1 /* 2 * mm/kmemleak.c 3 * 4 * Copyright (C) 2008 ARM Limited 5 * Written by Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 * 21 * For more information on the algorithm and kmemleak usage, please see 22 * Documentation/kmemleak.txt. 23 * 24 * Notes on locking 25 * ---------------- 26 * 27 * The following locks and mutexes are used by kmemleak: 28 * 29 * - kmemleak_lock (rwlock): protects the object_list modifications and 30 * accesses to the object_tree_root. The object_list is the main list 31 * holding the metadata (struct kmemleak_object) for the allocated memory 32 * blocks. The object_tree_root is a red black tree used to look-up 33 * metadata based on a pointer to the corresponding memory block. The 34 * kmemleak_object structures are added to the object_list and 35 * object_tree_root in the create_object() function called from the 36 * kmemleak_alloc() callback and removed in delete_object() called from the 37 * kmemleak_free() callback 38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to 39 * the metadata (e.g. count) are protected by this lock. Note that some 40 * members of this structure may be protected by other means (atomic or 41 * kmemleak_lock). This lock is also held when scanning the corresponding 42 * memory block to avoid the kernel freeing it via the kmemleak_free() 43 * callback. This is less heavyweight than holding a global lock like 44 * kmemleak_lock during scanning 45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 46 * unreferenced objects at a time. The gray_list contains the objects which 47 * are already referenced or marked as false positives and need to be 48 * scanned. This list is only modified during a scanning episode when the 49 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 50 * Note that the kmemleak_object.use_count is incremented when an object is 51 * added to the gray_list and therefore cannot be freed. This mutex also 52 * prevents multiple users of the "kmemleak" debugfs file together with 53 * modifications to the memory scanning parameters including the scan_thread 54 * pointer 55 * 56 * Locks and mutexes are acquired/nested in the following order: 57 * 58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 59 * 60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 61 * regions. 62 * 63 * The kmemleak_object structures have a use_count incremented or decremented 64 * using the get_object()/put_object() functions. When the use_count becomes 65 * 0, this count can no longer be incremented and put_object() schedules the 66 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 67 * function must be protected by rcu_read_lock() to avoid accessing a freed 68 * structure. 69 */ 70 71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 72 73 #include <linux/init.h> 74 #include <linux/kernel.h> 75 #include <linux/list.h> 76 #include <linux/sched.h> 77 #include <linux/jiffies.h> 78 #include <linux/delay.h> 79 #include <linux/export.h> 80 #include <linux/kthread.h> 81 #include <linux/rbtree.h> 82 #include <linux/fs.h> 83 #include <linux/debugfs.h> 84 #include <linux/seq_file.h> 85 #include <linux/cpumask.h> 86 #include <linux/spinlock.h> 87 #include <linux/mutex.h> 88 #include <linux/rcupdate.h> 89 #include <linux/stacktrace.h> 90 #include <linux/cache.h> 91 #include <linux/percpu.h> 92 #include <linux/hardirq.h> 93 #include <linux/bootmem.h> 94 #include <linux/pfn.h> 95 #include <linux/mmzone.h> 96 #include <linux/slab.h> 97 #include <linux/thread_info.h> 98 #include <linux/err.h> 99 #include <linux/uaccess.h> 100 #include <linux/string.h> 101 #include <linux/nodemask.h> 102 #include <linux/mm.h> 103 #include <linux/workqueue.h> 104 #include <linux/crc32.h> 105 106 #include <asm/sections.h> 107 #include <asm/processor.h> 108 #include <linux/atomic.h> 109 110 #include <linux/kasan.h> 111 #include <linux/kmemcheck.h> 112 #include <linux/kmemleak.h> 113 #include <linux/memory_hotplug.h> 114 115 /* 116 * Kmemleak configuration and common defines. 117 */ 118 #define MAX_TRACE 16 /* stack trace length */ 119 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 120 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 121 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 122 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 123 124 #define BYTES_PER_POINTER sizeof(void *) 125 126 /* GFP bitmask for kmemleak internal allocations */ 127 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \ 128 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 129 __GFP_NOWARN) 130 131 /* scanning area inside a memory block */ 132 struct kmemleak_scan_area { 133 struct hlist_node node; 134 unsigned long start; 135 size_t size; 136 }; 137 138 #define KMEMLEAK_GREY 0 139 #define KMEMLEAK_BLACK -1 140 141 /* 142 * Structure holding the metadata for each allocated memory block. 143 * Modifications to such objects should be made while holding the 144 * object->lock. Insertions or deletions from object_list, gray_list or 145 * rb_node are already protected by the corresponding locks or mutex (see 146 * the notes on locking above). These objects are reference-counted 147 * (use_count) and freed using the RCU mechanism. 148 */ 149 struct kmemleak_object { 150 spinlock_t lock; 151 unsigned long flags; /* object status flags */ 152 struct list_head object_list; 153 struct list_head gray_list; 154 struct rb_node rb_node; 155 struct rcu_head rcu; /* object_list lockless traversal */ 156 /* object usage count; object freed when use_count == 0 */ 157 atomic_t use_count; 158 unsigned long pointer; 159 size_t size; 160 /* minimum number of a pointers found before it is considered leak */ 161 int min_count; 162 /* the total number of pointers found pointing to this object */ 163 int count; 164 /* checksum for detecting modified objects */ 165 u32 checksum; 166 /* memory ranges to be scanned inside an object (empty for all) */ 167 struct hlist_head area_list; 168 unsigned long trace[MAX_TRACE]; 169 unsigned int trace_len; 170 unsigned long jiffies; /* creation timestamp */ 171 pid_t pid; /* pid of the current task */ 172 char comm[TASK_COMM_LEN]; /* executable name */ 173 }; 174 175 /* flag representing the memory block allocation status */ 176 #define OBJECT_ALLOCATED (1 << 0) 177 /* flag set after the first reporting of an unreference object */ 178 #define OBJECT_REPORTED (1 << 1) 179 /* flag set to not scan the object */ 180 #define OBJECT_NO_SCAN (1 << 2) 181 182 /* number of bytes to print per line; must be 16 or 32 */ 183 #define HEX_ROW_SIZE 16 184 /* number of bytes to print at a time (1, 2, 4, 8) */ 185 #define HEX_GROUP_SIZE 1 186 /* include ASCII after the hex output */ 187 #define HEX_ASCII 1 188 /* max number of lines to be printed */ 189 #define HEX_MAX_LINES 2 190 191 /* the list of all allocated objects */ 192 static LIST_HEAD(object_list); 193 /* the list of gray-colored objects (see color_gray comment below) */ 194 static LIST_HEAD(gray_list); 195 /* search tree for object boundaries */ 196 static struct rb_root object_tree_root = RB_ROOT; 197 /* rw_lock protecting the access to object_list and object_tree_root */ 198 static DEFINE_RWLOCK(kmemleak_lock); 199 200 /* allocation caches for kmemleak internal data */ 201 static struct kmem_cache *object_cache; 202 static struct kmem_cache *scan_area_cache; 203 204 /* set if tracing memory operations is enabled */ 205 static int kmemleak_enabled; 206 /* same as above but only for the kmemleak_free() callback */ 207 static int kmemleak_free_enabled; 208 /* set in the late_initcall if there were no errors */ 209 static int kmemleak_initialized; 210 /* enables or disables early logging of the memory operations */ 211 static int kmemleak_early_log = 1; 212 /* set if a kmemleak warning was issued */ 213 static int kmemleak_warning; 214 /* set if a fatal kmemleak error has occurred */ 215 static int kmemleak_error; 216 217 /* minimum and maximum address that may be valid pointers */ 218 static unsigned long min_addr = ULONG_MAX; 219 static unsigned long max_addr; 220 221 static struct task_struct *scan_thread; 222 /* used to avoid reporting of recently allocated objects */ 223 static unsigned long jiffies_min_age; 224 static unsigned long jiffies_last_scan; 225 /* delay between automatic memory scannings */ 226 static signed long jiffies_scan_wait; 227 /* enables or disables the task stacks scanning */ 228 static int kmemleak_stack_scan = 1; 229 /* protects the memory scanning, parameters and debug/kmemleak file access */ 230 static DEFINE_MUTEX(scan_mutex); 231 /* setting kmemleak=on, will set this var, skipping the disable */ 232 static int kmemleak_skip_disable; 233 /* If there are leaks that can be reported */ 234 static bool kmemleak_found_leaks; 235 236 /* 237 * Early object allocation/freeing logging. Kmemleak is initialized after the 238 * kernel allocator. However, both the kernel allocator and kmemleak may 239 * allocate memory blocks which need to be tracked. Kmemleak defines an 240 * arbitrary buffer to hold the allocation/freeing information before it is 241 * fully initialized. 242 */ 243 244 /* kmemleak operation type for early logging */ 245 enum { 246 KMEMLEAK_ALLOC, 247 KMEMLEAK_ALLOC_PERCPU, 248 KMEMLEAK_FREE, 249 KMEMLEAK_FREE_PART, 250 KMEMLEAK_FREE_PERCPU, 251 KMEMLEAK_NOT_LEAK, 252 KMEMLEAK_IGNORE, 253 KMEMLEAK_SCAN_AREA, 254 KMEMLEAK_NO_SCAN 255 }; 256 257 /* 258 * Structure holding the information passed to kmemleak callbacks during the 259 * early logging. 260 */ 261 struct early_log { 262 int op_type; /* kmemleak operation type */ 263 const void *ptr; /* allocated/freed memory block */ 264 size_t size; /* memory block size */ 265 int min_count; /* minimum reference count */ 266 unsigned long trace[MAX_TRACE]; /* stack trace */ 267 unsigned int trace_len; /* stack trace length */ 268 }; 269 270 /* early logging buffer and current position */ 271 static struct early_log 272 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata; 273 static int crt_early_log __initdata; 274 275 static void kmemleak_disable(void); 276 277 /* 278 * Print a warning and dump the stack trace. 279 */ 280 #define kmemleak_warn(x...) do { \ 281 pr_warn(x); \ 282 dump_stack(); \ 283 kmemleak_warning = 1; \ 284 } while (0) 285 286 /* 287 * Macro invoked when a serious kmemleak condition occurred and cannot be 288 * recovered from. Kmemleak will be disabled and further allocation/freeing 289 * tracing no longer available. 290 */ 291 #define kmemleak_stop(x...) do { \ 292 kmemleak_warn(x); \ 293 kmemleak_disable(); \ 294 } while (0) 295 296 /* 297 * Printing of the objects hex dump to the seq file. The number of lines to be 298 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 299 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 300 * with the object->lock held. 301 */ 302 static void hex_dump_object(struct seq_file *seq, 303 struct kmemleak_object *object) 304 { 305 const u8 *ptr = (const u8 *)object->pointer; 306 size_t len; 307 308 /* limit the number of lines to HEX_MAX_LINES */ 309 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 310 311 seq_printf(seq, " hex dump (first %zu bytes):\n", len); 312 kasan_disable_current(); 313 seq_hex_dump(seq, " ", DUMP_PREFIX_NONE, HEX_ROW_SIZE, 314 HEX_GROUP_SIZE, ptr, len, HEX_ASCII); 315 kasan_enable_current(); 316 } 317 318 /* 319 * Object colors, encoded with count and min_count: 320 * - white - orphan object, not enough references to it (count < min_count) 321 * - gray - not orphan, not marked as false positive (min_count == 0) or 322 * sufficient references to it (count >= min_count) 323 * - black - ignore, it doesn't contain references (e.g. text section) 324 * (min_count == -1). No function defined for this color. 325 * Newly created objects don't have any color assigned (object->count == -1) 326 * before the next memory scan when they become white. 327 */ 328 static bool color_white(const struct kmemleak_object *object) 329 { 330 return object->count != KMEMLEAK_BLACK && 331 object->count < object->min_count; 332 } 333 334 static bool color_gray(const struct kmemleak_object *object) 335 { 336 return object->min_count != KMEMLEAK_BLACK && 337 object->count >= object->min_count; 338 } 339 340 /* 341 * Objects are considered unreferenced only if their color is white, they have 342 * not be deleted and have a minimum age to avoid false positives caused by 343 * pointers temporarily stored in CPU registers. 344 */ 345 static bool unreferenced_object(struct kmemleak_object *object) 346 { 347 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 348 time_before_eq(object->jiffies + jiffies_min_age, 349 jiffies_last_scan); 350 } 351 352 /* 353 * Printing of the unreferenced objects information to the seq file. The 354 * print_unreferenced function must be called with the object->lock held. 355 */ 356 static void print_unreferenced(struct seq_file *seq, 357 struct kmemleak_object *object) 358 { 359 int i; 360 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 361 362 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 363 object->pointer, object->size); 364 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 365 object->comm, object->pid, object->jiffies, 366 msecs_age / 1000, msecs_age % 1000); 367 hex_dump_object(seq, object); 368 seq_printf(seq, " backtrace:\n"); 369 370 for (i = 0; i < object->trace_len; i++) { 371 void *ptr = (void *)object->trace[i]; 372 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); 373 } 374 } 375 376 /* 377 * Print the kmemleak_object information. This function is used mainly for 378 * debugging special cases when kmemleak operations. It must be called with 379 * the object->lock held. 380 */ 381 static void dump_object_info(struct kmemleak_object *object) 382 { 383 struct stack_trace trace; 384 385 trace.nr_entries = object->trace_len; 386 trace.entries = object->trace; 387 388 pr_notice("Object 0x%08lx (size %zu):\n", 389 object->pointer, object->size); 390 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 391 object->comm, object->pid, object->jiffies); 392 pr_notice(" min_count = %d\n", object->min_count); 393 pr_notice(" count = %d\n", object->count); 394 pr_notice(" flags = 0x%lx\n", object->flags); 395 pr_notice(" checksum = %u\n", object->checksum); 396 pr_notice(" backtrace:\n"); 397 print_stack_trace(&trace, 4); 398 } 399 400 /* 401 * Look-up a memory block metadata (kmemleak_object) in the object search 402 * tree based on a pointer value. If alias is 0, only values pointing to the 403 * beginning of the memory block are allowed. The kmemleak_lock must be held 404 * when calling this function. 405 */ 406 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 407 { 408 struct rb_node *rb = object_tree_root.rb_node; 409 410 while (rb) { 411 struct kmemleak_object *object = 412 rb_entry(rb, struct kmemleak_object, rb_node); 413 if (ptr < object->pointer) 414 rb = object->rb_node.rb_left; 415 else if (object->pointer + object->size <= ptr) 416 rb = object->rb_node.rb_right; 417 else if (object->pointer == ptr || alias) 418 return object; 419 else { 420 kmemleak_warn("Found object by alias at 0x%08lx\n", 421 ptr); 422 dump_object_info(object); 423 break; 424 } 425 } 426 return NULL; 427 } 428 429 /* 430 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 431 * that once an object's use_count reached 0, the RCU freeing was already 432 * registered and the object should no longer be used. This function must be 433 * called under the protection of rcu_read_lock(). 434 */ 435 static int get_object(struct kmemleak_object *object) 436 { 437 return atomic_inc_not_zero(&object->use_count); 438 } 439 440 /* 441 * RCU callback to free a kmemleak_object. 442 */ 443 static void free_object_rcu(struct rcu_head *rcu) 444 { 445 struct hlist_node *tmp; 446 struct kmemleak_scan_area *area; 447 struct kmemleak_object *object = 448 container_of(rcu, struct kmemleak_object, rcu); 449 450 /* 451 * Once use_count is 0 (guaranteed by put_object), there is no other 452 * code accessing this object, hence no need for locking. 453 */ 454 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 455 hlist_del(&area->node); 456 kmem_cache_free(scan_area_cache, area); 457 } 458 kmem_cache_free(object_cache, object); 459 } 460 461 /* 462 * Decrement the object use_count. Once the count is 0, free the object using 463 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 464 * delete_object() path, the delayed RCU freeing ensures that there is no 465 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 466 * is also possible. 467 */ 468 static void put_object(struct kmemleak_object *object) 469 { 470 if (!atomic_dec_and_test(&object->use_count)) 471 return; 472 473 /* should only get here after delete_object was called */ 474 WARN_ON(object->flags & OBJECT_ALLOCATED); 475 476 call_rcu(&object->rcu, free_object_rcu); 477 } 478 479 /* 480 * Look up an object in the object search tree and increase its use_count. 481 */ 482 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 483 { 484 unsigned long flags; 485 struct kmemleak_object *object; 486 487 rcu_read_lock(); 488 read_lock_irqsave(&kmemleak_lock, flags); 489 object = lookup_object(ptr, alias); 490 read_unlock_irqrestore(&kmemleak_lock, flags); 491 492 /* check whether the object is still available */ 493 if (object && !get_object(object)) 494 object = NULL; 495 rcu_read_unlock(); 496 497 return object; 498 } 499 500 /* 501 * Look up an object in the object search tree and remove it from both 502 * object_tree_root and object_list. The returned object's use_count should be 503 * at least 1, as initially set by create_object(). 504 */ 505 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias) 506 { 507 unsigned long flags; 508 struct kmemleak_object *object; 509 510 write_lock_irqsave(&kmemleak_lock, flags); 511 object = lookup_object(ptr, alias); 512 if (object) { 513 rb_erase(&object->rb_node, &object_tree_root); 514 list_del_rcu(&object->object_list); 515 } 516 write_unlock_irqrestore(&kmemleak_lock, flags); 517 518 return object; 519 } 520 521 /* 522 * Save stack trace to the given array of MAX_TRACE size. 523 */ 524 static int __save_stack_trace(unsigned long *trace) 525 { 526 struct stack_trace stack_trace; 527 528 stack_trace.max_entries = MAX_TRACE; 529 stack_trace.nr_entries = 0; 530 stack_trace.entries = trace; 531 stack_trace.skip = 2; 532 save_stack_trace(&stack_trace); 533 534 return stack_trace.nr_entries; 535 } 536 537 /* 538 * Create the metadata (struct kmemleak_object) corresponding to an allocated 539 * memory block and add it to the object_list and object_tree_root. 540 */ 541 static struct kmemleak_object *create_object(unsigned long ptr, size_t size, 542 int min_count, gfp_t gfp) 543 { 544 unsigned long flags; 545 struct kmemleak_object *object, *parent; 546 struct rb_node **link, *rb_parent; 547 548 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 549 if (!object) { 550 pr_warn("Cannot allocate a kmemleak_object structure\n"); 551 kmemleak_disable(); 552 return NULL; 553 } 554 555 INIT_LIST_HEAD(&object->object_list); 556 INIT_LIST_HEAD(&object->gray_list); 557 INIT_HLIST_HEAD(&object->area_list); 558 spin_lock_init(&object->lock); 559 atomic_set(&object->use_count, 1); 560 object->flags = OBJECT_ALLOCATED; 561 object->pointer = ptr; 562 object->size = size; 563 object->min_count = min_count; 564 object->count = 0; /* white color initially */ 565 object->jiffies = jiffies; 566 object->checksum = 0; 567 568 /* task information */ 569 if (in_irq()) { 570 object->pid = 0; 571 strncpy(object->comm, "hardirq", sizeof(object->comm)); 572 } else if (in_softirq()) { 573 object->pid = 0; 574 strncpy(object->comm, "softirq", sizeof(object->comm)); 575 } else { 576 object->pid = current->pid; 577 /* 578 * There is a small chance of a race with set_task_comm(), 579 * however using get_task_comm() here may cause locking 580 * dependency issues with current->alloc_lock. In the worst 581 * case, the command line is not correct. 582 */ 583 strncpy(object->comm, current->comm, sizeof(object->comm)); 584 } 585 586 /* kernel backtrace */ 587 object->trace_len = __save_stack_trace(object->trace); 588 589 write_lock_irqsave(&kmemleak_lock, flags); 590 591 min_addr = min(min_addr, ptr); 592 max_addr = max(max_addr, ptr + size); 593 link = &object_tree_root.rb_node; 594 rb_parent = NULL; 595 while (*link) { 596 rb_parent = *link; 597 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 598 if (ptr + size <= parent->pointer) 599 link = &parent->rb_node.rb_left; 600 else if (parent->pointer + parent->size <= ptr) 601 link = &parent->rb_node.rb_right; 602 else { 603 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 604 ptr); 605 /* 606 * No need for parent->lock here since "parent" cannot 607 * be freed while the kmemleak_lock is held. 608 */ 609 dump_object_info(parent); 610 kmem_cache_free(object_cache, object); 611 object = NULL; 612 goto out; 613 } 614 } 615 rb_link_node(&object->rb_node, rb_parent, link); 616 rb_insert_color(&object->rb_node, &object_tree_root); 617 618 list_add_tail_rcu(&object->object_list, &object_list); 619 out: 620 write_unlock_irqrestore(&kmemleak_lock, flags); 621 return object; 622 } 623 624 /* 625 * Mark the object as not allocated and schedule RCU freeing via put_object(). 626 */ 627 static void __delete_object(struct kmemleak_object *object) 628 { 629 unsigned long flags; 630 631 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 632 WARN_ON(atomic_read(&object->use_count) < 1); 633 634 /* 635 * Locking here also ensures that the corresponding memory block 636 * cannot be freed when it is being scanned. 637 */ 638 spin_lock_irqsave(&object->lock, flags); 639 object->flags &= ~OBJECT_ALLOCATED; 640 spin_unlock_irqrestore(&object->lock, flags); 641 put_object(object); 642 } 643 644 /* 645 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 646 * delete it. 647 */ 648 static void delete_object_full(unsigned long ptr) 649 { 650 struct kmemleak_object *object; 651 652 object = find_and_remove_object(ptr, 0); 653 if (!object) { 654 #ifdef DEBUG 655 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 656 ptr); 657 #endif 658 return; 659 } 660 __delete_object(object); 661 } 662 663 /* 664 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 665 * delete it. If the memory block is partially freed, the function may create 666 * additional metadata for the remaining parts of the block. 667 */ 668 static void delete_object_part(unsigned long ptr, size_t size) 669 { 670 struct kmemleak_object *object; 671 unsigned long start, end; 672 673 object = find_and_remove_object(ptr, 1); 674 if (!object) { 675 #ifdef DEBUG 676 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 677 ptr, size); 678 #endif 679 return; 680 } 681 682 /* 683 * Create one or two objects that may result from the memory block 684 * split. Note that partial freeing is only done by free_bootmem() and 685 * this happens before kmemleak_init() is called. The path below is 686 * only executed during early log recording in kmemleak_init(), so 687 * GFP_KERNEL is enough. 688 */ 689 start = object->pointer; 690 end = object->pointer + object->size; 691 if (ptr > start) 692 create_object(start, ptr - start, object->min_count, 693 GFP_KERNEL); 694 if (ptr + size < end) 695 create_object(ptr + size, end - ptr - size, object->min_count, 696 GFP_KERNEL); 697 698 __delete_object(object); 699 } 700 701 static void __paint_it(struct kmemleak_object *object, int color) 702 { 703 object->min_count = color; 704 if (color == KMEMLEAK_BLACK) 705 object->flags |= OBJECT_NO_SCAN; 706 } 707 708 static void paint_it(struct kmemleak_object *object, int color) 709 { 710 unsigned long flags; 711 712 spin_lock_irqsave(&object->lock, flags); 713 __paint_it(object, color); 714 spin_unlock_irqrestore(&object->lock, flags); 715 } 716 717 static void paint_ptr(unsigned long ptr, int color) 718 { 719 struct kmemleak_object *object; 720 721 object = find_and_get_object(ptr, 0); 722 if (!object) { 723 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 724 ptr, 725 (color == KMEMLEAK_GREY) ? "Grey" : 726 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 727 return; 728 } 729 paint_it(object, color); 730 put_object(object); 731 } 732 733 /* 734 * Mark an object permanently as gray-colored so that it can no longer be 735 * reported as a leak. This is used in general to mark a false positive. 736 */ 737 static void make_gray_object(unsigned long ptr) 738 { 739 paint_ptr(ptr, KMEMLEAK_GREY); 740 } 741 742 /* 743 * Mark the object as black-colored so that it is ignored from scans and 744 * reporting. 745 */ 746 static void make_black_object(unsigned long ptr) 747 { 748 paint_ptr(ptr, KMEMLEAK_BLACK); 749 } 750 751 /* 752 * Add a scanning area to the object. If at least one such area is added, 753 * kmemleak will only scan these ranges rather than the whole memory block. 754 */ 755 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 756 { 757 unsigned long flags; 758 struct kmemleak_object *object; 759 struct kmemleak_scan_area *area; 760 761 object = find_and_get_object(ptr, 1); 762 if (!object) { 763 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 764 ptr); 765 return; 766 } 767 768 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 769 if (!area) { 770 pr_warn("Cannot allocate a scan area\n"); 771 goto out; 772 } 773 774 spin_lock_irqsave(&object->lock, flags); 775 if (size == SIZE_MAX) { 776 size = object->pointer + object->size - ptr; 777 } else if (ptr + size > object->pointer + object->size) { 778 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 779 dump_object_info(object); 780 kmem_cache_free(scan_area_cache, area); 781 goto out_unlock; 782 } 783 784 INIT_HLIST_NODE(&area->node); 785 area->start = ptr; 786 area->size = size; 787 788 hlist_add_head(&area->node, &object->area_list); 789 out_unlock: 790 spin_unlock_irqrestore(&object->lock, flags); 791 out: 792 put_object(object); 793 } 794 795 /* 796 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 797 * pointer. Such object will not be scanned by kmemleak but references to it 798 * are searched. 799 */ 800 static void object_no_scan(unsigned long ptr) 801 { 802 unsigned long flags; 803 struct kmemleak_object *object; 804 805 object = find_and_get_object(ptr, 0); 806 if (!object) { 807 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 808 return; 809 } 810 811 spin_lock_irqsave(&object->lock, flags); 812 object->flags |= OBJECT_NO_SCAN; 813 spin_unlock_irqrestore(&object->lock, flags); 814 put_object(object); 815 } 816 817 /* 818 * Log an early kmemleak_* call to the early_log buffer. These calls will be 819 * processed later once kmemleak is fully initialized. 820 */ 821 static void __init log_early(int op_type, const void *ptr, size_t size, 822 int min_count) 823 { 824 unsigned long flags; 825 struct early_log *log; 826 827 if (kmemleak_error) { 828 /* kmemleak stopped recording, just count the requests */ 829 crt_early_log++; 830 return; 831 } 832 833 if (crt_early_log >= ARRAY_SIZE(early_log)) { 834 crt_early_log++; 835 kmemleak_disable(); 836 return; 837 } 838 839 /* 840 * There is no need for locking since the kernel is still in UP mode 841 * at this stage. Disabling the IRQs is enough. 842 */ 843 local_irq_save(flags); 844 log = &early_log[crt_early_log]; 845 log->op_type = op_type; 846 log->ptr = ptr; 847 log->size = size; 848 log->min_count = min_count; 849 log->trace_len = __save_stack_trace(log->trace); 850 crt_early_log++; 851 local_irq_restore(flags); 852 } 853 854 /* 855 * Log an early allocated block and populate the stack trace. 856 */ 857 static void early_alloc(struct early_log *log) 858 { 859 struct kmemleak_object *object; 860 unsigned long flags; 861 int i; 862 863 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr)) 864 return; 865 866 /* 867 * RCU locking needed to ensure object is not freed via put_object(). 868 */ 869 rcu_read_lock(); 870 object = create_object((unsigned long)log->ptr, log->size, 871 log->min_count, GFP_ATOMIC); 872 if (!object) 873 goto out; 874 spin_lock_irqsave(&object->lock, flags); 875 for (i = 0; i < log->trace_len; i++) 876 object->trace[i] = log->trace[i]; 877 object->trace_len = log->trace_len; 878 spin_unlock_irqrestore(&object->lock, flags); 879 out: 880 rcu_read_unlock(); 881 } 882 883 /* 884 * Log an early allocated block and populate the stack trace. 885 */ 886 static void early_alloc_percpu(struct early_log *log) 887 { 888 unsigned int cpu; 889 const void __percpu *ptr = log->ptr; 890 891 for_each_possible_cpu(cpu) { 892 log->ptr = per_cpu_ptr(ptr, cpu); 893 early_alloc(log); 894 } 895 } 896 897 /** 898 * kmemleak_alloc - register a newly allocated object 899 * @ptr: pointer to beginning of the object 900 * @size: size of the object 901 * @min_count: minimum number of references to this object. If during memory 902 * scanning a number of references less than @min_count is found, 903 * the object is reported as a memory leak. If @min_count is 0, 904 * the object is never reported as a leak. If @min_count is -1, 905 * the object is ignored (not scanned and not reported as a leak) 906 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 907 * 908 * This function is called from the kernel allocators when a new object 909 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.). 910 */ 911 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 912 gfp_t gfp) 913 { 914 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 915 916 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 917 create_object((unsigned long)ptr, size, min_count, gfp); 918 else if (kmemleak_early_log) 919 log_early(KMEMLEAK_ALLOC, ptr, size, min_count); 920 } 921 EXPORT_SYMBOL_GPL(kmemleak_alloc); 922 923 /** 924 * kmemleak_alloc_percpu - register a newly allocated __percpu object 925 * @ptr: __percpu pointer to beginning of the object 926 * @size: size of the object 927 * @gfp: flags used for kmemleak internal memory allocations 928 * 929 * This function is called from the kernel percpu allocator when a new object 930 * (memory block) is allocated (alloc_percpu). 931 */ 932 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 933 gfp_t gfp) 934 { 935 unsigned int cpu; 936 937 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); 938 939 /* 940 * Percpu allocations are only scanned and not reported as leaks 941 * (min_count is set to 0). 942 */ 943 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 944 for_each_possible_cpu(cpu) 945 create_object((unsigned long)per_cpu_ptr(ptr, cpu), 946 size, 0, gfp); 947 else if (kmemleak_early_log) 948 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0); 949 } 950 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 951 952 /** 953 * kmemleak_free - unregister a previously registered object 954 * @ptr: pointer to beginning of the object 955 * 956 * This function is called from the kernel allocators when an object (memory 957 * block) is freed (kmem_cache_free, kfree, vfree etc.). 958 */ 959 void __ref kmemleak_free(const void *ptr) 960 { 961 pr_debug("%s(0x%p)\n", __func__, ptr); 962 963 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 964 delete_object_full((unsigned long)ptr); 965 else if (kmemleak_early_log) 966 log_early(KMEMLEAK_FREE, ptr, 0, 0); 967 } 968 EXPORT_SYMBOL_GPL(kmemleak_free); 969 970 /** 971 * kmemleak_free_part - partially unregister a previously registered object 972 * @ptr: pointer to the beginning or inside the object. This also 973 * represents the start of the range to be freed 974 * @size: size to be unregistered 975 * 976 * This function is called when only a part of a memory block is freed 977 * (usually from the bootmem allocator). 978 */ 979 void __ref kmemleak_free_part(const void *ptr, size_t size) 980 { 981 pr_debug("%s(0x%p)\n", __func__, ptr); 982 983 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 984 delete_object_part((unsigned long)ptr, size); 985 else if (kmemleak_early_log) 986 log_early(KMEMLEAK_FREE_PART, ptr, size, 0); 987 } 988 EXPORT_SYMBOL_GPL(kmemleak_free_part); 989 990 /** 991 * kmemleak_free_percpu - unregister a previously registered __percpu object 992 * @ptr: __percpu pointer to beginning of the object 993 * 994 * This function is called from the kernel percpu allocator when an object 995 * (memory block) is freed (free_percpu). 996 */ 997 void __ref kmemleak_free_percpu(const void __percpu *ptr) 998 { 999 unsigned int cpu; 1000 1001 pr_debug("%s(0x%p)\n", __func__, ptr); 1002 1003 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1004 for_each_possible_cpu(cpu) 1005 delete_object_full((unsigned long)per_cpu_ptr(ptr, 1006 cpu)); 1007 else if (kmemleak_early_log) 1008 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0); 1009 } 1010 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1011 1012 /** 1013 * kmemleak_update_trace - update object allocation stack trace 1014 * @ptr: pointer to beginning of the object 1015 * 1016 * Override the object allocation stack trace for cases where the actual 1017 * allocation place is not always useful. 1018 */ 1019 void __ref kmemleak_update_trace(const void *ptr) 1020 { 1021 struct kmemleak_object *object; 1022 unsigned long flags; 1023 1024 pr_debug("%s(0x%p)\n", __func__, ptr); 1025 1026 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1027 return; 1028 1029 object = find_and_get_object((unsigned long)ptr, 1); 1030 if (!object) { 1031 #ifdef DEBUG 1032 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1033 ptr); 1034 #endif 1035 return; 1036 } 1037 1038 spin_lock_irqsave(&object->lock, flags); 1039 object->trace_len = __save_stack_trace(object->trace); 1040 spin_unlock_irqrestore(&object->lock, flags); 1041 1042 put_object(object); 1043 } 1044 EXPORT_SYMBOL(kmemleak_update_trace); 1045 1046 /** 1047 * kmemleak_not_leak - mark an allocated object as false positive 1048 * @ptr: pointer to beginning of the object 1049 * 1050 * Calling this function on an object will cause the memory block to no longer 1051 * be reported as leak and always be scanned. 1052 */ 1053 void __ref kmemleak_not_leak(const void *ptr) 1054 { 1055 pr_debug("%s(0x%p)\n", __func__, ptr); 1056 1057 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1058 make_gray_object((unsigned long)ptr); 1059 else if (kmemleak_early_log) 1060 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0); 1061 } 1062 EXPORT_SYMBOL(kmemleak_not_leak); 1063 1064 /** 1065 * kmemleak_ignore - ignore an allocated object 1066 * @ptr: pointer to beginning of the object 1067 * 1068 * Calling this function on an object will cause the memory block to be 1069 * ignored (not scanned and not reported as a leak). This is usually done when 1070 * it is known that the corresponding block is not a leak and does not contain 1071 * any references to other allocated memory blocks. 1072 */ 1073 void __ref kmemleak_ignore(const void *ptr) 1074 { 1075 pr_debug("%s(0x%p)\n", __func__, ptr); 1076 1077 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1078 make_black_object((unsigned long)ptr); 1079 else if (kmemleak_early_log) 1080 log_early(KMEMLEAK_IGNORE, ptr, 0, 0); 1081 } 1082 EXPORT_SYMBOL(kmemleak_ignore); 1083 1084 /** 1085 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1086 * @ptr: pointer to beginning or inside the object. This also 1087 * represents the start of the scan area 1088 * @size: size of the scan area 1089 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1090 * 1091 * This function is used when it is known that only certain parts of an object 1092 * contain references to other objects. Kmemleak will only scan these areas 1093 * reducing the number false negatives. 1094 */ 1095 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1096 { 1097 pr_debug("%s(0x%p)\n", __func__, ptr); 1098 1099 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1100 add_scan_area((unsigned long)ptr, size, gfp); 1101 else if (kmemleak_early_log) 1102 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0); 1103 } 1104 EXPORT_SYMBOL(kmemleak_scan_area); 1105 1106 /** 1107 * kmemleak_no_scan - do not scan an allocated object 1108 * @ptr: pointer to beginning of the object 1109 * 1110 * This function notifies kmemleak not to scan the given memory block. Useful 1111 * in situations where it is known that the given object does not contain any 1112 * references to other objects. Kmemleak will not scan such objects reducing 1113 * the number of false negatives. 1114 */ 1115 void __ref kmemleak_no_scan(const void *ptr) 1116 { 1117 pr_debug("%s(0x%p)\n", __func__, ptr); 1118 1119 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1120 object_no_scan((unsigned long)ptr); 1121 else if (kmemleak_early_log) 1122 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0); 1123 } 1124 EXPORT_SYMBOL(kmemleak_no_scan); 1125 1126 /** 1127 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1128 * address argument 1129 */ 1130 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count, 1131 gfp_t gfp) 1132 { 1133 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1134 kmemleak_alloc(__va(phys), size, min_count, gfp); 1135 } 1136 EXPORT_SYMBOL(kmemleak_alloc_phys); 1137 1138 /** 1139 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1140 * physical address argument 1141 */ 1142 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1143 { 1144 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1145 kmemleak_free_part(__va(phys), size); 1146 } 1147 EXPORT_SYMBOL(kmemleak_free_part_phys); 1148 1149 /** 1150 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical 1151 * address argument 1152 */ 1153 void __ref kmemleak_not_leak_phys(phys_addr_t phys) 1154 { 1155 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1156 kmemleak_not_leak(__va(phys)); 1157 } 1158 EXPORT_SYMBOL(kmemleak_not_leak_phys); 1159 1160 /** 1161 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1162 * address argument 1163 */ 1164 void __ref kmemleak_ignore_phys(phys_addr_t phys) 1165 { 1166 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1167 kmemleak_ignore(__va(phys)); 1168 } 1169 EXPORT_SYMBOL(kmemleak_ignore_phys); 1170 1171 /* 1172 * Update an object's checksum and return true if it was modified. 1173 */ 1174 static bool update_checksum(struct kmemleak_object *object) 1175 { 1176 u32 old_csum = object->checksum; 1177 1178 if (!kmemcheck_is_obj_initialized(object->pointer, object->size)) 1179 return false; 1180 1181 kasan_disable_current(); 1182 object->checksum = crc32(0, (void *)object->pointer, object->size); 1183 kasan_enable_current(); 1184 1185 return object->checksum != old_csum; 1186 } 1187 1188 /* 1189 * Memory scanning is a long process and it needs to be interruptable. This 1190 * function checks whether such interrupt condition occurred. 1191 */ 1192 static int scan_should_stop(void) 1193 { 1194 if (!kmemleak_enabled) 1195 return 1; 1196 1197 /* 1198 * This function may be called from either process or kthread context, 1199 * hence the need to check for both stop conditions. 1200 */ 1201 if (current->mm) 1202 return signal_pending(current); 1203 else 1204 return kthread_should_stop(); 1205 1206 return 0; 1207 } 1208 1209 /* 1210 * Scan a memory block (exclusive range) for valid pointers and add those 1211 * found to the gray list. 1212 */ 1213 static void scan_block(void *_start, void *_end, 1214 struct kmemleak_object *scanned) 1215 { 1216 unsigned long *ptr; 1217 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1218 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1219 unsigned long flags; 1220 1221 read_lock_irqsave(&kmemleak_lock, flags); 1222 for (ptr = start; ptr < end; ptr++) { 1223 struct kmemleak_object *object; 1224 unsigned long pointer; 1225 1226 if (scan_should_stop()) 1227 break; 1228 1229 /* don't scan uninitialized memory */ 1230 if (!kmemcheck_is_obj_initialized((unsigned long)ptr, 1231 BYTES_PER_POINTER)) 1232 continue; 1233 1234 kasan_disable_current(); 1235 pointer = *ptr; 1236 kasan_enable_current(); 1237 1238 if (pointer < min_addr || pointer >= max_addr) 1239 continue; 1240 1241 /* 1242 * No need for get_object() here since we hold kmemleak_lock. 1243 * object->use_count cannot be dropped to 0 while the object 1244 * is still present in object_tree_root and object_list 1245 * (with updates protected by kmemleak_lock). 1246 */ 1247 object = lookup_object(pointer, 1); 1248 if (!object) 1249 continue; 1250 if (object == scanned) 1251 /* self referenced, ignore */ 1252 continue; 1253 1254 /* 1255 * Avoid the lockdep recursive warning on object->lock being 1256 * previously acquired in scan_object(). These locks are 1257 * enclosed by scan_mutex. 1258 */ 1259 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1260 if (!color_white(object)) { 1261 /* non-orphan, ignored or new */ 1262 spin_unlock(&object->lock); 1263 continue; 1264 } 1265 1266 /* 1267 * Increase the object's reference count (number of pointers 1268 * to the memory block). If this count reaches the required 1269 * minimum, the object's color will become gray and it will be 1270 * added to the gray_list. 1271 */ 1272 object->count++; 1273 if (color_gray(object)) { 1274 /* put_object() called when removing from gray_list */ 1275 WARN_ON(!get_object(object)); 1276 list_add_tail(&object->gray_list, &gray_list); 1277 } 1278 spin_unlock(&object->lock); 1279 } 1280 read_unlock_irqrestore(&kmemleak_lock, flags); 1281 } 1282 1283 /* 1284 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1285 */ 1286 static void scan_large_block(void *start, void *end) 1287 { 1288 void *next; 1289 1290 while (start < end) { 1291 next = min(start + MAX_SCAN_SIZE, end); 1292 scan_block(start, next, NULL); 1293 start = next; 1294 cond_resched(); 1295 } 1296 } 1297 1298 /* 1299 * Scan a memory block corresponding to a kmemleak_object. A condition is 1300 * that object->use_count >= 1. 1301 */ 1302 static void scan_object(struct kmemleak_object *object) 1303 { 1304 struct kmemleak_scan_area *area; 1305 unsigned long flags; 1306 1307 /* 1308 * Once the object->lock is acquired, the corresponding memory block 1309 * cannot be freed (the same lock is acquired in delete_object). 1310 */ 1311 spin_lock_irqsave(&object->lock, flags); 1312 if (object->flags & OBJECT_NO_SCAN) 1313 goto out; 1314 if (!(object->flags & OBJECT_ALLOCATED)) 1315 /* already freed object */ 1316 goto out; 1317 if (hlist_empty(&object->area_list)) { 1318 void *start = (void *)object->pointer; 1319 void *end = (void *)(object->pointer + object->size); 1320 void *next; 1321 1322 do { 1323 next = min(start + MAX_SCAN_SIZE, end); 1324 scan_block(start, next, object); 1325 1326 start = next; 1327 if (start >= end) 1328 break; 1329 1330 spin_unlock_irqrestore(&object->lock, flags); 1331 cond_resched(); 1332 spin_lock_irqsave(&object->lock, flags); 1333 } while (object->flags & OBJECT_ALLOCATED); 1334 } else 1335 hlist_for_each_entry(area, &object->area_list, node) 1336 scan_block((void *)area->start, 1337 (void *)(area->start + area->size), 1338 object); 1339 out: 1340 spin_unlock_irqrestore(&object->lock, flags); 1341 } 1342 1343 /* 1344 * Scan the objects already referenced (gray objects). More objects will be 1345 * referenced and, if there are no memory leaks, all the objects are scanned. 1346 */ 1347 static void scan_gray_list(void) 1348 { 1349 struct kmemleak_object *object, *tmp; 1350 1351 /* 1352 * The list traversal is safe for both tail additions and removals 1353 * from inside the loop. The kmemleak objects cannot be freed from 1354 * outside the loop because their use_count was incremented. 1355 */ 1356 object = list_entry(gray_list.next, typeof(*object), gray_list); 1357 while (&object->gray_list != &gray_list) { 1358 cond_resched(); 1359 1360 /* may add new objects to the list */ 1361 if (!scan_should_stop()) 1362 scan_object(object); 1363 1364 tmp = list_entry(object->gray_list.next, typeof(*object), 1365 gray_list); 1366 1367 /* remove the object from the list and release it */ 1368 list_del(&object->gray_list); 1369 put_object(object); 1370 1371 object = tmp; 1372 } 1373 WARN_ON(!list_empty(&gray_list)); 1374 } 1375 1376 /* 1377 * Scan data sections and all the referenced memory blocks allocated via the 1378 * kernel's standard allocators. This function must be called with the 1379 * scan_mutex held. 1380 */ 1381 static void kmemleak_scan(void) 1382 { 1383 unsigned long flags; 1384 struct kmemleak_object *object; 1385 int i; 1386 int new_leaks = 0; 1387 1388 jiffies_last_scan = jiffies; 1389 1390 /* prepare the kmemleak_object's */ 1391 rcu_read_lock(); 1392 list_for_each_entry_rcu(object, &object_list, object_list) { 1393 spin_lock_irqsave(&object->lock, flags); 1394 #ifdef DEBUG 1395 /* 1396 * With a few exceptions there should be a maximum of 1397 * 1 reference to any object at this point. 1398 */ 1399 if (atomic_read(&object->use_count) > 1) { 1400 pr_debug("object->use_count = %d\n", 1401 atomic_read(&object->use_count)); 1402 dump_object_info(object); 1403 } 1404 #endif 1405 /* reset the reference count (whiten the object) */ 1406 object->count = 0; 1407 if (color_gray(object) && get_object(object)) 1408 list_add_tail(&object->gray_list, &gray_list); 1409 1410 spin_unlock_irqrestore(&object->lock, flags); 1411 } 1412 rcu_read_unlock(); 1413 1414 /* data/bss scanning */ 1415 scan_large_block(_sdata, _edata); 1416 scan_large_block(__bss_start, __bss_stop); 1417 1418 #ifdef CONFIG_SMP 1419 /* per-cpu sections scanning */ 1420 for_each_possible_cpu(i) 1421 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1422 __per_cpu_end + per_cpu_offset(i)); 1423 #endif 1424 1425 /* 1426 * Struct page scanning for each node. 1427 */ 1428 get_online_mems(); 1429 for_each_online_node(i) { 1430 unsigned long start_pfn = node_start_pfn(i); 1431 unsigned long end_pfn = node_end_pfn(i); 1432 unsigned long pfn; 1433 1434 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1435 struct page *page; 1436 1437 if (!pfn_valid(pfn)) 1438 continue; 1439 page = pfn_to_page(pfn); 1440 /* only scan if page is in use */ 1441 if (page_count(page) == 0) 1442 continue; 1443 scan_block(page, page + 1, NULL); 1444 } 1445 } 1446 put_online_mems(); 1447 1448 /* 1449 * Scanning the task stacks (may introduce false negatives). 1450 */ 1451 if (kmemleak_stack_scan) { 1452 struct task_struct *p, *g; 1453 1454 read_lock(&tasklist_lock); 1455 do_each_thread(g, p) { 1456 scan_block(task_stack_page(p), task_stack_page(p) + 1457 THREAD_SIZE, NULL); 1458 } while_each_thread(g, p); 1459 read_unlock(&tasklist_lock); 1460 } 1461 1462 /* 1463 * Scan the objects already referenced from the sections scanned 1464 * above. 1465 */ 1466 scan_gray_list(); 1467 1468 /* 1469 * Check for new or unreferenced objects modified since the previous 1470 * scan and color them gray until the next scan. 1471 */ 1472 rcu_read_lock(); 1473 list_for_each_entry_rcu(object, &object_list, object_list) { 1474 spin_lock_irqsave(&object->lock, flags); 1475 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1476 && update_checksum(object) && get_object(object)) { 1477 /* color it gray temporarily */ 1478 object->count = object->min_count; 1479 list_add_tail(&object->gray_list, &gray_list); 1480 } 1481 spin_unlock_irqrestore(&object->lock, flags); 1482 } 1483 rcu_read_unlock(); 1484 1485 /* 1486 * Re-scan the gray list for modified unreferenced objects. 1487 */ 1488 scan_gray_list(); 1489 1490 /* 1491 * If scanning was stopped do not report any new unreferenced objects. 1492 */ 1493 if (scan_should_stop()) 1494 return; 1495 1496 /* 1497 * Scanning result reporting. 1498 */ 1499 rcu_read_lock(); 1500 list_for_each_entry_rcu(object, &object_list, object_list) { 1501 spin_lock_irqsave(&object->lock, flags); 1502 if (unreferenced_object(object) && 1503 !(object->flags & OBJECT_REPORTED)) { 1504 object->flags |= OBJECT_REPORTED; 1505 new_leaks++; 1506 } 1507 spin_unlock_irqrestore(&object->lock, flags); 1508 } 1509 rcu_read_unlock(); 1510 1511 if (new_leaks) { 1512 kmemleak_found_leaks = true; 1513 1514 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1515 new_leaks); 1516 } 1517 1518 } 1519 1520 /* 1521 * Thread function performing automatic memory scanning. Unreferenced objects 1522 * at the end of a memory scan are reported but only the first time. 1523 */ 1524 static int kmemleak_scan_thread(void *arg) 1525 { 1526 static int first_run = 1; 1527 1528 pr_info("Automatic memory scanning thread started\n"); 1529 set_user_nice(current, 10); 1530 1531 /* 1532 * Wait before the first scan to allow the system to fully initialize. 1533 */ 1534 if (first_run) { 1535 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); 1536 first_run = 0; 1537 while (timeout && !kthread_should_stop()) 1538 timeout = schedule_timeout_interruptible(timeout); 1539 } 1540 1541 while (!kthread_should_stop()) { 1542 signed long timeout = jiffies_scan_wait; 1543 1544 mutex_lock(&scan_mutex); 1545 kmemleak_scan(); 1546 mutex_unlock(&scan_mutex); 1547 1548 /* wait before the next scan */ 1549 while (timeout && !kthread_should_stop()) 1550 timeout = schedule_timeout_interruptible(timeout); 1551 } 1552 1553 pr_info("Automatic memory scanning thread ended\n"); 1554 1555 return 0; 1556 } 1557 1558 /* 1559 * Start the automatic memory scanning thread. This function must be called 1560 * with the scan_mutex held. 1561 */ 1562 static void start_scan_thread(void) 1563 { 1564 if (scan_thread) 1565 return; 1566 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1567 if (IS_ERR(scan_thread)) { 1568 pr_warn("Failed to create the scan thread\n"); 1569 scan_thread = NULL; 1570 } 1571 } 1572 1573 /* 1574 * Stop the automatic memory scanning thread. This function must be called 1575 * with the scan_mutex held. 1576 */ 1577 static void stop_scan_thread(void) 1578 { 1579 if (scan_thread) { 1580 kthread_stop(scan_thread); 1581 scan_thread = NULL; 1582 } 1583 } 1584 1585 /* 1586 * Iterate over the object_list and return the first valid object at or after 1587 * the required position with its use_count incremented. The function triggers 1588 * a memory scanning when the pos argument points to the first position. 1589 */ 1590 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1591 { 1592 struct kmemleak_object *object; 1593 loff_t n = *pos; 1594 int err; 1595 1596 err = mutex_lock_interruptible(&scan_mutex); 1597 if (err < 0) 1598 return ERR_PTR(err); 1599 1600 rcu_read_lock(); 1601 list_for_each_entry_rcu(object, &object_list, object_list) { 1602 if (n-- > 0) 1603 continue; 1604 if (get_object(object)) 1605 goto out; 1606 } 1607 object = NULL; 1608 out: 1609 return object; 1610 } 1611 1612 /* 1613 * Return the next object in the object_list. The function decrements the 1614 * use_count of the previous object and increases that of the next one. 1615 */ 1616 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1617 { 1618 struct kmemleak_object *prev_obj = v; 1619 struct kmemleak_object *next_obj = NULL; 1620 struct kmemleak_object *obj = prev_obj; 1621 1622 ++(*pos); 1623 1624 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1625 if (get_object(obj)) { 1626 next_obj = obj; 1627 break; 1628 } 1629 } 1630 1631 put_object(prev_obj); 1632 return next_obj; 1633 } 1634 1635 /* 1636 * Decrement the use_count of the last object required, if any. 1637 */ 1638 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1639 { 1640 if (!IS_ERR(v)) { 1641 /* 1642 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1643 * waiting was interrupted, so only release it if !IS_ERR. 1644 */ 1645 rcu_read_unlock(); 1646 mutex_unlock(&scan_mutex); 1647 if (v) 1648 put_object(v); 1649 } 1650 } 1651 1652 /* 1653 * Print the information for an unreferenced object to the seq file. 1654 */ 1655 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1656 { 1657 struct kmemleak_object *object = v; 1658 unsigned long flags; 1659 1660 spin_lock_irqsave(&object->lock, flags); 1661 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1662 print_unreferenced(seq, object); 1663 spin_unlock_irqrestore(&object->lock, flags); 1664 return 0; 1665 } 1666 1667 static const struct seq_operations kmemleak_seq_ops = { 1668 .start = kmemleak_seq_start, 1669 .next = kmemleak_seq_next, 1670 .stop = kmemleak_seq_stop, 1671 .show = kmemleak_seq_show, 1672 }; 1673 1674 static int kmemleak_open(struct inode *inode, struct file *file) 1675 { 1676 return seq_open(file, &kmemleak_seq_ops); 1677 } 1678 1679 static int dump_str_object_info(const char *str) 1680 { 1681 unsigned long flags; 1682 struct kmemleak_object *object; 1683 unsigned long addr; 1684 1685 if (kstrtoul(str, 0, &addr)) 1686 return -EINVAL; 1687 object = find_and_get_object(addr, 0); 1688 if (!object) { 1689 pr_info("Unknown object at 0x%08lx\n", addr); 1690 return -EINVAL; 1691 } 1692 1693 spin_lock_irqsave(&object->lock, flags); 1694 dump_object_info(object); 1695 spin_unlock_irqrestore(&object->lock, flags); 1696 1697 put_object(object); 1698 return 0; 1699 } 1700 1701 /* 1702 * We use grey instead of black to ensure we can do future scans on the same 1703 * objects. If we did not do future scans these black objects could 1704 * potentially contain references to newly allocated objects in the future and 1705 * we'd end up with false positives. 1706 */ 1707 static void kmemleak_clear(void) 1708 { 1709 struct kmemleak_object *object; 1710 unsigned long flags; 1711 1712 rcu_read_lock(); 1713 list_for_each_entry_rcu(object, &object_list, object_list) { 1714 spin_lock_irqsave(&object->lock, flags); 1715 if ((object->flags & OBJECT_REPORTED) && 1716 unreferenced_object(object)) 1717 __paint_it(object, KMEMLEAK_GREY); 1718 spin_unlock_irqrestore(&object->lock, flags); 1719 } 1720 rcu_read_unlock(); 1721 1722 kmemleak_found_leaks = false; 1723 } 1724 1725 static void __kmemleak_do_cleanup(void); 1726 1727 /* 1728 * File write operation to configure kmemleak at run-time. The following 1729 * commands can be written to the /sys/kernel/debug/kmemleak file: 1730 * off - disable kmemleak (irreversible) 1731 * stack=on - enable the task stacks scanning 1732 * stack=off - disable the tasks stacks scanning 1733 * scan=on - start the automatic memory scanning thread 1734 * scan=off - stop the automatic memory scanning thread 1735 * scan=... - set the automatic memory scanning period in seconds (0 to 1736 * disable it) 1737 * scan - trigger a memory scan 1738 * clear - mark all current reported unreferenced kmemleak objects as 1739 * grey to ignore printing them, or free all kmemleak objects 1740 * if kmemleak has been disabled. 1741 * dump=... - dump information about the object found at the given address 1742 */ 1743 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1744 size_t size, loff_t *ppos) 1745 { 1746 char buf[64]; 1747 int buf_size; 1748 int ret; 1749 1750 buf_size = min(size, (sizeof(buf) - 1)); 1751 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1752 return -EFAULT; 1753 buf[buf_size] = 0; 1754 1755 ret = mutex_lock_interruptible(&scan_mutex); 1756 if (ret < 0) 1757 return ret; 1758 1759 if (strncmp(buf, "clear", 5) == 0) { 1760 if (kmemleak_enabled) 1761 kmemleak_clear(); 1762 else 1763 __kmemleak_do_cleanup(); 1764 goto out; 1765 } 1766 1767 if (!kmemleak_enabled) { 1768 ret = -EBUSY; 1769 goto out; 1770 } 1771 1772 if (strncmp(buf, "off", 3) == 0) 1773 kmemleak_disable(); 1774 else if (strncmp(buf, "stack=on", 8) == 0) 1775 kmemleak_stack_scan = 1; 1776 else if (strncmp(buf, "stack=off", 9) == 0) 1777 kmemleak_stack_scan = 0; 1778 else if (strncmp(buf, "scan=on", 7) == 0) 1779 start_scan_thread(); 1780 else if (strncmp(buf, "scan=off", 8) == 0) 1781 stop_scan_thread(); 1782 else if (strncmp(buf, "scan=", 5) == 0) { 1783 unsigned long secs; 1784 1785 ret = kstrtoul(buf + 5, 0, &secs); 1786 if (ret < 0) 1787 goto out; 1788 stop_scan_thread(); 1789 if (secs) { 1790 jiffies_scan_wait = msecs_to_jiffies(secs * 1000); 1791 start_scan_thread(); 1792 } 1793 } else if (strncmp(buf, "scan", 4) == 0) 1794 kmemleak_scan(); 1795 else if (strncmp(buf, "dump=", 5) == 0) 1796 ret = dump_str_object_info(buf + 5); 1797 else 1798 ret = -EINVAL; 1799 1800 out: 1801 mutex_unlock(&scan_mutex); 1802 if (ret < 0) 1803 return ret; 1804 1805 /* ignore the rest of the buffer, only one command at a time */ 1806 *ppos += size; 1807 return size; 1808 } 1809 1810 static const struct file_operations kmemleak_fops = { 1811 .owner = THIS_MODULE, 1812 .open = kmemleak_open, 1813 .read = seq_read, 1814 .write = kmemleak_write, 1815 .llseek = seq_lseek, 1816 .release = seq_release, 1817 }; 1818 1819 static void __kmemleak_do_cleanup(void) 1820 { 1821 struct kmemleak_object *object; 1822 1823 rcu_read_lock(); 1824 list_for_each_entry_rcu(object, &object_list, object_list) 1825 delete_object_full(object->pointer); 1826 rcu_read_unlock(); 1827 } 1828 1829 /* 1830 * Stop the memory scanning thread and free the kmemleak internal objects if 1831 * no previous scan thread (otherwise, kmemleak may still have some useful 1832 * information on memory leaks). 1833 */ 1834 static void kmemleak_do_cleanup(struct work_struct *work) 1835 { 1836 stop_scan_thread(); 1837 1838 /* 1839 * Once the scan thread has stopped, it is safe to no longer track 1840 * object freeing. Ordering of the scan thread stopping and the memory 1841 * accesses below is guaranteed by the kthread_stop() function. 1842 */ 1843 kmemleak_free_enabled = 0; 1844 1845 if (!kmemleak_found_leaks) 1846 __kmemleak_do_cleanup(); 1847 else 1848 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 1849 } 1850 1851 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 1852 1853 /* 1854 * Disable kmemleak. No memory allocation/freeing will be traced once this 1855 * function is called. Disabling kmemleak is an irreversible operation. 1856 */ 1857 static void kmemleak_disable(void) 1858 { 1859 /* atomically check whether it was already invoked */ 1860 if (cmpxchg(&kmemleak_error, 0, 1)) 1861 return; 1862 1863 /* stop any memory operation tracing */ 1864 kmemleak_enabled = 0; 1865 1866 /* check whether it is too early for a kernel thread */ 1867 if (kmemleak_initialized) 1868 schedule_work(&cleanup_work); 1869 else 1870 kmemleak_free_enabled = 0; 1871 1872 pr_info("Kernel memory leak detector disabled\n"); 1873 } 1874 1875 /* 1876 * Allow boot-time kmemleak disabling (enabled by default). 1877 */ 1878 static int kmemleak_boot_config(char *str) 1879 { 1880 if (!str) 1881 return -EINVAL; 1882 if (strcmp(str, "off") == 0) 1883 kmemleak_disable(); 1884 else if (strcmp(str, "on") == 0) 1885 kmemleak_skip_disable = 1; 1886 else 1887 return -EINVAL; 1888 return 0; 1889 } 1890 early_param("kmemleak", kmemleak_boot_config); 1891 1892 static void __init print_log_trace(struct early_log *log) 1893 { 1894 struct stack_trace trace; 1895 1896 trace.nr_entries = log->trace_len; 1897 trace.entries = log->trace; 1898 1899 pr_notice("Early log backtrace:\n"); 1900 print_stack_trace(&trace, 2); 1901 } 1902 1903 /* 1904 * Kmemleak initialization. 1905 */ 1906 void __init kmemleak_init(void) 1907 { 1908 int i; 1909 unsigned long flags; 1910 1911 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 1912 if (!kmemleak_skip_disable) { 1913 kmemleak_early_log = 0; 1914 kmemleak_disable(); 1915 return; 1916 } 1917 #endif 1918 1919 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 1920 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 1921 1922 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 1923 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 1924 1925 if (crt_early_log > ARRAY_SIZE(early_log)) 1926 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", 1927 crt_early_log); 1928 1929 /* the kernel is still in UP mode, so disabling the IRQs is enough */ 1930 local_irq_save(flags); 1931 kmemleak_early_log = 0; 1932 if (kmemleak_error) { 1933 local_irq_restore(flags); 1934 return; 1935 } else { 1936 kmemleak_enabled = 1; 1937 kmemleak_free_enabled = 1; 1938 } 1939 local_irq_restore(flags); 1940 1941 /* 1942 * This is the point where tracking allocations is safe. Automatic 1943 * scanning is started during the late initcall. Add the early logged 1944 * callbacks to the kmemleak infrastructure. 1945 */ 1946 for (i = 0; i < crt_early_log; i++) { 1947 struct early_log *log = &early_log[i]; 1948 1949 switch (log->op_type) { 1950 case KMEMLEAK_ALLOC: 1951 early_alloc(log); 1952 break; 1953 case KMEMLEAK_ALLOC_PERCPU: 1954 early_alloc_percpu(log); 1955 break; 1956 case KMEMLEAK_FREE: 1957 kmemleak_free(log->ptr); 1958 break; 1959 case KMEMLEAK_FREE_PART: 1960 kmemleak_free_part(log->ptr, log->size); 1961 break; 1962 case KMEMLEAK_FREE_PERCPU: 1963 kmemleak_free_percpu(log->ptr); 1964 break; 1965 case KMEMLEAK_NOT_LEAK: 1966 kmemleak_not_leak(log->ptr); 1967 break; 1968 case KMEMLEAK_IGNORE: 1969 kmemleak_ignore(log->ptr); 1970 break; 1971 case KMEMLEAK_SCAN_AREA: 1972 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL); 1973 break; 1974 case KMEMLEAK_NO_SCAN: 1975 kmemleak_no_scan(log->ptr); 1976 break; 1977 default: 1978 kmemleak_warn("Unknown early log operation: %d\n", 1979 log->op_type); 1980 } 1981 1982 if (kmemleak_warning) { 1983 print_log_trace(log); 1984 kmemleak_warning = 0; 1985 } 1986 } 1987 } 1988 1989 /* 1990 * Late initialization function. 1991 */ 1992 static int __init kmemleak_late_init(void) 1993 { 1994 struct dentry *dentry; 1995 1996 kmemleak_initialized = 1; 1997 1998 if (kmemleak_error) { 1999 /* 2000 * Some error occurred and kmemleak was disabled. There is a 2001 * small chance that kmemleak_disable() was called immediately 2002 * after setting kmemleak_initialized and we may end up with 2003 * two clean-up threads but serialized by scan_mutex. 2004 */ 2005 schedule_work(&cleanup_work); 2006 return -ENOMEM; 2007 } 2008 2009 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL, 2010 &kmemleak_fops); 2011 if (!dentry) 2012 pr_warn("Failed to create the debugfs kmemleak file\n"); 2013 mutex_lock(&scan_mutex); 2014 start_scan_thread(); 2015 mutex_unlock(&scan_mutex); 2016 2017 pr_info("Kernel memory leak detector initialized\n"); 2018 2019 return 0; 2020 } 2021 late_initcall(kmemleak_late_init); 2022