xref: /openbmc/linux/mm/kmsan/kmsan.h (revision f80be457)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Functions used by the KMSAN runtime.
4  *
5  * Copyright (C) 2017-2022 Google LLC
6  * Author: Alexander Potapenko <glider@google.com>
7  *
8  */
9 
10 #ifndef __MM_KMSAN_KMSAN_H
11 #define __MM_KMSAN_KMSAN_H
12 
13 #include <asm/pgtable_64_types.h>
14 #include <linux/irqflags.h>
15 #include <linux/sched.h>
16 #include <linux/stackdepot.h>
17 #include <linux/stacktrace.h>
18 #include <linux/nmi.h>
19 #include <linux/mm.h>
20 #include <linux/printk.h>
21 
22 #define KMSAN_ALLOCA_MAGIC_ORIGIN 0xabcd0100
23 #define KMSAN_CHAIN_MAGIC_ORIGIN 0xabcd0200
24 
25 #define KMSAN_POISON_NOCHECK 0x0
26 #define KMSAN_POISON_CHECK 0x1
27 #define KMSAN_POISON_FREE 0x2
28 
29 #define KMSAN_ORIGIN_SIZE 4
30 #define KMSAN_MAX_ORIGIN_DEPTH 7
31 
32 #define KMSAN_STACK_DEPTH 64
33 
34 #define KMSAN_META_SHADOW (false)
35 #define KMSAN_META_ORIGIN (true)
36 
37 extern bool kmsan_enabled;
38 extern int panic_on_kmsan;
39 
40 /*
41  * KMSAN performs a lot of consistency checks that are currently enabled by
42  * default. BUG_ON is normally discouraged in the kernel, unless used for
43  * debugging, but KMSAN itself is a debugging tool, so it makes little sense to
44  * recover if something goes wrong.
45  */
46 #define KMSAN_WARN_ON(cond)                                           \
47 	({                                                            \
48 		const bool __cond = WARN_ON(cond);                    \
49 		if (unlikely(__cond)) {                               \
50 			WRITE_ONCE(kmsan_enabled, false);             \
51 			if (panic_on_kmsan) {                         \
52 				/* Can't call panic() here because */ \
53 				/* of uaccess checks. */              \
54 				BUG();                                \
55 			}                                             \
56 		}                                                     \
57 		__cond;                                               \
58 	})
59 
60 /*
61  * A pair of metadata pointers to be returned by the instrumentation functions.
62  */
63 struct shadow_origin_ptr {
64 	void *shadow, *origin;
65 };
66 
67 struct shadow_origin_ptr kmsan_get_shadow_origin_ptr(void *addr, u64 size,
68 						     bool store);
69 void *kmsan_get_metadata(void *addr, bool is_origin);
70 
71 enum kmsan_bug_reason {
72 	REASON_ANY,
73 	REASON_COPY_TO_USER,
74 	REASON_SUBMIT_URB,
75 };
76 
77 void kmsan_print_origin(depot_stack_handle_t origin);
78 
79 /**
80  * kmsan_report() - Report a use of uninitialized value.
81  * @origin:    Stack ID of the uninitialized value.
82  * @address:   Address at which the memory access happens.
83  * @size:      Memory access size.
84  * @off_first: Offset (from @address) of the first byte to be reported.
85  * @off_last:  Offset (from @address) of the last byte to be reported.
86  * @user_addr: When non-NULL, denotes the userspace address to which the kernel
87  *             is leaking data.
88  * @reason:    Error type from enum kmsan_bug_reason.
89  *
90  * kmsan_report() prints an error message for a consequent group of bytes
91  * sharing the same origin. If an uninitialized value is used in a comparison,
92  * this function is called once without specifying the addresses. When checking
93  * a memory range, KMSAN may call kmsan_report() multiple times with the same
94  * @address, @size, @user_addr and @reason, but different @off_first and
95  * @off_last corresponding to different @origin values.
96  */
97 void kmsan_report(depot_stack_handle_t origin, void *address, int size,
98 		  int off_first, int off_last, const void *user_addr,
99 		  enum kmsan_bug_reason reason);
100 
101 DECLARE_PER_CPU(struct kmsan_ctx, kmsan_percpu_ctx);
102 
103 static __always_inline struct kmsan_ctx *kmsan_get_context(void)
104 {
105 	return in_task() ? &current->kmsan_ctx : raw_cpu_ptr(&kmsan_percpu_ctx);
106 }
107 
108 /*
109  * When a compiler hook or KMSAN runtime function is invoked, it may make a
110  * call to instrumented code and eventually call itself recursively. To avoid
111  * that, we guard the runtime entry regions with
112  * kmsan_enter_runtime()/kmsan_leave_runtime() and exit the hook if
113  * kmsan_in_runtime() is true.
114  *
115  * Non-runtime code may occasionally get executed in nested IRQs from the
116  * runtime code (e.g. when called via smp_call_function_single()). Because some
117  * KMSAN routines may take locks (e.g. for memory allocation), we conservatively
118  * bail out instead of calling them. To minimize the effect of this (potentially
119  * missing initialization events) kmsan_in_runtime() is not checked in
120  * non-blocking runtime functions.
121  */
122 static __always_inline bool kmsan_in_runtime(void)
123 {
124 	if ((hardirq_count() >> HARDIRQ_SHIFT) > 1)
125 		return true;
126 	return kmsan_get_context()->kmsan_in_runtime;
127 }
128 
129 static __always_inline void kmsan_enter_runtime(void)
130 {
131 	struct kmsan_ctx *ctx;
132 
133 	ctx = kmsan_get_context();
134 	KMSAN_WARN_ON(ctx->kmsan_in_runtime++);
135 }
136 
137 static __always_inline void kmsan_leave_runtime(void)
138 {
139 	struct kmsan_ctx *ctx = kmsan_get_context();
140 
141 	KMSAN_WARN_ON(--ctx->kmsan_in_runtime);
142 }
143 
144 depot_stack_handle_t kmsan_save_stack(void);
145 depot_stack_handle_t kmsan_save_stack_with_flags(gfp_t flags,
146 						 unsigned int extra_bits);
147 
148 /*
149  * Pack and unpack the origin chain depth and UAF flag to/from the extra bits
150  * provided by the stack depot.
151  * The UAF flag is stored in the lowest bit, followed by the depth in the upper
152  * bits.
153  * set_dsh_extra_bits() is responsible for clamping the value.
154  */
155 static __always_inline unsigned int kmsan_extra_bits(unsigned int depth,
156 						     bool uaf)
157 {
158 	return (depth << 1) | uaf;
159 }
160 
161 static __always_inline bool kmsan_uaf_from_eb(unsigned int extra_bits)
162 {
163 	return extra_bits & 1;
164 }
165 
166 static __always_inline unsigned int kmsan_depth_from_eb(unsigned int extra_bits)
167 {
168 	return extra_bits >> 1;
169 }
170 
171 /*
172  * kmsan_internal_ functions are supposed to be very simple and not require the
173  * kmsan_in_runtime() checks.
174  */
175 void kmsan_internal_memmove_metadata(void *dst, void *src, size_t n);
176 void kmsan_internal_poison_memory(void *address, size_t size, gfp_t flags,
177 				  unsigned int poison_flags);
178 void kmsan_internal_unpoison_memory(void *address, size_t size, bool checked);
179 void kmsan_internal_set_shadow_origin(void *address, size_t size, int b,
180 				      u32 origin, bool checked);
181 depot_stack_handle_t kmsan_internal_chain_origin(depot_stack_handle_t id);
182 
183 bool kmsan_metadata_is_contiguous(void *addr, size_t size);
184 void kmsan_internal_check_memory(void *addr, size_t size, const void *user_addr,
185 				 int reason);
186 
187 struct page *kmsan_vmalloc_to_page_or_null(void *vaddr);
188 
189 /*
190  * kmsan_internal_is_module_addr() and kmsan_internal_is_vmalloc_addr() are
191  * non-instrumented versions of is_module_address() and is_vmalloc_addr() that
192  * are safe to call from KMSAN runtime without recursion.
193  */
194 static inline bool kmsan_internal_is_module_addr(void *vaddr)
195 {
196 	return ((u64)vaddr >= MODULES_VADDR) && ((u64)vaddr < MODULES_END);
197 }
198 
199 static inline bool kmsan_internal_is_vmalloc_addr(void *addr)
200 {
201 	return ((u64)addr >= VMALLOC_START) && ((u64)addr < VMALLOC_END);
202 }
203 
204 #endif /* __MM_KMSAN_KMSAN_H */
205