1 /* 2 * mm/kmemleak.c 3 * 4 * Copyright (C) 2008 ARM Limited 5 * Written by Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 * 21 * For more information on the algorithm and kmemleak usage, please see 22 * Documentation/kmemleak.txt. 23 * 24 * Notes on locking 25 * ---------------- 26 * 27 * The following locks and mutexes are used by kmemleak: 28 * 29 * - kmemleak_lock (rwlock): protects the object_list modifications and 30 * accesses to the object_tree_root. The object_list is the main list 31 * holding the metadata (struct kmemleak_object) for the allocated memory 32 * blocks. The object_tree_root is a priority search tree used to look-up 33 * metadata based on a pointer to the corresponding memory block. The 34 * kmemleak_object structures are added to the object_list and 35 * object_tree_root in the create_object() function called from the 36 * kmemleak_alloc() callback and removed in delete_object() called from the 37 * kmemleak_free() callback 38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to 39 * the metadata (e.g. count) are protected by this lock. Note that some 40 * members of this structure may be protected by other means (atomic or 41 * kmemleak_lock). This lock is also held when scanning the corresponding 42 * memory block to avoid the kernel freeing it via the kmemleak_free() 43 * callback. This is less heavyweight than holding a global lock like 44 * kmemleak_lock during scanning 45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 46 * unreferenced objects at a time. The gray_list contains the objects which 47 * are already referenced or marked as false positives and need to be 48 * scanned. This list is only modified during a scanning episode when the 49 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 50 * Note that the kmemleak_object.use_count is incremented when an object is 51 * added to the gray_list and therefore cannot be freed. This mutex also 52 * prevents multiple users of the "kmemleak" debugfs file together with 53 * modifications to the memory scanning parameters including the scan_thread 54 * pointer 55 * 56 * The kmemleak_object structures have a use_count incremented or decremented 57 * using the get_object()/put_object() functions. When the use_count becomes 58 * 0, this count can no longer be incremented and put_object() schedules the 59 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 60 * function must be protected by rcu_read_lock() to avoid accessing a freed 61 * structure. 62 */ 63 64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 65 66 #include <linux/init.h> 67 #include <linux/kernel.h> 68 #include <linux/list.h> 69 #include <linux/sched.h> 70 #include <linux/jiffies.h> 71 #include <linux/delay.h> 72 #include <linux/module.h> 73 #include <linux/kthread.h> 74 #include <linux/prio_tree.h> 75 #include <linux/gfp.h> 76 #include <linux/fs.h> 77 #include <linux/debugfs.h> 78 #include <linux/seq_file.h> 79 #include <linux/cpumask.h> 80 #include <linux/spinlock.h> 81 #include <linux/mutex.h> 82 #include <linux/rcupdate.h> 83 #include <linux/stacktrace.h> 84 #include <linux/cache.h> 85 #include <linux/percpu.h> 86 #include <linux/hardirq.h> 87 #include <linux/mmzone.h> 88 #include <linux/slab.h> 89 #include <linux/thread_info.h> 90 #include <linux/err.h> 91 #include <linux/uaccess.h> 92 #include <linux/string.h> 93 #include <linux/nodemask.h> 94 #include <linux/mm.h> 95 #include <linux/workqueue.h> 96 97 #include <asm/sections.h> 98 #include <asm/processor.h> 99 #include <asm/atomic.h> 100 101 #include <linux/kmemcheck.h> 102 #include <linux/kmemleak.h> 103 104 /* 105 * Kmemleak configuration and common defines. 106 */ 107 #define MAX_TRACE 16 /* stack trace length */ 108 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 109 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 110 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 111 #define GRAY_LIST_PASSES 25 /* maximum number of gray list scans */ 112 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 113 114 #define BYTES_PER_POINTER sizeof(void *) 115 116 /* GFP bitmask for kmemleak internal allocations */ 117 #define GFP_KMEMLEAK_MASK (GFP_KERNEL | GFP_ATOMIC) 118 119 /* scanning area inside a memory block */ 120 struct kmemleak_scan_area { 121 struct hlist_node node; 122 unsigned long offset; 123 size_t length; 124 }; 125 126 #define KMEMLEAK_GREY 0 127 #define KMEMLEAK_BLACK -1 128 129 /* 130 * Structure holding the metadata for each allocated memory block. 131 * Modifications to such objects should be made while holding the 132 * object->lock. Insertions or deletions from object_list, gray_list or 133 * tree_node are already protected by the corresponding locks or mutex (see 134 * the notes on locking above). These objects are reference-counted 135 * (use_count) and freed using the RCU mechanism. 136 */ 137 struct kmemleak_object { 138 spinlock_t lock; 139 unsigned long flags; /* object status flags */ 140 struct list_head object_list; 141 struct list_head gray_list; 142 struct prio_tree_node tree_node; 143 struct rcu_head rcu; /* object_list lockless traversal */ 144 /* object usage count; object freed when use_count == 0 */ 145 atomic_t use_count; 146 unsigned long pointer; 147 size_t size; 148 /* minimum number of a pointers found before it is considered leak */ 149 int min_count; 150 /* the total number of pointers found pointing to this object */ 151 int count; 152 /* memory ranges to be scanned inside an object (empty for all) */ 153 struct hlist_head area_list; 154 unsigned long trace[MAX_TRACE]; 155 unsigned int trace_len; 156 unsigned long jiffies; /* creation timestamp */ 157 pid_t pid; /* pid of the current task */ 158 char comm[TASK_COMM_LEN]; /* executable name */ 159 }; 160 161 /* flag representing the memory block allocation status */ 162 #define OBJECT_ALLOCATED (1 << 0) 163 /* flag set after the first reporting of an unreference object */ 164 #define OBJECT_REPORTED (1 << 1) 165 /* flag set to not scan the object */ 166 #define OBJECT_NO_SCAN (1 << 2) 167 /* flag set on newly allocated objects */ 168 #define OBJECT_NEW (1 << 3) 169 170 /* number of bytes to print per line; must be 16 or 32 */ 171 #define HEX_ROW_SIZE 16 172 /* number of bytes to print at a time (1, 2, 4, 8) */ 173 #define HEX_GROUP_SIZE 1 174 /* include ASCII after the hex output */ 175 #define HEX_ASCII 1 176 /* max number of lines to be printed */ 177 #define HEX_MAX_LINES 2 178 179 /* the list of all allocated objects */ 180 static LIST_HEAD(object_list); 181 /* the list of gray-colored objects (see color_gray comment below) */ 182 static LIST_HEAD(gray_list); 183 /* prio search tree for object boundaries */ 184 static struct prio_tree_root object_tree_root; 185 /* rw_lock protecting the access to object_list and prio_tree_root */ 186 static DEFINE_RWLOCK(kmemleak_lock); 187 188 /* allocation caches for kmemleak internal data */ 189 static struct kmem_cache *object_cache; 190 static struct kmem_cache *scan_area_cache; 191 192 /* set if tracing memory operations is enabled */ 193 static atomic_t kmemleak_enabled = ATOMIC_INIT(0); 194 /* set in the late_initcall if there were no errors */ 195 static atomic_t kmemleak_initialized = ATOMIC_INIT(0); 196 /* enables or disables early logging of the memory operations */ 197 static atomic_t kmemleak_early_log = ATOMIC_INIT(1); 198 /* set if a fata kmemleak error has occurred */ 199 static atomic_t kmemleak_error = ATOMIC_INIT(0); 200 201 /* minimum and maximum address that may be valid pointers */ 202 static unsigned long min_addr = ULONG_MAX; 203 static unsigned long max_addr; 204 205 static struct task_struct *scan_thread; 206 /* used to avoid reporting of recently allocated objects */ 207 static unsigned long jiffies_min_age; 208 static unsigned long jiffies_last_scan; 209 /* delay between automatic memory scannings */ 210 static signed long jiffies_scan_wait; 211 /* enables or disables the task stacks scanning */ 212 static int kmemleak_stack_scan = 1; 213 /* protects the memory scanning, parameters and debug/kmemleak file access */ 214 static DEFINE_MUTEX(scan_mutex); 215 216 /* 217 * Early object allocation/freeing logging. Kmemleak is initialized after the 218 * kernel allocator. However, both the kernel allocator and kmemleak may 219 * allocate memory blocks which need to be tracked. Kmemleak defines an 220 * arbitrary buffer to hold the allocation/freeing information before it is 221 * fully initialized. 222 */ 223 224 /* kmemleak operation type for early logging */ 225 enum { 226 KMEMLEAK_ALLOC, 227 KMEMLEAK_FREE, 228 KMEMLEAK_FREE_PART, 229 KMEMLEAK_NOT_LEAK, 230 KMEMLEAK_IGNORE, 231 KMEMLEAK_SCAN_AREA, 232 KMEMLEAK_NO_SCAN 233 }; 234 235 /* 236 * Structure holding the information passed to kmemleak callbacks during the 237 * early logging. 238 */ 239 struct early_log { 240 int op_type; /* kmemleak operation type */ 241 const void *ptr; /* allocated/freed memory block */ 242 size_t size; /* memory block size */ 243 int min_count; /* minimum reference count */ 244 unsigned long offset; /* scan area offset */ 245 size_t length; /* scan area length */ 246 unsigned long trace[MAX_TRACE]; /* stack trace */ 247 unsigned int trace_len; /* stack trace length */ 248 }; 249 250 /* early logging buffer and current position */ 251 static struct early_log 252 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata; 253 static int crt_early_log __initdata; 254 255 static void kmemleak_disable(void); 256 257 /* 258 * Print a warning and dump the stack trace. 259 */ 260 #define kmemleak_warn(x...) do { \ 261 pr_warning(x); \ 262 dump_stack(); \ 263 } while (0) 264 265 /* 266 * Macro invoked when a serious kmemleak condition occured and cannot be 267 * recovered from. Kmemleak will be disabled and further allocation/freeing 268 * tracing no longer available. 269 */ 270 #define kmemleak_stop(x...) do { \ 271 kmemleak_warn(x); \ 272 kmemleak_disable(); \ 273 } while (0) 274 275 /* 276 * Printing of the objects hex dump to the seq file. The number of lines to be 277 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 278 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 279 * with the object->lock held. 280 */ 281 static void hex_dump_object(struct seq_file *seq, 282 struct kmemleak_object *object) 283 { 284 const u8 *ptr = (const u8 *)object->pointer; 285 int i, len, remaining; 286 unsigned char linebuf[HEX_ROW_SIZE * 5]; 287 288 /* limit the number of lines to HEX_MAX_LINES */ 289 remaining = len = 290 min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE)); 291 292 seq_printf(seq, " hex dump (first %d bytes):\n", len); 293 for (i = 0; i < len; i += HEX_ROW_SIZE) { 294 int linelen = min(remaining, HEX_ROW_SIZE); 295 296 remaining -= HEX_ROW_SIZE; 297 hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE, 298 HEX_GROUP_SIZE, linebuf, sizeof(linebuf), 299 HEX_ASCII); 300 seq_printf(seq, " %s\n", linebuf); 301 } 302 } 303 304 /* 305 * Object colors, encoded with count and min_count: 306 * - white - orphan object, not enough references to it (count < min_count) 307 * - gray - not orphan, not marked as false positive (min_count == 0) or 308 * sufficient references to it (count >= min_count) 309 * - black - ignore, it doesn't contain references (e.g. text section) 310 * (min_count == -1). No function defined for this color. 311 * Newly created objects don't have any color assigned (object->count == -1) 312 * before the next memory scan when they become white. 313 */ 314 static bool color_white(const struct kmemleak_object *object) 315 { 316 return object->count != KMEMLEAK_BLACK && 317 object->count < object->min_count; 318 } 319 320 static bool color_gray(const struct kmemleak_object *object) 321 { 322 return object->min_count != KMEMLEAK_BLACK && 323 object->count >= object->min_count; 324 } 325 326 static bool color_black(const struct kmemleak_object *object) 327 { 328 return object->min_count == KMEMLEAK_BLACK; 329 } 330 331 /* 332 * Objects are considered unreferenced only if their color is white, they have 333 * not be deleted and have a minimum age to avoid false positives caused by 334 * pointers temporarily stored in CPU registers. 335 */ 336 static bool unreferenced_object(struct kmemleak_object *object) 337 { 338 return (object->flags & OBJECT_ALLOCATED) && color_white(object) && 339 time_before_eq(object->jiffies + jiffies_min_age, 340 jiffies_last_scan); 341 } 342 343 /* 344 * Printing of the unreferenced objects information to the seq file. The 345 * print_unreferenced function must be called with the object->lock held. 346 */ 347 static void print_unreferenced(struct seq_file *seq, 348 struct kmemleak_object *object) 349 { 350 int i; 351 352 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 353 object->pointer, object->size); 354 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu\n", 355 object->comm, object->pid, object->jiffies); 356 hex_dump_object(seq, object); 357 seq_printf(seq, " backtrace:\n"); 358 359 for (i = 0; i < object->trace_len; i++) { 360 void *ptr = (void *)object->trace[i]; 361 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); 362 } 363 } 364 365 /* 366 * Print the kmemleak_object information. This function is used mainly for 367 * debugging special cases when kmemleak operations. It must be called with 368 * the object->lock held. 369 */ 370 static void dump_object_info(struct kmemleak_object *object) 371 { 372 struct stack_trace trace; 373 374 trace.nr_entries = object->trace_len; 375 trace.entries = object->trace; 376 377 pr_notice("Object 0x%08lx (size %zu):\n", 378 object->tree_node.start, object->size); 379 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 380 object->comm, object->pid, object->jiffies); 381 pr_notice(" min_count = %d\n", object->min_count); 382 pr_notice(" count = %d\n", object->count); 383 pr_notice(" flags = 0x%lx\n", object->flags); 384 pr_notice(" backtrace:\n"); 385 print_stack_trace(&trace, 4); 386 } 387 388 /* 389 * Look-up a memory block metadata (kmemleak_object) in the priority search 390 * tree based on a pointer value. If alias is 0, only values pointing to the 391 * beginning of the memory block are allowed. The kmemleak_lock must be held 392 * when calling this function. 393 */ 394 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 395 { 396 struct prio_tree_node *node; 397 struct prio_tree_iter iter; 398 struct kmemleak_object *object; 399 400 prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr); 401 node = prio_tree_next(&iter); 402 if (node) { 403 object = prio_tree_entry(node, struct kmemleak_object, 404 tree_node); 405 if (!alias && object->pointer != ptr) { 406 kmemleak_warn("Found object by alias"); 407 object = NULL; 408 } 409 } else 410 object = NULL; 411 412 return object; 413 } 414 415 /* 416 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 417 * that once an object's use_count reached 0, the RCU freeing was already 418 * registered and the object should no longer be used. This function must be 419 * called under the protection of rcu_read_lock(). 420 */ 421 static int get_object(struct kmemleak_object *object) 422 { 423 return atomic_inc_not_zero(&object->use_count); 424 } 425 426 /* 427 * RCU callback to free a kmemleak_object. 428 */ 429 static void free_object_rcu(struct rcu_head *rcu) 430 { 431 struct hlist_node *elem, *tmp; 432 struct kmemleak_scan_area *area; 433 struct kmemleak_object *object = 434 container_of(rcu, struct kmemleak_object, rcu); 435 436 /* 437 * Once use_count is 0 (guaranteed by put_object), there is no other 438 * code accessing this object, hence no need for locking. 439 */ 440 hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) { 441 hlist_del(elem); 442 kmem_cache_free(scan_area_cache, area); 443 } 444 kmem_cache_free(object_cache, object); 445 } 446 447 /* 448 * Decrement the object use_count. Once the count is 0, free the object using 449 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 450 * delete_object() path, the delayed RCU freeing ensures that there is no 451 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 452 * is also possible. 453 */ 454 static void put_object(struct kmemleak_object *object) 455 { 456 if (!atomic_dec_and_test(&object->use_count)) 457 return; 458 459 /* should only get here after delete_object was called */ 460 WARN_ON(object->flags & OBJECT_ALLOCATED); 461 462 call_rcu(&object->rcu, free_object_rcu); 463 } 464 465 /* 466 * Look up an object in the prio search tree and increase its use_count. 467 */ 468 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 469 { 470 unsigned long flags; 471 struct kmemleak_object *object = NULL; 472 473 rcu_read_lock(); 474 read_lock_irqsave(&kmemleak_lock, flags); 475 if (ptr >= min_addr && ptr < max_addr) 476 object = lookup_object(ptr, alias); 477 read_unlock_irqrestore(&kmemleak_lock, flags); 478 479 /* check whether the object is still available */ 480 if (object && !get_object(object)) 481 object = NULL; 482 rcu_read_unlock(); 483 484 return object; 485 } 486 487 /* 488 * Save stack trace to the given array of MAX_TRACE size. 489 */ 490 static int __save_stack_trace(unsigned long *trace) 491 { 492 struct stack_trace stack_trace; 493 494 stack_trace.max_entries = MAX_TRACE; 495 stack_trace.nr_entries = 0; 496 stack_trace.entries = trace; 497 stack_trace.skip = 2; 498 save_stack_trace(&stack_trace); 499 500 return stack_trace.nr_entries; 501 } 502 503 /* 504 * Create the metadata (struct kmemleak_object) corresponding to an allocated 505 * memory block and add it to the object_list and object_tree_root. 506 */ 507 static struct kmemleak_object *create_object(unsigned long ptr, size_t size, 508 int min_count, gfp_t gfp) 509 { 510 unsigned long flags; 511 struct kmemleak_object *object; 512 struct prio_tree_node *node; 513 514 object = kmem_cache_alloc(object_cache, gfp & GFP_KMEMLEAK_MASK); 515 if (!object) { 516 kmemleak_stop("Cannot allocate a kmemleak_object structure\n"); 517 return NULL; 518 } 519 520 INIT_LIST_HEAD(&object->object_list); 521 INIT_LIST_HEAD(&object->gray_list); 522 INIT_HLIST_HEAD(&object->area_list); 523 spin_lock_init(&object->lock); 524 atomic_set(&object->use_count, 1); 525 object->flags = OBJECT_ALLOCATED | OBJECT_NEW; 526 object->pointer = ptr; 527 object->size = size; 528 object->min_count = min_count; 529 object->count = -1; /* no color initially */ 530 object->jiffies = jiffies; 531 532 /* task information */ 533 if (in_irq()) { 534 object->pid = 0; 535 strncpy(object->comm, "hardirq", sizeof(object->comm)); 536 } else if (in_softirq()) { 537 object->pid = 0; 538 strncpy(object->comm, "softirq", sizeof(object->comm)); 539 } else { 540 object->pid = current->pid; 541 /* 542 * There is a small chance of a race with set_task_comm(), 543 * however using get_task_comm() here may cause locking 544 * dependency issues with current->alloc_lock. In the worst 545 * case, the command line is not correct. 546 */ 547 strncpy(object->comm, current->comm, sizeof(object->comm)); 548 } 549 550 /* kernel backtrace */ 551 object->trace_len = __save_stack_trace(object->trace); 552 553 INIT_PRIO_TREE_NODE(&object->tree_node); 554 object->tree_node.start = ptr; 555 object->tree_node.last = ptr + size - 1; 556 557 write_lock_irqsave(&kmemleak_lock, flags); 558 559 min_addr = min(min_addr, ptr); 560 max_addr = max(max_addr, ptr + size); 561 node = prio_tree_insert(&object_tree_root, &object->tree_node); 562 /* 563 * The code calling the kernel does not yet have the pointer to the 564 * memory block to be able to free it. However, we still hold the 565 * kmemleak_lock here in case parts of the kernel started freeing 566 * random memory blocks. 567 */ 568 if (node != &object->tree_node) { 569 kmemleak_stop("Cannot insert 0x%lx into the object search tree " 570 "(already existing)\n", ptr); 571 object = lookup_object(ptr, 1); 572 spin_lock(&object->lock); 573 dump_object_info(object); 574 spin_unlock(&object->lock); 575 576 goto out; 577 } 578 list_add_tail_rcu(&object->object_list, &object_list); 579 out: 580 write_unlock_irqrestore(&kmemleak_lock, flags); 581 return object; 582 } 583 584 /* 585 * Remove the metadata (struct kmemleak_object) for a memory block from the 586 * object_list and object_tree_root and decrement its use_count. 587 */ 588 static void __delete_object(struct kmemleak_object *object) 589 { 590 unsigned long flags; 591 592 write_lock_irqsave(&kmemleak_lock, flags); 593 prio_tree_remove(&object_tree_root, &object->tree_node); 594 list_del_rcu(&object->object_list); 595 write_unlock_irqrestore(&kmemleak_lock, flags); 596 597 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 598 WARN_ON(atomic_read(&object->use_count) < 2); 599 600 /* 601 * Locking here also ensures that the corresponding memory block 602 * cannot be freed when it is being scanned. 603 */ 604 spin_lock_irqsave(&object->lock, flags); 605 object->flags &= ~OBJECT_ALLOCATED; 606 spin_unlock_irqrestore(&object->lock, flags); 607 put_object(object); 608 } 609 610 /* 611 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 612 * delete it. 613 */ 614 static void delete_object_full(unsigned long ptr) 615 { 616 struct kmemleak_object *object; 617 618 object = find_and_get_object(ptr, 0); 619 if (!object) { 620 #ifdef DEBUG 621 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 622 ptr); 623 #endif 624 return; 625 } 626 __delete_object(object); 627 put_object(object); 628 } 629 630 /* 631 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 632 * delete it. If the memory block is partially freed, the function may create 633 * additional metadata for the remaining parts of the block. 634 */ 635 static void delete_object_part(unsigned long ptr, size_t size) 636 { 637 struct kmemleak_object *object; 638 unsigned long start, end; 639 640 object = find_and_get_object(ptr, 1); 641 if (!object) { 642 #ifdef DEBUG 643 kmemleak_warn("Partially freeing unknown object at 0x%08lx " 644 "(size %zu)\n", ptr, size); 645 #endif 646 return; 647 } 648 __delete_object(object); 649 650 /* 651 * Create one or two objects that may result from the memory block 652 * split. Note that partial freeing is only done by free_bootmem() and 653 * this happens before kmemleak_init() is called. The path below is 654 * only executed during early log recording in kmemleak_init(), so 655 * GFP_KERNEL is enough. 656 */ 657 start = object->pointer; 658 end = object->pointer + object->size; 659 if (ptr > start) 660 create_object(start, ptr - start, object->min_count, 661 GFP_KERNEL); 662 if (ptr + size < end) 663 create_object(ptr + size, end - ptr - size, object->min_count, 664 GFP_KERNEL); 665 666 put_object(object); 667 } 668 669 static void __paint_it(struct kmemleak_object *object, int color) 670 { 671 object->min_count = color; 672 if (color == KMEMLEAK_BLACK) 673 object->flags |= OBJECT_NO_SCAN; 674 } 675 676 static void paint_it(struct kmemleak_object *object, int color) 677 { 678 unsigned long flags; 679 680 spin_lock_irqsave(&object->lock, flags); 681 __paint_it(object, color); 682 spin_unlock_irqrestore(&object->lock, flags); 683 } 684 685 static void paint_ptr(unsigned long ptr, int color) 686 { 687 struct kmemleak_object *object; 688 689 object = find_and_get_object(ptr, 0); 690 if (!object) { 691 kmemleak_warn("Trying to color unknown object " 692 "at 0x%08lx as %s\n", ptr, 693 (color == KMEMLEAK_GREY) ? "Grey" : 694 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 695 return; 696 } 697 paint_it(object, color); 698 put_object(object); 699 } 700 701 /* 702 * Make a object permanently as gray-colored so that it can no longer be 703 * reported as a leak. This is used in general to mark a false positive. 704 */ 705 static void make_gray_object(unsigned long ptr) 706 { 707 paint_ptr(ptr, KMEMLEAK_GREY); 708 } 709 710 /* 711 * Mark the object as black-colored so that it is ignored from scans and 712 * reporting. 713 */ 714 static void make_black_object(unsigned long ptr) 715 { 716 paint_ptr(ptr, KMEMLEAK_BLACK); 717 } 718 719 /* 720 * Add a scanning area to the object. If at least one such area is added, 721 * kmemleak will only scan these ranges rather than the whole memory block. 722 */ 723 static void add_scan_area(unsigned long ptr, unsigned long offset, 724 size_t length, gfp_t gfp) 725 { 726 unsigned long flags; 727 struct kmemleak_object *object; 728 struct kmemleak_scan_area *area; 729 730 object = find_and_get_object(ptr, 0); 731 if (!object) { 732 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 733 ptr); 734 return; 735 } 736 737 area = kmem_cache_alloc(scan_area_cache, gfp & GFP_KMEMLEAK_MASK); 738 if (!area) { 739 kmemleak_warn("Cannot allocate a scan area\n"); 740 goto out; 741 } 742 743 spin_lock_irqsave(&object->lock, flags); 744 if (offset + length > object->size) { 745 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 746 dump_object_info(object); 747 kmem_cache_free(scan_area_cache, area); 748 goto out_unlock; 749 } 750 751 INIT_HLIST_NODE(&area->node); 752 area->offset = offset; 753 area->length = length; 754 755 hlist_add_head(&area->node, &object->area_list); 756 out_unlock: 757 spin_unlock_irqrestore(&object->lock, flags); 758 out: 759 put_object(object); 760 } 761 762 /* 763 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 764 * pointer. Such object will not be scanned by kmemleak but references to it 765 * are searched. 766 */ 767 static void object_no_scan(unsigned long ptr) 768 { 769 unsigned long flags; 770 struct kmemleak_object *object; 771 772 object = find_and_get_object(ptr, 0); 773 if (!object) { 774 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 775 return; 776 } 777 778 spin_lock_irqsave(&object->lock, flags); 779 object->flags |= OBJECT_NO_SCAN; 780 spin_unlock_irqrestore(&object->lock, flags); 781 put_object(object); 782 } 783 784 /* 785 * Log an early kmemleak_* call to the early_log buffer. These calls will be 786 * processed later once kmemleak is fully initialized. 787 */ 788 static void __init log_early(int op_type, const void *ptr, size_t size, 789 int min_count, unsigned long offset, size_t length) 790 { 791 unsigned long flags; 792 struct early_log *log; 793 794 if (crt_early_log >= ARRAY_SIZE(early_log)) { 795 pr_warning("Early log buffer exceeded, " 796 "please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n"); 797 kmemleak_disable(); 798 return; 799 } 800 801 /* 802 * There is no need for locking since the kernel is still in UP mode 803 * at this stage. Disabling the IRQs is enough. 804 */ 805 local_irq_save(flags); 806 log = &early_log[crt_early_log]; 807 log->op_type = op_type; 808 log->ptr = ptr; 809 log->size = size; 810 log->min_count = min_count; 811 log->offset = offset; 812 log->length = length; 813 if (op_type == KMEMLEAK_ALLOC) 814 log->trace_len = __save_stack_trace(log->trace); 815 crt_early_log++; 816 local_irq_restore(flags); 817 } 818 819 /* 820 * Log an early allocated block and populate the stack trace. 821 */ 822 static void early_alloc(struct early_log *log) 823 { 824 struct kmemleak_object *object; 825 unsigned long flags; 826 int i; 827 828 if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr)) 829 return; 830 831 /* 832 * RCU locking needed to ensure object is not freed via put_object(). 833 */ 834 rcu_read_lock(); 835 object = create_object((unsigned long)log->ptr, log->size, 836 log->min_count, GFP_KERNEL); 837 spin_lock_irqsave(&object->lock, flags); 838 for (i = 0; i < log->trace_len; i++) 839 object->trace[i] = log->trace[i]; 840 object->trace_len = log->trace_len; 841 spin_unlock_irqrestore(&object->lock, flags); 842 rcu_read_unlock(); 843 } 844 845 /* 846 * Memory allocation function callback. This function is called from the 847 * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc, 848 * vmalloc etc.). 849 */ 850 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 851 gfp_t gfp) 852 { 853 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 854 855 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 856 create_object((unsigned long)ptr, size, min_count, gfp); 857 else if (atomic_read(&kmemleak_early_log)) 858 log_early(KMEMLEAK_ALLOC, ptr, size, min_count, 0, 0); 859 } 860 EXPORT_SYMBOL_GPL(kmemleak_alloc); 861 862 /* 863 * Memory freeing function callback. This function is called from the kernel 864 * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.). 865 */ 866 void __ref kmemleak_free(const void *ptr) 867 { 868 pr_debug("%s(0x%p)\n", __func__, ptr); 869 870 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 871 delete_object_full((unsigned long)ptr); 872 else if (atomic_read(&kmemleak_early_log)) 873 log_early(KMEMLEAK_FREE, ptr, 0, 0, 0, 0); 874 } 875 EXPORT_SYMBOL_GPL(kmemleak_free); 876 877 /* 878 * Partial memory freeing function callback. This function is usually called 879 * from bootmem allocator when (part of) a memory block is freed. 880 */ 881 void __ref kmemleak_free_part(const void *ptr, size_t size) 882 { 883 pr_debug("%s(0x%p)\n", __func__, ptr); 884 885 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 886 delete_object_part((unsigned long)ptr, size); 887 else if (atomic_read(&kmemleak_early_log)) 888 log_early(KMEMLEAK_FREE_PART, ptr, size, 0, 0, 0); 889 } 890 EXPORT_SYMBOL_GPL(kmemleak_free_part); 891 892 /* 893 * Mark an already allocated memory block as a false positive. This will cause 894 * the block to no longer be reported as leak and always be scanned. 895 */ 896 void __ref kmemleak_not_leak(const void *ptr) 897 { 898 pr_debug("%s(0x%p)\n", __func__, ptr); 899 900 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 901 make_gray_object((unsigned long)ptr); 902 else if (atomic_read(&kmemleak_early_log)) 903 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0, 0, 0); 904 } 905 EXPORT_SYMBOL(kmemleak_not_leak); 906 907 /* 908 * Ignore a memory block. This is usually done when it is known that the 909 * corresponding block is not a leak and does not contain any references to 910 * other allocated memory blocks. 911 */ 912 void __ref kmemleak_ignore(const void *ptr) 913 { 914 pr_debug("%s(0x%p)\n", __func__, ptr); 915 916 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 917 make_black_object((unsigned long)ptr); 918 else if (atomic_read(&kmemleak_early_log)) 919 log_early(KMEMLEAK_IGNORE, ptr, 0, 0, 0, 0); 920 } 921 EXPORT_SYMBOL(kmemleak_ignore); 922 923 /* 924 * Limit the range to be scanned in an allocated memory block. 925 */ 926 void __ref kmemleak_scan_area(const void *ptr, unsigned long offset, 927 size_t length, gfp_t gfp) 928 { 929 pr_debug("%s(0x%p)\n", __func__, ptr); 930 931 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 932 add_scan_area((unsigned long)ptr, offset, length, gfp); 933 else if (atomic_read(&kmemleak_early_log)) 934 log_early(KMEMLEAK_SCAN_AREA, ptr, 0, 0, offset, length); 935 } 936 EXPORT_SYMBOL(kmemleak_scan_area); 937 938 /* 939 * Inform kmemleak not to scan the given memory block. 940 */ 941 void __ref kmemleak_no_scan(const void *ptr) 942 { 943 pr_debug("%s(0x%p)\n", __func__, ptr); 944 945 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 946 object_no_scan((unsigned long)ptr); 947 else if (atomic_read(&kmemleak_early_log)) 948 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0, 0, 0); 949 } 950 EXPORT_SYMBOL(kmemleak_no_scan); 951 952 /* 953 * Memory scanning is a long process and it needs to be interruptable. This 954 * function checks whether such interrupt condition occured. 955 */ 956 static int scan_should_stop(void) 957 { 958 if (!atomic_read(&kmemleak_enabled)) 959 return 1; 960 961 /* 962 * This function may be called from either process or kthread context, 963 * hence the need to check for both stop conditions. 964 */ 965 if (current->mm) 966 return signal_pending(current); 967 else 968 return kthread_should_stop(); 969 970 return 0; 971 } 972 973 /* 974 * Scan a memory block (exclusive range) for valid pointers and add those 975 * found to the gray list. 976 */ 977 static void scan_block(void *_start, void *_end, 978 struct kmemleak_object *scanned, int allow_resched) 979 { 980 unsigned long *ptr; 981 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 982 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 983 984 for (ptr = start; ptr < end; ptr++) { 985 struct kmemleak_object *object; 986 unsigned long flags; 987 unsigned long pointer; 988 989 if (allow_resched) 990 cond_resched(); 991 if (scan_should_stop()) 992 break; 993 994 /* don't scan uninitialized memory */ 995 if (!kmemcheck_is_obj_initialized((unsigned long)ptr, 996 BYTES_PER_POINTER)) 997 continue; 998 999 pointer = *ptr; 1000 1001 object = find_and_get_object(pointer, 1); 1002 if (!object) 1003 continue; 1004 if (object == scanned) { 1005 /* self referenced, ignore */ 1006 put_object(object); 1007 continue; 1008 } 1009 1010 /* 1011 * Avoid the lockdep recursive warning on object->lock being 1012 * previously acquired in scan_object(). These locks are 1013 * enclosed by scan_mutex. 1014 */ 1015 spin_lock_irqsave_nested(&object->lock, flags, 1016 SINGLE_DEPTH_NESTING); 1017 if (!color_white(object)) { 1018 /* non-orphan, ignored or new */ 1019 spin_unlock_irqrestore(&object->lock, flags); 1020 put_object(object); 1021 continue; 1022 } 1023 1024 /* 1025 * Increase the object's reference count (number of pointers 1026 * to the memory block). If this count reaches the required 1027 * minimum, the object's color will become gray and it will be 1028 * added to the gray_list. 1029 */ 1030 object->count++; 1031 if (color_gray(object)) 1032 list_add_tail(&object->gray_list, &gray_list); 1033 else 1034 put_object(object); 1035 spin_unlock_irqrestore(&object->lock, flags); 1036 } 1037 } 1038 1039 /* 1040 * Scan a memory block corresponding to a kmemleak_object. A condition is 1041 * that object->use_count >= 1. 1042 */ 1043 static void scan_object(struct kmemleak_object *object) 1044 { 1045 struct kmemleak_scan_area *area; 1046 struct hlist_node *elem; 1047 unsigned long flags; 1048 1049 /* 1050 * Once the object->lock is aquired, the corresponding memory block 1051 * cannot be freed (the same lock is aquired in delete_object). 1052 */ 1053 spin_lock_irqsave(&object->lock, flags); 1054 if (object->flags & OBJECT_NO_SCAN) 1055 goto out; 1056 if (!(object->flags & OBJECT_ALLOCATED)) 1057 /* already freed object */ 1058 goto out; 1059 if (hlist_empty(&object->area_list)) { 1060 void *start = (void *)object->pointer; 1061 void *end = (void *)(object->pointer + object->size); 1062 1063 while (start < end && (object->flags & OBJECT_ALLOCATED) && 1064 !(object->flags & OBJECT_NO_SCAN)) { 1065 scan_block(start, min(start + MAX_SCAN_SIZE, end), 1066 object, 0); 1067 start += MAX_SCAN_SIZE; 1068 1069 spin_unlock_irqrestore(&object->lock, flags); 1070 cond_resched(); 1071 spin_lock_irqsave(&object->lock, flags); 1072 } 1073 } else 1074 hlist_for_each_entry(area, elem, &object->area_list, node) 1075 scan_block((void *)(object->pointer + area->offset), 1076 (void *)(object->pointer + area->offset 1077 + area->length), object, 0); 1078 out: 1079 spin_unlock_irqrestore(&object->lock, flags); 1080 } 1081 1082 /* 1083 * Scan data sections and all the referenced memory blocks allocated via the 1084 * kernel's standard allocators. This function must be called with the 1085 * scan_mutex held. 1086 */ 1087 static void kmemleak_scan(void) 1088 { 1089 unsigned long flags; 1090 struct kmemleak_object *object, *tmp; 1091 int i; 1092 int new_leaks = 0; 1093 int gray_list_pass = 0; 1094 1095 jiffies_last_scan = jiffies; 1096 1097 /* prepare the kmemleak_object's */ 1098 rcu_read_lock(); 1099 list_for_each_entry_rcu(object, &object_list, object_list) { 1100 spin_lock_irqsave(&object->lock, flags); 1101 #ifdef DEBUG 1102 /* 1103 * With a few exceptions there should be a maximum of 1104 * 1 reference to any object at this point. 1105 */ 1106 if (atomic_read(&object->use_count) > 1) { 1107 pr_debug("object->use_count = %d\n", 1108 atomic_read(&object->use_count)); 1109 dump_object_info(object); 1110 } 1111 #endif 1112 /* reset the reference count (whiten the object) */ 1113 object->count = 0; 1114 object->flags &= ~OBJECT_NEW; 1115 if (color_gray(object) && get_object(object)) 1116 list_add_tail(&object->gray_list, &gray_list); 1117 1118 spin_unlock_irqrestore(&object->lock, flags); 1119 } 1120 rcu_read_unlock(); 1121 1122 /* data/bss scanning */ 1123 scan_block(_sdata, _edata, NULL, 1); 1124 scan_block(__bss_start, __bss_stop, NULL, 1); 1125 1126 #ifdef CONFIG_SMP 1127 /* per-cpu sections scanning */ 1128 for_each_possible_cpu(i) 1129 scan_block(__per_cpu_start + per_cpu_offset(i), 1130 __per_cpu_end + per_cpu_offset(i), NULL, 1); 1131 #endif 1132 1133 /* 1134 * Struct page scanning for each node. The code below is not yet safe 1135 * with MEMORY_HOTPLUG. 1136 */ 1137 for_each_online_node(i) { 1138 pg_data_t *pgdat = NODE_DATA(i); 1139 unsigned long start_pfn = pgdat->node_start_pfn; 1140 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; 1141 unsigned long pfn; 1142 1143 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1144 struct page *page; 1145 1146 if (!pfn_valid(pfn)) 1147 continue; 1148 page = pfn_to_page(pfn); 1149 /* only scan if page is in use */ 1150 if (page_count(page) == 0) 1151 continue; 1152 scan_block(page, page + 1, NULL, 1); 1153 } 1154 } 1155 1156 /* 1157 * Scanning the task stacks (may introduce false negatives). 1158 */ 1159 if (kmemleak_stack_scan) { 1160 struct task_struct *p, *g; 1161 1162 read_lock(&tasklist_lock); 1163 do_each_thread(g, p) { 1164 scan_block(task_stack_page(p), task_stack_page(p) + 1165 THREAD_SIZE, NULL, 0); 1166 } while_each_thread(g, p); 1167 read_unlock(&tasklist_lock); 1168 } 1169 1170 /* 1171 * Scan the objects already referenced from the sections scanned 1172 * above. More objects will be referenced and, if there are no memory 1173 * leaks, all the objects will be scanned. The list traversal is safe 1174 * for both tail additions and removals from inside the loop. The 1175 * kmemleak objects cannot be freed from outside the loop because their 1176 * use_count was increased. 1177 */ 1178 repeat: 1179 object = list_entry(gray_list.next, typeof(*object), gray_list); 1180 while (&object->gray_list != &gray_list) { 1181 cond_resched(); 1182 1183 /* may add new objects to the list */ 1184 if (!scan_should_stop()) 1185 scan_object(object); 1186 1187 tmp = list_entry(object->gray_list.next, typeof(*object), 1188 gray_list); 1189 1190 /* remove the object from the list and release it */ 1191 list_del(&object->gray_list); 1192 put_object(object); 1193 1194 object = tmp; 1195 } 1196 1197 if (scan_should_stop() || ++gray_list_pass >= GRAY_LIST_PASSES) 1198 goto scan_end; 1199 1200 /* 1201 * Check for new objects allocated during this scanning and add them 1202 * to the gray list. 1203 */ 1204 rcu_read_lock(); 1205 list_for_each_entry_rcu(object, &object_list, object_list) { 1206 spin_lock_irqsave(&object->lock, flags); 1207 if ((object->flags & OBJECT_NEW) && !color_black(object) && 1208 get_object(object)) { 1209 object->flags &= ~OBJECT_NEW; 1210 list_add_tail(&object->gray_list, &gray_list); 1211 } 1212 spin_unlock_irqrestore(&object->lock, flags); 1213 } 1214 rcu_read_unlock(); 1215 1216 if (!list_empty(&gray_list)) 1217 goto repeat; 1218 1219 scan_end: 1220 WARN_ON(!list_empty(&gray_list)); 1221 1222 /* 1223 * If scanning was stopped or new objects were being allocated at a 1224 * higher rate than gray list scanning, do not report any new 1225 * unreferenced objects. 1226 */ 1227 if (scan_should_stop() || gray_list_pass >= GRAY_LIST_PASSES) 1228 return; 1229 1230 /* 1231 * Scanning result reporting. 1232 */ 1233 rcu_read_lock(); 1234 list_for_each_entry_rcu(object, &object_list, object_list) { 1235 spin_lock_irqsave(&object->lock, flags); 1236 if (unreferenced_object(object) && 1237 !(object->flags & OBJECT_REPORTED)) { 1238 object->flags |= OBJECT_REPORTED; 1239 new_leaks++; 1240 } 1241 spin_unlock_irqrestore(&object->lock, flags); 1242 } 1243 rcu_read_unlock(); 1244 1245 if (new_leaks) 1246 pr_info("%d new suspected memory leaks (see " 1247 "/sys/kernel/debug/kmemleak)\n", new_leaks); 1248 1249 } 1250 1251 /* 1252 * Thread function performing automatic memory scanning. Unreferenced objects 1253 * at the end of a memory scan are reported but only the first time. 1254 */ 1255 static int kmemleak_scan_thread(void *arg) 1256 { 1257 static int first_run = 1; 1258 1259 pr_info("Automatic memory scanning thread started\n"); 1260 set_user_nice(current, 10); 1261 1262 /* 1263 * Wait before the first scan to allow the system to fully initialize. 1264 */ 1265 if (first_run) { 1266 first_run = 0; 1267 ssleep(SECS_FIRST_SCAN); 1268 } 1269 1270 while (!kthread_should_stop()) { 1271 signed long timeout = jiffies_scan_wait; 1272 1273 mutex_lock(&scan_mutex); 1274 kmemleak_scan(); 1275 mutex_unlock(&scan_mutex); 1276 1277 /* wait before the next scan */ 1278 while (timeout && !kthread_should_stop()) 1279 timeout = schedule_timeout_interruptible(timeout); 1280 } 1281 1282 pr_info("Automatic memory scanning thread ended\n"); 1283 1284 return 0; 1285 } 1286 1287 /* 1288 * Start the automatic memory scanning thread. This function must be called 1289 * with the scan_mutex held. 1290 */ 1291 static void start_scan_thread(void) 1292 { 1293 if (scan_thread) 1294 return; 1295 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1296 if (IS_ERR(scan_thread)) { 1297 pr_warning("Failed to create the scan thread\n"); 1298 scan_thread = NULL; 1299 } 1300 } 1301 1302 /* 1303 * Stop the automatic memory scanning thread. This function must be called 1304 * with the scan_mutex held. 1305 */ 1306 static void stop_scan_thread(void) 1307 { 1308 if (scan_thread) { 1309 kthread_stop(scan_thread); 1310 scan_thread = NULL; 1311 } 1312 } 1313 1314 /* 1315 * Iterate over the object_list and return the first valid object at or after 1316 * the required position with its use_count incremented. The function triggers 1317 * a memory scanning when the pos argument points to the first position. 1318 */ 1319 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1320 { 1321 struct kmemleak_object *object; 1322 loff_t n = *pos; 1323 int err; 1324 1325 err = mutex_lock_interruptible(&scan_mutex); 1326 if (err < 0) 1327 return ERR_PTR(err); 1328 1329 rcu_read_lock(); 1330 list_for_each_entry_rcu(object, &object_list, object_list) { 1331 if (n-- > 0) 1332 continue; 1333 if (get_object(object)) 1334 goto out; 1335 } 1336 object = NULL; 1337 out: 1338 return object; 1339 } 1340 1341 /* 1342 * Return the next object in the object_list. The function decrements the 1343 * use_count of the previous object and increases that of the next one. 1344 */ 1345 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1346 { 1347 struct kmemleak_object *prev_obj = v; 1348 struct kmemleak_object *next_obj = NULL; 1349 struct list_head *n = &prev_obj->object_list; 1350 1351 ++(*pos); 1352 1353 list_for_each_continue_rcu(n, &object_list) { 1354 next_obj = list_entry(n, struct kmemleak_object, object_list); 1355 if (get_object(next_obj)) 1356 break; 1357 } 1358 1359 put_object(prev_obj); 1360 return next_obj; 1361 } 1362 1363 /* 1364 * Decrement the use_count of the last object required, if any. 1365 */ 1366 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1367 { 1368 if (!IS_ERR(v)) { 1369 /* 1370 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1371 * waiting was interrupted, so only release it if !IS_ERR. 1372 */ 1373 rcu_read_unlock(); 1374 mutex_unlock(&scan_mutex); 1375 if (v) 1376 put_object(v); 1377 } 1378 } 1379 1380 /* 1381 * Print the information for an unreferenced object to the seq file. 1382 */ 1383 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1384 { 1385 struct kmemleak_object *object = v; 1386 unsigned long flags; 1387 1388 spin_lock_irqsave(&object->lock, flags); 1389 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1390 print_unreferenced(seq, object); 1391 spin_unlock_irqrestore(&object->lock, flags); 1392 return 0; 1393 } 1394 1395 static const struct seq_operations kmemleak_seq_ops = { 1396 .start = kmemleak_seq_start, 1397 .next = kmemleak_seq_next, 1398 .stop = kmemleak_seq_stop, 1399 .show = kmemleak_seq_show, 1400 }; 1401 1402 static int kmemleak_open(struct inode *inode, struct file *file) 1403 { 1404 if (!atomic_read(&kmemleak_enabled)) 1405 return -EBUSY; 1406 1407 return seq_open(file, &kmemleak_seq_ops); 1408 } 1409 1410 static int kmemleak_release(struct inode *inode, struct file *file) 1411 { 1412 return seq_release(inode, file); 1413 } 1414 1415 static int dump_str_object_info(const char *str) 1416 { 1417 unsigned long flags; 1418 struct kmemleak_object *object; 1419 unsigned long addr; 1420 1421 addr= simple_strtoul(str, NULL, 0); 1422 object = find_and_get_object(addr, 0); 1423 if (!object) { 1424 pr_info("Unknown object at 0x%08lx\n", addr); 1425 return -EINVAL; 1426 } 1427 1428 spin_lock_irqsave(&object->lock, flags); 1429 dump_object_info(object); 1430 spin_unlock_irqrestore(&object->lock, flags); 1431 1432 put_object(object); 1433 return 0; 1434 } 1435 1436 /* 1437 * We use grey instead of black to ensure we can do future scans on the same 1438 * objects. If we did not do future scans these black objects could 1439 * potentially contain references to newly allocated objects in the future and 1440 * we'd end up with false positives. 1441 */ 1442 static void kmemleak_clear(void) 1443 { 1444 struct kmemleak_object *object; 1445 unsigned long flags; 1446 1447 rcu_read_lock(); 1448 list_for_each_entry_rcu(object, &object_list, object_list) { 1449 spin_lock_irqsave(&object->lock, flags); 1450 if ((object->flags & OBJECT_REPORTED) && 1451 unreferenced_object(object)) 1452 __paint_it(object, KMEMLEAK_GREY); 1453 spin_unlock_irqrestore(&object->lock, flags); 1454 } 1455 rcu_read_unlock(); 1456 } 1457 1458 /* 1459 * File write operation to configure kmemleak at run-time. The following 1460 * commands can be written to the /sys/kernel/debug/kmemleak file: 1461 * off - disable kmemleak (irreversible) 1462 * stack=on - enable the task stacks scanning 1463 * stack=off - disable the tasks stacks scanning 1464 * scan=on - start the automatic memory scanning thread 1465 * scan=off - stop the automatic memory scanning thread 1466 * scan=... - set the automatic memory scanning period in seconds (0 to 1467 * disable it) 1468 * scan - trigger a memory scan 1469 * clear - mark all current reported unreferenced kmemleak objects as 1470 * grey to ignore printing them 1471 * dump=... - dump information about the object found at the given address 1472 */ 1473 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1474 size_t size, loff_t *ppos) 1475 { 1476 char buf[64]; 1477 int buf_size; 1478 int ret; 1479 1480 buf_size = min(size, (sizeof(buf) - 1)); 1481 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1482 return -EFAULT; 1483 buf[buf_size] = 0; 1484 1485 ret = mutex_lock_interruptible(&scan_mutex); 1486 if (ret < 0) 1487 return ret; 1488 1489 if (strncmp(buf, "off", 3) == 0) 1490 kmemleak_disable(); 1491 else if (strncmp(buf, "stack=on", 8) == 0) 1492 kmemleak_stack_scan = 1; 1493 else if (strncmp(buf, "stack=off", 9) == 0) 1494 kmemleak_stack_scan = 0; 1495 else if (strncmp(buf, "scan=on", 7) == 0) 1496 start_scan_thread(); 1497 else if (strncmp(buf, "scan=off", 8) == 0) 1498 stop_scan_thread(); 1499 else if (strncmp(buf, "scan=", 5) == 0) { 1500 unsigned long secs; 1501 1502 ret = strict_strtoul(buf + 5, 0, &secs); 1503 if (ret < 0) 1504 goto out; 1505 stop_scan_thread(); 1506 if (secs) { 1507 jiffies_scan_wait = msecs_to_jiffies(secs * 1000); 1508 start_scan_thread(); 1509 } 1510 } else if (strncmp(buf, "scan", 4) == 0) 1511 kmemleak_scan(); 1512 else if (strncmp(buf, "clear", 5) == 0) 1513 kmemleak_clear(); 1514 else if (strncmp(buf, "dump=", 5) == 0) 1515 ret = dump_str_object_info(buf + 5); 1516 else 1517 ret = -EINVAL; 1518 1519 out: 1520 mutex_unlock(&scan_mutex); 1521 if (ret < 0) 1522 return ret; 1523 1524 /* ignore the rest of the buffer, only one command at a time */ 1525 *ppos += size; 1526 return size; 1527 } 1528 1529 static const struct file_operations kmemleak_fops = { 1530 .owner = THIS_MODULE, 1531 .open = kmemleak_open, 1532 .read = seq_read, 1533 .write = kmemleak_write, 1534 .llseek = seq_lseek, 1535 .release = kmemleak_release, 1536 }; 1537 1538 /* 1539 * Perform the freeing of the kmemleak internal objects after waiting for any 1540 * current memory scan to complete. 1541 */ 1542 static void kmemleak_do_cleanup(struct work_struct *work) 1543 { 1544 struct kmemleak_object *object; 1545 1546 mutex_lock(&scan_mutex); 1547 stop_scan_thread(); 1548 1549 rcu_read_lock(); 1550 list_for_each_entry_rcu(object, &object_list, object_list) 1551 delete_object_full(object->pointer); 1552 rcu_read_unlock(); 1553 mutex_unlock(&scan_mutex); 1554 } 1555 1556 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 1557 1558 /* 1559 * Disable kmemleak. No memory allocation/freeing will be traced once this 1560 * function is called. Disabling kmemleak is an irreversible operation. 1561 */ 1562 static void kmemleak_disable(void) 1563 { 1564 /* atomically check whether it was already invoked */ 1565 if (atomic_cmpxchg(&kmemleak_error, 0, 1)) 1566 return; 1567 1568 /* stop any memory operation tracing */ 1569 atomic_set(&kmemleak_early_log, 0); 1570 atomic_set(&kmemleak_enabled, 0); 1571 1572 /* check whether it is too early for a kernel thread */ 1573 if (atomic_read(&kmemleak_initialized)) 1574 schedule_work(&cleanup_work); 1575 1576 pr_info("Kernel memory leak detector disabled\n"); 1577 } 1578 1579 /* 1580 * Allow boot-time kmemleak disabling (enabled by default). 1581 */ 1582 static int kmemleak_boot_config(char *str) 1583 { 1584 if (!str) 1585 return -EINVAL; 1586 if (strcmp(str, "off") == 0) 1587 kmemleak_disable(); 1588 else if (strcmp(str, "on") != 0) 1589 return -EINVAL; 1590 return 0; 1591 } 1592 early_param("kmemleak", kmemleak_boot_config); 1593 1594 /* 1595 * Kmemleak initialization. 1596 */ 1597 void __init kmemleak_init(void) 1598 { 1599 int i; 1600 unsigned long flags; 1601 1602 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 1603 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 1604 1605 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 1606 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 1607 INIT_PRIO_TREE_ROOT(&object_tree_root); 1608 1609 /* the kernel is still in UP mode, so disabling the IRQs is enough */ 1610 local_irq_save(flags); 1611 if (!atomic_read(&kmemleak_error)) { 1612 atomic_set(&kmemleak_enabled, 1); 1613 atomic_set(&kmemleak_early_log, 0); 1614 } 1615 local_irq_restore(flags); 1616 1617 /* 1618 * This is the point where tracking allocations is safe. Automatic 1619 * scanning is started during the late initcall. Add the early logged 1620 * callbacks to the kmemleak infrastructure. 1621 */ 1622 for (i = 0; i < crt_early_log; i++) { 1623 struct early_log *log = &early_log[i]; 1624 1625 switch (log->op_type) { 1626 case KMEMLEAK_ALLOC: 1627 early_alloc(log); 1628 break; 1629 case KMEMLEAK_FREE: 1630 kmemleak_free(log->ptr); 1631 break; 1632 case KMEMLEAK_FREE_PART: 1633 kmemleak_free_part(log->ptr, log->size); 1634 break; 1635 case KMEMLEAK_NOT_LEAK: 1636 kmemleak_not_leak(log->ptr); 1637 break; 1638 case KMEMLEAK_IGNORE: 1639 kmemleak_ignore(log->ptr); 1640 break; 1641 case KMEMLEAK_SCAN_AREA: 1642 kmemleak_scan_area(log->ptr, log->offset, log->length, 1643 GFP_KERNEL); 1644 break; 1645 case KMEMLEAK_NO_SCAN: 1646 kmemleak_no_scan(log->ptr); 1647 break; 1648 default: 1649 WARN_ON(1); 1650 } 1651 } 1652 } 1653 1654 /* 1655 * Late initialization function. 1656 */ 1657 static int __init kmemleak_late_init(void) 1658 { 1659 struct dentry *dentry; 1660 1661 atomic_set(&kmemleak_initialized, 1); 1662 1663 if (atomic_read(&kmemleak_error)) { 1664 /* 1665 * Some error occured and kmemleak was disabled. There is a 1666 * small chance that kmemleak_disable() was called immediately 1667 * after setting kmemleak_initialized and we may end up with 1668 * two clean-up threads but serialized by scan_mutex. 1669 */ 1670 schedule_work(&cleanup_work); 1671 return -ENOMEM; 1672 } 1673 1674 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL, 1675 &kmemleak_fops); 1676 if (!dentry) 1677 pr_warning("Failed to create the debugfs kmemleak file\n"); 1678 mutex_lock(&scan_mutex); 1679 start_scan_thread(); 1680 mutex_unlock(&scan_mutex); 1681 1682 pr_info("Kernel memory leak detector initialized\n"); 1683 1684 return 0; 1685 } 1686 late_initcall(kmemleak_late_init); 1687