xref: /openbmc/linux/mm/kmemleak.c (revision fd589a8f)
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/kmemleak.txt.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a priority search tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * The kmemleak_object structures have a use_count incremented or decremented
57  * using the get_object()/put_object() functions. When the use_count becomes
58  * 0, this count can no longer be incremented and put_object() schedules the
59  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60  * function must be protected by rcu_read_lock() to avoid accessing a freed
61  * structure.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 
66 #include <linux/init.h>
67 #include <linux/kernel.h>
68 #include <linux/list.h>
69 #include <linux/sched.h>
70 #include <linux/jiffies.h>
71 #include <linux/delay.h>
72 #include <linux/module.h>
73 #include <linux/kthread.h>
74 #include <linux/prio_tree.h>
75 #include <linux/gfp.h>
76 #include <linux/fs.h>
77 #include <linux/debugfs.h>
78 #include <linux/seq_file.h>
79 #include <linux/cpumask.h>
80 #include <linux/spinlock.h>
81 #include <linux/mutex.h>
82 #include <linux/rcupdate.h>
83 #include <linux/stacktrace.h>
84 #include <linux/cache.h>
85 #include <linux/percpu.h>
86 #include <linux/hardirq.h>
87 #include <linux/mmzone.h>
88 #include <linux/slab.h>
89 #include <linux/thread_info.h>
90 #include <linux/err.h>
91 #include <linux/uaccess.h>
92 #include <linux/string.h>
93 #include <linux/nodemask.h>
94 #include <linux/mm.h>
95 #include <linux/workqueue.h>
96 
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <asm/atomic.h>
100 
101 #include <linux/kmemcheck.h>
102 #include <linux/kmemleak.h>
103 
104 /*
105  * Kmemleak configuration and common defines.
106  */
107 #define MAX_TRACE		16	/* stack trace length */
108 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
109 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
110 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
111 #define GRAY_LIST_PASSES	25	/* maximum number of gray list scans */
112 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
113 
114 #define BYTES_PER_POINTER	sizeof(void *)
115 
116 /* GFP bitmask for kmemleak internal allocations */
117 #define GFP_KMEMLEAK_MASK	(GFP_KERNEL | GFP_ATOMIC)
118 
119 /* scanning area inside a memory block */
120 struct kmemleak_scan_area {
121 	struct hlist_node node;
122 	unsigned long offset;
123 	size_t length;
124 };
125 
126 #define KMEMLEAK_GREY	0
127 #define KMEMLEAK_BLACK	-1
128 
129 /*
130  * Structure holding the metadata for each allocated memory block.
131  * Modifications to such objects should be made while holding the
132  * object->lock. Insertions or deletions from object_list, gray_list or
133  * tree_node are already protected by the corresponding locks or mutex (see
134  * the notes on locking above). These objects are reference-counted
135  * (use_count) and freed using the RCU mechanism.
136  */
137 struct kmemleak_object {
138 	spinlock_t lock;
139 	unsigned long flags;		/* object status flags */
140 	struct list_head object_list;
141 	struct list_head gray_list;
142 	struct prio_tree_node tree_node;
143 	struct rcu_head rcu;		/* object_list lockless traversal */
144 	/* object usage count; object freed when use_count == 0 */
145 	atomic_t use_count;
146 	unsigned long pointer;
147 	size_t size;
148 	/* minimum number of a pointers found before it is considered leak */
149 	int min_count;
150 	/* the total number of pointers found pointing to this object */
151 	int count;
152 	/* memory ranges to be scanned inside an object (empty for all) */
153 	struct hlist_head area_list;
154 	unsigned long trace[MAX_TRACE];
155 	unsigned int trace_len;
156 	unsigned long jiffies;		/* creation timestamp */
157 	pid_t pid;			/* pid of the current task */
158 	char comm[TASK_COMM_LEN];	/* executable name */
159 };
160 
161 /* flag representing the memory block allocation status */
162 #define OBJECT_ALLOCATED	(1 << 0)
163 /* flag set after the first reporting of an unreference object */
164 #define OBJECT_REPORTED		(1 << 1)
165 /* flag set to not scan the object */
166 #define OBJECT_NO_SCAN		(1 << 2)
167 /* flag set on newly allocated objects */
168 #define OBJECT_NEW		(1 << 3)
169 
170 /* number of bytes to print per line; must be 16 or 32 */
171 #define HEX_ROW_SIZE		16
172 /* number of bytes to print at a time (1, 2, 4, 8) */
173 #define HEX_GROUP_SIZE		1
174 /* include ASCII after the hex output */
175 #define HEX_ASCII		1
176 /* max number of lines to be printed */
177 #define HEX_MAX_LINES		2
178 
179 /* the list of all allocated objects */
180 static LIST_HEAD(object_list);
181 /* the list of gray-colored objects (see color_gray comment below) */
182 static LIST_HEAD(gray_list);
183 /* prio search tree for object boundaries */
184 static struct prio_tree_root object_tree_root;
185 /* rw_lock protecting the access to object_list and prio_tree_root */
186 static DEFINE_RWLOCK(kmemleak_lock);
187 
188 /* allocation caches for kmemleak internal data */
189 static struct kmem_cache *object_cache;
190 static struct kmem_cache *scan_area_cache;
191 
192 /* set if tracing memory operations is enabled */
193 static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
194 /* set in the late_initcall if there were no errors */
195 static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
196 /* enables or disables early logging of the memory operations */
197 static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
198 /* set if a fata kmemleak error has occurred */
199 static atomic_t kmemleak_error = ATOMIC_INIT(0);
200 
201 /* minimum and maximum address that may be valid pointers */
202 static unsigned long min_addr = ULONG_MAX;
203 static unsigned long max_addr;
204 
205 static struct task_struct *scan_thread;
206 /* used to avoid reporting of recently allocated objects */
207 static unsigned long jiffies_min_age;
208 static unsigned long jiffies_last_scan;
209 /* delay between automatic memory scannings */
210 static signed long jiffies_scan_wait;
211 /* enables or disables the task stacks scanning */
212 static int kmemleak_stack_scan = 1;
213 /* protects the memory scanning, parameters and debug/kmemleak file access */
214 static DEFINE_MUTEX(scan_mutex);
215 
216 /*
217  * Early object allocation/freeing logging. Kmemleak is initialized after the
218  * kernel allocator. However, both the kernel allocator and kmemleak may
219  * allocate memory blocks which need to be tracked. Kmemleak defines an
220  * arbitrary buffer to hold the allocation/freeing information before it is
221  * fully initialized.
222  */
223 
224 /* kmemleak operation type for early logging */
225 enum {
226 	KMEMLEAK_ALLOC,
227 	KMEMLEAK_FREE,
228 	KMEMLEAK_FREE_PART,
229 	KMEMLEAK_NOT_LEAK,
230 	KMEMLEAK_IGNORE,
231 	KMEMLEAK_SCAN_AREA,
232 	KMEMLEAK_NO_SCAN
233 };
234 
235 /*
236  * Structure holding the information passed to kmemleak callbacks during the
237  * early logging.
238  */
239 struct early_log {
240 	int op_type;			/* kmemleak operation type */
241 	const void *ptr;		/* allocated/freed memory block */
242 	size_t size;			/* memory block size */
243 	int min_count;			/* minimum reference count */
244 	unsigned long offset;		/* scan area offset */
245 	size_t length;			/* scan area length */
246 	unsigned long trace[MAX_TRACE];	/* stack trace */
247 	unsigned int trace_len;		/* stack trace length */
248 };
249 
250 /* early logging buffer and current position */
251 static struct early_log
252 	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
253 static int crt_early_log __initdata;
254 
255 static void kmemleak_disable(void);
256 
257 /*
258  * Print a warning and dump the stack trace.
259  */
260 #define kmemleak_warn(x...)	do {	\
261 	pr_warning(x);			\
262 	dump_stack();			\
263 } while (0)
264 
265 /*
266  * Macro invoked when a serious kmemleak condition occured and cannot be
267  * recovered from. Kmemleak will be disabled and further allocation/freeing
268  * tracing no longer available.
269  */
270 #define kmemleak_stop(x...)	do {	\
271 	kmemleak_warn(x);		\
272 	kmemleak_disable();		\
273 } while (0)
274 
275 /*
276  * Printing of the objects hex dump to the seq file. The number of lines to be
277  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
278  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
279  * with the object->lock held.
280  */
281 static void hex_dump_object(struct seq_file *seq,
282 			    struct kmemleak_object *object)
283 {
284 	const u8 *ptr = (const u8 *)object->pointer;
285 	int i, len, remaining;
286 	unsigned char linebuf[HEX_ROW_SIZE * 5];
287 
288 	/* limit the number of lines to HEX_MAX_LINES */
289 	remaining = len =
290 		min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
291 
292 	seq_printf(seq, "  hex dump (first %d bytes):\n", len);
293 	for (i = 0; i < len; i += HEX_ROW_SIZE) {
294 		int linelen = min(remaining, HEX_ROW_SIZE);
295 
296 		remaining -= HEX_ROW_SIZE;
297 		hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
298 				   HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
299 				   HEX_ASCII);
300 		seq_printf(seq, "    %s\n", linebuf);
301 	}
302 }
303 
304 /*
305  * Object colors, encoded with count and min_count:
306  * - white - orphan object, not enough references to it (count < min_count)
307  * - gray  - not orphan, not marked as false positive (min_count == 0) or
308  *		sufficient references to it (count >= min_count)
309  * - black - ignore, it doesn't contain references (e.g. text section)
310  *		(min_count == -1). No function defined for this color.
311  * Newly created objects don't have any color assigned (object->count == -1)
312  * before the next memory scan when they become white.
313  */
314 static bool color_white(const struct kmemleak_object *object)
315 {
316 	return object->count != KMEMLEAK_BLACK &&
317 		object->count < object->min_count;
318 }
319 
320 static bool color_gray(const struct kmemleak_object *object)
321 {
322 	return object->min_count != KMEMLEAK_BLACK &&
323 		object->count >= object->min_count;
324 }
325 
326 static bool color_black(const struct kmemleak_object *object)
327 {
328 	return object->min_count == KMEMLEAK_BLACK;
329 }
330 
331 /*
332  * Objects are considered unreferenced only if their color is white, they have
333  * not be deleted and have a minimum age to avoid false positives caused by
334  * pointers temporarily stored in CPU registers.
335  */
336 static bool unreferenced_object(struct kmemleak_object *object)
337 {
338 	return (object->flags & OBJECT_ALLOCATED) && color_white(object) &&
339 		time_before_eq(object->jiffies + jiffies_min_age,
340 			       jiffies_last_scan);
341 }
342 
343 /*
344  * Printing of the unreferenced objects information to the seq file. The
345  * print_unreferenced function must be called with the object->lock held.
346  */
347 static void print_unreferenced(struct seq_file *seq,
348 			       struct kmemleak_object *object)
349 {
350 	int i;
351 
352 	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
353 		   object->pointer, object->size);
354 	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu\n",
355 		   object->comm, object->pid, object->jiffies);
356 	hex_dump_object(seq, object);
357 	seq_printf(seq, "  backtrace:\n");
358 
359 	for (i = 0; i < object->trace_len; i++) {
360 		void *ptr = (void *)object->trace[i];
361 		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
362 	}
363 }
364 
365 /*
366  * Print the kmemleak_object information. This function is used mainly for
367  * debugging special cases when kmemleak operations. It must be called with
368  * the object->lock held.
369  */
370 static void dump_object_info(struct kmemleak_object *object)
371 {
372 	struct stack_trace trace;
373 
374 	trace.nr_entries = object->trace_len;
375 	trace.entries = object->trace;
376 
377 	pr_notice("Object 0x%08lx (size %zu):\n",
378 		  object->tree_node.start, object->size);
379 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
380 		  object->comm, object->pid, object->jiffies);
381 	pr_notice("  min_count = %d\n", object->min_count);
382 	pr_notice("  count = %d\n", object->count);
383 	pr_notice("  flags = 0x%lx\n", object->flags);
384 	pr_notice("  backtrace:\n");
385 	print_stack_trace(&trace, 4);
386 }
387 
388 /*
389  * Look-up a memory block metadata (kmemleak_object) in the priority search
390  * tree based on a pointer value. If alias is 0, only values pointing to the
391  * beginning of the memory block are allowed. The kmemleak_lock must be held
392  * when calling this function.
393  */
394 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
395 {
396 	struct prio_tree_node *node;
397 	struct prio_tree_iter iter;
398 	struct kmemleak_object *object;
399 
400 	prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
401 	node = prio_tree_next(&iter);
402 	if (node) {
403 		object = prio_tree_entry(node, struct kmemleak_object,
404 					 tree_node);
405 		if (!alias && object->pointer != ptr) {
406 			kmemleak_warn("Found object by alias");
407 			object = NULL;
408 		}
409 	} else
410 		object = NULL;
411 
412 	return object;
413 }
414 
415 /*
416  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
417  * that once an object's use_count reached 0, the RCU freeing was already
418  * registered and the object should no longer be used. This function must be
419  * called under the protection of rcu_read_lock().
420  */
421 static int get_object(struct kmemleak_object *object)
422 {
423 	return atomic_inc_not_zero(&object->use_count);
424 }
425 
426 /*
427  * RCU callback to free a kmemleak_object.
428  */
429 static void free_object_rcu(struct rcu_head *rcu)
430 {
431 	struct hlist_node *elem, *tmp;
432 	struct kmemleak_scan_area *area;
433 	struct kmemleak_object *object =
434 		container_of(rcu, struct kmemleak_object, rcu);
435 
436 	/*
437 	 * Once use_count is 0 (guaranteed by put_object), there is no other
438 	 * code accessing this object, hence no need for locking.
439 	 */
440 	hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
441 		hlist_del(elem);
442 		kmem_cache_free(scan_area_cache, area);
443 	}
444 	kmem_cache_free(object_cache, object);
445 }
446 
447 /*
448  * Decrement the object use_count. Once the count is 0, free the object using
449  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
450  * delete_object() path, the delayed RCU freeing ensures that there is no
451  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
452  * is also possible.
453  */
454 static void put_object(struct kmemleak_object *object)
455 {
456 	if (!atomic_dec_and_test(&object->use_count))
457 		return;
458 
459 	/* should only get here after delete_object was called */
460 	WARN_ON(object->flags & OBJECT_ALLOCATED);
461 
462 	call_rcu(&object->rcu, free_object_rcu);
463 }
464 
465 /*
466  * Look up an object in the prio search tree and increase its use_count.
467  */
468 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
469 {
470 	unsigned long flags;
471 	struct kmemleak_object *object = NULL;
472 
473 	rcu_read_lock();
474 	read_lock_irqsave(&kmemleak_lock, flags);
475 	if (ptr >= min_addr && ptr < max_addr)
476 		object = lookup_object(ptr, alias);
477 	read_unlock_irqrestore(&kmemleak_lock, flags);
478 
479 	/* check whether the object is still available */
480 	if (object && !get_object(object))
481 		object = NULL;
482 	rcu_read_unlock();
483 
484 	return object;
485 }
486 
487 /*
488  * Save stack trace to the given array of MAX_TRACE size.
489  */
490 static int __save_stack_trace(unsigned long *trace)
491 {
492 	struct stack_trace stack_trace;
493 
494 	stack_trace.max_entries = MAX_TRACE;
495 	stack_trace.nr_entries = 0;
496 	stack_trace.entries = trace;
497 	stack_trace.skip = 2;
498 	save_stack_trace(&stack_trace);
499 
500 	return stack_trace.nr_entries;
501 }
502 
503 /*
504  * Create the metadata (struct kmemleak_object) corresponding to an allocated
505  * memory block and add it to the object_list and object_tree_root.
506  */
507 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
508 					     int min_count, gfp_t gfp)
509 {
510 	unsigned long flags;
511 	struct kmemleak_object *object;
512 	struct prio_tree_node *node;
513 
514 	object = kmem_cache_alloc(object_cache, gfp & GFP_KMEMLEAK_MASK);
515 	if (!object) {
516 		kmemleak_stop("Cannot allocate a kmemleak_object structure\n");
517 		return NULL;
518 	}
519 
520 	INIT_LIST_HEAD(&object->object_list);
521 	INIT_LIST_HEAD(&object->gray_list);
522 	INIT_HLIST_HEAD(&object->area_list);
523 	spin_lock_init(&object->lock);
524 	atomic_set(&object->use_count, 1);
525 	object->flags = OBJECT_ALLOCATED | OBJECT_NEW;
526 	object->pointer = ptr;
527 	object->size = size;
528 	object->min_count = min_count;
529 	object->count = -1;			/* no color initially */
530 	object->jiffies = jiffies;
531 
532 	/* task information */
533 	if (in_irq()) {
534 		object->pid = 0;
535 		strncpy(object->comm, "hardirq", sizeof(object->comm));
536 	} else if (in_softirq()) {
537 		object->pid = 0;
538 		strncpy(object->comm, "softirq", sizeof(object->comm));
539 	} else {
540 		object->pid = current->pid;
541 		/*
542 		 * There is a small chance of a race with set_task_comm(),
543 		 * however using get_task_comm() here may cause locking
544 		 * dependency issues with current->alloc_lock. In the worst
545 		 * case, the command line is not correct.
546 		 */
547 		strncpy(object->comm, current->comm, sizeof(object->comm));
548 	}
549 
550 	/* kernel backtrace */
551 	object->trace_len = __save_stack_trace(object->trace);
552 
553 	INIT_PRIO_TREE_NODE(&object->tree_node);
554 	object->tree_node.start = ptr;
555 	object->tree_node.last = ptr + size - 1;
556 
557 	write_lock_irqsave(&kmemleak_lock, flags);
558 
559 	min_addr = min(min_addr, ptr);
560 	max_addr = max(max_addr, ptr + size);
561 	node = prio_tree_insert(&object_tree_root, &object->tree_node);
562 	/*
563 	 * The code calling the kernel does not yet have the pointer to the
564 	 * memory block to be able to free it.  However, we still hold the
565 	 * kmemleak_lock here in case parts of the kernel started freeing
566 	 * random memory blocks.
567 	 */
568 	if (node != &object->tree_node) {
569 		kmemleak_stop("Cannot insert 0x%lx into the object search tree "
570 			      "(already existing)\n", ptr);
571 		object = lookup_object(ptr, 1);
572 		spin_lock(&object->lock);
573 		dump_object_info(object);
574 		spin_unlock(&object->lock);
575 
576 		goto out;
577 	}
578 	list_add_tail_rcu(&object->object_list, &object_list);
579 out:
580 	write_unlock_irqrestore(&kmemleak_lock, flags);
581 	return object;
582 }
583 
584 /*
585  * Remove the metadata (struct kmemleak_object) for a memory block from the
586  * object_list and object_tree_root and decrement its use_count.
587  */
588 static void __delete_object(struct kmemleak_object *object)
589 {
590 	unsigned long flags;
591 
592 	write_lock_irqsave(&kmemleak_lock, flags);
593 	prio_tree_remove(&object_tree_root, &object->tree_node);
594 	list_del_rcu(&object->object_list);
595 	write_unlock_irqrestore(&kmemleak_lock, flags);
596 
597 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
598 	WARN_ON(atomic_read(&object->use_count) < 2);
599 
600 	/*
601 	 * Locking here also ensures that the corresponding memory block
602 	 * cannot be freed when it is being scanned.
603 	 */
604 	spin_lock_irqsave(&object->lock, flags);
605 	object->flags &= ~OBJECT_ALLOCATED;
606 	spin_unlock_irqrestore(&object->lock, flags);
607 	put_object(object);
608 }
609 
610 /*
611  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
612  * delete it.
613  */
614 static void delete_object_full(unsigned long ptr)
615 {
616 	struct kmemleak_object *object;
617 
618 	object = find_and_get_object(ptr, 0);
619 	if (!object) {
620 #ifdef DEBUG
621 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
622 			      ptr);
623 #endif
624 		return;
625 	}
626 	__delete_object(object);
627 	put_object(object);
628 }
629 
630 /*
631  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
632  * delete it. If the memory block is partially freed, the function may create
633  * additional metadata for the remaining parts of the block.
634  */
635 static void delete_object_part(unsigned long ptr, size_t size)
636 {
637 	struct kmemleak_object *object;
638 	unsigned long start, end;
639 
640 	object = find_and_get_object(ptr, 1);
641 	if (!object) {
642 #ifdef DEBUG
643 		kmemleak_warn("Partially freeing unknown object at 0x%08lx "
644 			      "(size %zu)\n", ptr, size);
645 #endif
646 		return;
647 	}
648 	__delete_object(object);
649 
650 	/*
651 	 * Create one or two objects that may result from the memory block
652 	 * split. Note that partial freeing is only done by free_bootmem() and
653 	 * this happens before kmemleak_init() is called. The path below is
654 	 * only executed during early log recording in kmemleak_init(), so
655 	 * GFP_KERNEL is enough.
656 	 */
657 	start = object->pointer;
658 	end = object->pointer + object->size;
659 	if (ptr > start)
660 		create_object(start, ptr - start, object->min_count,
661 			      GFP_KERNEL);
662 	if (ptr + size < end)
663 		create_object(ptr + size, end - ptr - size, object->min_count,
664 			      GFP_KERNEL);
665 
666 	put_object(object);
667 }
668 
669 static void __paint_it(struct kmemleak_object *object, int color)
670 {
671 	object->min_count = color;
672 	if (color == KMEMLEAK_BLACK)
673 		object->flags |= OBJECT_NO_SCAN;
674 }
675 
676 static void paint_it(struct kmemleak_object *object, int color)
677 {
678 	unsigned long flags;
679 
680 	spin_lock_irqsave(&object->lock, flags);
681 	__paint_it(object, color);
682 	spin_unlock_irqrestore(&object->lock, flags);
683 }
684 
685 static void paint_ptr(unsigned long ptr, int color)
686 {
687 	struct kmemleak_object *object;
688 
689 	object = find_and_get_object(ptr, 0);
690 	if (!object) {
691 		kmemleak_warn("Trying to color unknown object "
692 			      "at 0x%08lx as %s\n", ptr,
693 			      (color == KMEMLEAK_GREY) ? "Grey" :
694 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
695 		return;
696 	}
697 	paint_it(object, color);
698 	put_object(object);
699 }
700 
701 /*
702  * Make a object permanently as gray-colored so that it can no longer be
703  * reported as a leak. This is used in general to mark a false positive.
704  */
705 static void make_gray_object(unsigned long ptr)
706 {
707 	paint_ptr(ptr, KMEMLEAK_GREY);
708 }
709 
710 /*
711  * Mark the object as black-colored so that it is ignored from scans and
712  * reporting.
713  */
714 static void make_black_object(unsigned long ptr)
715 {
716 	paint_ptr(ptr, KMEMLEAK_BLACK);
717 }
718 
719 /*
720  * Add a scanning area to the object. If at least one such area is added,
721  * kmemleak will only scan these ranges rather than the whole memory block.
722  */
723 static void add_scan_area(unsigned long ptr, unsigned long offset,
724 			  size_t length, gfp_t gfp)
725 {
726 	unsigned long flags;
727 	struct kmemleak_object *object;
728 	struct kmemleak_scan_area *area;
729 
730 	object = find_and_get_object(ptr, 0);
731 	if (!object) {
732 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
733 			      ptr);
734 		return;
735 	}
736 
737 	area = kmem_cache_alloc(scan_area_cache, gfp & GFP_KMEMLEAK_MASK);
738 	if (!area) {
739 		kmemleak_warn("Cannot allocate a scan area\n");
740 		goto out;
741 	}
742 
743 	spin_lock_irqsave(&object->lock, flags);
744 	if (offset + length > object->size) {
745 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
746 		dump_object_info(object);
747 		kmem_cache_free(scan_area_cache, area);
748 		goto out_unlock;
749 	}
750 
751 	INIT_HLIST_NODE(&area->node);
752 	area->offset = offset;
753 	area->length = length;
754 
755 	hlist_add_head(&area->node, &object->area_list);
756 out_unlock:
757 	spin_unlock_irqrestore(&object->lock, flags);
758 out:
759 	put_object(object);
760 }
761 
762 /*
763  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
764  * pointer. Such object will not be scanned by kmemleak but references to it
765  * are searched.
766  */
767 static void object_no_scan(unsigned long ptr)
768 {
769 	unsigned long flags;
770 	struct kmemleak_object *object;
771 
772 	object = find_and_get_object(ptr, 0);
773 	if (!object) {
774 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
775 		return;
776 	}
777 
778 	spin_lock_irqsave(&object->lock, flags);
779 	object->flags |= OBJECT_NO_SCAN;
780 	spin_unlock_irqrestore(&object->lock, flags);
781 	put_object(object);
782 }
783 
784 /*
785  * Log an early kmemleak_* call to the early_log buffer. These calls will be
786  * processed later once kmemleak is fully initialized.
787  */
788 static void __init log_early(int op_type, const void *ptr, size_t size,
789 			     int min_count, unsigned long offset, size_t length)
790 {
791 	unsigned long flags;
792 	struct early_log *log;
793 
794 	if (crt_early_log >= ARRAY_SIZE(early_log)) {
795 		pr_warning("Early log buffer exceeded, "
796 			   "please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n");
797 		kmemleak_disable();
798 		return;
799 	}
800 
801 	/*
802 	 * There is no need for locking since the kernel is still in UP mode
803 	 * at this stage. Disabling the IRQs is enough.
804 	 */
805 	local_irq_save(flags);
806 	log = &early_log[crt_early_log];
807 	log->op_type = op_type;
808 	log->ptr = ptr;
809 	log->size = size;
810 	log->min_count = min_count;
811 	log->offset = offset;
812 	log->length = length;
813 	if (op_type == KMEMLEAK_ALLOC)
814 		log->trace_len = __save_stack_trace(log->trace);
815 	crt_early_log++;
816 	local_irq_restore(flags);
817 }
818 
819 /*
820  * Log an early allocated block and populate the stack trace.
821  */
822 static void early_alloc(struct early_log *log)
823 {
824 	struct kmemleak_object *object;
825 	unsigned long flags;
826 	int i;
827 
828 	if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
829 		return;
830 
831 	/*
832 	 * RCU locking needed to ensure object is not freed via put_object().
833 	 */
834 	rcu_read_lock();
835 	object = create_object((unsigned long)log->ptr, log->size,
836 			       log->min_count, GFP_KERNEL);
837 	spin_lock_irqsave(&object->lock, flags);
838 	for (i = 0; i < log->trace_len; i++)
839 		object->trace[i] = log->trace[i];
840 	object->trace_len = log->trace_len;
841 	spin_unlock_irqrestore(&object->lock, flags);
842 	rcu_read_unlock();
843 }
844 
845 /*
846  * Memory allocation function callback. This function is called from the
847  * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc,
848  * vmalloc etc.).
849  */
850 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
851 			  gfp_t gfp)
852 {
853 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
854 
855 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
856 		create_object((unsigned long)ptr, size, min_count, gfp);
857 	else if (atomic_read(&kmemleak_early_log))
858 		log_early(KMEMLEAK_ALLOC, ptr, size, min_count, 0, 0);
859 }
860 EXPORT_SYMBOL_GPL(kmemleak_alloc);
861 
862 /*
863  * Memory freeing function callback. This function is called from the kernel
864  * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.).
865  */
866 void __ref kmemleak_free(const void *ptr)
867 {
868 	pr_debug("%s(0x%p)\n", __func__, ptr);
869 
870 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
871 		delete_object_full((unsigned long)ptr);
872 	else if (atomic_read(&kmemleak_early_log))
873 		log_early(KMEMLEAK_FREE, ptr, 0, 0, 0, 0);
874 }
875 EXPORT_SYMBOL_GPL(kmemleak_free);
876 
877 /*
878  * Partial memory freeing function callback. This function is usually called
879  * from bootmem allocator when (part of) a memory block is freed.
880  */
881 void __ref kmemleak_free_part(const void *ptr, size_t size)
882 {
883 	pr_debug("%s(0x%p)\n", __func__, ptr);
884 
885 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
886 		delete_object_part((unsigned long)ptr, size);
887 	else if (atomic_read(&kmemleak_early_log))
888 		log_early(KMEMLEAK_FREE_PART, ptr, size, 0, 0, 0);
889 }
890 EXPORT_SYMBOL_GPL(kmemleak_free_part);
891 
892 /*
893  * Mark an already allocated memory block as a false positive. This will cause
894  * the block to no longer be reported as leak and always be scanned.
895  */
896 void __ref kmemleak_not_leak(const void *ptr)
897 {
898 	pr_debug("%s(0x%p)\n", __func__, ptr);
899 
900 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
901 		make_gray_object((unsigned long)ptr);
902 	else if (atomic_read(&kmemleak_early_log))
903 		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0, 0, 0);
904 }
905 EXPORT_SYMBOL(kmemleak_not_leak);
906 
907 /*
908  * Ignore a memory block. This is usually done when it is known that the
909  * corresponding block is not a leak and does not contain any references to
910  * other allocated memory blocks.
911  */
912 void __ref kmemleak_ignore(const void *ptr)
913 {
914 	pr_debug("%s(0x%p)\n", __func__, ptr);
915 
916 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
917 		make_black_object((unsigned long)ptr);
918 	else if (atomic_read(&kmemleak_early_log))
919 		log_early(KMEMLEAK_IGNORE, ptr, 0, 0, 0, 0);
920 }
921 EXPORT_SYMBOL(kmemleak_ignore);
922 
923 /*
924  * Limit the range to be scanned in an allocated memory block.
925  */
926 void __ref kmemleak_scan_area(const void *ptr, unsigned long offset,
927 			      size_t length, gfp_t gfp)
928 {
929 	pr_debug("%s(0x%p)\n", __func__, ptr);
930 
931 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
932 		add_scan_area((unsigned long)ptr, offset, length, gfp);
933 	else if (atomic_read(&kmemleak_early_log))
934 		log_early(KMEMLEAK_SCAN_AREA, ptr, 0, 0, offset, length);
935 }
936 EXPORT_SYMBOL(kmemleak_scan_area);
937 
938 /*
939  * Inform kmemleak not to scan the given memory block.
940  */
941 void __ref kmemleak_no_scan(const void *ptr)
942 {
943 	pr_debug("%s(0x%p)\n", __func__, ptr);
944 
945 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
946 		object_no_scan((unsigned long)ptr);
947 	else if (atomic_read(&kmemleak_early_log))
948 		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0, 0, 0);
949 }
950 EXPORT_SYMBOL(kmemleak_no_scan);
951 
952 /*
953  * Memory scanning is a long process and it needs to be interruptable. This
954  * function checks whether such interrupt condition occured.
955  */
956 static int scan_should_stop(void)
957 {
958 	if (!atomic_read(&kmemleak_enabled))
959 		return 1;
960 
961 	/*
962 	 * This function may be called from either process or kthread context,
963 	 * hence the need to check for both stop conditions.
964 	 */
965 	if (current->mm)
966 		return signal_pending(current);
967 	else
968 		return kthread_should_stop();
969 
970 	return 0;
971 }
972 
973 /*
974  * Scan a memory block (exclusive range) for valid pointers and add those
975  * found to the gray list.
976  */
977 static void scan_block(void *_start, void *_end,
978 		       struct kmemleak_object *scanned, int allow_resched)
979 {
980 	unsigned long *ptr;
981 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
982 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
983 
984 	for (ptr = start; ptr < end; ptr++) {
985 		struct kmemleak_object *object;
986 		unsigned long flags;
987 		unsigned long pointer;
988 
989 		if (allow_resched)
990 			cond_resched();
991 		if (scan_should_stop())
992 			break;
993 
994 		/* don't scan uninitialized memory */
995 		if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
996 						  BYTES_PER_POINTER))
997 			continue;
998 
999 		pointer = *ptr;
1000 
1001 		object = find_and_get_object(pointer, 1);
1002 		if (!object)
1003 			continue;
1004 		if (object == scanned) {
1005 			/* self referenced, ignore */
1006 			put_object(object);
1007 			continue;
1008 		}
1009 
1010 		/*
1011 		 * Avoid the lockdep recursive warning on object->lock being
1012 		 * previously acquired in scan_object(). These locks are
1013 		 * enclosed by scan_mutex.
1014 		 */
1015 		spin_lock_irqsave_nested(&object->lock, flags,
1016 					 SINGLE_DEPTH_NESTING);
1017 		if (!color_white(object)) {
1018 			/* non-orphan, ignored or new */
1019 			spin_unlock_irqrestore(&object->lock, flags);
1020 			put_object(object);
1021 			continue;
1022 		}
1023 
1024 		/*
1025 		 * Increase the object's reference count (number of pointers
1026 		 * to the memory block). If this count reaches the required
1027 		 * minimum, the object's color will become gray and it will be
1028 		 * added to the gray_list.
1029 		 */
1030 		object->count++;
1031 		if (color_gray(object))
1032 			list_add_tail(&object->gray_list, &gray_list);
1033 		else
1034 			put_object(object);
1035 		spin_unlock_irqrestore(&object->lock, flags);
1036 	}
1037 }
1038 
1039 /*
1040  * Scan a memory block corresponding to a kmemleak_object. A condition is
1041  * that object->use_count >= 1.
1042  */
1043 static void scan_object(struct kmemleak_object *object)
1044 {
1045 	struct kmemleak_scan_area *area;
1046 	struct hlist_node *elem;
1047 	unsigned long flags;
1048 
1049 	/*
1050 	 * Once the object->lock is aquired, the corresponding memory block
1051 	 * cannot be freed (the same lock is aquired in delete_object).
1052 	 */
1053 	spin_lock_irqsave(&object->lock, flags);
1054 	if (object->flags & OBJECT_NO_SCAN)
1055 		goto out;
1056 	if (!(object->flags & OBJECT_ALLOCATED))
1057 		/* already freed object */
1058 		goto out;
1059 	if (hlist_empty(&object->area_list)) {
1060 		void *start = (void *)object->pointer;
1061 		void *end = (void *)(object->pointer + object->size);
1062 
1063 		while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1064 		       !(object->flags & OBJECT_NO_SCAN)) {
1065 			scan_block(start, min(start + MAX_SCAN_SIZE, end),
1066 				   object, 0);
1067 			start += MAX_SCAN_SIZE;
1068 
1069 			spin_unlock_irqrestore(&object->lock, flags);
1070 			cond_resched();
1071 			spin_lock_irqsave(&object->lock, flags);
1072 		}
1073 	} else
1074 		hlist_for_each_entry(area, elem, &object->area_list, node)
1075 			scan_block((void *)(object->pointer + area->offset),
1076 				   (void *)(object->pointer + area->offset
1077 					    + area->length), object, 0);
1078 out:
1079 	spin_unlock_irqrestore(&object->lock, flags);
1080 }
1081 
1082 /*
1083  * Scan data sections and all the referenced memory blocks allocated via the
1084  * kernel's standard allocators. This function must be called with the
1085  * scan_mutex held.
1086  */
1087 static void kmemleak_scan(void)
1088 {
1089 	unsigned long flags;
1090 	struct kmemleak_object *object, *tmp;
1091 	int i;
1092 	int new_leaks = 0;
1093 	int gray_list_pass = 0;
1094 
1095 	jiffies_last_scan = jiffies;
1096 
1097 	/* prepare the kmemleak_object's */
1098 	rcu_read_lock();
1099 	list_for_each_entry_rcu(object, &object_list, object_list) {
1100 		spin_lock_irqsave(&object->lock, flags);
1101 #ifdef DEBUG
1102 		/*
1103 		 * With a few exceptions there should be a maximum of
1104 		 * 1 reference to any object at this point.
1105 		 */
1106 		if (atomic_read(&object->use_count) > 1) {
1107 			pr_debug("object->use_count = %d\n",
1108 				 atomic_read(&object->use_count));
1109 			dump_object_info(object);
1110 		}
1111 #endif
1112 		/* reset the reference count (whiten the object) */
1113 		object->count = 0;
1114 		object->flags &= ~OBJECT_NEW;
1115 		if (color_gray(object) && get_object(object))
1116 			list_add_tail(&object->gray_list, &gray_list);
1117 
1118 		spin_unlock_irqrestore(&object->lock, flags);
1119 	}
1120 	rcu_read_unlock();
1121 
1122 	/* data/bss scanning */
1123 	scan_block(_sdata, _edata, NULL, 1);
1124 	scan_block(__bss_start, __bss_stop, NULL, 1);
1125 
1126 #ifdef CONFIG_SMP
1127 	/* per-cpu sections scanning */
1128 	for_each_possible_cpu(i)
1129 		scan_block(__per_cpu_start + per_cpu_offset(i),
1130 			   __per_cpu_end + per_cpu_offset(i), NULL, 1);
1131 #endif
1132 
1133 	/*
1134 	 * Struct page scanning for each node. The code below is not yet safe
1135 	 * with MEMORY_HOTPLUG.
1136 	 */
1137 	for_each_online_node(i) {
1138 		pg_data_t *pgdat = NODE_DATA(i);
1139 		unsigned long start_pfn = pgdat->node_start_pfn;
1140 		unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1141 		unsigned long pfn;
1142 
1143 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1144 			struct page *page;
1145 
1146 			if (!pfn_valid(pfn))
1147 				continue;
1148 			page = pfn_to_page(pfn);
1149 			/* only scan if page is in use */
1150 			if (page_count(page) == 0)
1151 				continue;
1152 			scan_block(page, page + 1, NULL, 1);
1153 		}
1154 	}
1155 
1156 	/*
1157 	 * Scanning the task stacks (may introduce false negatives).
1158 	 */
1159 	if (kmemleak_stack_scan) {
1160 		struct task_struct *p, *g;
1161 
1162 		read_lock(&tasklist_lock);
1163 		do_each_thread(g, p) {
1164 			scan_block(task_stack_page(p), task_stack_page(p) +
1165 				   THREAD_SIZE, NULL, 0);
1166 		} while_each_thread(g, p);
1167 		read_unlock(&tasklist_lock);
1168 	}
1169 
1170 	/*
1171 	 * Scan the objects already referenced from the sections scanned
1172 	 * above. More objects will be referenced and, if there are no memory
1173 	 * leaks, all the objects will be scanned. The list traversal is safe
1174 	 * for both tail additions and removals from inside the loop. The
1175 	 * kmemleak objects cannot be freed from outside the loop because their
1176 	 * use_count was increased.
1177 	 */
1178 repeat:
1179 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1180 	while (&object->gray_list != &gray_list) {
1181 		cond_resched();
1182 
1183 		/* may add new objects to the list */
1184 		if (!scan_should_stop())
1185 			scan_object(object);
1186 
1187 		tmp = list_entry(object->gray_list.next, typeof(*object),
1188 				 gray_list);
1189 
1190 		/* remove the object from the list and release it */
1191 		list_del(&object->gray_list);
1192 		put_object(object);
1193 
1194 		object = tmp;
1195 	}
1196 
1197 	if (scan_should_stop() || ++gray_list_pass >= GRAY_LIST_PASSES)
1198 		goto scan_end;
1199 
1200 	/*
1201 	 * Check for new objects allocated during this scanning and add them
1202 	 * to the gray list.
1203 	 */
1204 	rcu_read_lock();
1205 	list_for_each_entry_rcu(object, &object_list, object_list) {
1206 		spin_lock_irqsave(&object->lock, flags);
1207 		if ((object->flags & OBJECT_NEW) && !color_black(object) &&
1208 		    get_object(object)) {
1209 			object->flags &= ~OBJECT_NEW;
1210 			list_add_tail(&object->gray_list, &gray_list);
1211 		}
1212 		spin_unlock_irqrestore(&object->lock, flags);
1213 	}
1214 	rcu_read_unlock();
1215 
1216 	if (!list_empty(&gray_list))
1217 		goto repeat;
1218 
1219 scan_end:
1220 	WARN_ON(!list_empty(&gray_list));
1221 
1222 	/*
1223 	 * If scanning was stopped or new objects were being allocated at a
1224 	 * higher rate than gray list scanning, do not report any new
1225 	 * unreferenced objects.
1226 	 */
1227 	if (scan_should_stop() || gray_list_pass >= GRAY_LIST_PASSES)
1228 		return;
1229 
1230 	/*
1231 	 * Scanning result reporting.
1232 	 */
1233 	rcu_read_lock();
1234 	list_for_each_entry_rcu(object, &object_list, object_list) {
1235 		spin_lock_irqsave(&object->lock, flags);
1236 		if (unreferenced_object(object) &&
1237 		    !(object->flags & OBJECT_REPORTED)) {
1238 			object->flags |= OBJECT_REPORTED;
1239 			new_leaks++;
1240 		}
1241 		spin_unlock_irqrestore(&object->lock, flags);
1242 	}
1243 	rcu_read_unlock();
1244 
1245 	if (new_leaks)
1246 		pr_info("%d new suspected memory leaks (see "
1247 			"/sys/kernel/debug/kmemleak)\n", new_leaks);
1248 
1249 }
1250 
1251 /*
1252  * Thread function performing automatic memory scanning. Unreferenced objects
1253  * at the end of a memory scan are reported but only the first time.
1254  */
1255 static int kmemleak_scan_thread(void *arg)
1256 {
1257 	static int first_run = 1;
1258 
1259 	pr_info("Automatic memory scanning thread started\n");
1260 	set_user_nice(current, 10);
1261 
1262 	/*
1263 	 * Wait before the first scan to allow the system to fully initialize.
1264 	 */
1265 	if (first_run) {
1266 		first_run = 0;
1267 		ssleep(SECS_FIRST_SCAN);
1268 	}
1269 
1270 	while (!kthread_should_stop()) {
1271 		signed long timeout = jiffies_scan_wait;
1272 
1273 		mutex_lock(&scan_mutex);
1274 		kmemleak_scan();
1275 		mutex_unlock(&scan_mutex);
1276 
1277 		/* wait before the next scan */
1278 		while (timeout && !kthread_should_stop())
1279 			timeout = schedule_timeout_interruptible(timeout);
1280 	}
1281 
1282 	pr_info("Automatic memory scanning thread ended\n");
1283 
1284 	return 0;
1285 }
1286 
1287 /*
1288  * Start the automatic memory scanning thread. This function must be called
1289  * with the scan_mutex held.
1290  */
1291 static void start_scan_thread(void)
1292 {
1293 	if (scan_thread)
1294 		return;
1295 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1296 	if (IS_ERR(scan_thread)) {
1297 		pr_warning("Failed to create the scan thread\n");
1298 		scan_thread = NULL;
1299 	}
1300 }
1301 
1302 /*
1303  * Stop the automatic memory scanning thread. This function must be called
1304  * with the scan_mutex held.
1305  */
1306 static void stop_scan_thread(void)
1307 {
1308 	if (scan_thread) {
1309 		kthread_stop(scan_thread);
1310 		scan_thread = NULL;
1311 	}
1312 }
1313 
1314 /*
1315  * Iterate over the object_list and return the first valid object at or after
1316  * the required position with its use_count incremented. The function triggers
1317  * a memory scanning when the pos argument points to the first position.
1318  */
1319 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1320 {
1321 	struct kmemleak_object *object;
1322 	loff_t n = *pos;
1323 	int err;
1324 
1325 	err = mutex_lock_interruptible(&scan_mutex);
1326 	if (err < 0)
1327 		return ERR_PTR(err);
1328 
1329 	rcu_read_lock();
1330 	list_for_each_entry_rcu(object, &object_list, object_list) {
1331 		if (n-- > 0)
1332 			continue;
1333 		if (get_object(object))
1334 			goto out;
1335 	}
1336 	object = NULL;
1337 out:
1338 	return object;
1339 }
1340 
1341 /*
1342  * Return the next object in the object_list. The function decrements the
1343  * use_count of the previous object and increases that of the next one.
1344  */
1345 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1346 {
1347 	struct kmemleak_object *prev_obj = v;
1348 	struct kmemleak_object *next_obj = NULL;
1349 	struct list_head *n = &prev_obj->object_list;
1350 
1351 	++(*pos);
1352 
1353 	list_for_each_continue_rcu(n, &object_list) {
1354 		next_obj = list_entry(n, struct kmemleak_object, object_list);
1355 		if (get_object(next_obj))
1356 			break;
1357 	}
1358 
1359 	put_object(prev_obj);
1360 	return next_obj;
1361 }
1362 
1363 /*
1364  * Decrement the use_count of the last object required, if any.
1365  */
1366 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1367 {
1368 	if (!IS_ERR(v)) {
1369 		/*
1370 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1371 		 * waiting was interrupted, so only release it if !IS_ERR.
1372 		 */
1373 		rcu_read_unlock();
1374 		mutex_unlock(&scan_mutex);
1375 		if (v)
1376 			put_object(v);
1377 	}
1378 }
1379 
1380 /*
1381  * Print the information for an unreferenced object to the seq file.
1382  */
1383 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1384 {
1385 	struct kmemleak_object *object = v;
1386 	unsigned long flags;
1387 
1388 	spin_lock_irqsave(&object->lock, flags);
1389 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1390 		print_unreferenced(seq, object);
1391 	spin_unlock_irqrestore(&object->lock, flags);
1392 	return 0;
1393 }
1394 
1395 static const struct seq_operations kmemleak_seq_ops = {
1396 	.start = kmemleak_seq_start,
1397 	.next  = kmemleak_seq_next,
1398 	.stop  = kmemleak_seq_stop,
1399 	.show  = kmemleak_seq_show,
1400 };
1401 
1402 static int kmemleak_open(struct inode *inode, struct file *file)
1403 {
1404 	if (!atomic_read(&kmemleak_enabled))
1405 		return -EBUSY;
1406 
1407 	return seq_open(file, &kmemleak_seq_ops);
1408 }
1409 
1410 static int kmemleak_release(struct inode *inode, struct file *file)
1411 {
1412 	return seq_release(inode, file);
1413 }
1414 
1415 static int dump_str_object_info(const char *str)
1416 {
1417 	unsigned long flags;
1418 	struct kmemleak_object *object;
1419 	unsigned long addr;
1420 
1421 	addr= simple_strtoul(str, NULL, 0);
1422 	object = find_and_get_object(addr, 0);
1423 	if (!object) {
1424 		pr_info("Unknown object at 0x%08lx\n", addr);
1425 		return -EINVAL;
1426 	}
1427 
1428 	spin_lock_irqsave(&object->lock, flags);
1429 	dump_object_info(object);
1430 	spin_unlock_irqrestore(&object->lock, flags);
1431 
1432 	put_object(object);
1433 	return 0;
1434 }
1435 
1436 /*
1437  * We use grey instead of black to ensure we can do future scans on the same
1438  * objects. If we did not do future scans these black objects could
1439  * potentially contain references to newly allocated objects in the future and
1440  * we'd end up with false positives.
1441  */
1442 static void kmemleak_clear(void)
1443 {
1444 	struct kmemleak_object *object;
1445 	unsigned long flags;
1446 
1447 	rcu_read_lock();
1448 	list_for_each_entry_rcu(object, &object_list, object_list) {
1449 		spin_lock_irqsave(&object->lock, flags);
1450 		if ((object->flags & OBJECT_REPORTED) &&
1451 		    unreferenced_object(object))
1452 			__paint_it(object, KMEMLEAK_GREY);
1453 		spin_unlock_irqrestore(&object->lock, flags);
1454 	}
1455 	rcu_read_unlock();
1456 }
1457 
1458 /*
1459  * File write operation to configure kmemleak at run-time. The following
1460  * commands can be written to the /sys/kernel/debug/kmemleak file:
1461  *   off	- disable kmemleak (irreversible)
1462  *   stack=on	- enable the task stacks scanning
1463  *   stack=off	- disable the tasks stacks scanning
1464  *   scan=on	- start the automatic memory scanning thread
1465  *   scan=off	- stop the automatic memory scanning thread
1466  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1467  *		  disable it)
1468  *   scan	- trigger a memory scan
1469  *   clear	- mark all current reported unreferenced kmemleak objects as
1470  *		  grey to ignore printing them
1471  *   dump=...	- dump information about the object found at the given address
1472  */
1473 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1474 			      size_t size, loff_t *ppos)
1475 {
1476 	char buf[64];
1477 	int buf_size;
1478 	int ret;
1479 
1480 	buf_size = min(size, (sizeof(buf) - 1));
1481 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1482 		return -EFAULT;
1483 	buf[buf_size] = 0;
1484 
1485 	ret = mutex_lock_interruptible(&scan_mutex);
1486 	if (ret < 0)
1487 		return ret;
1488 
1489 	if (strncmp(buf, "off", 3) == 0)
1490 		kmemleak_disable();
1491 	else if (strncmp(buf, "stack=on", 8) == 0)
1492 		kmemleak_stack_scan = 1;
1493 	else if (strncmp(buf, "stack=off", 9) == 0)
1494 		kmemleak_stack_scan = 0;
1495 	else if (strncmp(buf, "scan=on", 7) == 0)
1496 		start_scan_thread();
1497 	else if (strncmp(buf, "scan=off", 8) == 0)
1498 		stop_scan_thread();
1499 	else if (strncmp(buf, "scan=", 5) == 0) {
1500 		unsigned long secs;
1501 
1502 		ret = strict_strtoul(buf + 5, 0, &secs);
1503 		if (ret < 0)
1504 			goto out;
1505 		stop_scan_thread();
1506 		if (secs) {
1507 			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1508 			start_scan_thread();
1509 		}
1510 	} else if (strncmp(buf, "scan", 4) == 0)
1511 		kmemleak_scan();
1512 	else if (strncmp(buf, "clear", 5) == 0)
1513 		kmemleak_clear();
1514 	else if (strncmp(buf, "dump=", 5) == 0)
1515 		ret = dump_str_object_info(buf + 5);
1516 	else
1517 		ret = -EINVAL;
1518 
1519 out:
1520 	mutex_unlock(&scan_mutex);
1521 	if (ret < 0)
1522 		return ret;
1523 
1524 	/* ignore the rest of the buffer, only one command at a time */
1525 	*ppos += size;
1526 	return size;
1527 }
1528 
1529 static const struct file_operations kmemleak_fops = {
1530 	.owner		= THIS_MODULE,
1531 	.open		= kmemleak_open,
1532 	.read		= seq_read,
1533 	.write		= kmemleak_write,
1534 	.llseek		= seq_lseek,
1535 	.release	= kmemleak_release,
1536 };
1537 
1538 /*
1539  * Perform the freeing of the kmemleak internal objects after waiting for any
1540  * current memory scan to complete.
1541  */
1542 static void kmemleak_do_cleanup(struct work_struct *work)
1543 {
1544 	struct kmemleak_object *object;
1545 
1546 	mutex_lock(&scan_mutex);
1547 	stop_scan_thread();
1548 
1549 	rcu_read_lock();
1550 	list_for_each_entry_rcu(object, &object_list, object_list)
1551 		delete_object_full(object->pointer);
1552 	rcu_read_unlock();
1553 	mutex_unlock(&scan_mutex);
1554 }
1555 
1556 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1557 
1558 /*
1559  * Disable kmemleak. No memory allocation/freeing will be traced once this
1560  * function is called. Disabling kmemleak is an irreversible operation.
1561  */
1562 static void kmemleak_disable(void)
1563 {
1564 	/* atomically check whether it was already invoked */
1565 	if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1566 		return;
1567 
1568 	/* stop any memory operation tracing */
1569 	atomic_set(&kmemleak_early_log, 0);
1570 	atomic_set(&kmemleak_enabled, 0);
1571 
1572 	/* check whether it is too early for a kernel thread */
1573 	if (atomic_read(&kmemleak_initialized))
1574 		schedule_work(&cleanup_work);
1575 
1576 	pr_info("Kernel memory leak detector disabled\n");
1577 }
1578 
1579 /*
1580  * Allow boot-time kmemleak disabling (enabled by default).
1581  */
1582 static int kmemleak_boot_config(char *str)
1583 {
1584 	if (!str)
1585 		return -EINVAL;
1586 	if (strcmp(str, "off") == 0)
1587 		kmemleak_disable();
1588 	else if (strcmp(str, "on") != 0)
1589 		return -EINVAL;
1590 	return 0;
1591 }
1592 early_param("kmemleak", kmemleak_boot_config);
1593 
1594 /*
1595  * Kmemleak initialization.
1596  */
1597 void __init kmemleak_init(void)
1598 {
1599 	int i;
1600 	unsigned long flags;
1601 
1602 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1603 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1604 
1605 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1606 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1607 	INIT_PRIO_TREE_ROOT(&object_tree_root);
1608 
1609 	/* the kernel is still in UP mode, so disabling the IRQs is enough */
1610 	local_irq_save(flags);
1611 	if (!atomic_read(&kmemleak_error)) {
1612 		atomic_set(&kmemleak_enabled, 1);
1613 		atomic_set(&kmemleak_early_log, 0);
1614 	}
1615 	local_irq_restore(flags);
1616 
1617 	/*
1618 	 * This is the point where tracking allocations is safe. Automatic
1619 	 * scanning is started during the late initcall. Add the early logged
1620 	 * callbacks to the kmemleak infrastructure.
1621 	 */
1622 	for (i = 0; i < crt_early_log; i++) {
1623 		struct early_log *log = &early_log[i];
1624 
1625 		switch (log->op_type) {
1626 		case KMEMLEAK_ALLOC:
1627 			early_alloc(log);
1628 			break;
1629 		case KMEMLEAK_FREE:
1630 			kmemleak_free(log->ptr);
1631 			break;
1632 		case KMEMLEAK_FREE_PART:
1633 			kmemleak_free_part(log->ptr, log->size);
1634 			break;
1635 		case KMEMLEAK_NOT_LEAK:
1636 			kmemleak_not_leak(log->ptr);
1637 			break;
1638 		case KMEMLEAK_IGNORE:
1639 			kmemleak_ignore(log->ptr);
1640 			break;
1641 		case KMEMLEAK_SCAN_AREA:
1642 			kmemleak_scan_area(log->ptr, log->offset, log->length,
1643 					   GFP_KERNEL);
1644 			break;
1645 		case KMEMLEAK_NO_SCAN:
1646 			kmemleak_no_scan(log->ptr);
1647 			break;
1648 		default:
1649 			WARN_ON(1);
1650 		}
1651 	}
1652 }
1653 
1654 /*
1655  * Late initialization function.
1656  */
1657 static int __init kmemleak_late_init(void)
1658 {
1659 	struct dentry *dentry;
1660 
1661 	atomic_set(&kmemleak_initialized, 1);
1662 
1663 	if (atomic_read(&kmemleak_error)) {
1664 		/*
1665 		 * Some error occured and kmemleak was disabled. There is a
1666 		 * small chance that kmemleak_disable() was called immediately
1667 		 * after setting kmemleak_initialized and we may end up with
1668 		 * two clean-up threads but serialized by scan_mutex.
1669 		 */
1670 		schedule_work(&cleanup_work);
1671 		return -ENOMEM;
1672 	}
1673 
1674 	dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1675 				     &kmemleak_fops);
1676 	if (!dentry)
1677 		pr_warning("Failed to create the debugfs kmemleak file\n");
1678 	mutex_lock(&scan_mutex);
1679 	start_scan_thread();
1680 	mutex_unlock(&scan_mutex);
1681 
1682 	pr_info("Kernel memory leak detector initialized\n");
1683 
1684 	return 0;
1685 }
1686 late_initcall(kmemleak_late_init);
1687