1 /* 2 * mm/kmemleak.c 3 * 4 * Copyright (C) 2008 ARM Limited 5 * Written by Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 * 21 * For more information on the algorithm and kmemleak usage, please see 22 * Documentation/kmemleak.txt. 23 * 24 * Notes on locking 25 * ---------------- 26 * 27 * The following locks and mutexes are used by kmemleak: 28 * 29 * - kmemleak_lock (rwlock): protects the object_list modifications and 30 * accesses to the object_tree_root. The object_list is the main list 31 * holding the metadata (struct kmemleak_object) for the allocated memory 32 * blocks. The object_tree_root is a priority search tree used to look-up 33 * metadata based on a pointer to the corresponding memory block. The 34 * kmemleak_object structures are added to the object_list and 35 * object_tree_root in the create_object() function called from the 36 * kmemleak_alloc() callback and removed in delete_object() called from the 37 * kmemleak_free() callback 38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to 39 * the metadata (e.g. count) are protected by this lock. Note that some 40 * members of this structure may be protected by other means (atomic or 41 * kmemleak_lock). This lock is also held when scanning the corresponding 42 * memory block to avoid the kernel freeing it via the kmemleak_free() 43 * callback. This is less heavyweight than holding a global lock like 44 * kmemleak_lock during scanning 45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 46 * unreferenced objects at a time. The gray_list contains the objects which 47 * are already referenced or marked as false positives and need to be 48 * scanned. This list is only modified during a scanning episode when the 49 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 50 * Note that the kmemleak_object.use_count is incremented when an object is 51 * added to the gray_list and therefore cannot be freed. This mutex also 52 * prevents multiple users of the "kmemleak" debugfs file together with 53 * modifications to the memory scanning parameters including the scan_thread 54 * pointer 55 * 56 * The kmemleak_object structures have a use_count incremented or decremented 57 * using the get_object()/put_object() functions. When the use_count becomes 58 * 0, this count can no longer be incremented and put_object() schedules the 59 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 60 * function must be protected by rcu_read_lock() to avoid accessing a freed 61 * structure. 62 */ 63 64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 65 66 #include <linux/init.h> 67 #include <linux/kernel.h> 68 #include <linux/list.h> 69 #include <linux/sched.h> 70 #include <linux/jiffies.h> 71 #include <linux/delay.h> 72 #include <linux/module.h> 73 #include <linux/kthread.h> 74 #include <linux/prio_tree.h> 75 #include <linux/fs.h> 76 #include <linux/debugfs.h> 77 #include <linux/seq_file.h> 78 #include <linux/cpumask.h> 79 #include <linux/spinlock.h> 80 #include <linux/mutex.h> 81 #include <linux/rcupdate.h> 82 #include <linux/stacktrace.h> 83 #include <linux/cache.h> 84 #include <linux/percpu.h> 85 #include <linux/hardirq.h> 86 #include <linux/mmzone.h> 87 #include <linux/slab.h> 88 #include <linux/thread_info.h> 89 #include <linux/err.h> 90 #include <linux/uaccess.h> 91 #include <linux/string.h> 92 #include <linux/nodemask.h> 93 #include <linux/mm.h> 94 #include <linux/workqueue.h> 95 #include <linux/crc32.h> 96 97 #include <asm/sections.h> 98 #include <asm/processor.h> 99 #include <asm/atomic.h> 100 101 #include <linux/kmemcheck.h> 102 #include <linux/kmemleak.h> 103 104 /* 105 * Kmemleak configuration and common defines. 106 */ 107 #define MAX_TRACE 16 /* stack trace length */ 108 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 109 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 110 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 111 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 112 113 #define BYTES_PER_POINTER sizeof(void *) 114 115 /* GFP bitmask for kmemleak internal allocations */ 116 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \ 117 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 118 __GFP_NOWARN) 119 120 /* scanning area inside a memory block */ 121 struct kmemleak_scan_area { 122 struct hlist_node node; 123 unsigned long start; 124 size_t size; 125 }; 126 127 #define KMEMLEAK_GREY 0 128 #define KMEMLEAK_BLACK -1 129 130 /* 131 * Structure holding the metadata for each allocated memory block. 132 * Modifications to such objects should be made while holding the 133 * object->lock. Insertions or deletions from object_list, gray_list or 134 * tree_node are already protected by the corresponding locks or mutex (see 135 * the notes on locking above). These objects are reference-counted 136 * (use_count) and freed using the RCU mechanism. 137 */ 138 struct kmemleak_object { 139 spinlock_t lock; 140 unsigned long flags; /* object status flags */ 141 struct list_head object_list; 142 struct list_head gray_list; 143 struct prio_tree_node tree_node; 144 struct rcu_head rcu; /* object_list lockless traversal */ 145 /* object usage count; object freed when use_count == 0 */ 146 atomic_t use_count; 147 unsigned long pointer; 148 size_t size; 149 /* minimum number of a pointers found before it is considered leak */ 150 int min_count; 151 /* the total number of pointers found pointing to this object */ 152 int count; 153 /* checksum for detecting modified objects */ 154 u32 checksum; 155 /* memory ranges to be scanned inside an object (empty for all) */ 156 struct hlist_head area_list; 157 unsigned long trace[MAX_TRACE]; 158 unsigned int trace_len; 159 unsigned long jiffies; /* creation timestamp */ 160 pid_t pid; /* pid of the current task */ 161 char comm[TASK_COMM_LEN]; /* executable name */ 162 }; 163 164 /* flag representing the memory block allocation status */ 165 #define OBJECT_ALLOCATED (1 << 0) 166 /* flag set after the first reporting of an unreference object */ 167 #define OBJECT_REPORTED (1 << 1) 168 /* flag set to not scan the object */ 169 #define OBJECT_NO_SCAN (1 << 2) 170 171 /* number of bytes to print per line; must be 16 or 32 */ 172 #define HEX_ROW_SIZE 16 173 /* number of bytes to print at a time (1, 2, 4, 8) */ 174 #define HEX_GROUP_SIZE 1 175 /* include ASCII after the hex output */ 176 #define HEX_ASCII 1 177 /* max number of lines to be printed */ 178 #define HEX_MAX_LINES 2 179 180 /* the list of all allocated objects */ 181 static LIST_HEAD(object_list); 182 /* the list of gray-colored objects (see color_gray comment below) */ 183 static LIST_HEAD(gray_list); 184 /* prio search tree for object boundaries */ 185 static struct prio_tree_root object_tree_root; 186 /* rw_lock protecting the access to object_list and prio_tree_root */ 187 static DEFINE_RWLOCK(kmemleak_lock); 188 189 /* allocation caches for kmemleak internal data */ 190 static struct kmem_cache *object_cache; 191 static struct kmem_cache *scan_area_cache; 192 193 /* set if tracing memory operations is enabled */ 194 static atomic_t kmemleak_enabled = ATOMIC_INIT(0); 195 /* set in the late_initcall if there were no errors */ 196 static atomic_t kmemleak_initialized = ATOMIC_INIT(0); 197 /* enables or disables early logging of the memory operations */ 198 static atomic_t kmemleak_early_log = ATOMIC_INIT(1); 199 /* set if a fata kmemleak error has occurred */ 200 static atomic_t kmemleak_error = ATOMIC_INIT(0); 201 202 /* minimum and maximum address that may be valid pointers */ 203 static unsigned long min_addr = ULONG_MAX; 204 static unsigned long max_addr; 205 206 static struct task_struct *scan_thread; 207 /* used to avoid reporting of recently allocated objects */ 208 static unsigned long jiffies_min_age; 209 static unsigned long jiffies_last_scan; 210 /* delay between automatic memory scannings */ 211 static signed long jiffies_scan_wait; 212 /* enables or disables the task stacks scanning */ 213 static int kmemleak_stack_scan = 1; 214 /* protects the memory scanning, parameters and debug/kmemleak file access */ 215 static DEFINE_MUTEX(scan_mutex); 216 /* setting kmemleak=on, will set this var, skipping the disable */ 217 static int kmemleak_skip_disable; 218 219 220 /* 221 * Early object allocation/freeing logging. Kmemleak is initialized after the 222 * kernel allocator. However, both the kernel allocator and kmemleak may 223 * allocate memory blocks which need to be tracked. Kmemleak defines an 224 * arbitrary buffer to hold the allocation/freeing information before it is 225 * fully initialized. 226 */ 227 228 /* kmemleak operation type for early logging */ 229 enum { 230 KMEMLEAK_ALLOC, 231 KMEMLEAK_FREE, 232 KMEMLEAK_FREE_PART, 233 KMEMLEAK_NOT_LEAK, 234 KMEMLEAK_IGNORE, 235 KMEMLEAK_SCAN_AREA, 236 KMEMLEAK_NO_SCAN 237 }; 238 239 /* 240 * Structure holding the information passed to kmemleak callbacks during the 241 * early logging. 242 */ 243 struct early_log { 244 int op_type; /* kmemleak operation type */ 245 const void *ptr; /* allocated/freed memory block */ 246 size_t size; /* memory block size */ 247 int min_count; /* minimum reference count */ 248 unsigned long trace[MAX_TRACE]; /* stack trace */ 249 unsigned int trace_len; /* stack trace length */ 250 }; 251 252 /* early logging buffer and current position */ 253 static struct early_log 254 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata; 255 static int crt_early_log __initdata; 256 257 static void kmemleak_disable(void); 258 259 /* 260 * Print a warning and dump the stack trace. 261 */ 262 #define kmemleak_warn(x...) do { \ 263 pr_warning(x); \ 264 dump_stack(); \ 265 } while (0) 266 267 /* 268 * Macro invoked when a serious kmemleak condition occurred and cannot be 269 * recovered from. Kmemleak will be disabled and further allocation/freeing 270 * tracing no longer available. 271 */ 272 #define kmemleak_stop(x...) do { \ 273 kmemleak_warn(x); \ 274 kmemleak_disable(); \ 275 } while (0) 276 277 /* 278 * Printing of the objects hex dump to the seq file. The number of lines to be 279 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 280 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 281 * with the object->lock held. 282 */ 283 static void hex_dump_object(struct seq_file *seq, 284 struct kmemleak_object *object) 285 { 286 const u8 *ptr = (const u8 *)object->pointer; 287 int i, len, remaining; 288 unsigned char linebuf[HEX_ROW_SIZE * 5]; 289 290 /* limit the number of lines to HEX_MAX_LINES */ 291 remaining = len = 292 min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE)); 293 294 seq_printf(seq, " hex dump (first %d bytes):\n", len); 295 for (i = 0; i < len; i += HEX_ROW_SIZE) { 296 int linelen = min(remaining, HEX_ROW_SIZE); 297 298 remaining -= HEX_ROW_SIZE; 299 hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE, 300 HEX_GROUP_SIZE, linebuf, sizeof(linebuf), 301 HEX_ASCII); 302 seq_printf(seq, " %s\n", linebuf); 303 } 304 } 305 306 /* 307 * Object colors, encoded with count and min_count: 308 * - white - orphan object, not enough references to it (count < min_count) 309 * - gray - not orphan, not marked as false positive (min_count == 0) or 310 * sufficient references to it (count >= min_count) 311 * - black - ignore, it doesn't contain references (e.g. text section) 312 * (min_count == -1). No function defined for this color. 313 * Newly created objects don't have any color assigned (object->count == -1) 314 * before the next memory scan when they become white. 315 */ 316 static bool color_white(const struct kmemleak_object *object) 317 { 318 return object->count != KMEMLEAK_BLACK && 319 object->count < object->min_count; 320 } 321 322 static bool color_gray(const struct kmemleak_object *object) 323 { 324 return object->min_count != KMEMLEAK_BLACK && 325 object->count >= object->min_count; 326 } 327 328 /* 329 * Objects are considered unreferenced only if their color is white, they have 330 * not be deleted and have a minimum age to avoid false positives caused by 331 * pointers temporarily stored in CPU registers. 332 */ 333 static bool unreferenced_object(struct kmemleak_object *object) 334 { 335 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 336 time_before_eq(object->jiffies + jiffies_min_age, 337 jiffies_last_scan); 338 } 339 340 /* 341 * Printing of the unreferenced objects information to the seq file. The 342 * print_unreferenced function must be called with the object->lock held. 343 */ 344 static void print_unreferenced(struct seq_file *seq, 345 struct kmemleak_object *object) 346 { 347 int i; 348 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 349 350 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 351 object->pointer, object->size); 352 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 353 object->comm, object->pid, object->jiffies, 354 msecs_age / 1000, msecs_age % 1000); 355 hex_dump_object(seq, object); 356 seq_printf(seq, " backtrace:\n"); 357 358 for (i = 0; i < object->trace_len; i++) { 359 void *ptr = (void *)object->trace[i]; 360 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); 361 } 362 } 363 364 /* 365 * Print the kmemleak_object information. This function is used mainly for 366 * debugging special cases when kmemleak operations. It must be called with 367 * the object->lock held. 368 */ 369 static void dump_object_info(struct kmemleak_object *object) 370 { 371 struct stack_trace trace; 372 373 trace.nr_entries = object->trace_len; 374 trace.entries = object->trace; 375 376 pr_notice("Object 0x%08lx (size %zu):\n", 377 object->tree_node.start, object->size); 378 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 379 object->comm, object->pid, object->jiffies); 380 pr_notice(" min_count = %d\n", object->min_count); 381 pr_notice(" count = %d\n", object->count); 382 pr_notice(" flags = 0x%lx\n", object->flags); 383 pr_notice(" checksum = %d\n", object->checksum); 384 pr_notice(" backtrace:\n"); 385 print_stack_trace(&trace, 4); 386 } 387 388 /* 389 * Look-up a memory block metadata (kmemleak_object) in the priority search 390 * tree based on a pointer value. If alias is 0, only values pointing to the 391 * beginning of the memory block are allowed. The kmemleak_lock must be held 392 * when calling this function. 393 */ 394 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 395 { 396 struct prio_tree_node *node; 397 struct prio_tree_iter iter; 398 struct kmemleak_object *object; 399 400 prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr); 401 node = prio_tree_next(&iter); 402 if (node) { 403 object = prio_tree_entry(node, struct kmemleak_object, 404 tree_node); 405 if (!alias && object->pointer != ptr) { 406 pr_warning("Found object by alias at 0x%08lx\n", ptr); 407 dump_stack(); 408 dump_object_info(object); 409 object = NULL; 410 } 411 } else 412 object = NULL; 413 414 return object; 415 } 416 417 /* 418 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 419 * that once an object's use_count reached 0, the RCU freeing was already 420 * registered and the object should no longer be used. This function must be 421 * called under the protection of rcu_read_lock(). 422 */ 423 static int get_object(struct kmemleak_object *object) 424 { 425 return atomic_inc_not_zero(&object->use_count); 426 } 427 428 /* 429 * RCU callback to free a kmemleak_object. 430 */ 431 static void free_object_rcu(struct rcu_head *rcu) 432 { 433 struct hlist_node *elem, *tmp; 434 struct kmemleak_scan_area *area; 435 struct kmemleak_object *object = 436 container_of(rcu, struct kmemleak_object, rcu); 437 438 /* 439 * Once use_count is 0 (guaranteed by put_object), there is no other 440 * code accessing this object, hence no need for locking. 441 */ 442 hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) { 443 hlist_del(elem); 444 kmem_cache_free(scan_area_cache, area); 445 } 446 kmem_cache_free(object_cache, object); 447 } 448 449 /* 450 * Decrement the object use_count. Once the count is 0, free the object using 451 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 452 * delete_object() path, the delayed RCU freeing ensures that there is no 453 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 454 * is also possible. 455 */ 456 static void put_object(struct kmemleak_object *object) 457 { 458 if (!atomic_dec_and_test(&object->use_count)) 459 return; 460 461 /* should only get here after delete_object was called */ 462 WARN_ON(object->flags & OBJECT_ALLOCATED); 463 464 call_rcu(&object->rcu, free_object_rcu); 465 } 466 467 /* 468 * Look up an object in the prio search tree and increase its use_count. 469 */ 470 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 471 { 472 unsigned long flags; 473 struct kmemleak_object *object = NULL; 474 475 rcu_read_lock(); 476 read_lock_irqsave(&kmemleak_lock, flags); 477 if (ptr >= min_addr && ptr < max_addr) 478 object = lookup_object(ptr, alias); 479 read_unlock_irqrestore(&kmemleak_lock, flags); 480 481 /* check whether the object is still available */ 482 if (object && !get_object(object)) 483 object = NULL; 484 rcu_read_unlock(); 485 486 return object; 487 } 488 489 /* 490 * Save stack trace to the given array of MAX_TRACE size. 491 */ 492 static int __save_stack_trace(unsigned long *trace) 493 { 494 struct stack_trace stack_trace; 495 496 stack_trace.max_entries = MAX_TRACE; 497 stack_trace.nr_entries = 0; 498 stack_trace.entries = trace; 499 stack_trace.skip = 2; 500 save_stack_trace(&stack_trace); 501 502 return stack_trace.nr_entries; 503 } 504 505 /* 506 * Create the metadata (struct kmemleak_object) corresponding to an allocated 507 * memory block and add it to the object_list and object_tree_root. 508 */ 509 static struct kmemleak_object *create_object(unsigned long ptr, size_t size, 510 int min_count, gfp_t gfp) 511 { 512 unsigned long flags; 513 struct kmemleak_object *object; 514 struct prio_tree_node *node; 515 516 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 517 if (!object) { 518 pr_warning("Cannot allocate a kmemleak_object structure\n"); 519 kmemleak_disable(); 520 return NULL; 521 } 522 523 INIT_LIST_HEAD(&object->object_list); 524 INIT_LIST_HEAD(&object->gray_list); 525 INIT_HLIST_HEAD(&object->area_list); 526 spin_lock_init(&object->lock); 527 atomic_set(&object->use_count, 1); 528 object->flags = OBJECT_ALLOCATED; 529 object->pointer = ptr; 530 object->size = size; 531 object->min_count = min_count; 532 object->count = 0; /* white color initially */ 533 object->jiffies = jiffies; 534 object->checksum = 0; 535 536 /* task information */ 537 if (in_irq()) { 538 object->pid = 0; 539 strncpy(object->comm, "hardirq", sizeof(object->comm)); 540 } else if (in_softirq()) { 541 object->pid = 0; 542 strncpy(object->comm, "softirq", sizeof(object->comm)); 543 } else { 544 object->pid = current->pid; 545 /* 546 * There is a small chance of a race with set_task_comm(), 547 * however using get_task_comm() here may cause locking 548 * dependency issues with current->alloc_lock. In the worst 549 * case, the command line is not correct. 550 */ 551 strncpy(object->comm, current->comm, sizeof(object->comm)); 552 } 553 554 /* kernel backtrace */ 555 object->trace_len = __save_stack_trace(object->trace); 556 557 INIT_PRIO_TREE_NODE(&object->tree_node); 558 object->tree_node.start = ptr; 559 object->tree_node.last = ptr + size - 1; 560 561 write_lock_irqsave(&kmemleak_lock, flags); 562 563 min_addr = min(min_addr, ptr); 564 max_addr = max(max_addr, ptr + size); 565 node = prio_tree_insert(&object_tree_root, &object->tree_node); 566 /* 567 * The code calling the kernel does not yet have the pointer to the 568 * memory block to be able to free it. However, we still hold the 569 * kmemleak_lock here in case parts of the kernel started freeing 570 * random memory blocks. 571 */ 572 if (node != &object->tree_node) { 573 kmemleak_stop("Cannot insert 0x%lx into the object search tree " 574 "(already existing)\n", ptr); 575 object = lookup_object(ptr, 1); 576 spin_lock(&object->lock); 577 dump_object_info(object); 578 spin_unlock(&object->lock); 579 580 goto out; 581 } 582 list_add_tail_rcu(&object->object_list, &object_list); 583 out: 584 write_unlock_irqrestore(&kmemleak_lock, flags); 585 return object; 586 } 587 588 /* 589 * Remove the metadata (struct kmemleak_object) for a memory block from the 590 * object_list and object_tree_root and decrement its use_count. 591 */ 592 static void __delete_object(struct kmemleak_object *object) 593 { 594 unsigned long flags; 595 596 write_lock_irqsave(&kmemleak_lock, flags); 597 prio_tree_remove(&object_tree_root, &object->tree_node); 598 list_del_rcu(&object->object_list); 599 write_unlock_irqrestore(&kmemleak_lock, flags); 600 601 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 602 WARN_ON(atomic_read(&object->use_count) < 2); 603 604 /* 605 * Locking here also ensures that the corresponding memory block 606 * cannot be freed when it is being scanned. 607 */ 608 spin_lock_irqsave(&object->lock, flags); 609 object->flags &= ~OBJECT_ALLOCATED; 610 spin_unlock_irqrestore(&object->lock, flags); 611 put_object(object); 612 } 613 614 /* 615 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 616 * delete it. 617 */ 618 static void delete_object_full(unsigned long ptr) 619 { 620 struct kmemleak_object *object; 621 622 object = find_and_get_object(ptr, 0); 623 if (!object) { 624 #ifdef DEBUG 625 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 626 ptr); 627 #endif 628 return; 629 } 630 __delete_object(object); 631 put_object(object); 632 } 633 634 /* 635 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 636 * delete it. If the memory block is partially freed, the function may create 637 * additional metadata for the remaining parts of the block. 638 */ 639 static void delete_object_part(unsigned long ptr, size_t size) 640 { 641 struct kmemleak_object *object; 642 unsigned long start, end; 643 644 object = find_and_get_object(ptr, 1); 645 if (!object) { 646 #ifdef DEBUG 647 kmemleak_warn("Partially freeing unknown object at 0x%08lx " 648 "(size %zu)\n", ptr, size); 649 #endif 650 return; 651 } 652 __delete_object(object); 653 654 /* 655 * Create one or two objects that may result from the memory block 656 * split. Note that partial freeing is only done by free_bootmem() and 657 * this happens before kmemleak_init() is called. The path below is 658 * only executed during early log recording in kmemleak_init(), so 659 * GFP_KERNEL is enough. 660 */ 661 start = object->pointer; 662 end = object->pointer + object->size; 663 if (ptr > start) 664 create_object(start, ptr - start, object->min_count, 665 GFP_KERNEL); 666 if (ptr + size < end) 667 create_object(ptr + size, end - ptr - size, object->min_count, 668 GFP_KERNEL); 669 670 put_object(object); 671 } 672 673 static void __paint_it(struct kmemleak_object *object, int color) 674 { 675 object->min_count = color; 676 if (color == KMEMLEAK_BLACK) 677 object->flags |= OBJECT_NO_SCAN; 678 } 679 680 static void paint_it(struct kmemleak_object *object, int color) 681 { 682 unsigned long flags; 683 684 spin_lock_irqsave(&object->lock, flags); 685 __paint_it(object, color); 686 spin_unlock_irqrestore(&object->lock, flags); 687 } 688 689 static void paint_ptr(unsigned long ptr, int color) 690 { 691 struct kmemleak_object *object; 692 693 object = find_and_get_object(ptr, 0); 694 if (!object) { 695 kmemleak_warn("Trying to color unknown object " 696 "at 0x%08lx as %s\n", ptr, 697 (color == KMEMLEAK_GREY) ? "Grey" : 698 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 699 return; 700 } 701 paint_it(object, color); 702 put_object(object); 703 } 704 705 /* 706 * Mark an object permanently as gray-colored so that it can no longer be 707 * reported as a leak. This is used in general to mark a false positive. 708 */ 709 static void make_gray_object(unsigned long ptr) 710 { 711 paint_ptr(ptr, KMEMLEAK_GREY); 712 } 713 714 /* 715 * Mark the object as black-colored so that it is ignored from scans and 716 * reporting. 717 */ 718 static void make_black_object(unsigned long ptr) 719 { 720 paint_ptr(ptr, KMEMLEAK_BLACK); 721 } 722 723 /* 724 * Add a scanning area to the object. If at least one such area is added, 725 * kmemleak will only scan these ranges rather than the whole memory block. 726 */ 727 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 728 { 729 unsigned long flags; 730 struct kmemleak_object *object; 731 struct kmemleak_scan_area *area; 732 733 object = find_and_get_object(ptr, 1); 734 if (!object) { 735 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 736 ptr); 737 return; 738 } 739 740 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 741 if (!area) { 742 pr_warning("Cannot allocate a scan area\n"); 743 goto out; 744 } 745 746 spin_lock_irqsave(&object->lock, flags); 747 if (ptr + size > object->pointer + object->size) { 748 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 749 dump_object_info(object); 750 kmem_cache_free(scan_area_cache, area); 751 goto out_unlock; 752 } 753 754 INIT_HLIST_NODE(&area->node); 755 area->start = ptr; 756 area->size = size; 757 758 hlist_add_head(&area->node, &object->area_list); 759 out_unlock: 760 spin_unlock_irqrestore(&object->lock, flags); 761 out: 762 put_object(object); 763 } 764 765 /* 766 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 767 * pointer. Such object will not be scanned by kmemleak but references to it 768 * are searched. 769 */ 770 static void object_no_scan(unsigned long ptr) 771 { 772 unsigned long flags; 773 struct kmemleak_object *object; 774 775 object = find_and_get_object(ptr, 0); 776 if (!object) { 777 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 778 return; 779 } 780 781 spin_lock_irqsave(&object->lock, flags); 782 object->flags |= OBJECT_NO_SCAN; 783 spin_unlock_irqrestore(&object->lock, flags); 784 put_object(object); 785 } 786 787 /* 788 * Log an early kmemleak_* call to the early_log buffer. These calls will be 789 * processed later once kmemleak is fully initialized. 790 */ 791 static void __init log_early(int op_type, const void *ptr, size_t size, 792 int min_count) 793 { 794 unsigned long flags; 795 struct early_log *log; 796 797 if (crt_early_log >= ARRAY_SIZE(early_log)) { 798 pr_warning("Early log buffer exceeded, " 799 "please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n"); 800 kmemleak_disable(); 801 return; 802 } 803 804 /* 805 * There is no need for locking since the kernel is still in UP mode 806 * at this stage. Disabling the IRQs is enough. 807 */ 808 local_irq_save(flags); 809 log = &early_log[crt_early_log]; 810 log->op_type = op_type; 811 log->ptr = ptr; 812 log->size = size; 813 log->min_count = min_count; 814 if (op_type == KMEMLEAK_ALLOC) 815 log->trace_len = __save_stack_trace(log->trace); 816 crt_early_log++; 817 local_irq_restore(flags); 818 } 819 820 /* 821 * Log an early allocated block and populate the stack trace. 822 */ 823 static void early_alloc(struct early_log *log) 824 { 825 struct kmemleak_object *object; 826 unsigned long flags; 827 int i; 828 829 if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr)) 830 return; 831 832 /* 833 * RCU locking needed to ensure object is not freed via put_object(). 834 */ 835 rcu_read_lock(); 836 object = create_object((unsigned long)log->ptr, log->size, 837 log->min_count, GFP_ATOMIC); 838 if (!object) 839 goto out; 840 spin_lock_irqsave(&object->lock, flags); 841 for (i = 0; i < log->trace_len; i++) 842 object->trace[i] = log->trace[i]; 843 object->trace_len = log->trace_len; 844 spin_unlock_irqrestore(&object->lock, flags); 845 out: 846 rcu_read_unlock(); 847 } 848 849 /** 850 * kmemleak_alloc - register a newly allocated object 851 * @ptr: pointer to beginning of the object 852 * @size: size of the object 853 * @min_count: minimum number of references to this object. If during memory 854 * scanning a number of references less than @min_count is found, 855 * the object is reported as a memory leak. If @min_count is 0, 856 * the object is never reported as a leak. If @min_count is -1, 857 * the object is ignored (not scanned and not reported as a leak) 858 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 859 * 860 * This function is called from the kernel allocators when a new object 861 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.). 862 */ 863 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 864 gfp_t gfp) 865 { 866 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 867 868 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 869 create_object((unsigned long)ptr, size, min_count, gfp); 870 else if (atomic_read(&kmemleak_early_log)) 871 log_early(KMEMLEAK_ALLOC, ptr, size, min_count); 872 } 873 EXPORT_SYMBOL_GPL(kmemleak_alloc); 874 875 /** 876 * kmemleak_free - unregister a previously registered object 877 * @ptr: pointer to beginning of the object 878 * 879 * This function is called from the kernel allocators when an object (memory 880 * block) is freed (kmem_cache_free, kfree, vfree etc.). 881 */ 882 void __ref kmemleak_free(const void *ptr) 883 { 884 pr_debug("%s(0x%p)\n", __func__, ptr); 885 886 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 887 delete_object_full((unsigned long)ptr); 888 else if (atomic_read(&kmemleak_early_log)) 889 log_early(KMEMLEAK_FREE, ptr, 0, 0); 890 } 891 EXPORT_SYMBOL_GPL(kmemleak_free); 892 893 /** 894 * kmemleak_free_part - partially unregister a previously registered object 895 * @ptr: pointer to the beginning or inside the object. This also 896 * represents the start of the range to be freed 897 * @size: size to be unregistered 898 * 899 * This function is called when only a part of a memory block is freed 900 * (usually from the bootmem allocator). 901 */ 902 void __ref kmemleak_free_part(const void *ptr, size_t size) 903 { 904 pr_debug("%s(0x%p)\n", __func__, ptr); 905 906 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 907 delete_object_part((unsigned long)ptr, size); 908 else if (atomic_read(&kmemleak_early_log)) 909 log_early(KMEMLEAK_FREE_PART, ptr, size, 0); 910 } 911 EXPORT_SYMBOL_GPL(kmemleak_free_part); 912 913 /** 914 * kmemleak_not_leak - mark an allocated object as false positive 915 * @ptr: pointer to beginning of the object 916 * 917 * Calling this function on an object will cause the memory block to no longer 918 * be reported as leak and always be scanned. 919 */ 920 void __ref kmemleak_not_leak(const void *ptr) 921 { 922 pr_debug("%s(0x%p)\n", __func__, ptr); 923 924 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 925 make_gray_object((unsigned long)ptr); 926 else if (atomic_read(&kmemleak_early_log)) 927 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0); 928 } 929 EXPORT_SYMBOL(kmemleak_not_leak); 930 931 /** 932 * kmemleak_ignore - ignore an allocated object 933 * @ptr: pointer to beginning of the object 934 * 935 * Calling this function on an object will cause the memory block to be 936 * ignored (not scanned and not reported as a leak). This is usually done when 937 * it is known that the corresponding block is not a leak and does not contain 938 * any references to other allocated memory blocks. 939 */ 940 void __ref kmemleak_ignore(const void *ptr) 941 { 942 pr_debug("%s(0x%p)\n", __func__, ptr); 943 944 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 945 make_black_object((unsigned long)ptr); 946 else if (atomic_read(&kmemleak_early_log)) 947 log_early(KMEMLEAK_IGNORE, ptr, 0, 0); 948 } 949 EXPORT_SYMBOL(kmemleak_ignore); 950 951 /** 952 * kmemleak_scan_area - limit the range to be scanned in an allocated object 953 * @ptr: pointer to beginning or inside the object. This also 954 * represents the start of the scan area 955 * @size: size of the scan area 956 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 957 * 958 * This function is used when it is known that only certain parts of an object 959 * contain references to other objects. Kmemleak will only scan these areas 960 * reducing the number false negatives. 961 */ 962 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 963 { 964 pr_debug("%s(0x%p)\n", __func__, ptr); 965 966 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 967 add_scan_area((unsigned long)ptr, size, gfp); 968 else if (atomic_read(&kmemleak_early_log)) 969 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0); 970 } 971 EXPORT_SYMBOL(kmemleak_scan_area); 972 973 /** 974 * kmemleak_no_scan - do not scan an allocated object 975 * @ptr: pointer to beginning of the object 976 * 977 * This function notifies kmemleak not to scan the given memory block. Useful 978 * in situations where it is known that the given object does not contain any 979 * references to other objects. Kmemleak will not scan such objects reducing 980 * the number of false negatives. 981 */ 982 void __ref kmemleak_no_scan(const void *ptr) 983 { 984 pr_debug("%s(0x%p)\n", __func__, ptr); 985 986 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 987 object_no_scan((unsigned long)ptr); 988 else if (atomic_read(&kmemleak_early_log)) 989 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0); 990 } 991 EXPORT_SYMBOL(kmemleak_no_scan); 992 993 /* 994 * Update an object's checksum and return true if it was modified. 995 */ 996 static bool update_checksum(struct kmemleak_object *object) 997 { 998 u32 old_csum = object->checksum; 999 1000 if (!kmemcheck_is_obj_initialized(object->pointer, object->size)) 1001 return false; 1002 1003 object->checksum = crc32(0, (void *)object->pointer, object->size); 1004 return object->checksum != old_csum; 1005 } 1006 1007 /* 1008 * Memory scanning is a long process and it needs to be interruptable. This 1009 * function checks whether such interrupt condition occurred. 1010 */ 1011 static int scan_should_stop(void) 1012 { 1013 if (!atomic_read(&kmemleak_enabled)) 1014 return 1; 1015 1016 /* 1017 * This function may be called from either process or kthread context, 1018 * hence the need to check for both stop conditions. 1019 */ 1020 if (current->mm) 1021 return signal_pending(current); 1022 else 1023 return kthread_should_stop(); 1024 1025 return 0; 1026 } 1027 1028 /* 1029 * Scan a memory block (exclusive range) for valid pointers and add those 1030 * found to the gray list. 1031 */ 1032 static void scan_block(void *_start, void *_end, 1033 struct kmemleak_object *scanned, int allow_resched) 1034 { 1035 unsigned long *ptr; 1036 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1037 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1038 1039 for (ptr = start; ptr < end; ptr++) { 1040 struct kmemleak_object *object; 1041 unsigned long flags; 1042 unsigned long pointer; 1043 1044 if (allow_resched) 1045 cond_resched(); 1046 if (scan_should_stop()) 1047 break; 1048 1049 /* don't scan uninitialized memory */ 1050 if (!kmemcheck_is_obj_initialized((unsigned long)ptr, 1051 BYTES_PER_POINTER)) 1052 continue; 1053 1054 pointer = *ptr; 1055 1056 object = find_and_get_object(pointer, 1); 1057 if (!object) 1058 continue; 1059 if (object == scanned) { 1060 /* self referenced, ignore */ 1061 put_object(object); 1062 continue; 1063 } 1064 1065 /* 1066 * Avoid the lockdep recursive warning on object->lock being 1067 * previously acquired in scan_object(). These locks are 1068 * enclosed by scan_mutex. 1069 */ 1070 spin_lock_irqsave_nested(&object->lock, flags, 1071 SINGLE_DEPTH_NESTING); 1072 if (!color_white(object)) { 1073 /* non-orphan, ignored or new */ 1074 spin_unlock_irqrestore(&object->lock, flags); 1075 put_object(object); 1076 continue; 1077 } 1078 1079 /* 1080 * Increase the object's reference count (number of pointers 1081 * to the memory block). If this count reaches the required 1082 * minimum, the object's color will become gray and it will be 1083 * added to the gray_list. 1084 */ 1085 object->count++; 1086 if (color_gray(object)) { 1087 list_add_tail(&object->gray_list, &gray_list); 1088 spin_unlock_irqrestore(&object->lock, flags); 1089 continue; 1090 } 1091 1092 spin_unlock_irqrestore(&object->lock, flags); 1093 put_object(object); 1094 } 1095 } 1096 1097 /* 1098 * Scan a memory block corresponding to a kmemleak_object. A condition is 1099 * that object->use_count >= 1. 1100 */ 1101 static void scan_object(struct kmemleak_object *object) 1102 { 1103 struct kmemleak_scan_area *area; 1104 struct hlist_node *elem; 1105 unsigned long flags; 1106 1107 /* 1108 * Once the object->lock is acquired, the corresponding memory block 1109 * cannot be freed (the same lock is acquired in delete_object). 1110 */ 1111 spin_lock_irqsave(&object->lock, flags); 1112 if (object->flags & OBJECT_NO_SCAN) 1113 goto out; 1114 if (!(object->flags & OBJECT_ALLOCATED)) 1115 /* already freed object */ 1116 goto out; 1117 if (hlist_empty(&object->area_list)) { 1118 void *start = (void *)object->pointer; 1119 void *end = (void *)(object->pointer + object->size); 1120 1121 while (start < end && (object->flags & OBJECT_ALLOCATED) && 1122 !(object->flags & OBJECT_NO_SCAN)) { 1123 scan_block(start, min(start + MAX_SCAN_SIZE, end), 1124 object, 0); 1125 start += MAX_SCAN_SIZE; 1126 1127 spin_unlock_irqrestore(&object->lock, flags); 1128 cond_resched(); 1129 spin_lock_irqsave(&object->lock, flags); 1130 } 1131 } else 1132 hlist_for_each_entry(area, elem, &object->area_list, node) 1133 scan_block((void *)area->start, 1134 (void *)(area->start + area->size), 1135 object, 0); 1136 out: 1137 spin_unlock_irqrestore(&object->lock, flags); 1138 } 1139 1140 /* 1141 * Scan the objects already referenced (gray objects). More objects will be 1142 * referenced and, if there are no memory leaks, all the objects are scanned. 1143 */ 1144 static void scan_gray_list(void) 1145 { 1146 struct kmemleak_object *object, *tmp; 1147 1148 /* 1149 * The list traversal is safe for both tail additions and removals 1150 * from inside the loop. The kmemleak objects cannot be freed from 1151 * outside the loop because their use_count was incremented. 1152 */ 1153 object = list_entry(gray_list.next, typeof(*object), gray_list); 1154 while (&object->gray_list != &gray_list) { 1155 cond_resched(); 1156 1157 /* may add new objects to the list */ 1158 if (!scan_should_stop()) 1159 scan_object(object); 1160 1161 tmp = list_entry(object->gray_list.next, typeof(*object), 1162 gray_list); 1163 1164 /* remove the object from the list and release it */ 1165 list_del(&object->gray_list); 1166 put_object(object); 1167 1168 object = tmp; 1169 } 1170 WARN_ON(!list_empty(&gray_list)); 1171 } 1172 1173 /* 1174 * Scan data sections and all the referenced memory blocks allocated via the 1175 * kernel's standard allocators. This function must be called with the 1176 * scan_mutex held. 1177 */ 1178 static void kmemleak_scan(void) 1179 { 1180 unsigned long flags; 1181 struct kmemleak_object *object; 1182 int i; 1183 int new_leaks = 0; 1184 1185 jiffies_last_scan = jiffies; 1186 1187 /* prepare the kmemleak_object's */ 1188 rcu_read_lock(); 1189 list_for_each_entry_rcu(object, &object_list, object_list) { 1190 spin_lock_irqsave(&object->lock, flags); 1191 #ifdef DEBUG 1192 /* 1193 * With a few exceptions there should be a maximum of 1194 * 1 reference to any object at this point. 1195 */ 1196 if (atomic_read(&object->use_count) > 1) { 1197 pr_debug("object->use_count = %d\n", 1198 atomic_read(&object->use_count)); 1199 dump_object_info(object); 1200 } 1201 #endif 1202 /* reset the reference count (whiten the object) */ 1203 object->count = 0; 1204 if (color_gray(object) && get_object(object)) 1205 list_add_tail(&object->gray_list, &gray_list); 1206 1207 spin_unlock_irqrestore(&object->lock, flags); 1208 } 1209 rcu_read_unlock(); 1210 1211 /* data/bss scanning */ 1212 scan_block(_sdata, _edata, NULL, 1); 1213 scan_block(__bss_start, __bss_stop, NULL, 1); 1214 1215 #ifdef CONFIG_SMP 1216 /* per-cpu sections scanning */ 1217 for_each_possible_cpu(i) 1218 scan_block(__per_cpu_start + per_cpu_offset(i), 1219 __per_cpu_end + per_cpu_offset(i), NULL, 1); 1220 #endif 1221 1222 /* 1223 * Struct page scanning for each node. The code below is not yet safe 1224 * with MEMORY_HOTPLUG. 1225 */ 1226 for_each_online_node(i) { 1227 pg_data_t *pgdat = NODE_DATA(i); 1228 unsigned long start_pfn = pgdat->node_start_pfn; 1229 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; 1230 unsigned long pfn; 1231 1232 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1233 struct page *page; 1234 1235 if (!pfn_valid(pfn)) 1236 continue; 1237 page = pfn_to_page(pfn); 1238 /* only scan if page is in use */ 1239 if (page_count(page) == 0) 1240 continue; 1241 scan_block(page, page + 1, NULL, 1); 1242 } 1243 } 1244 1245 /* 1246 * Scanning the task stacks (may introduce false negatives). 1247 */ 1248 if (kmemleak_stack_scan) { 1249 struct task_struct *p, *g; 1250 1251 read_lock(&tasklist_lock); 1252 do_each_thread(g, p) { 1253 scan_block(task_stack_page(p), task_stack_page(p) + 1254 THREAD_SIZE, NULL, 0); 1255 } while_each_thread(g, p); 1256 read_unlock(&tasklist_lock); 1257 } 1258 1259 /* 1260 * Scan the objects already referenced from the sections scanned 1261 * above. 1262 */ 1263 scan_gray_list(); 1264 1265 /* 1266 * Check for new or unreferenced objects modified since the previous 1267 * scan and color them gray until the next scan. 1268 */ 1269 rcu_read_lock(); 1270 list_for_each_entry_rcu(object, &object_list, object_list) { 1271 spin_lock_irqsave(&object->lock, flags); 1272 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1273 && update_checksum(object) && get_object(object)) { 1274 /* color it gray temporarily */ 1275 object->count = object->min_count; 1276 list_add_tail(&object->gray_list, &gray_list); 1277 } 1278 spin_unlock_irqrestore(&object->lock, flags); 1279 } 1280 rcu_read_unlock(); 1281 1282 /* 1283 * Re-scan the gray list for modified unreferenced objects. 1284 */ 1285 scan_gray_list(); 1286 1287 /* 1288 * If scanning was stopped do not report any new unreferenced objects. 1289 */ 1290 if (scan_should_stop()) 1291 return; 1292 1293 /* 1294 * Scanning result reporting. 1295 */ 1296 rcu_read_lock(); 1297 list_for_each_entry_rcu(object, &object_list, object_list) { 1298 spin_lock_irqsave(&object->lock, flags); 1299 if (unreferenced_object(object) && 1300 !(object->flags & OBJECT_REPORTED)) { 1301 object->flags |= OBJECT_REPORTED; 1302 new_leaks++; 1303 } 1304 spin_unlock_irqrestore(&object->lock, flags); 1305 } 1306 rcu_read_unlock(); 1307 1308 if (new_leaks) 1309 pr_info("%d new suspected memory leaks (see " 1310 "/sys/kernel/debug/kmemleak)\n", new_leaks); 1311 1312 } 1313 1314 /* 1315 * Thread function performing automatic memory scanning. Unreferenced objects 1316 * at the end of a memory scan are reported but only the first time. 1317 */ 1318 static int kmemleak_scan_thread(void *arg) 1319 { 1320 static int first_run = 1; 1321 1322 pr_info("Automatic memory scanning thread started\n"); 1323 set_user_nice(current, 10); 1324 1325 /* 1326 * Wait before the first scan to allow the system to fully initialize. 1327 */ 1328 if (first_run) { 1329 first_run = 0; 1330 ssleep(SECS_FIRST_SCAN); 1331 } 1332 1333 while (!kthread_should_stop()) { 1334 signed long timeout = jiffies_scan_wait; 1335 1336 mutex_lock(&scan_mutex); 1337 kmemleak_scan(); 1338 mutex_unlock(&scan_mutex); 1339 1340 /* wait before the next scan */ 1341 while (timeout && !kthread_should_stop()) 1342 timeout = schedule_timeout_interruptible(timeout); 1343 } 1344 1345 pr_info("Automatic memory scanning thread ended\n"); 1346 1347 return 0; 1348 } 1349 1350 /* 1351 * Start the automatic memory scanning thread. This function must be called 1352 * with the scan_mutex held. 1353 */ 1354 static void start_scan_thread(void) 1355 { 1356 if (scan_thread) 1357 return; 1358 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1359 if (IS_ERR(scan_thread)) { 1360 pr_warning("Failed to create the scan thread\n"); 1361 scan_thread = NULL; 1362 } 1363 } 1364 1365 /* 1366 * Stop the automatic memory scanning thread. This function must be called 1367 * with the scan_mutex held. 1368 */ 1369 static void stop_scan_thread(void) 1370 { 1371 if (scan_thread) { 1372 kthread_stop(scan_thread); 1373 scan_thread = NULL; 1374 } 1375 } 1376 1377 /* 1378 * Iterate over the object_list and return the first valid object at or after 1379 * the required position with its use_count incremented. The function triggers 1380 * a memory scanning when the pos argument points to the first position. 1381 */ 1382 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1383 { 1384 struct kmemleak_object *object; 1385 loff_t n = *pos; 1386 int err; 1387 1388 err = mutex_lock_interruptible(&scan_mutex); 1389 if (err < 0) 1390 return ERR_PTR(err); 1391 1392 rcu_read_lock(); 1393 list_for_each_entry_rcu(object, &object_list, object_list) { 1394 if (n-- > 0) 1395 continue; 1396 if (get_object(object)) 1397 goto out; 1398 } 1399 object = NULL; 1400 out: 1401 return object; 1402 } 1403 1404 /* 1405 * Return the next object in the object_list. The function decrements the 1406 * use_count of the previous object and increases that of the next one. 1407 */ 1408 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1409 { 1410 struct kmemleak_object *prev_obj = v; 1411 struct kmemleak_object *next_obj = NULL; 1412 struct list_head *n = &prev_obj->object_list; 1413 1414 ++(*pos); 1415 1416 list_for_each_continue_rcu(n, &object_list) { 1417 struct kmemleak_object *obj = 1418 list_entry(n, struct kmemleak_object, object_list); 1419 if (get_object(obj)) { 1420 next_obj = obj; 1421 break; 1422 } 1423 } 1424 1425 put_object(prev_obj); 1426 return next_obj; 1427 } 1428 1429 /* 1430 * Decrement the use_count of the last object required, if any. 1431 */ 1432 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1433 { 1434 if (!IS_ERR(v)) { 1435 /* 1436 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1437 * waiting was interrupted, so only release it if !IS_ERR. 1438 */ 1439 rcu_read_unlock(); 1440 mutex_unlock(&scan_mutex); 1441 if (v) 1442 put_object(v); 1443 } 1444 } 1445 1446 /* 1447 * Print the information for an unreferenced object to the seq file. 1448 */ 1449 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1450 { 1451 struct kmemleak_object *object = v; 1452 unsigned long flags; 1453 1454 spin_lock_irqsave(&object->lock, flags); 1455 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1456 print_unreferenced(seq, object); 1457 spin_unlock_irqrestore(&object->lock, flags); 1458 return 0; 1459 } 1460 1461 static const struct seq_operations kmemleak_seq_ops = { 1462 .start = kmemleak_seq_start, 1463 .next = kmemleak_seq_next, 1464 .stop = kmemleak_seq_stop, 1465 .show = kmemleak_seq_show, 1466 }; 1467 1468 static int kmemleak_open(struct inode *inode, struct file *file) 1469 { 1470 if (!atomic_read(&kmemleak_enabled)) 1471 return -EBUSY; 1472 1473 return seq_open(file, &kmemleak_seq_ops); 1474 } 1475 1476 static int kmemleak_release(struct inode *inode, struct file *file) 1477 { 1478 return seq_release(inode, file); 1479 } 1480 1481 static int dump_str_object_info(const char *str) 1482 { 1483 unsigned long flags; 1484 struct kmemleak_object *object; 1485 unsigned long addr; 1486 1487 addr= simple_strtoul(str, NULL, 0); 1488 object = find_and_get_object(addr, 0); 1489 if (!object) { 1490 pr_info("Unknown object at 0x%08lx\n", addr); 1491 return -EINVAL; 1492 } 1493 1494 spin_lock_irqsave(&object->lock, flags); 1495 dump_object_info(object); 1496 spin_unlock_irqrestore(&object->lock, flags); 1497 1498 put_object(object); 1499 return 0; 1500 } 1501 1502 /* 1503 * We use grey instead of black to ensure we can do future scans on the same 1504 * objects. If we did not do future scans these black objects could 1505 * potentially contain references to newly allocated objects in the future and 1506 * we'd end up with false positives. 1507 */ 1508 static void kmemleak_clear(void) 1509 { 1510 struct kmemleak_object *object; 1511 unsigned long flags; 1512 1513 rcu_read_lock(); 1514 list_for_each_entry_rcu(object, &object_list, object_list) { 1515 spin_lock_irqsave(&object->lock, flags); 1516 if ((object->flags & OBJECT_REPORTED) && 1517 unreferenced_object(object)) 1518 __paint_it(object, KMEMLEAK_GREY); 1519 spin_unlock_irqrestore(&object->lock, flags); 1520 } 1521 rcu_read_unlock(); 1522 } 1523 1524 /* 1525 * File write operation to configure kmemleak at run-time. The following 1526 * commands can be written to the /sys/kernel/debug/kmemleak file: 1527 * off - disable kmemleak (irreversible) 1528 * stack=on - enable the task stacks scanning 1529 * stack=off - disable the tasks stacks scanning 1530 * scan=on - start the automatic memory scanning thread 1531 * scan=off - stop the automatic memory scanning thread 1532 * scan=... - set the automatic memory scanning period in seconds (0 to 1533 * disable it) 1534 * scan - trigger a memory scan 1535 * clear - mark all current reported unreferenced kmemleak objects as 1536 * grey to ignore printing them 1537 * dump=... - dump information about the object found at the given address 1538 */ 1539 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1540 size_t size, loff_t *ppos) 1541 { 1542 char buf[64]; 1543 int buf_size; 1544 int ret; 1545 1546 buf_size = min(size, (sizeof(buf) - 1)); 1547 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1548 return -EFAULT; 1549 buf[buf_size] = 0; 1550 1551 ret = mutex_lock_interruptible(&scan_mutex); 1552 if (ret < 0) 1553 return ret; 1554 1555 if (strncmp(buf, "off", 3) == 0) 1556 kmemleak_disable(); 1557 else if (strncmp(buf, "stack=on", 8) == 0) 1558 kmemleak_stack_scan = 1; 1559 else if (strncmp(buf, "stack=off", 9) == 0) 1560 kmemleak_stack_scan = 0; 1561 else if (strncmp(buf, "scan=on", 7) == 0) 1562 start_scan_thread(); 1563 else if (strncmp(buf, "scan=off", 8) == 0) 1564 stop_scan_thread(); 1565 else if (strncmp(buf, "scan=", 5) == 0) { 1566 unsigned long secs; 1567 1568 ret = strict_strtoul(buf + 5, 0, &secs); 1569 if (ret < 0) 1570 goto out; 1571 stop_scan_thread(); 1572 if (secs) { 1573 jiffies_scan_wait = msecs_to_jiffies(secs * 1000); 1574 start_scan_thread(); 1575 } 1576 } else if (strncmp(buf, "scan", 4) == 0) 1577 kmemleak_scan(); 1578 else if (strncmp(buf, "clear", 5) == 0) 1579 kmemleak_clear(); 1580 else if (strncmp(buf, "dump=", 5) == 0) 1581 ret = dump_str_object_info(buf + 5); 1582 else 1583 ret = -EINVAL; 1584 1585 out: 1586 mutex_unlock(&scan_mutex); 1587 if (ret < 0) 1588 return ret; 1589 1590 /* ignore the rest of the buffer, only one command at a time */ 1591 *ppos += size; 1592 return size; 1593 } 1594 1595 static const struct file_operations kmemleak_fops = { 1596 .owner = THIS_MODULE, 1597 .open = kmemleak_open, 1598 .read = seq_read, 1599 .write = kmemleak_write, 1600 .llseek = seq_lseek, 1601 .release = kmemleak_release, 1602 }; 1603 1604 /* 1605 * Perform the freeing of the kmemleak internal objects after waiting for any 1606 * current memory scan to complete. 1607 */ 1608 static void kmemleak_do_cleanup(struct work_struct *work) 1609 { 1610 struct kmemleak_object *object; 1611 1612 mutex_lock(&scan_mutex); 1613 stop_scan_thread(); 1614 1615 rcu_read_lock(); 1616 list_for_each_entry_rcu(object, &object_list, object_list) 1617 delete_object_full(object->pointer); 1618 rcu_read_unlock(); 1619 mutex_unlock(&scan_mutex); 1620 } 1621 1622 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 1623 1624 /* 1625 * Disable kmemleak. No memory allocation/freeing will be traced once this 1626 * function is called. Disabling kmemleak is an irreversible operation. 1627 */ 1628 static void kmemleak_disable(void) 1629 { 1630 /* atomically check whether it was already invoked */ 1631 if (atomic_cmpxchg(&kmemleak_error, 0, 1)) 1632 return; 1633 1634 /* stop any memory operation tracing */ 1635 atomic_set(&kmemleak_early_log, 0); 1636 atomic_set(&kmemleak_enabled, 0); 1637 1638 /* check whether it is too early for a kernel thread */ 1639 if (atomic_read(&kmemleak_initialized)) 1640 schedule_work(&cleanup_work); 1641 1642 pr_info("Kernel memory leak detector disabled\n"); 1643 } 1644 1645 /* 1646 * Allow boot-time kmemleak disabling (enabled by default). 1647 */ 1648 static int kmemleak_boot_config(char *str) 1649 { 1650 if (!str) 1651 return -EINVAL; 1652 if (strcmp(str, "off") == 0) 1653 kmemleak_disable(); 1654 else if (strcmp(str, "on") == 0) 1655 kmemleak_skip_disable = 1; 1656 else 1657 return -EINVAL; 1658 return 0; 1659 } 1660 early_param("kmemleak", kmemleak_boot_config); 1661 1662 /* 1663 * Kmemleak initialization. 1664 */ 1665 void __init kmemleak_init(void) 1666 { 1667 int i; 1668 unsigned long flags; 1669 1670 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 1671 if (!kmemleak_skip_disable) { 1672 kmemleak_disable(); 1673 return; 1674 } 1675 #endif 1676 1677 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 1678 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 1679 1680 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 1681 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 1682 INIT_PRIO_TREE_ROOT(&object_tree_root); 1683 1684 /* the kernel is still in UP mode, so disabling the IRQs is enough */ 1685 local_irq_save(flags); 1686 if (!atomic_read(&kmemleak_error)) { 1687 atomic_set(&kmemleak_enabled, 1); 1688 atomic_set(&kmemleak_early_log, 0); 1689 } 1690 local_irq_restore(flags); 1691 1692 /* 1693 * This is the point where tracking allocations is safe. Automatic 1694 * scanning is started during the late initcall. Add the early logged 1695 * callbacks to the kmemleak infrastructure. 1696 */ 1697 for (i = 0; i < crt_early_log; i++) { 1698 struct early_log *log = &early_log[i]; 1699 1700 switch (log->op_type) { 1701 case KMEMLEAK_ALLOC: 1702 early_alloc(log); 1703 break; 1704 case KMEMLEAK_FREE: 1705 kmemleak_free(log->ptr); 1706 break; 1707 case KMEMLEAK_FREE_PART: 1708 kmemleak_free_part(log->ptr, log->size); 1709 break; 1710 case KMEMLEAK_NOT_LEAK: 1711 kmemleak_not_leak(log->ptr); 1712 break; 1713 case KMEMLEAK_IGNORE: 1714 kmemleak_ignore(log->ptr); 1715 break; 1716 case KMEMLEAK_SCAN_AREA: 1717 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL); 1718 break; 1719 case KMEMLEAK_NO_SCAN: 1720 kmemleak_no_scan(log->ptr); 1721 break; 1722 default: 1723 WARN_ON(1); 1724 } 1725 } 1726 } 1727 1728 /* 1729 * Late initialization function. 1730 */ 1731 static int __init kmemleak_late_init(void) 1732 { 1733 struct dentry *dentry; 1734 1735 atomic_set(&kmemleak_initialized, 1); 1736 1737 if (atomic_read(&kmemleak_error)) { 1738 /* 1739 * Some error occurred and kmemleak was disabled. There is a 1740 * small chance that kmemleak_disable() was called immediately 1741 * after setting kmemleak_initialized and we may end up with 1742 * two clean-up threads but serialized by scan_mutex. 1743 */ 1744 schedule_work(&cleanup_work); 1745 return -ENOMEM; 1746 } 1747 1748 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL, 1749 &kmemleak_fops); 1750 if (!dentry) 1751 pr_warning("Failed to create the debugfs kmemleak file\n"); 1752 mutex_lock(&scan_mutex); 1753 start_scan_thread(); 1754 mutex_unlock(&scan_mutex); 1755 1756 pr_info("Kernel memory leak detector initialized\n"); 1757 1758 return 0; 1759 } 1760 late_initcall(kmemleak_late_init); 1761