dup = NULL;
1595 return NULL;
1596 }
1597 return stable_node_dup(_stable_node_dup, _stable_node, root,
1598 prune_stale_stable_nodes);
1599 }
1600
chain_prune(struct ksm_stable_node ** s_n_d,struct ksm_stable_node ** s_n,struct rb_root * root)1601 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1602 struct ksm_stable_node **s_n,
1603 struct rb_root *root)
1604 {
1605 return __stable_node_chain(s_n_d, s_n, root, true);
1606 }
1607
chain(struct ksm_stable_node ** s_n_d,struct ksm_stable_node * s_n,struct rb_root * root)1608 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1609 struct ksm_stable_node *s_n,
1610 struct rb_root *root)
1611 {
1612 struct ksm_stable_node *old_stable_node = s_n;
1613 struct page *tree_page;
1614
1615 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1616 /* not pruning dups so s_n cannot have changed */
1617 VM_BUG_ON(s_n != old_stable_node);
1618 return tree_page;
1619 }
1620
1621 /*
1622 * stable_tree_search - search for page inside the stable tree
1623 *
1624 * This function checks if there is a page inside the stable tree
1625 * with identical content to the page that we are scanning right now.
1626 *
1627 * This function returns the stable tree node of identical content if found,
1628 * NULL otherwise.
1629 */
stable_tree_search(struct page * page)1630 static struct page *stable_tree_search(struct page *page)
1631 {
1632 int nid;
1633 struct rb_root *root;
1634 struct rb_node **new;
1635 struct rb_node *parent;
1636 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1637 struct ksm_stable_node *page_node;
1638
1639 page_node = page_stable_node(page);
1640 if (page_node && page_node->head != &migrate_nodes) {
1641 /* ksm page forked */
1642 get_page(page);
1643 return page;
1644 }
1645
1646 nid = get_kpfn_nid(page_to_pfn(page));
1647 root = root_stable_tree + nid;
1648 again:
1649 new = &root->rb_node;
1650 parent = NULL;
1651
1652 while (*new) {
1653 struct page *tree_page;
1654 int ret;
1655
1656 cond_resched();
1657 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1658 stable_node_any = NULL;
1659 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1660 /*
1661 * NOTE: stable_node may have been freed by
1662 * chain_prune() if the returned stable_node_dup is
1663 * not NULL. stable_node_dup may have been inserted in
1664 * the rbtree instead as a regular stable_node (in
1665 * order to collapse the stable_node chain if a single
1666 * stable_node dup was found in it). In such case the
1667 * stable_node is overwritten by the callee to point
1668 * to the stable_node_dup that was collapsed in the
1669 * stable rbtree and stable_node will be equal to
1670 * stable_node_dup like if the chain never existed.
1671 */
1672 if (!stable_node_dup) {
1673 /*
1674 * Either all stable_node dups were full in
1675 * this stable_node chain, or this chain was
1676 * empty and should be rb_erased.
1677 */
1678 stable_node_any = stable_node_dup_any(stable_node,
1679 root);
1680 if (!stable_node_any) {
1681 /* rb_erase just run */
1682 goto again;
1683 }
1684 /*
1685 * Take any of the stable_node dups page of
1686 * this stable_node chain to let the tree walk
1687 * continue. All KSM pages belonging to the
1688 * stable_node dups in a stable_node chain
1689 * have the same content and they're
1690 * write protected at all times. Any will work
1691 * fine to continue the walk.
1692 */
1693 tree_page = get_ksm_page(stable_node_any,
1694 GET_KSM_PAGE_NOLOCK);
1695 }
1696 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1697 if (!tree_page) {
1698 /*
1699 * If we walked over a stale stable_node,
1700 * get_ksm_page() will call rb_erase() and it
1701 * may rebalance the tree from under us. So
1702 * restart the search from scratch. Returning
1703 * NULL would be safe too, but we'd generate
1704 * false negative insertions just because some
1705 * stable_node was stale.
1706 */
1707 goto again;
1708 }
1709
1710 ret = memcmp_pages(page, tree_page);
1711 put_page(tree_page);
1712
1713 parent = *new;
1714 if (ret < 0)
1715 new = &parent->rb_left;
1716 else if (ret > 0)
1717 new = &parent->rb_right;
1718 else {
1719 if (page_node) {
1720 VM_BUG_ON(page_node->head != &migrate_nodes);
1721 /*
1722 * Test if the migrated page should be merged
1723 * into a stable node dup. If the mapcount is
1724 * 1 we can migrate it with another KSM page
1725 * without adding it to the chain.
1726 */
1727 if (page_mapcount(page) > 1)
1728 goto chain_append;
1729 }
1730
1731 if (!stable_node_dup) {
1732 /*
1733 * If the stable_node is a chain and
1734 * we got a payload match in memcmp
1735 * but we cannot merge the scanned
1736 * page in any of the existing
1737 * stable_node dups because they're
1738 * all full, we need to wait the
1739 * scanned page to find itself a match
1740 * in the unstable tree to create a
1741 * brand new KSM page to add later to
1742 * the dups of this stable_node.
1743 */
1744 return NULL;
1745 }
1746
1747 /*
1748 * Lock and unlock the stable_node's page (which
1749 * might already have been migrated) so that page
1750 * migration is sure to notice its raised count.
1751 * It would be more elegant to return stable_node
1752 * than kpage, but that involves more changes.
1753 */
1754 tree_page = get_ksm_page(stable_node_dup,
1755 GET_KSM_PAGE_TRYLOCK);
1756
1757 if (PTR_ERR(tree_page) == -EBUSY)
1758 return ERR_PTR(-EBUSY);
1759
1760 if (unlikely(!tree_page))
1761 /*
1762 * The tree may have been rebalanced,
1763 * so re-evaluate parent and new.
1764 */
1765 goto again;
1766 unlock_page(tree_page);
1767
1768 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1769 NUMA(stable_node_dup->nid)) {
1770 put_page(tree_page);
1771 goto replace;
1772 }
1773 return tree_page;
1774 }
1775 }
1776
1777 if (!page_node)
1778 return NULL;
1779
1780 list_del(&page_node->list);
1781 DO_NUMA(page_node->nid = nid);
1782 rb_link_node(&page_node->node, parent, new);
1783 rb_insert_color(&page_node->node, root);
1784 out:
1785 if (is_page_sharing_candidate(page_node)) {
1786 get_page(page);
1787 return page;
1788 } else
1789 return NULL;
1790
1791 replace:
1792 /*
1793 * If stable_node was a chain and chain_prune collapsed it,
1794 * stable_node has been updated to be the new regular
1795 * stable_node. A collapse of the chain is indistinguishable
1796 * from the case there was no chain in the stable
1797 * rbtree. Otherwise stable_node is the chain and
1798 * stable_node_dup is the dup to replace.
1799 */
1800 if (stable_node_dup == stable_node) {
1801 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1802 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1803 /* there is no chain */
1804 if (page_node) {
1805 VM_BUG_ON(page_node->head != &migrate_nodes);
1806 list_del(&page_node->list);
1807 DO_NUMA(page_node->nid = nid);
1808 rb_replace_node(&stable_node_dup->node,
1809 &page_node->node,
1810 root);
1811 if (is_page_sharing_candidate(page_node))
1812 get_page(page);
1813 else
1814 page = NULL;
1815 } else {
1816 rb_erase(&stable_node_dup->node, root);
1817 page = NULL;
1818 }
1819 } else {
1820 VM_BUG_ON(!is_stable_node_chain(stable_node));
1821 __stable_node_dup_del(stable_node_dup);
1822 if (page_node) {
1823 VM_BUG_ON(page_node->head != &migrate_nodes);
1824 list_del(&page_node->list);
1825 DO_NUMA(page_node->nid = nid);
1826 stable_node_chain_add_dup(page_node, stable_node);
1827 if (is_page_sharing_candidate(page_node))
1828 get_page(page);
1829 else
1830 page = NULL;
1831 } else {
1832 page = NULL;
1833 }
1834 }
1835 stable_node_dup->head = &migrate_nodes;
1836 list_add(&stable_node_dup->list, stable_node_dup->head);
1837 return page;
1838
1839 chain_append:
1840 /* stable_node_dup could be null if it reached the limit */
1841 if (!stable_node_dup)
1842 stable_node_dup = stable_node_any;
1843 /*
1844 * If stable_node was a chain and chain_prune collapsed it,
1845 * stable_node has been updated to be the new regular
1846 * stable_node. A collapse of the chain is indistinguishable
1847 * from the case there was no chain in the stable
1848 * rbtree. Otherwise stable_node is the chain and
1849 * stable_node_dup is the dup to replace.
1850 */
1851 if (stable_node_dup == stable_node) {
1852 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1853 /* chain is missing so create it */
1854 stable_node = alloc_stable_node_chain(stable_node_dup,
1855 root);
1856 if (!stable_node)
1857 return NULL;
1858 }
1859 /*
1860 * Add this stable_node dup that was
1861 * migrated to the stable_node chain
1862 * of the current nid for this page
1863 * content.
1864 */
1865 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1866 VM_BUG_ON(page_node->head != &migrate_nodes);
1867 list_del(&page_node->list);
1868 DO_NUMA(page_node->nid = nid);
1869 stable_node_chain_add_dup(page_node, stable_node);
1870 goto out;
1871 }
1872
1873 /*
1874 * stable_tree_insert - insert stable tree node pointing to new ksm page
1875 * into the stable tree.
1876 *
1877 * This function returns the stable tree node just allocated on success,
1878 * NULL otherwise.
1879 */
stable_tree_insert(struct page * kpage)1880 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1881 {
1882 int nid;
1883 unsigned long kpfn;
1884 struct rb_root *root;
1885 struct rb_node **new;
1886 struct rb_node *parent;
1887 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1888 bool need_chain = false;
1889
1890 kpfn = page_to_pfn(kpage);
1891 nid = get_kpfn_nid(kpfn);
1892 root = root_stable_tree + nid;
1893 again:
1894 parent = NULL;
1895 new = &root->rb_node;
1896
1897 while (*new) {
1898 struct page *tree_page;
1899 int ret;
1900
1901 cond_resched();
1902 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1903 stable_node_any = NULL;
1904 tree_page = chain(&stable_node_dup, stable_node, root);
1905 if (!stable_node_dup) {
1906 /*
1907 * Either all stable_node dups were full in
1908 * this stable_node chain, or this chain was
1909 * empty and should be rb_erased.
1910 */
1911 stable_node_any = stable_node_dup_any(stable_node,
1912 root);
1913 if (!stable_node_any) {
1914 /* rb_erase just run */
1915 goto again;
1916 }
1917 /*
1918 * Take any of the stable_node dups page of
1919 * this stable_node chain to let the tree walk
1920 * continue. All KSM pages belonging to the
1921 * stable_node dups in a stable_node chain
1922 * have the same content and they're
1923 * write protected at all times. Any will work
1924 * fine to continue the walk.
1925 */
1926 tree_page = get_ksm_page(stable_node_any,
1927 GET_KSM_PAGE_NOLOCK);
1928 }
1929 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1930 if (!tree_page) {
1931 /*
1932 * If we walked over a stale stable_node,
1933 * get_ksm_page() will call rb_erase() and it
1934 * may rebalance the tree from under us. So
1935 * restart the search from scratch. Returning
1936 * NULL would be safe too, but we'd generate
1937 * false negative insertions just because some
1938 * stable_node was stale.
1939 */
1940 goto again;
1941 }
1942
1943 ret = memcmp_pages(kpage, tree_page);
1944 put_page(tree_page);
1945
1946 parent = *new;
1947 if (ret < 0)
1948 new = &parent->rb_left;
1949 else if (ret > 0)
1950 new = &parent->rb_right;
1951 else {
1952 need_chain = true;
1953 break;
1954 }
1955 }
1956
1957 stable_node_dup = alloc_stable_node();
1958 if (!stable_node_dup)
1959 return NULL;
1960
1961 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1962 stable_node_dup->kpfn = kpfn;
1963 set_page_stable_node(kpage, stable_node_dup);
1964 stable_node_dup->rmap_hlist_len = 0;
1965 DO_NUMA(stable_node_dup->nid = nid);
1966 if (!need_chain) {
1967 rb_link_node(&stable_node_dup->node, parent, new);
1968 rb_insert_color(&stable_node_dup->node, root);
1969 } else {
1970 if (!is_stable_node_chain(stable_node)) {
1971 struct ksm_stable_node *orig = stable_node;
1972 /* chain is missing so create it */
1973 stable_node = alloc_stable_node_chain(orig, root);
1974 if (!stable_node) {
1975 free_stable_node(stable_node_dup);
1976 return NULL;
1977 }
1978 }
1979 stable_node_chain_add_dup(stable_node_dup, stable_node);
1980 }
1981
1982 return stable_node_dup;
1983 }
1984
1985 /*
1986 * unstable_tree_search_insert - search for identical page,
1987 * else insert rmap_item into the unstable tree.
1988 *
1989 * This function searches for a page in the unstable tree identical to the
1990 * page currently being scanned; and if no identical page is found in the
1991 * tree, we insert rmap_item as a new object into the unstable tree.
1992 *
1993 * This function returns pointer to rmap_item found to be identical
1994 * to the currently scanned page, NULL otherwise.
1995 *
1996 * This function does both searching and inserting, because they share
1997 * the same walking algorithm in an rbtree.
1998 */
1999 static
unstable_tree_search_insert(struct ksm_rmap_item * rmap_item,struct page * page,struct page ** tree_pagep)2000 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2001 struct page *page,
2002 struct page **tree_pagep)
2003 {
2004 struct rb_node **new;
2005 struct rb_root *root;
2006 struct rb_node *parent = NULL;
2007 int nid;
2008
2009 nid = get_kpfn_nid(page_to_pfn(page));
2010 root = root_unstable_tree + nid;
2011 new = &root->rb_node;
2012
2013 while (*new) {
2014 struct ksm_rmap_item *tree_rmap_item;
2015 struct page *tree_page;
2016 int ret;
2017
2018 cond_resched();
2019 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2020 tree_page = get_mergeable_page(tree_rmap_item);
2021 if (!tree_page)
2022 return NULL;
2023
2024 /*
2025 * Don't substitute a ksm page for a forked page.
2026 */
2027 if (page == tree_page) {
2028 put_page(tree_page);
2029 return NULL;
2030 }
2031
2032 ret = memcmp_pages(page, tree_page);
2033
2034 parent = *new;
2035 if (ret < 0) {
2036 put_page(tree_page);
2037 new = &parent->rb_left;
2038 } else if (ret > 0) {
2039 put_page(tree_page);
2040 new = &parent->rb_right;
2041 } else if (!ksm_merge_across_nodes &&
2042 page_to_nid(tree_page) != nid) {
2043 /*
2044 * If tree_page has been migrated to another NUMA node,
2045 * it will be flushed out and put in the right unstable
2046 * tree next time: only merge with it when across_nodes.
2047 */
2048 put_page(tree_page);
2049 return NULL;
2050 } else {
2051 *tree_pagep = tree_page;
2052 return tree_rmap_item;
2053 }
2054 }
2055
2056 rmap_item->address |= UNSTABLE_FLAG;
2057 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2058 DO_NUMA(rmap_item->nid = nid);
2059 rb_link_node(&rmap_item->node, parent, new);
2060 rb_insert_color(&rmap_item->node, root);
2061
2062 ksm_pages_unshared++;
2063 return NULL;
2064 }
2065
2066 /*
2067 * stable_tree_append - add another rmap_item to the linked list of
2068 * rmap_items hanging off a given node of the stable tree, all sharing
2069 * the same ksm page.
2070 */
stable_tree_append(struct ksm_rmap_item * rmap_item,struct ksm_stable_node * stable_node,bool max_page_sharing_bypass)2071 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2072 struct ksm_stable_node *stable_node,
2073 bool max_page_sharing_bypass)
2074 {
2075 /*
2076 * rmap won't find this mapping if we don't insert the
2077 * rmap_item in the right stable_node
2078 * duplicate. page_migration could break later if rmap breaks,
2079 * so we can as well crash here. We really need to check for
2080 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2081 * for other negative values as an underflow if detected here
2082 * for the first time (and not when decreasing rmap_hlist_len)
2083 * would be sign of memory corruption in the stable_node.
2084 */
2085 BUG_ON(stable_node->rmap_hlist_len < 0);
2086
2087 stable_node->rmap_hlist_len++;
2088 if (!max_page_sharing_bypass)
2089 /* possibly non fatal but unexpected overflow, only warn */
2090 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2091 ksm_max_page_sharing);
2092
2093 rmap_item->head = stable_node;
2094 rmap_item->address |= STABLE_FLAG;
2095 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2096
2097 if (rmap_item->hlist.next)
2098 ksm_pages_sharing++;
2099 else
2100 ksm_pages_shared++;
2101
2102 rmap_item->mm->ksm_merging_pages++;
2103 }
2104
2105 /*
2106 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2107 * if not, compare checksum to previous and if it's the same, see if page can
2108 * be inserted into the unstable tree, or merged with a page already there and
2109 * both transferred to the stable tree.
2110 *
2111 * @page: the page that we are searching identical page to.
2112 * @rmap_item: the reverse mapping into the virtual address of this page
2113 */
cmp_and_merge_page(struct page * page,struct ksm_rmap_item * rmap_item)2114 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2115 {
2116 struct mm_struct *mm = rmap_item->mm;
2117 struct ksm_rmap_item *tree_rmap_item;
2118 struct page *tree_page = NULL;
2119 struct ksm_stable_node *stable_node;
2120 struct page *kpage;
2121 unsigned int checksum;
2122 int err;
2123 bool max_page_sharing_bypass = false;
2124
2125 stable_node = page_stable_node(page);
2126 if (stable_node) {
2127 if (stable_node->head != &migrate_nodes &&
2128 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2129 NUMA(stable_node->nid)) {
2130 stable_node_dup_del(stable_node);
2131 stable_node->head = &migrate_nodes;
2132 list_add(&stable_node->list, stable_node->head);
2133 }
2134 if (stable_node->head != &migrate_nodes &&
2135 rmap_item->head == stable_node)
2136 return;
2137 /*
2138 * If it's a KSM fork, allow it to go over the sharing limit
2139 * without warnings.
2140 */
2141 if (!is_page_sharing_candidate(stable_node))
2142 max_page_sharing_bypass = true;
2143 }
2144
2145 /* We first start with searching the page inside the stable tree */
2146 kpage = stable_tree_search(page);
2147 if (kpage == page && rmap_item->head == stable_node) {
2148 put_page(kpage);
2149 return;
2150 }
2151
2152 remove_rmap_item_from_tree(rmap_item);
2153
2154 if (kpage) {
2155 if (PTR_ERR(kpage) == -EBUSY)
2156 return;
2157
2158 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2159 if (!err) {
2160 /*
2161 * The page was successfully merged:
2162 * add its rmap_item to the stable tree.
2163 */
2164 lock_page(kpage);
2165 stable_tree_append(rmap_item, page_stable_node(kpage),
2166 max_page_sharing_bypass);
2167 unlock_page(kpage);
2168 }
2169 put_page(kpage);
2170 return;
2171 }
2172
2173 /*
2174 * If the hash value of the page has changed from the last time
2175 * we calculated it, this page is changing frequently: therefore we
2176 * don't want to insert it in the unstable tree, and we don't want
2177 * to waste our time searching for something identical to it there.
2178 */
2179 checksum = calc_checksum(page);
2180 if (rmap_item->oldchecksum != checksum) {
2181 rmap_item->oldchecksum = checksum;
2182 return;
2183 }
2184
2185 /*
2186 * Same checksum as an empty page. We attempt to merge it with the
2187 * appropriate zero page if the user enabled this via sysfs.
2188 */
2189 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2190 struct vm_area_struct *vma;
2191
2192 mmap_read_lock(mm);
2193 vma = find_mergeable_vma(mm, rmap_item->address);
2194 if (vma) {
2195 err = try_to_merge_one_page(vma, page,
2196 ZERO_PAGE(rmap_item->address));
2197 trace_ksm_merge_one_page(
2198 page_to_pfn(ZERO_PAGE(rmap_item->address)),
2199 rmap_item, mm, err);
2200 } else {
2201 /*
2202 * If the vma is out of date, we do not need to
2203 * continue.
2204 */
2205 err = 0;
2206 }
2207 mmap_read_unlock(mm);
2208 /*
2209 * In case of failure, the page was not really empty, so we
2210 * need to continue. Otherwise we're done.
2211 */
2212 if (!err)
2213 return;
2214 }
2215 tree_rmap_item =
2216 unstable_tree_search_insert(rmap_item, page, &tree_page);
2217 if (tree_rmap_item) {
2218 bool split;
2219
2220 kpage = try_to_merge_two_pages(rmap_item, page,
2221 tree_rmap_item, tree_page);
2222 /*
2223 * If both pages we tried to merge belong to the same compound
2224 * page, then we actually ended up increasing the reference
2225 * count of the same compound page twice, and split_huge_page
2226 * failed.
2227 * Here we set a flag if that happened, and we use it later to
2228 * try split_huge_page again. Since we call put_page right
2229 * afterwards, the reference count will be correct and
2230 * split_huge_page should succeed.
2231 */
2232 split = PageTransCompound(page)
2233 && compound_head(page) == compound_head(tree_page);
2234 put_page(tree_page);
2235 if (kpage) {
2236 /*
2237 * The pages were successfully merged: insert new
2238 * node in the stable tree and add both rmap_items.
2239 */
2240 lock_page(kpage);
2241 stable_node = stable_tree_insert(kpage);
2242 if (stable_node) {
2243 stable_tree_append(tree_rmap_item, stable_node,
2244 false);
2245 stable_tree_append(rmap_item, stable_node,
2246 false);
2247 }
2248 unlock_page(kpage);
2249
2250 /*
2251 * If we fail to insert the page into the stable tree,
2252 * we will have 2 virtual addresses that are pointing
2253 * to a ksm page left outside the stable tree,
2254 * in which case we need to break_cow on both.
2255 */
2256 if (!stable_node) {
2257 break_cow(tree_rmap_item);
2258 break_cow(rmap_item);
2259 }
2260 } else if (split) {
2261 /*
2262 * We are here if we tried to merge two pages and
2263 * failed because they both belonged to the same
2264 * compound page. We will split the page now, but no
2265 * merging will take place.
2266 * We do not want to add the cost of a full lock; if
2267 * the page is locked, it is better to skip it and
2268 * perhaps try again later.
2269 */
2270 if (!trylock_page(page))
2271 return;
2272 split_huge_page(page);
2273 unlock_page(page);
2274 }
2275 }
2276 }
2277
get_next_rmap_item(struct ksm_mm_slot * mm_slot,struct ksm_rmap_item ** rmap_list,unsigned long addr)2278 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2279 struct ksm_rmap_item **rmap_list,
2280 unsigned long addr)
2281 {
2282 struct ksm_rmap_item *rmap_item;
2283
2284 while (*rmap_list) {
2285 rmap_item = *rmap_list;
2286 if ((rmap_item->address & PAGE_MASK) == addr)
2287 return rmap_item;
2288 if (rmap_item->address > addr)
2289 break;
2290 *rmap_list = rmap_item->rmap_list;
2291 remove_rmap_item_from_tree(rmap_item);
2292 free_rmap_item(rmap_item);
2293 }
2294
2295 rmap_item = alloc_rmap_item();
2296 if (rmap_item) {
2297 /* It has already been zeroed */
2298 rmap_item->mm = mm_slot->slot.mm;
2299 rmap_item->mm->ksm_rmap_items++;
2300 rmap_item->address = addr;
2301 rmap_item->rmap_list = *rmap_list;
2302 *rmap_list = rmap_item;
2303 }
2304 return rmap_item;
2305 }
2306
scan_get_next_rmap_item(struct page ** page)2307 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2308 {
2309 struct mm_struct *mm;
2310 struct ksm_mm_slot *mm_slot;
2311 struct mm_slot *slot;
2312 struct vm_area_struct *vma;
2313 struct ksm_rmap_item *rmap_item;
2314 struct vma_iterator vmi;
2315 int nid;
2316
2317 if (list_empty(&ksm_mm_head.slot.mm_node))
2318 return NULL;
2319
2320 mm_slot = ksm_scan.mm_slot;
2321 if (mm_slot == &ksm_mm_head) {
2322 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2323
2324 /*
2325 * A number of pages can hang around indefinitely in per-cpu
2326 * LRU cache, raised page count preventing write_protect_page
2327 * from merging them. Though it doesn't really matter much,
2328 * it is puzzling to see some stuck in pages_volatile until
2329 * other activity jostles them out, and they also prevented
2330 * LTP's KSM test from succeeding deterministically; so drain
2331 * them here (here rather than on entry to ksm_do_scan(),
2332 * so we don't IPI too often when pages_to_scan is set low).
2333 */
2334 lru_add_drain_all();
2335
2336 /*
2337 * Whereas stale stable_nodes on the stable_tree itself
2338 * get pruned in the regular course of stable_tree_search(),
2339 * those moved out to the migrate_nodes list can accumulate:
2340 * so prune them once before each full scan.
2341 */
2342 if (!ksm_merge_across_nodes) {
2343 struct ksm_stable_node *stable_node, *next;
2344 struct page *page;
2345
2346 list_for_each_entry_safe(stable_node, next,
2347 &migrate_nodes, list) {
2348 page = get_ksm_page(stable_node,
2349 GET_KSM_PAGE_NOLOCK);
2350 if (page)
2351 put_page(page);
2352 cond_resched();
2353 }
2354 }
2355
2356 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2357 root_unstable_tree[nid] = RB_ROOT;
2358
2359 spin_lock(&ksm_mmlist_lock);
2360 slot = list_entry(mm_slot->slot.mm_node.next,
2361 struct mm_slot, mm_node);
2362 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2363 ksm_scan.mm_slot = mm_slot;
2364 spin_unlock(&ksm_mmlist_lock);
2365 /*
2366 * Although we tested list_empty() above, a racing __ksm_exit
2367 * of the last mm on the list may have removed it since then.
2368 */
2369 if (mm_slot == &ksm_mm_head)
2370 return NULL;
2371 next_mm:
2372 ksm_scan.address = 0;
2373 ksm_scan.rmap_list = &mm_slot->rmap_list;
2374 }
2375
2376 slot = &mm_slot->slot;
2377 mm = slot->mm;
2378 vma_iter_init(&vmi, mm, ksm_scan.address);
2379
2380 mmap_read_lock(mm);
2381 if (ksm_test_exit(mm))
2382 goto no_vmas;
2383
2384 for_each_vma(vmi, vma) {
2385 if (!(vma->vm_flags & VM_MERGEABLE))
2386 continue;
2387 if (ksm_scan.address < vma->vm_start)
2388 ksm_scan.address = vma->vm_start;
2389 if (!vma->anon_vma)
2390 ksm_scan.address = vma->vm_end;
2391
2392 while (ksm_scan.address < vma->vm_end) {
2393 if (ksm_test_exit(mm))
2394 break;
2395 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2396 if (IS_ERR_OR_NULL(*page)) {
2397 ksm_scan.address += PAGE_SIZE;
2398 cond_resched();
2399 continue;
2400 }
2401 if (is_zone_device_page(*page))
2402 goto next_page;
2403 if (PageAnon(*page)) {
2404 flush_anon_page(vma, *page, ksm_scan.address);
2405 flush_dcache_page(*page);
2406 rmap_item = get_next_rmap_item(mm_slot,
2407 ksm_scan.rmap_list, ksm_scan.address);
2408 if (rmap_item) {
2409 ksm_scan.rmap_list =
2410 &rmap_item->rmap_list;
2411 ksm_scan.address += PAGE_SIZE;
2412 } else
2413 put_page(*page);
2414 mmap_read_unlock(mm);
2415 return rmap_item;
2416 }
2417 next_page:
2418 put_page(*page);
2419 ksm_scan.address += PAGE_SIZE;
2420 cond_resched();
2421 }
2422 }
2423
2424 if (ksm_test_exit(mm)) {
2425 no_vmas:
2426 ksm_scan.address = 0;
2427 ksm_scan.rmap_list = &mm_slot->rmap_list;
2428 }
2429 /*
2430 * Nuke all the rmap_items that are above this current rmap:
2431 * because there were no VM_MERGEABLE vmas with such addresses.
2432 */
2433 remove_trailing_rmap_items(ksm_scan.rmap_list);
2434
2435 spin_lock(&ksm_mmlist_lock);
2436 slot = list_entry(mm_slot->slot.mm_node.next,
2437 struct mm_slot, mm_node);
2438 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2439 if (ksm_scan.address == 0) {
2440 /*
2441 * We've completed a full scan of all vmas, holding mmap_lock
2442 * throughout, and found no VM_MERGEABLE: so do the same as
2443 * __ksm_exit does to remove this mm from all our lists now.
2444 * This applies either when cleaning up after __ksm_exit
2445 * (but beware: we can reach here even before __ksm_exit),
2446 * or when all VM_MERGEABLE areas have been unmapped (and
2447 * mmap_lock then protects against race with MADV_MERGEABLE).
2448 */
2449 hash_del(&mm_slot->slot.hash);
2450 list_del(&mm_slot->slot.mm_node);
2451 spin_unlock(&ksm_mmlist_lock);
2452
2453 mm_slot_free(mm_slot_cache, mm_slot);
2454 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2455 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2456 mmap_read_unlock(mm);
2457 mmdrop(mm);
2458 } else {
2459 mmap_read_unlock(mm);
2460 /*
2461 * mmap_read_unlock(mm) first because after
2462 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2463 * already have been freed under us by __ksm_exit()
2464 * because the "mm_slot" is still hashed and
2465 * ksm_scan.mm_slot doesn't point to it anymore.
2466 */
2467 spin_unlock(&ksm_mmlist_lock);
2468 }
2469
2470 /* Repeat until we've completed scanning the whole list */
2471 mm_slot = ksm_scan.mm_slot;
2472 if (mm_slot != &ksm_mm_head)
2473 goto next_mm;
2474
2475 trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2476 ksm_scan.seqnr++;
2477 return NULL;
2478 }
2479
2480 /**
2481 * ksm_do_scan - the ksm scanner main worker function.
2482 * @scan_npages: number of pages we want to scan before we return.
2483 */
ksm_do_scan(unsigned int scan_npages)2484 static void ksm_do_scan(unsigned int scan_npages)
2485 {
2486 struct ksm_rmap_item *rmap_item;
2487 struct page *page;
2488
2489 while (scan_npages-- && likely(!freezing(current))) {
2490 cond_resched();
2491 rmap_item = scan_get_next_rmap_item(&page);
2492 if (!rmap_item)
2493 return;
2494 cmp_and_merge_page(page, rmap_item);
2495 put_page(page);
2496 ksm_pages_scanned++;
2497 }
2498 }
2499
ksmd_should_run(void)2500 static int ksmd_should_run(void)
2501 {
2502 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2503 }
2504
ksm_scan_thread(void * nothing)2505 static int ksm_scan_thread(void *nothing)
2506 {
2507 unsigned int sleep_ms;
2508
2509 set_freezable();
2510 set_user_nice(current, 5);
2511
2512 while (!kthread_should_stop()) {
2513 mutex_lock(&ksm_thread_mutex);
2514 wait_while_offlining();
2515 if (ksmd_should_run())
2516 ksm_do_scan(ksm_thread_pages_to_scan);
2517 mutex_unlock(&ksm_thread_mutex);
2518
2519 try_to_freeze();
2520
2521 if (ksmd_should_run()) {
2522 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2523 wait_event_interruptible_timeout(ksm_iter_wait,
2524 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2525 msecs_to_jiffies(sleep_ms));
2526 } else {
2527 wait_event_freezable(ksm_thread_wait,
2528 ksmd_should_run() || kthread_should_stop());
2529 }
2530 }
2531 return 0;
2532 }
2533
__ksm_add_vma(struct vm_area_struct * vma)2534 static void __ksm_add_vma(struct vm_area_struct *vma)
2535 {
2536 unsigned long vm_flags = vma->vm_flags;
2537
2538 if (vm_flags & VM_MERGEABLE)
2539 return;
2540
2541 if (vma_ksm_compatible(vma))
2542 vm_flags_set(vma, VM_MERGEABLE);
2543 }
2544
__ksm_del_vma(struct vm_area_struct * vma)2545 static int __ksm_del_vma(struct vm_area_struct *vma)
2546 {
2547 int err;
2548
2549 if (!(vma->vm_flags & VM_MERGEABLE))
2550 return 0;
2551
2552 if (vma->anon_vma) {
2553 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
2554 if (err)
2555 return err;
2556 }
2557
2558 vm_flags_clear(vma, VM_MERGEABLE);
2559 return 0;
2560 }
2561 /**
2562 * ksm_add_vma - Mark vma as mergeable if compatible
2563 *
2564 * @vma: Pointer to vma
2565 */
ksm_add_vma(struct vm_area_struct * vma)2566 void ksm_add_vma(struct vm_area_struct *vma)
2567 {
2568 struct mm_struct *mm = vma->vm_mm;
2569
2570 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2571 __ksm_add_vma(vma);
2572 }
2573
ksm_add_vmas(struct mm_struct * mm)2574 static void ksm_add_vmas(struct mm_struct *mm)
2575 {
2576 struct vm_area_struct *vma;
2577
2578 VMA_ITERATOR(vmi, mm, 0);
2579 for_each_vma(vmi, vma)
2580 __ksm_add_vma(vma);
2581 }
2582
ksm_del_vmas(struct mm_struct * mm)2583 static int ksm_del_vmas(struct mm_struct *mm)
2584 {
2585 struct vm_area_struct *vma;
2586 int err;
2587
2588 VMA_ITERATOR(vmi, mm, 0);
2589 for_each_vma(vmi, vma) {
2590 err = __ksm_del_vma(vma);
2591 if (err)
2592 return err;
2593 }
2594 return 0;
2595 }
2596
2597 /**
2598 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2599 * compatible VMA's
2600 *
2601 * @mm: Pointer to mm
2602 *
2603 * Returns 0 on success, otherwise error code
2604 */
ksm_enable_merge_any(struct mm_struct * mm)2605 int ksm_enable_merge_any(struct mm_struct *mm)
2606 {
2607 int err;
2608
2609 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2610 return 0;
2611
2612 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2613 err = __ksm_enter(mm);
2614 if (err)
2615 return err;
2616 }
2617
2618 set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2619 ksm_add_vmas(mm);
2620
2621 return 0;
2622 }
2623
2624 /**
2625 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2626 * previously enabled via ksm_enable_merge_any().
2627 *
2628 * Disabling merging implies unmerging any merged pages, like setting
2629 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2630 * merging on all compatible VMA's remains enabled.
2631 *
2632 * @mm: Pointer to mm
2633 *
2634 * Returns 0 on success, otherwise error code
2635 */
ksm_disable_merge_any(struct mm_struct * mm)2636 int ksm_disable_merge_any(struct mm_struct *mm)
2637 {
2638 int err;
2639
2640 if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2641 return 0;
2642
2643 err = ksm_del_vmas(mm);
2644 if (err) {
2645 ksm_add_vmas(mm);
2646 return err;
2647 }
2648
2649 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2650 return 0;
2651 }
2652
ksm_disable(struct mm_struct * mm)2653 int ksm_disable(struct mm_struct *mm)
2654 {
2655 mmap_assert_write_locked(mm);
2656
2657 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2658 return 0;
2659 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2660 return ksm_disable_merge_any(mm);
2661 return ksm_del_vmas(mm);
2662 }
2663
ksm_madvise(struct vm_area_struct * vma,unsigned long start,unsigned long end,int advice,unsigned long * vm_flags)2664 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2665 unsigned long end, int advice, unsigned long *vm_flags)
2666 {
2667 struct mm_struct *mm = vma->vm_mm;
2668 int err;
2669
2670 switch (advice) {
2671 case MADV_MERGEABLE:
2672 if (vma->vm_flags & VM_MERGEABLE)
2673 return 0;
2674 if (!vma_ksm_compatible(vma))
2675 return 0;
2676
2677 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2678 err = __ksm_enter(mm);
2679 if (err)
2680 return err;
2681 }
2682
2683 *vm_flags |= VM_MERGEABLE;
2684 break;
2685
2686 case MADV_UNMERGEABLE:
2687 if (!(*vm_flags & VM_MERGEABLE))
2688 return 0; /* just ignore the advice */
2689
2690 if (vma->anon_vma) {
2691 err = unmerge_ksm_pages(vma, start, end, true);
2692 if (err)
2693 return err;
2694 }
2695
2696 *vm_flags &= ~VM_MERGEABLE;
2697 break;
2698 }
2699
2700 return 0;
2701 }
2702 EXPORT_SYMBOL_GPL(ksm_madvise);
2703
__ksm_enter(struct mm_struct * mm)2704 int __ksm_enter(struct mm_struct *mm)
2705 {
2706 struct ksm_mm_slot *mm_slot;
2707 struct mm_slot *slot;
2708 int needs_wakeup;
2709
2710 mm_slot = mm_slot_alloc(mm_slot_cache);
2711 if (!mm_slot)
2712 return -ENOMEM;
2713
2714 slot = &mm_slot->slot;
2715
2716 /* Check ksm_run too? Would need tighter locking */
2717 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2718
2719 spin_lock(&ksm_mmlist_lock);
2720 mm_slot_insert(mm_slots_hash, mm, slot);
2721 /*
2722 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2723 * insert just behind the scanning cursor, to let the area settle
2724 * down a little; when fork is followed by immediate exec, we don't
2725 * want ksmd to waste time setting up and tearing down an rmap_list.
2726 *
2727 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2728 * scanning cursor, otherwise KSM pages in newly forked mms will be
2729 * missed: then we might as well insert at the end of the list.
2730 */
2731 if (ksm_run & KSM_RUN_UNMERGE)
2732 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2733 else
2734 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2735 spin_unlock(&ksm_mmlist_lock);
2736
2737 set_bit(MMF_VM_MERGEABLE, &mm->flags);
2738 mmgrab(mm);
2739
2740 if (needs_wakeup)
2741 wake_up_interruptible(&ksm_thread_wait);
2742
2743 trace_ksm_enter(mm);
2744 return 0;
2745 }
2746
__ksm_exit(struct mm_struct * mm)2747 void __ksm_exit(struct mm_struct *mm)
2748 {
2749 struct ksm_mm_slot *mm_slot;
2750 struct mm_slot *slot;
2751 int easy_to_free = 0;
2752
2753 /*
2754 * This process is exiting: if it's straightforward (as is the
2755 * case when ksmd was never running), free mm_slot immediately.
2756 * But if it's at the cursor or has rmap_items linked to it, use
2757 * mmap_lock to synchronize with any break_cows before pagetables
2758 * are freed, and leave the mm_slot on the list for ksmd to free.
2759 * Beware: ksm may already have noticed it exiting and freed the slot.
2760 */
2761
2762 spin_lock(&ksm_mmlist_lock);
2763 slot = mm_slot_lookup(mm_slots_hash, mm);
2764 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2765 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2766 if (!mm_slot->rmap_list) {
2767 hash_del(&slot->hash);
2768 list_del(&slot->mm_node);
2769 easy_to_free = 1;
2770 } else {
2771 list_move(&slot->mm_node,
2772 &ksm_scan.mm_slot->slot.mm_node);
2773 }
2774 }
2775 spin_unlock(&ksm_mmlist_lock);
2776
2777 if (easy_to_free) {
2778 mm_slot_free(mm_slot_cache, mm_slot);
2779 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2780 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2781 mmdrop(mm);
2782 } else if (mm_slot) {
2783 mmap_write_lock(mm);
2784 mmap_write_unlock(mm);
2785 }
2786
2787 trace_ksm_exit(mm);
2788 }
2789
ksm_might_need_to_copy(struct page * page,struct vm_area_struct * vma,unsigned long address)2790 struct page *ksm_might_need_to_copy(struct page *page,
2791 struct vm_area_struct *vma, unsigned long address)
2792 {
2793 struct folio *folio = page_folio(page);
2794 struct anon_vma *anon_vma = folio_anon_vma(folio);
2795 struct page *new_page;
2796
2797 if (PageKsm(page)) {
2798 if (page_stable_node(page) &&
2799 !(ksm_run & KSM_RUN_UNMERGE))
2800 return page; /* no need to copy it */
2801 } else if (!anon_vma) {
2802 return page; /* no need to copy it */
2803 } else if (page->index == linear_page_index(vma, address) &&
2804 anon_vma->root == vma->anon_vma->root) {
2805 return page; /* still no need to copy it */
2806 }
2807 if (PageHWPoison(page))
2808 return ERR_PTR(-EHWPOISON);
2809 if (!PageUptodate(page))
2810 return page; /* let do_swap_page report the error */
2811
2812 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2813 if (new_page &&
2814 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2815 put_page(new_page);
2816 new_page = NULL;
2817 }
2818 if (new_page) {
2819 if (copy_mc_user_highpage(new_page, page, address, vma)) {
2820 put_page(new_page);
2821 memory_failure_queue(page_to_pfn(page), 0);
2822 return ERR_PTR(-EHWPOISON);
2823 }
2824 SetPageDirty(new_page);
2825 __SetPageUptodate(new_page);
2826 __SetPageLocked(new_page);
2827 #ifdef CONFIG_SWAP
2828 count_vm_event(KSM_SWPIN_COPY);
2829 #endif
2830 }
2831
2832 return new_page;
2833 }
2834
rmap_walk_ksm(struct folio * folio,struct rmap_walk_control * rwc)2835 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2836 {
2837 struct ksm_stable_node *stable_node;
2838 struct ksm_rmap_item *rmap_item;
2839 int search_new_forks = 0;
2840
2841 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2842
2843 /*
2844 * Rely on the page lock to protect against concurrent modifications
2845 * to that page's node of the stable tree.
2846 */
2847 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2848
2849 stable_node = folio_stable_node(folio);
2850 if (!stable_node)
2851 return;
2852 again:
2853 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2854 struct anon_vma *anon_vma = rmap_item->anon_vma;
2855 struct anon_vma_chain *vmac;
2856 struct vm_area_struct *vma;
2857
2858 cond_resched();
2859 if (!anon_vma_trylock_read(anon_vma)) {
2860 if (rwc->try_lock) {
2861 rwc->contended = true;
2862 return;
2863 }
2864 anon_vma_lock_read(anon_vma);
2865 }
2866 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2867 0, ULONG_MAX) {
2868 unsigned long addr;
2869
2870 cond_resched();
2871 vma = vmac->vma;
2872
2873 /* Ignore the stable/unstable/sqnr flags */
2874 addr = rmap_item->address & PAGE_MASK;
2875
2876 if (addr < vma->vm_start || addr >= vma->vm_end)
2877 continue;
2878 /*
2879 * Initially we examine only the vma which covers this
2880 * rmap_item; but later, if there is still work to do,
2881 * we examine covering vmas in other mms: in case they
2882 * were forked from the original since ksmd passed.
2883 */
2884 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2885 continue;
2886
2887 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2888 continue;
2889
2890 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2891 anon_vma_unlock_read(anon_vma);
2892 return;
2893 }
2894 if (rwc->done && rwc->done(folio)) {
2895 anon_vma_unlock_read(anon_vma);
2896 return;
2897 }
2898 }
2899 anon_vma_unlock_read(anon_vma);
2900 }
2901 if (!search_new_forks++)
2902 goto again;
2903 }
2904
2905 #ifdef CONFIG_MEMORY_FAILURE
2906 /*
2907 * Collect processes when the error hit an ksm page.
2908 */
collect_procs_ksm(struct page * page,struct list_head * to_kill,int force_early)2909 void collect_procs_ksm(struct page *page, struct list_head *to_kill,
2910 int force_early)
2911 {
2912 struct ksm_stable_node *stable_node;
2913 struct ksm_rmap_item *rmap_item;
2914 struct folio *folio = page_folio(page);
2915 struct vm_area_struct *vma;
2916 struct task_struct *tsk;
2917
2918 stable_node = folio_stable_node(folio);
2919 if (!stable_node)
2920 return;
2921 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2922 struct anon_vma *av = rmap_item->anon_vma;
2923
2924 anon_vma_lock_read(av);
2925 rcu_read_lock();
2926 for_each_process(tsk) {
2927 struct anon_vma_chain *vmac;
2928 unsigned long addr;
2929 struct task_struct *t =
2930 task_early_kill(tsk, force_early);
2931 if (!t)
2932 continue;
2933 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
2934 ULONG_MAX)
2935 {
2936 vma = vmac->vma;
2937 if (vma->vm_mm == t->mm) {
2938 addr = rmap_item->address & PAGE_MASK;
2939 add_to_kill_ksm(t, page, vma, to_kill,
2940 addr);
2941 }
2942 }
2943 }
2944 rcu_read_unlock();
2945 anon_vma_unlock_read(av);
2946 }
2947 }
2948 #endif
2949
2950 #ifdef CONFIG_MIGRATION
folio_migrate_ksm(struct folio * newfolio,struct folio * folio)2951 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2952 {
2953 struct ksm_stable_node *stable_node;
2954
2955 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2956 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2957 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2958
2959 stable_node = folio_stable_node(folio);
2960 if (stable_node) {
2961 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2962 stable_node->kpfn = folio_pfn(newfolio);
2963 /*
2964 * newfolio->mapping was set in advance; now we need smp_wmb()
2965 * to make sure that the new stable_node->kpfn is visible
2966 * to get_ksm_page() before it can see that folio->mapping
2967 * has gone stale (or that folio_test_swapcache has been cleared).
2968 */
2969 smp_wmb();
2970 set_page_stable_node(&folio->page, NULL);
2971 }
2972 }
2973 #endif /* CONFIG_MIGRATION */
2974
2975 #ifdef CONFIG_MEMORY_HOTREMOVE
wait_while_offlining(void)2976 static void wait_while_offlining(void)
2977 {
2978 while (ksm_run & KSM_RUN_OFFLINE) {
2979 mutex_unlock(&ksm_thread_mutex);
2980 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2981 TASK_UNINTERRUPTIBLE);
2982 mutex_lock(&ksm_thread_mutex);
2983 }
2984 }
2985
stable_node_dup_remove_range(struct ksm_stable_node * stable_node,unsigned long start_pfn,unsigned long end_pfn)2986 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2987 unsigned long start_pfn,
2988 unsigned long end_pfn)
2989 {
2990 if (stable_node->kpfn >= start_pfn &&
2991 stable_node->kpfn < end_pfn) {
2992 /*
2993 * Don't get_ksm_page, page has already gone:
2994 * which is why we keep kpfn instead of page*
2995 */
2996 remove_node_from_stable_tree(stable_node);
2997 return true;
2998 }
2999 return false;
3000 }
3001
stable_node_chain_remove_range(struct ksm_stable_node * stable_node,unsigned long start_pfn,unsigned long end_pfn,struct rb_root * root)3002 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3003 unsigned long start_pfn,
3004 unsigned long end_pfn,
3005 struct rb_root *root)
3006 {
3007 struct ksm_stable_node *dup;
3008 struct hlist_node *hlist_safe;
3009
3010 if (!is_stable_node_chain(stable_node)) {
3011 VM_BUG_ON(is_stable_node_dup(stable_node));
3012 return stable_node_dup_remove_range(stable_node, start_pfn,
3013 end_pfn);
3014 }
3015
3016 hlist_for_each_entry_safe(dup, hlist_safe,
3017 &stable_node->hlist, hlist_dup) {
3018 VM_BUG_ON(!is_stable_node_dup(dup));
3019 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3020 }
3021 if (hlist_empty(&stable_node->hlist)) {
3022 free_stable_node_chain(stable_node, root);
3023 return true; /* notify caller that tree was rebalanced */
3024 } else
3025 return false;
3026 }
3027
ksm_check_stable_tree(unsigned long start_pfn,unsigned long end_pfn)3028 static void ksm_check_stable_tree(unsigned long start_pfn,
3029 unsigned long end_pfn)
3030 {
3031 struct ksm_stable_node *stable_node, *next;
3032 struct rb_node *node;
3033 int nid;
3034
3035 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3036 node = rb_first(root_stable_tree + nid);
3037 while (node) {
3038 stable_node = rb_entry(node, struct ksm_stable_node, node);
3039 if (stable_node_chain_remove_range(stable_node,
3040 start_pfn, end_pfn,
3041 root_stable_tree +
3042 nid))
3043 node = rb_first(root_stable_tree + nid);
3044 else
3045 node = rb_next(node);
3046 cond_resched();
3047 }
3048 }
3049 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3050 if (stable_node->kpfn >= start_pfn &&
3051 stable_node->kpfn < end_pfn)
3052 remove_node_from_stable_tree(stable_node);
3053 cond_resched();
3054 }
3055 }
3056
ksm_memory_callback(struct notifier_block * self,unsigned long action,void * arg)3057 static int ksm_memory_callback(struct notifier_block *self,
3058 unsigned long action, void *arg)
3059 {
3060 struct memory_notify *mn = arg;
3061
3062 switch (action) {
3063 case MEM_GOING_OFFLINE:
3064 /*
3065 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3066 * and remove_all_stable_nodes() while memory is going offline:
3067 * it is unsafe for them to touch the stable tree at this time.
3068 * But unmerge_ksm_pages(), rmap lookups and other entry points
3069 * which do not need the ksm_thread_mutex are all safe.
3070 */
3071 mutex_lock(&ksm_thread_mutex);
3072 ksm_run |= KSM_RUN_OFFLINE;
3073 mutex_unlock(&ksm_thread_mutex);
3074 break;
3075
3076 case MEM_OFFLINE:
3077 /*
3078 * Most of the work is done by page migration; but there might
3079 * be a few stable_nodes left over, still pointing to struct
3080 * pages which have been offlined: prune those from the tree,
3081 * otherwise get_ksm_page() might later try to access a
3082 * non-existent struct page.
3083 */
3084 ksm_check_stable_tree(mn->start_pfn,
3085 mn->start_pfn + mn->nr_pages);
3086 fallthrough;
3087 case MEM_CANCEL_OFFLINE:
3088 mutex_lock(&ksm_thread_mutex);
3089 ksm_run &= ~KSM_RUN_OFFLINE;
3090 mutex_unlock(&ksm_thread_mutex);
3091
3092 smp_mb(); /* wake_up_bit advises this */
3093 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3094 break;
3095 }
3096 return NOTIFY_OK;
3097 }
3098 #else
wait_while_offlining(void)3099 static void wait_while_offlining(void)
3100 {
3101 }
3102 #endif /* CONFIG_MEMORY_HOTREMOVE */
3103
3104 #ifdef CONFIG_PROC_FS
ksm_process_profit(struct mm_struct * mm)3105 long ksm_process_profit(struct mm_struct *mm)
3106 {
3107 return (long)(mm->ksm_merging_pages + mm_ksm_zero_pages(mm)) * PAGE_SIZE -
3108 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3109 }
3110 #endif /* CONFIG_PROC_FS */
3111
3112 #ifdef CONFIG_SYSFS
3113 /*
3114 * This all compiles without CONFIG_SYSFS, but is a waste of space.
3115 */
3116
3117 #define KSM_ATTR_RO(_name) \
3118 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3119 #define KSM_ATTR(_name) \
3120 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3121
sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3122 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3123 struct kobj_attribute *attr, char *buf)
3124 {
3125 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3126 }
3127
sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3128 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3129 struct kobj_attribute *attr,
3130 const char *buf, size_t count)
3131 {
3132 unsigned int msecs;
3133 int err;
3134
3135 err = kstrtouint(buf, 10, &msecs);
3136 if (err)
3137 return -EINVAL;
3138
3139 ksm_thread_sleep_millisecs = msecs;
3140 wake_up_interruptible(&ksm_iter_wait);
3141
3142 return count;
3143 }
3144 KSM_ATTR(sleep_millisecs);
3145
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3146 static ssize_t pages_to_scan_show(struct kobject *kobj,
3147 struct kobj_attribute *attr, char *buf)
3148 {
3149 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3150 }
3151
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3152 static ssize_t pages_to_scan_store(struct kobject *kobj,
3153 struct kobj_attribute *attr,
3154 const char *buf, size_t count)
3155 {
3156 unsigned int nr_pages;
3157 int err;
3158
3159 err = kstrtouint(buf, 10, &nr_pages);
3160 if (err)
3161 return -EINVAL;
3162
3163 ksm_thread_pages_to_scan = nr_pages;
3164
3165 return count;
3166 }
3167 KSM_ATTR(pages_to_scan);
3168
run_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3169 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3170 char *buf)
3171 {
3172 return sysfs_emit(buf, "%lu\n", ksm_run);
3173 }
3174
run_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3175 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3176 const char *buf, size_t count)
3177 {
3178 unsigned int flags;
3179 int err;
3180
3181 err = kstrtouint(buf, 10, &flags);
3182 if (err)
3183 return -EINVAL;
3184 if (flags > KSM_RUN_UNMERGE)
3185 return -EINVAL;
3186
3187 /*
3188 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3189 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3190 * breaking COW to free the pages_shared (but leaves mm_slots
3191 * on the list for when ksmd may be set running again).
3192 */
3193
3194 mutex_lock(&ksm_thread_mutex);
3195 wait_while_offlining();
3196 if (ksm_run != flags) {
3197 ksm_run = flags;
3198 if (flags & KSM_RUN_UNMERGE) {
3199 set_current_oom_origin();
3200 err = unmerge_and_remove_all_rmap_items();
3201 clear_current_oom_origin();
3202 if (err) {
3203 ksm_run = KSM_RUN_STOP;
3204 count = err;
3205 }
3206 }
3207 }
3208 mutex_unlock(&ksm_thread_mutex);
3209
3210 if (flags & KSM_RUN_MERGE)
3211 wake_up_interruptible(&ksm_thread_wait);
3212
3213 return count;
3214 }
3215 KSM_ATTR(run);
3216
3217 #ifdef CONFIG_NUMA
merge_across_nodes_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3218 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3219 struct kobj_attribute *attr, char *buf)
3220 {
3221 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3222 }
3223
merge_across_nodes_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3224 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3225 struct kobj_attribute *attr,
3226 const char *buf, size_t count)
3227 {
3228 int err;
3229 unsigned long knob;
3230
3231 err = kstrtoul(buf, 10, &knob);
3232 if (err)
3233 return err;
3234 if (knob > 1)
3235 return -EINVAL;
3236
3237 mutex_lock(&ksm_thread_mutex);
3238 wait_while_offlining();
3239 if (ksm_merge_across_nodes != knob) {
3240 if (ksm_pages_shared || remove_all_stable_nodes())
3241 err = -EBUSY;
3242 else if (root_stable_tree == one_stable_tree) {
3243 struct rb_root *buf;
3244 /*
3245 * This is the first time that we switch away from the
3246 * default of merging across nodes: must now allocate
3247 * a buffer to hold as many roots as may be needed.
3248 * Allocate stable and unstable together:
3249 * MAXSMP NODES_SHIFT 10 will use 16kB.
3250 */
3251 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3252 GFP_KERNEL);
3253 /* Let us assume that RB_ROOT is NULL is zero */
3254 if (!buf)
3255 err = -ENOMEM;
3256 else {
3257 root_stable_tree = buf;
3258 root_unstable_tree = buf + nr_node_ids;
3259 /* Stable tree is empty but not the unstable */
3260 root_unstable_tree[0] = one_unstable_tree[0];
3261 }
3262 }
3263 if (!err) {
3264 ksm_merge_across_nodes = knob;
3265 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3266 }
3267 }
3268 mutex_unlock(&ksm_thread_mutex);
3269
3270 return err ? err : count;
3271 }
3272 KSM_ATTR(merge_across_nodes);
3273 #endif
3274
use_zero_pages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3275 static ssize_t use_zero_pages_show(struct kobject *kobj,
3276 struct kobj_attribute *attr, char *buf)
3277 {
3278 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3279 }
use_zero_pages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3280 static ssize_t use_zero_pages_store(struct kobject *kobj,
3281 struct kobj_attribute *attr,
3282 const char *buf, size_t count)
3283 {
3284 int err;
3285 bool value;
3286
3287 err = kstrtobool(buf, &value);
3288 if (err)
3289 return -EINVAL;
3290
3291 ksm_use_zero_pages = value;
3292
3293 return count;
3294 }
3295 KSM_ATTR(use_zero_pages);
3296
max_page_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3297 static ssize_t max_page_sharing_show(struct kobject *kobj,
3298 struct kobj_attribute *attr, char *buf)
3299 {
3300 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3301 }
3302
max_page_sharing_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3303 static ssize_t max_page_sharing_store(struct kobject *kobj,
3304 struct kobj_attribute *attr,
3305 const char *buf, size_t count)
3306 {
3307 int err;
3308 int knob;
3309
3310 err = kstrtoint(buf, 10, &knob);
3311 if (err)
3312 return err;
3313 /*
3314 * When a KSM page is created it is shared by 2 mappings. This
3315 * being a signed comparison, it implicitly verifies it's not
3316 * negative.
3317 */
3318 if (knob < 2)
3319 return -EINVAL;
3320
3321 if (READ_ONCE(ksm_max_page_sharing) == knob)
3322 return count;
3323
3324 mutex_lock(&ksm_thread_mutex);
3325 wait_while_offlining();
3326 if (ksm_max_page_sharing != knob) {
3327 if (ksm_pages_shared || remove_all_stable_nodes())
3328 err = -EBUSY;
3329 else
3330 ksm_max_page_sharing = knob;
3331 }
3332 mutex_unlock(&ksm_thread_mutex);
3333
3334 return err ? err : count;
3335 }
3336 KSM_ATTR(max_page_sharing);
3337
pages_scanned_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3338 static ssize_t pages_scanned_show(struct kobject *kobj,
3339 struct kobj_attribute *attr, char *buf)
3340 {
3341 return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3342 }
3343 KSM_ATTR_RO(pages_scanned);
3344
pages_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3345 static ssize_t pages_shared_show(struct kobject *kobj,
3346 struct kobj_attribute *attr, char *buf)
3347 {
3348 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3349 }
3350 KSM_ATTR_RO(pages_shared);
3351
pages_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3352 static ssize_t pages_sharing_show(struct kobject *kobj,
3353 struct kobj_attribute *attr, char *buf)
3354 {
3355 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3356 }
3357 KSM_ATTR_RO(pages_sharing);
3358
pages_unshared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3359 static ssize_t pages_unshared_show(struct kobject *kobj,
3360 struct kobj_attribute *attr, char *buf)
3361 {
3362 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3363 }
3364 KSM_ATTR_RO(pages_unshared);
3365
pages_volatile_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3366 static ssize_t pages_volatile_show(struct kobject *kobj,
3367 struct kobj_attribute *attr, char *buf)
3368 {
3369 long ksm_pages_volatile;
3370
3371 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3372 - ksm_pages_sharing - ksm_pages_unshared;
3373 /*
3374 * It was not worth any locking to calculate that statistic,
3375 * but it might therefore sometimes be negative: conceal that.
3376 */
3377 if (ksm_pages_volatile < 0)
3378 ksm_pages_volatile = 0;
3379 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3380 }
3381 KSM_ATTR_RO(pages_volatile);
3382
ksm_zero_pages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3383 static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3384 struct kobj_attribute *attr, char *buf)
3385 {
3386 return sysfs_emit(buf, "%ld\n", atomic_long_read(&ksm_zero_pages));
3387 }
3388 KSM_ATTR_RO(ksm_zero_pages);
3389
general_profit_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3390 static ssize_t general_profit_show(struct kobject *kobj,
3391 struct kobj_attribute *attr, char *buf)
3392 {
3393 long general_profit;
3394
3395 general_profit = (ksm_pages_sharing + atomic_long_read(&ksm_zero_pages)) * PAGE_SIZE -
3396 ksm_rmap_items * sizeof(struct ksm_rmap_item);
3397
3398 return sysfs_emit(buf, "%ld\n", general_profit);
3399 }
3400 KSM_ATTR_RO(general_profit);
3401
stable_node_dups_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3402 static ssize_t stable_node_dups_show(struct kobject *kobj,
3403 struct kobj_attribute *attr, char *buf)
3404 {
3405 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3406 }
3407 KSM_ATTR_RO(stable_node_dups);
3408
stable_node_chains_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3409 static ssize_t stable_node_chains_show(struct kobject *kobj,
3410 struct kobj_attribute *attr, char *buf)
3411 {
3412 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3413 }
3414 KSM_ATTR_RO(stable_node_chains);
3415
3416 static ssize_t
stable_node_chains_prune_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3417 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3418 struct kobj_attribute *attr,
3419 char *buf)
3420 {
3421 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3422 }
3423
3424 static ssize_t
stable_node_chains_prune_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3425 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3426 struct kobj_attribute *attr,
3427 const char *buf, size_t count)
3428 {
3429 unsigned int msecs;
3430 int err;
3431
3432 err = kstrtouint(buf, 10, &msecs);
3433 if (err)
3434 return -EINVAL;
3435
3436 ksm_stable_node_chains_prune_millisecs = msecs;
3437
3438 return count;
3439 }
3440 KSM_ATTR(stable_node_chains_prune_millisecs);
3441
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3442 static ssize_t full_scans_show(struct kobject *kobj,
3443 struct kobj_attribute *attr, char *buf)
3444 {
3445 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3446 }
3447 KSM_ATTR_RO(full_scans);
3448
3449 static struct attribute *ksm_attrs[] = {
3450 &sleep_millisecs_attr.attr,
3451 &pages_to_scan_attr.attr,
3452 &run_attr.attr,
3453 &pages_scanned_attr.attr,
3454 &pages_shared_attr.attr,
3455 &pages_sharing_attr.attr,
3456 &pages_unshared_attr.attr,
3457 &pages_volatile_attr.attr,
3458 &ksm_zero_pages_attr.attr,
3459 &full_scans_attr.attr,
3460 #ifdef CONFIG_NUMA
3461 &merge_across_nodes_attr.attr,
3462 #endif
3463 &max_page_sharing_attr.attr,
3464 &stable_node_chains_attr.attr,
3465 &stable_node_dups_attr.attr,
3466 &stable_node_chains_prune_millisecs_attr.attr,
3467 &use_zero_pages_attr.attr,
3468 &general_profit_attr.attr,
3469 NULL,
3470 };
3471
3472 static const struct attribute_group ksm_attr_group = {
3473 .attrs = ksm_attrs,
3474 .name = "ksm",
3475 };
3476 #endif /* CONFIG_SYSFS */
3477
ksm_init(void)3478 static int __init ksm_init(void)
3479 {
3480 struct task_struct *ksm_thread;
3481 int err;
3482
3483 /* The correct value depends on page size and endianness */
3484 zero_checksum = calc_checksum(ZERO_PAGE(0));
3485 /* Default to false for backwards compatibility */
3486 ksm_use_zero_pages = false;
3487
3488 err = ksm_slab_init();
3489 if (err)
3490 goto out;
3491
3492 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3493 if (IS_ERR(ksm_thread)) {
3494 pr_err("ksm: creating kthread failed\n");
3495 err = PTR_ERR(ksm_thread);
3496 goto out_free;
3497 }
3498
3499 #ifdef CONFIG_SYSFS
3500 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3501 if (err) {
3502 pr_err("ksm: register sysfs failed\n");
3503 kthread_stop(ksm_thread);
3504 goto out_free;
3505 }
3506 #else
3507 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3508
3509 #endif /* CONFIG_SYSFS */
3510
3511 #ifdef CONFIG_MEMORY_HOTREMOVE
3512 /* There is no significance to this priority 100 */
3513 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3514 #endif
3515 return 0;
3516
3517 out_free:
3518 ksm_slab_free();
3519 out:
3520 return err;
3521 }
3522 subsys_initcall(ksm_init);
3523