xref: /openbmc/linux/mm/kmemleak.c (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/kmemleak.txt.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a red black tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * Locks and mutexes are acquired/nested in the following order:
57  *
58  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59  *
60  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61  * regions.
62  *
63  * The kmemleak_object structures have a use_count incremented or decremented
64  * using the get_object()/put_object() functions. When the use_count becomes
65  * 0, this count can no longer be incremented and put_object() schedules the
66  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67  * function must be protected by rcu_read_lock() to avoid accessing a freed
68  * structure.
69  */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/init.h>
74 #include <linux/kernel.h>
75 #include <linux/list.h>
76 #include <linux/sched.h>
77 #include <linux/jiffies.h>
78 #include <linux/delay.h>
79 #include <linux/export.h>
80 #include <linux/kthread.h>
81 #include <linux/rbtree.h>
82 #include <linux/fs.h>
83 #include <linux/debugfs.h>
84 #include <linux/seq_file.h>
85 #include <linux/cpumask.h>
86 #include <linux/spinlock.h>
87 #include <linux/mutex.h>
88 #include <linux/rcupdate.h>
89 #include <linux/stacktrace.h>
90 #include <linux/cache.h>
91 #include <linux/percpu.h>
92 #include <linux/hardirq.h>
93 #include <linux/bootmem.h>
94 #include <linux/pfn.h>
95 #include <linux/mmzone.h>
96 #include <linux/slab.h>
97 #include <linux/thread_info.h>
98 #include <linux/err.h>
99 #include <linux/uaccess.h>
100 #include <linux/string.h>
101 #include <linux/nodemask.h>
102 #include <linux/mm.h>
103 #include <linux/workqueue.h>
104 #include <linux/crc32.h>
105 
106 #include <asm/sections.h>
107 #include <asm/processor.h>
108 #include <linux/atomic.h>
109 
110 #include <linux/kasan.h>
111 #include <linux/kmemcheck.h>
112 #include <linux/kmemleak.h>
113 #include <linux/memory_hotplug.h>
114 
115 /*
116  * Kmemleak configuration and common defines.
117  */
118 #define MAX_TRACE		16	/* stack trace length */
119 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
120 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
121 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
122 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
123 
124 #define BYTES_PER_POINTER	sizeof(void *)
125 
126 /* GFP bitmask for kmemleak internal allocations */
127 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
128 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
129 				 __GFP_NOWARN)
130 
131 /* scanning area inside a memory block */
132 struct kmemleak_scan_area {
133 	struct hlist_node node;
134 	unsigned long start;
135 	size_t size;
136 };
137 
138 #define KMEMLEAK_GREY	0
139 #define KMEMLEAK_BLACK	-1
140 
141 /*
142  * Structure holding the metadata for each allocated memory block.
143  * Modifications to such objects should be made while holding the
144  * object->lock. Insertions or deletions from object_list, gray_list or
145  * rb_node are already protected by the corresponding locks or mutex (see
146  * the notes on locking above). These objects are reference-counted
147  * (use_count) and freed using the RCU mechanism.
148  */
149 struct kmemleak_object {
150 	spinlock_t lock;
151 	unsigned long flags;		/* object status flags */
152 	struct list_head object_list;
153 	struct list_head gray_list;
154 	struct rb_node rb_node;
155 	struct rcu_head rcu;		/* object_list lockless traversal */
156 	/* object usage count; object freed when use_count == 0 */
157 	atomic_t use_count;
158 	unsigned long pointer;
159 	size_t size;
160 	/* minimum number of a pointers found before it is considered leak */
161 	int min_count;
162 	/* the total number of pointers found pointing to this object */
163 	int count;
164 	/* checksum for detecting modified objects */
165 	u32 checksum;
166 	/* memory ranges to be scanned inside an object (empty for all) */
167 	struct hlist_head area_list;
168 	unsigned long trace[MAX_TRACE];
169 	unsigned int trace_len;
170 	unsigned long jiffies;		/* creation timestamp */
171 	pid_t pid;			/* pid of the current task */
172 	char comm[TASK_COMM_LEN];	/* executable name */
173 };
174 
175 /* flag representing the memory block allocation status */
176 #define OBJECT_ALLOCATED	(1 << 0)
177 /* flag set after the first reporting of an unreference object */
178 #define OBJECT_REPORTED		(1 << 1)
179 /* flag set to not scan the object */
180 #define OBJECT_NO_SCAN		(1 << 2)
181 
182 /* number of bytes to print per line; must be 16 or 32 */
183 #define HEX_ROW_SIZE		16
184 /* number of bytes to print at a time (1, 2, 4, 8) */
185 #define HEX_GROUP_SIZE		1
186 /* include ASCII after the hex output */
187 #define HEX_ASCII		1
188 /* max number of lines to be printed */
189 #define HEX_MAX_LINES		2
190 
191 /* the list of all allocated objects */
192 static LIST_HEAD(object_list);
193 /* the list of gray-colored objects (see color_gray comment below) */
194 static LIST_HEAD(gray_list);
195 /* search tree for object boundaries */
196 static struct rb_root object_tree_root = RB_ROOT;
197 /* rw_lock protecting the access to object_list and object_tree_root */
198 static DEFINE_RWLOCK(kmemleak_lock);
199 
200 /* allocation caches for kmemleak internal data */
201 static struct kmem_cache *object_cache;
202 static struct kmem_cache *scan_area_cache;
203 
204 /* set if tracing memory operations is enabled */
205 static int kmemleak_enabled;
206 /* same as above but only for the kmemleak_free() callback */
207 static int kmemleak_free_enabled;
208 /* set in the late_initcall if there were no errors */
209 static int kmemleak_initialized;
210 /* enables or disables early logging of the memory operations */
211 static int kmemleak_early_log = 1;
212 /* set if a kmemleak warning was issued */
213 static int kmemleak_warning;
214 /* set if a fatal kmemleak error has occurred */
215 static int kmemleak_error;
216 
217 /* minimum and maximum address that may be valid pointers */
218 static unsigned long min_addr = ULONG_MAX;
219 static unsigned long max_addr;
220 
221 static struct task_struct *scan_thread;
222 /* used to avoid reporting of recently allocated objects */
223 static unsigned long jiffies_min_age;
224 static unsigned long jiffies_last_scan;
225 /* delay between automatic memory scannings */
226 static signed long jiffies_scan_wait;
227 /* enables or disables the task stacks scanning */
228 static int kmemleak_stack_scan = 1;
229 /* protects the memory scanning, parameters and debug/kmemleak file access */
230 static DEFINE_MUTEX(scan_mutex);
231 /* setting kmemleak=on, will set this var, skipping the disable */
232 static int kmemleak_skip_disable;
233 /* If there are leaks that can be reported */
234 static bool kmemleak_found_leaks;
235 
236 /*
237  * Early object allocation/freeing logging. Kmemleak is initialized after the
238  * kernel allocator. However, both the kernel allocator and kmemleak may
239  * allocate memory blocks which need to be tracked. Kmemleak defines an
240  * arbitrary buffer to hold the allocation/freeing information before it is
241  * fully initialized.
242  */
243 
244 /* kmemleak operation type for early logging */
245 enum {
246 	KMEMLEAK_ALLOC,
247 	KMEMLEAK_ALLOC_PERCPU,
248 	KMEMLEAK_FREE,
249 	KMEMLEAK_FREE_PART,
250 	KMEMLEAK_FREE_PERCPU,
251 	KMEMLEAK_NOT_LEAK,
252 	KMEMLEAK_IGNORE,
253 	KMEMLEAK_SCAN_AREA,
254 	KMEMLEAK_NO_SCAN
255 };
256 
257 /*
258  * Structure holding the information passed to kmemleak callbacks during the
259  * early logging.
260  */
261 struct early_log {
262 	int op_type;			/* kmemleak operation type */
263 	const void *ptr;		/* allocated/freed memory block */
264 	size_t size;			/* memory block size */
265 	int min_count;			/* minimum reference count */
266 	unsigned long trace[MAX_TRACE];	/* stack trace */
267 	unsigned int trace_len;		/* stack trace length */
268 };
269 
270 /* early logging buffer and current position */
271 static struct early_log
272 	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
273 static int crt_early_log __initdata;
274 
275 static void kmemleak_disable(void);
276 
277 /*
278  * Print a warning and dump the stack trace.
279  */
280 #define kmemleak_warn(x...)	do {		\
281 	pr_warn(x);				\
282 	dump_stack();				\
283 	kmemleak_warning = 1;			\
284 } while (0)
285 
286 /*
287  * Macro invoked when a serious kmemleak condition occurred and cannot be
288  * recovered from. Kmemleak will be disabled and further allocation/freeing
289  * tracing no longer available.
290  */
291 #define kmemleak_stop(x...)	do {	\
292 	kmemleak_warn(x);		\
293 	kmemleak_disable();		\
294 } while (0)
295 
296 /*
297  * Printing of the objects hex dump to the seq file. The number of lines to be
298  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
299  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
300  * with the object->lock held.
301  */
302 static void hex_dump_object(struct seq_file *seq,
303 			    struct kmemleak_object *object)
304 {
305 	const u8 *ptr = (const u8 *)object->pointer;
306 	size_t len;
307 
308 	/* limit the number of lines to HEX_MAX_LINES */
309 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
310 
311 	seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
312 	kasan_disable_current();
313 	seq_hex_dump(seq, "    ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
314 		     HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
315 	kasan_enable_current();
316 }
317 
318 /*
319  * Object colors, encoded with count and min_count:
320  * - white - orphan object, not enough references to it (count < min_count)
321  * - gray  - not orphan, not marked as false positive (min_count == 0) or
322  *		sufficient references to it (count >= min_count)
323  * - black - ignore, it doesn't contain references (e.g. text section)
324  *		(min_count == -1). No function defined for this color.
325  * Newly created objects don't have any color assigned (object->count == -1)
326  * before the next memory scan when they become white.
327  */
328 static bool color_white(const struct kmemleak_object *object)
329 {
330 	return object->count != KMEMLEAK_BLACK &&
331 		object->count < object->min_count;
332 }
333 
334 static bool color_gray(const struct kmemleak_object *object)
335 {
336 	return object->min_count != KMEMLEAK_BLACK &&
337 		object->count >= object->min_count;
338 }
339 
340 /*
341  * Objects are considered unreferenced only if their color is white, they have
342  * not be deleted and have a minimum age to avoid false positives caused by
343  * pointers temporarily stored in CPU registers.
344  */
345 static bool unreferenced_object(struct kmemleak_object *object)
346 {
347 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
348 		time_before_eq(object->jiffies + jiffies_min_age,
349 			       jiffies_last_scan);
350 }
351 
352 /*
353  * Printing of the unreferenced objects information to the seq file. The
354  * print_unreferenced function must be called with the object->lock held.
355  */
356 static void print_unreferenced(struct seq_file *seq,
357 			       struct kmemleak_object *object)
358 {
359 	int i;
360 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
361 
362 	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
363 		   object->pointer, object->size);
364 	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
365 		   object->comm, object->pid, object->jiffies,
366 		   msecs_age / 1000, msecs_age % 1000);
367 	hex_dump_object(seq, object);
368 	seq_printf(seq, "  backtrace:\n");
369 
370 	for (i = 0; i < object->trace_len; i++) {
371 		void *ptr = (void *)object->trace[i];
372 		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
373 	}
374 }
375 
376 /*
377  * Print the kmemleak_object information. This function is used mainly for
378  * debugging special cases when kmemleak operations. It must be called with
379  * the object->lock held.
380  */
381 static void dump_object_info(struct kmemleak_object *object)
382 {
383 	struct stack_trace trace;
384 
385 	trace.nr_entries = object->trace_len;
386 	trace.entries = object->trace;
387 
388 	pr_notice("Object 0x%08lx (size %zu):\n",
389 		  object->pointer, object->size);
390 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
391 		  object->comm, object->pid, object->jiffies);
392 	pr_notice("  min_count = %d\n", object->min_count);
393 	pr_notice("  count = %d\n", object->count);
394 	pr_notice("  flags = 0x%lx\n", object->flags);
395 	pr_notice("  checksum = %u\n", object->checksum);
396 	pr_notice("  backtrace:\n");
397 	print_stack_trace(&trace, 4);
398 }
399 
400 /*
401  * Look-up a memory block metadata (kmemleak_object) in the object search
402  * tree based on a pointer value. If alias is 0, only values pointing to the
403  * beginning of the memory block are allowed. The kmemleak_lock must be held
404  * when calling this function.
405  */
406 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
407 {
408 	struct rb_node *rb = object_tree_root.rb_node;
409 
410 	while (rb) {
411 		struct kmemleak_object *object =
412 			rb_entry(rb, struct kmemleak_object, rb_node);
413 		if (ptr < object->pointer)
414 			rb = object->rb_node.rb_left;
415 		else if (object->pointer + object->size <= ptr)
416 			rb = object->rb_node.rb_right;
417 		else if (object->pointer == ptr || alias)
418 			return object;
419 		else {
420 			kmemleak_warn("Found object by alias at 0x%08lx\n",
421 				      ptr);
422 			dump_object_info(object);
423 			break;
424 		}
425 	}
426 	return NULL;
427 }
428 
429 /*
430  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
431  * that once an object's use_count reached 0, the RCU freeing was already
432  * registered and the object should no longer be used. This function must be
433  * called under the protection of rcu_read_lock().
434  */
435 static int get_object(struct kmemleak_object *object)
436 {
437 	return atomic_inc_not_zero(&object->use_count);
438 }
439 
440 /*
441  * RCU callback to free a kmemleak_object.
442  */
443 static void free_object_rcu(struct rcu_head *rcu)
444 {
445 	struct hlist_node *tmp;
446 	struct kmemleak_scan_area *area;
447 	struct kmemleak_object *object =
448 		container_of(rcu, struct kmemleak_object, rcu);
449 
450 	/*
451 	 * Once use_count is 0 (guaranteed by put_object), there is no other
452 	 * code accessing this object, hence no need for locking.
453 	 */
454 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
455 		hlist_del(&area->node);
456 		kmem_cache_free(scan_area_cache, area);
457 	}
458 	kmem_cache_free(object_cache, object);
459 }
460 
461 /*
462  * Decrement the object use_count. Once the count is 0, free the object using
463  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
464  * delete_object() path, the delayed RCU freeing ensures that there is no
465  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
466  * is also possible.
467  */
468 static void put_object(struct kmemleak_object *object)
469 {
470 	if (!atomic_dec_and_test(&object->use_count))
471 		return;
472 
473 	/* should only get here after delete_object was called */
474 	WARN_ON(object->flags & OBJECT_ALLOCATED);
475 
476 	call_rcu(&object->rcu, free_object_rcu);
477 }
478 
479 /*
480  * Look up an object in the object search tree and increase its use_count.
481  */
482 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
483 {
484 	unsigned long flags;
485 	struct kmemleak_object *object;
486 
487 	rcu_read_lock();
488 	read_lock_irqsave(&kmemleak_lock, flags);
489 	object = lookup_object(ptr, alias);
490 	read_unlock_irqrestore(&kmemleak_lock, flags);
491 
492 	/* check whether the object is still available */
493 	if (object && !get_object(object))
494 		object = NULL;
495 	rcu_read_unlock();
496 
497 	return object;
498 }
499 
500 /*
501  * Look up an object in the object search tree and remove it from both
502  * object_tree_root and object_list. The returned object's use_count should be
503  * at least 1, as initially set by create_object().
504  */
505 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
506 {
507 	unsigned long flags;
508 	struct kmemleak_object *object;
509 
510 	write_lock_irqsave(&kmemleak_lock, flags);
511 	object = lookup_object(ptr, alias);
512 	if (object) {
513 		rb_erase(&object->rb_node, &object_tree_root);
514 		list_del_rcu(&object->object_list);
515 	}
516 	write_unlock_irqrestore(&kmemleak_lock, flags);
517 
518 	return object;
519 }
520 
521 /*
522  * Save stack trace to the given array of MAX_TRACE size.
523  */
524 static int __save_stack_trace(unsigned long *trace)
525 {
526 	struct stack_trace stack_trace;
527 
528 	stack_trace.max_entries = MAX_TRACE;
529 	stack_trace.nr_entries = 0;
530 	stack_trace.entries = trace;
531 	stack_trace.skip = 2;
532 	save_stack_trace(&stack_trace);
533 
534 	return stack_trace.nr_entries;
535 }
536 
537 /*
538  * Create the metadata (struct kmemleak_object) corresponding to an allocated
539  * memory block and add it to the object_list and object_tree_root.
540  */
541 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
542 					     int min_count, gfp_t gfp)
543 {
544 	unsigned long flags;
545 	struct kmemleak_object *object, *parent;
546 	struct rb_node **link, *rb_parent;
547 
548 	object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
549 	if (!object) {
550 		pr_warn("Cannot allocate a kmemleak_object structure\n");
551 		kmemleak_disable();
552 		return NULL;
553 	}
554 
555 	INIT_LIST_HEAD(&object->object_list);
556 	INIT_LIST_HEAD(&object->gray_list);
557 	INIT_HLIST_HEAD(&object->area_list);
558 	spin_lock_init(&object->lock);
559 	atomic_set(&object->use_count, 1);
560 	object->flags = OBJECT_ALLOCATED;
561 	object->pointer = ptr;
562 	object->size = size;
563 	object->min_count = min_count;
564 	object->count = 0;			/* white color initially */
565 	object->jiffies = jiffies;
566 	object->checksum = 0;
567 
568 	/* task information */
569 	if (in_irq()) {
570 		object->pid = 0;
571 		strncpy(object->comm, "hardirq", sizeof(object->comm));
572 	} else if (in_softirq()) {
573 		object->pid = 0;
574 		strncpy(object->comm, "softirq", sizeof(object->comm));
575 	} else {
576 		object->pid = current->pid;
577 		/*
578 		 * There is a small chance of a race with set_task_comm(),
579 		 * however using get_task_comm() here may cause locking
580 		 * dependency issues with current->alloc_lock. In the worst
581 		 * case, the command line is not correct.
582 		 */
583 		strncpy(object->comm, current->comm, sizeof(object->comm));
584 	}
585 
586 	/* kernel backtrace */
587 	object->trace_len = __save_stack_trace(object->trace);
588 
589 	write_lock_irqsave(&kmemleak_lock, flags);
590 
591 	min_addr = min(min_addr, ptr);
592 	max_addr = max(max_addr, ptr + size);
593 	link = &object_tree_root.rb_node;
594 	rb_parent = NULL;
595 	while (*link) {
596 		rb_parent = *link;
597 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
598 		if (ptr + size <= parent->pointer)
599 			link = &parent->rb_node.rb_left;
600 		else if (parent->pointer + parent->size <= ptr)
601 			link = &parent->rb_node.rb_right;
602 		else {
603 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
604 				      ptr);
605 			/*
606 			 * No need for parent->lock here since "parent" cannot
607 			 * be freed while the kmemleak_lock is held.
608 			 */
609 			dump_object_info(parent);
610 			kmem_cache_free(object_cache, object);
611 			object = NULL;
612 			goto out;
613 		}
614 	}
615 	rb_link_node(&object->rb_node, rb_parent, link);
616 	rb_insert_color(&object->rb_node, &object_tree_root);
617 
618 	list_add_tail_rcu(&object->object_list, &object_list);
619 out:
620 	write_unlock_irqrestore(&kmemleak_lock, flags);
621 	return object;
622 }
623 
624 /*
625  * Mark the object as not allocated and schedule RCU freeing via put_object().
626  */
627 static void __delete_object(struct kmemleak_object *object)
628 {
629 	unsigned long flags;
630 
631 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
632 	WARN_ON(atomic_read(&object->use_count) < 1);
633 
634 	/*
635 	 * Locking here also ensures that the corresponding memory block
636 	 * cannot be freed when it is being scanned.
637 	 */
638 	spin_lock_irqsave(&object->lock, flags);
639 	object->flags &= ~OBJECT_ALLOCATED;
640 	spin_unlock_irqrestore(&object->lock, flags);
641 	put_object(object);
642 }
643 
644 /*
645  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
646  * delete it.
647  */
648 static void delete_object_full(unsigned long ptr)
649 {
650 	struct kmemleak_object *object;
651 
652 	object = find_and_remove_object(ptr, 0);
653 	if (!object) {
654 #ifdef DEBUG
655 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
656 			      ptr);
657 #endif
658 		return;
659 	}
660 	__delete_object(object);
661 }
662 
663 /*
664  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
665  * delete it. If the memory block is partially freed, the function may create
666  * additional metadata for the remaining parts of the block.
667  */
668 static void delete_object_part(unsigned long ptr, size_t size)
669 {
670 	struct kmemleak_object *object;
671 	unsigned long start, end;
672 
673 	object = find_and_remove_object(ptr, 1);
674 	if (!object) {
675 #ifdef DEBUG
676 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
677 			      ptr, size);
678 #endif
679 		return;
680 	}
681 
682 	/*
683 	 * Create one or two objects that may result from the memory block
684 	 * split. Note that partial freeing is only done by free_bootmem() and
685 	 * this happens before kmemleak_init() is called. The path below is
686 	 * only executed during early log recording in kmemleak_init(), so
687 	 * GFP_KERNEL is enough.
688 	 */
689 	start = object->pointer;
690 	end = object->pointer + object->size;
691 	if (ptr > start)
692 		create_object(start, ptr - start, object->min_count,
693 			      GFP_KERNEL);
694 	if (ptr + size < end)
695 		create_object(ptr + size, end - ptr - size, object->min_count,
696 			      GFP_KERNEL);
697 
698 	__delete_object(object);
699 }
700 
701 static void __paint_it(struct kmemleak_object *object, int color)
702 {
703 	object->min_count = color;
704 	if (color == KMEMLEAK_BLACK)
705 		object->flags |= OBJECT_NO_SCAN;
706 }
707 
708 static void paint_it(struct kmemleak_object *object, int color)
709 {
710 	unsigned long flags;
711 
712 	spin_lock_irqsave(&object->lock, flags);
713 	__paint_it(object, color);
714 	spin_unlock_irqrestore(&object->lock, flags);
715 }
716 
717 static void paint_ptr(unsigned long ptr, int color)
718 {
719 	struct kmemleak_object *object;
720 
721 	object = find_and_get_object(ptr, 0);
722 	if (!object) {
723 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
724 			      ptr,
725 			      (color == KMEMLEAK_GREY) ? "Grey" :
726 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
727 		return;
728 	}
729 	paint_it(object, color);
730 	put_object(object);
731 }
732 
733 /*
734  * Mark an object permanently as gray-colored so that it can no longer be
735  * reported as a leak. This is used in general to mark a false positive.
736  */
737 static void make_gray_object(unsigned long ptr)
738 {
739 	paint_ptr(ptr, KMEMLEAK_GREY);
740 }
741 
742 /*
743  * Mark the object as black-colored so that it is ignored from scans and
744  * reporting.
745  */
746 static void make_black_object(unsigned long ptr)
747 {
748 	paint_ptr(ptr, KMEMLEAK_BLACK);
749 }
750 
751 /*
752  * Add a scanning area to the object. If at least one such area is added,
753  * kmemleak will only scan these ranges rather than the whole memory block.
754  */
755 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
756 {
757 	unsigned long flags;
758 	struct kmemleak_object *object;
759 	struct kmemleak_scan_area *area;
760 
761 	object = find_and_get_object(ptr, 1);
762 	if (!object) {
763 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
764 			      ptr);
765 		return;
766 	}
767 
768 	area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
769 	if (!area) {
770 		pr_warn("Cannot allocate a scan area\n");
771 		goto out;
772 	}
773 
774 	spin_lock_irqsave(&object->lock, flags);
775 	if (size == SIZE_MAX) {
776 		size = object->pointer + object->size - ptr;
777 	} else if (ptr + size > object->pointer + object->size) {
778 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
779 		dump_object_info(object);
780 		kmem_cache_free(scan_area_cache, area);
781 		goto out_unlock;
782 	}
783 
784 	INIT_HLIST_NODE(&area->node);
785 	area->start = ptr;
786 	area->size = size;
787 
788 	hlist_add_head(&area->node, &object->area_list);
789 out_unlock:
790 	spin_unlock_irqrestore(&object->lock, flags);
791 out:
792 	put_object(object);
793 }
794 
795 /*
796  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
797  * pointer. Such object will not be scanned by kmemleak but references to it
798  * are searched.
799  */
800 static void object_no_scan(unsigned long ptr)
801 {
802 	unsigned long flags;
803 	struct kmemleak_object *object;
804 
805 	object = find_and_get_object(ptr, 0);
806 	if (!object) {
807 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
808 		return;
809 	}
810 
811 	spin_lock_irqsave(&object->lock, flags);
812 	object->flags |= OBJECT_NO_SCAN;
813 	spin_unlock_irqrestore(&object->lock, flags);
814 	put_object(object);
815 }
816 
817 /*
818  * Log an early kmemleak_* call to the early_log buffer. These calls will be
819  * processed later once kmemleak is fully initialized.
820  */
821 static void __init log_early(int op_type, const void *ptr, size_t size,
822 			     int min_count)
823 {
824 	unsigned long flags;
825 	struct early_log *log;
826 
827 	if (kmemleak_error) {
828 		/* kmemleak stopped recording, just count the requests */
829 		crt_early_log++;
830 		return;
831 	}
832 
833 	if (crt_early_log >= ARRAY_SIZE(early_log)) {
834 		crt_early_log++;
835 		kmemleak_disable();
836 		return;
837 	}
838 
839 	/*
840 	 * There is no need for locking since the kernel is still in UP mode
841 	 * at this stage. Disabling the IRQs is enough.
842 	 */
843 	local_irq_save(flags);
844 	log = &early_log[crt_early_log];
845 	log->op_type = op_type;
846 	log->ptr = ptr;
847 	log->size = size;
848 	log->min_count = min_count;
849 	log->trace_len = __save_stack_trace(log->trace);
850 	crt_early_log++;
851 	local_irq_restore(flags);
852 }
853 
854 /*
855  * Log an early allocated block and populate the stack trace.
856  */
857 static void early_alloc(struct early_log *log)
858 {
859 	struct kmemleak_object *object;
860 	unsigned long flags;
861 	int i;
862 
863 	if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
864 		return;
865 
866 	/*
867 	 * RCU locking needed to ensure object is not freed via put_object().
868 	 */
869 	rcu_read_lock();
870 	object = create_object((unsigned long)log->ptr, log->size,
871 			       log->min_count, GFP_ATOMIC);
872 	if (!object)
873 		goto out;
874 	spin_lock_irqsave(&object->lock, flags);
875 	for (i = 0; i < log->trace_len; i++)
876 		object->trace[i] = log->trace[i];
877 	object->trace_len = log->trace_len;
878 	spin_unlock_irqrestore(&object->lock, flags);
879 out:
880 	rcu_read_unlock();
881 }
882 
883 /*
884  * Log an early allocated block and populate the stack trace.
885  */
886 static void early_alloc_percpu(struct early_log *log)
887 {
888 	unsigned int cpu;
889 	const void __percpu *ptr = log->ptr;
890 
891 	for_each_possible_cpu(cpu) {
892 		log->ptr = per_cpu_ptr(ptr, cpu);
893 		early_alloc(log);
894 	}
895 }
896 
897 /**
898  * kmemleak_alloc - register a newly allocated object
899  * @ptr:	pointer to beginning of the object
900  * @size:	size of the object
901  * @min_count:	minimum number of references to this object. If during memory
902  *		scanning a number of references less than @min_count is found,
903  *		the object is reported as a memory leak. If @min_count is 0,
904  *		the object is never reported as a leak. If @min_count is -1,
905  *		the object is ignored (not scanned and not reported as a leak)
906  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
907  *
908  * This function is called from the kernel allocators when a new object
909  * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
910  */
911 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
912 			  gfp_t gfp)
913 {
914 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
915 
916 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
917 		create_object((unsigned long)ptr, size, min_count, gfp);
918 	else if (kmemleak_early_log)
919 		log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
920 }
921 EXPORT_SYMBOL_GPL(kmemleak_alloc);
922 
923 /**
924  * kmemleak_alloc_percpu - register a newly allocated __percpu object
925  * @ptr:	__percpu pointer to beginning of the object
926  * @size:	size of the object
927  * @gfp:	flags used for kmemleak internal memory allocations
928  *
929  * This function is called from the kernel percpu allocator when a new object
930  * (memory block) is allocated (alloc_percpu).
931  */
932 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
933 				 gfp_t gfp)
934 {
935 	unsigned int cpu;
936 
937 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
938 
939 	/*
940 	 * Percpu allocations are only scanned and not reported as leaks
941 	 * (min_count is set to 0).
942 	 */
943 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
944 		for_each_possible_cpu(cpu)
945 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
946 				      size, 0, gfp);
947 	else if (kmemleak_early_log)
948 		log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
949 }
950 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
951 
952 /**
953  * kmemleak_free - unregister a previously registered object
954  * @ptr:	pointer to beginning of the object
955  *
956  * This function is called from the kernel allocators when an object (memory
957  * block) is freed (kmem_cache_free, kfree, vfree etc.).
958  */
959 void __ref kmemleak_free(const void *ptr)
960 {
961 	pr_debug("%s(0x%p)\n", __func__, ptr);
962 
963 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
964 		delete_object_full((unsigned long)ptr);
965 	else if (kmemleak_early_log)
966 		log_early(KMEMLEAK_FREE, ptr, 0, 0);
967 }
968 EXPORT_SYMBOL_GPL(kmemleak_free);
969 
970 /**
971  * kmemleak_free_part - partially unregister a previously registered object
972  * @ptr:	pointer to the beginning or inside the object. This also
973  *		represents the start of the range to be freed
974  * @size:	size to be unregistered
975  *
976  * This function is called when only a part of a memory block is freed
977  * (usually from the bootmem allocator).
978  */
979 void __ref kmemleak_free_part(const void *ptr, size_t size)
980 {
981 	pr_debug("%s(0x%p)\n", __func__, ptr);
982 
983 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
984 		delete_object_part((unsigned long)ptr, size);
985 	else if (kmemleak_early_log)
986 		log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
987 }
988 EXPORT_SYMBOL_GPL(kmemleak_free_part);
989 
990 /**
991  * kmemleak_free_percpu - unregister a previously registered __percpu object
992  * @ptr:	__percpu pointer to beginning of the object
993  *
994  * This function is called from the kernel percpu allocator when an object
995  * (memory block) is freed (free_percpu).
996  */
997 void __ref kmemleak_free_percpu(const void __percpu *ptr)
998 {
999 	unsigned int cpu;
1000 
1001 	pr_debug("%s(0x%p)\n", __func__, ptr);
1002 
1003 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1004 		for_each_possible_cpu(cpu)
1005 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
1006 								      cpu));
1007 	else if (kmemleak_early_log)
1008 		log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1009 }
1010 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1011 
1012 /**
1013  * kmemleak_update_trace - update object allocation stack trace
1014  * @ptr:	pointer to beginning of the object
1015  *
1016  * Override the object allocation stack trace for cases where the actual
1017  * allocation place is not always useful.
1018  */
1019 void __ref kmemleak_update_trace(const void *ptr)
1020 {
1021 	struct kmemleak_object *object;
1022 	unsigned long flags;
1023 
1024 	pr_debug("%s(0x%p)\n", __func__, ptr);
1025 
1026 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1027 		return;
1028 
1029 	object = find_and_get_object((unsigned long)ptr, 1);
1030 	if (!object) {
1031 #ifdef DEBUG
1032 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1033 			      ptr);
1034 #endif
1035 		return;
1036 	}
1037 
1038 	spin_lock_irqsave(&object->lock, flags);
1039 	object->trace_len = __save_stack_trace(object->trace);
1040 	spin_unlock_irqrestore(&object->lock, flags);
1041 
1042 	put_object(object);
1043 }
1044 EXPORT_SYMBOL(kmemleak_update_trace);
1045 
1046 /**
1047  * kmemleak_not_leak - mark an allocated object as false positive
1048  * @ptr:	pointer to beginning of the object
1049  *
1050  * Calling this function on an object will cause the memory block to no longer
1051  * be reported as leak and always be scanned.
1052  */
1053 void __ref kmemleak_not_leak(const void *ptr)
1054 {
1055 	pr_debug("%s(0x%p)\n", __func__, ptr);
1056 
1057 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1058 		make_gray_object((unsigned long)ptr);
1059 	else if (kmemleak_early_log)
1060 		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1061 }
1062 EXPORT_SYMBOL(kmemleak_not_leak);
1063 
1064 /**
1065  * kmemleak_ignore - ignore an allocated object
1066  * @ptr:	pointer to beginning of the object
1067  *
1068  * Calling this function on an object will cause the memory block to be
1069  * ignored (not scanned and not reported as a leak). This is usually done when
1070  * it is known that the corresponding block is not a leak and does not contain
1071  * any references to other allocated memory blocks.
1072  */
1073 void __ref kmemleak_ignore(const void *ptr)
1074 {
1075 	pr_debug("%s(0x%p)\n", __func__, ptr);
1076 
1077 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1078 		make_black_object((unsigned long)ptr);
1079 	else if (kmemleak_early_log)
1080 		log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1081 }
1082 EXPORT_SYMBOL(kmemleak_ignore);
1083 
1084 /**
1085  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1086  * @ptr:	pointer to beginning or inside the object. This also
1087  *		represents the start of the scan area
1088  * @size:	size of the scan area
1089  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1090  *
1091  * This function is used when it is known that only certain parts of an object
1092  * contain references to other objects. Kmemleak will only scan these areas
1093  * reducing the number false negatives.
1094  */
1095 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1096 {
1097 	pr_debug("%s(0x%p)\n", __func__, ptr);
1098 
1099 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1100 		add_scan_area((unsigned long)ptr, size, gfp);
1101 	else if (kmemleak_early_log)
1102 		log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1103 }
1104 EXPORT_SYMBOL(kmemleak_scan_area);
1105 
1106 /**
1107  * kmemleak_no_scan - do not scan an allocated object
1108  * @ptr:	pointer to beginning of the object
1109  *
1110  * This function notifies kmemleak not to scan the given memory block. Useful
1111  * in situations where it is known that the given object does not contain any
1112  * references to other objects. Kmemleak will not scan such objects reducing
1113  * the number of false negatives.
1114  */
1115 void __ref kmemleak_no_scan(const void *ptr)
1116 {
1117 	pr_debug("%s(0x%p)\n", __func__, ptr);
1118 
1119 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1120 		object_no_scan((unsigned long)ptr);
1121 	else if (kmemleak_early_log)
1122 		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1123 }
1124 EXPORT_SYMBOL(kmemleak_no_scan);
1125 
1126 /**
1127  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1128  *			 address argument
1129  */
1130 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1131 			       gfp_t gfp)
1132 {
1133 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1134 		kmemleak_alloc(__va(phys), size, min_count, gfp);
1135 }
1136 EXPORT_SYMBOL(kmemleak_alloc_phys);
1137 
1138 /**
1139  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1140  *			     physical address argument
1141  */
1142 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1143 {
1144 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1145 		kmemleak_free_part(__va(phys), size);
1146 }
1147 EXPORT_SYMBOL(kmemleak_free_part_phys);
1148 
1149 /**
1150  * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1151  *			    address argument
1152  */
1153 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1154 {
1155 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1156 		kmemleak_not_leak(__va(phys));
1157 }
1158 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1159 
1160 /**
1161  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1162  *			  address argument
1163  */
1164 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1165 {
1166 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1167 		kmemleak_ignore(__va(phys));
1168 }
1169 EXPORT_SYMBOL(kmemleak_ignore_phys);
1170 
1171 /*
1172  * Update an object's checksum and return true if it was modified.
1173  */
1174 static bool update_checksum(struct kmemleak_object *object)
1175 {
1176 	u32 old_csum = object->checksum;
1177 
1178 	if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1179 		return false;
1180 
1181 	kasan_disable_current();
1182 	object->checksum = crc32(0, (void *)object->pointer, object->size);
1183 	kasan_enable_current();
1184 
1185 	return object->checksum != old_csum;
1186 }
1187 
1188 /*
1189  * Memory scanning is a long process and it needs to be interruptable. This
1190  * function checks whether such interrupt condition occurred.
1191  */
1192 static int scan_should_stop(void)
1193 {
1194 	if (!kmemleak_enabled)
1195 		return 1;
1196 
1197 	/*
1198 	 * This function may be called from either process or kthread context,
1199 	 * hence the need to check for both stop conditions.
1200 	 */
1201 	if (current->mm)
1202 		return signal_pending(current);
1203 	else
1204 		return kthread_should_stop();
1205 
1206 	return 0;
1207 }
1208 
1209 /*
1210  * Scan a memory block (exclusive range) for valid pointers and add those
1211  * found to the gray list.
1212  */
1213 static void scan_block(void *_start, void *_end,
1214 		       struct kmemleak_object *scanned)
1215 {
1216 	unsigned long *ptr;
1217 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1218 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1219 	unsigned long flags;
1220 
1221 	read_lock_irqsave(&kmemleak_lock, flags);
1222 	for (ptr = start; ptr < end; ptr++) {
1223 		struct kmemleak_object *object;
1224 		unsigned long pointer;
1225 
1226 		if (scan_should_stop())
1227 			break;
1228 
1229 		/* don't scan uninitialized memory */
1230 		if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1231 						  BYTES_PER_POINTER))
1232 			continue;
1233 
1234 		kasan_disable_current();
1235 		pointer = *ptr;
1236 		kasan_enable_current();
1237 
1238 		if (pointer < min_addr || pointer >= max_addr)
1239 			continue;
1240 
1241 		/*
1242 		 * No need for get_object() here since we hold kmemleak_lock.
1243 		 * object->use_count cannot be dropped to 0 while the object
1244 		 * is still present in object_tree_root and object_list
1245 		 * (with updates protected by kmemleak_lock).
1246 		 */
1247 		object = lookup_object(pointer, 1);
1248 		if (!object)
1249 			continue;
1250 		if (object == scanned)
1251 			/* self referenced, ignore */
1252 			continue;
1253 
1254 		/*
1255 		 * Avoid the lockdep recursive warning on object->lock being
1256 		 * previously acquired in scan_object(). These locks are
1257 		 * enclosed by scan_mutex.
1258 		 */
1259 		spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1260 		if (!color_white(object)) {
1261 			/* non-orphan, ignored or new */
1262 			spin_unlock(&object->lock);
1263 			continue;
1264 		}
1265 
1266 		/*
1267 		 * Increase the object's reference count (number of pointers
1268 		 * to the memory block). If this count reaches the required
1269 		 * minimum, the object's color will become gray and it will be
1270 		 * added to the gray_list.
1271 		 */
1272 		object->count++;
1273 		if (color_gray(object)) {
1274 			/* put_object() called when removing from gray_list */
1275 			WARN_ON(!get_object(object));
1276 			list_add_tail(&object->gray_list, &gray_list);
1277 		}
1278 		spin_unlock(&object->lock);
1279 	}
1280 	read_unlock_irqrestore(&kmemleak_lock, flags);
1281 }
1282 
1283 /*
1284  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1285  */
1286 static void scan_large_block(void *start, void *end)
1287 {
1288 	void *next;
1289 
1290 	while (start < end) {
1291 		next = min(start + MAX_SCAN_SIZE, end);
1292 		scan_block(start, next, NULL);
1293 		start = next;
1294 		cond_resched();
1295 	}
1296 }
1297 
1298 /*
1299  * Scan a memory block corresponding to a kmemleak_object. A condition is
1300  * that object->use_count >= 1.
1301  */
1302 static void scan_object(struct kmemleak_object *object)
1303 {
1304 	struct kmemleak_scan_area *area;
1305 	unsigned long flags;
1306 
1307 	/*
1308 	 * Once the object->lock is acquired, the corresponding memory block
1309 	 * cannot be freed (the same lock is acquired in delete_object).
1310 	 */
1311 	spin_lock_irqsave(&object->lock, flags);
1312 	if (object->flags & OBJECT_NO_SCAN)
1313 		goto out;
1314 	if (!(object->flags & OBJECT_ALLOCATED))
1315 		/* already freed object */
1316 		goto out;
1317 	if (hlist_empty(&object->area_list)) {
1318 		void *start = (void *)object->pointer;
1319 		void *end = (void *)(object->pointer + object->size);
1320 		void *next;
1321 
1322 		do {
1323 			next = min(start + MAX_SCAN_SIZE, end);
1324 			scan_block(start, next, object);
1325 
1326 			start = next;
1327 			if (start >= end)
1328 				break;
1329 
1330 			spin_unlock_irqrestore(&object->lock, flags);
1331 			cond_resched();
1332 			spin_lock_irqsave(&object->lock, flags);
1333 		} while (object->flags & OBJECT_ALLOCATED);
1334 	} else
1335 		hlist_for_each_entry(area, &object->area_list, node)
1336 			scan_block((void *)area->start,
1337 				   (void *)(area->start + area->size),
1338 				   object);
1339 out:
1340 	spin_unlock_irqrestore(&object->lock, flags);
1341 }
1342 
1343 /*
1344  * Scan the objects already referenced (gray objects). More objects will be
1345  * referenced and, if there are no memory leaks, all the objects are scanned.
1346  */
1347 static void scan_gray_list(void)
1348 {
1349 	struct kmemleak_object *object, *tmp;
1350 
1351 	/*
1352 	 * The list traversal is safe for both tail additions and removals
1353 	 * from inside the loop. The kmemleak objects cannot be freed from
1354 	 * outside the loop because their use_count was incremented.
1355 	 */
1356 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1357 	while (&object->gray_list != &gray_list) {
1358 		cond_resched();
1359 
1360 		/* may add new objects to the list */
1361 		if (!scan_should_stop())
1362 			scan_object(object);
1363 
1364 		tmp = list_entry(object->gray_list.next, typeof(*object),
1365 				 gray_list);
1366 
1367 		/* remove the object from the list and release it */
1368 		list_del(&object->gray_list);
1369 		put_object(object);
1370 
1371 		object = tmp;
1372 	}
1373 	WARN_ON(!list_empty(&gray_list));
1374 }
1375 
1376 /*
1377  * Scan data sections and all the referenced memory blocks allocated via the
1378  * kernel's standard allocators. This function must be called with the
1379  * scan_mutex held.
1380  */
1381 static void kmemleak_scan(void)
1382 {
1383 	unsigned long flags;
1384 	struct kmemleak_object *object;
1385 	int i;
1386 	int new_leaks = 0;
1387 
1388 	jiffies_last_scan = jiffies;
1389 
1390 	/* prepare the kmemleak_object's */
1391 	rcu_read_lock();
1392 	list_for_each_entry_rcu(object, &object_list, object_list) {
1393 		spin_lock_irqsave(&object->lock, flags);
1394 #ifdef DEBUG
1395 		/*
1396 		 * With a few exceptions there should be a maximum of
1397 		 * 1 reference to any object at this point.
1398 		 */
1399 		if (atomic_read(&object->use_count) > 1) {
1400 			pr_debug("object->use_count = %d\n",
1401 				 atomic_read(&object->use_count));
1402 			dump_object_info(object);
1403 		}
1404 #endif
1405 		/* reset the reference count (whiten the object) */
1406 		object->count = 0;
1407 		if (color_gray(object) && get_object(object))
1408 			list_add_tail(&object->gray_list, &gray_list);
1409 
1410 		spin_unlock_irqrestore(&object->lock, flags);
1411 	}
1412 	rcu_read_unlock();
1413 
1414 	/* data/bss scanning */
1415 	scan_large_block(_sdata, _edata);
1416 	scan_large_block(__bss_start, __bss_stop);
1417 
1418 #ifdef CONFIG_SMP
1419 	/* per-cpu sections scanning */
1420 	for_each_possible_cpu(i)
1421 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1422 				 __per_cpu_end + per_cpu_offset(i));
1423 #endif
1424 
1425 	/*
1426 	 * Struct page scanning for each node.
1427 	 */
1428 	get_online_mems();
1429 	for_each_online_node(i) {
1430 		unsigned long start_pfn = node_start_pfn(i);
1431 		unsigned long end_pfn = node_end_pfn(i);
1432 		unsigned long pfn;
1433 
1434 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1435 			struct page *page;
1436 
1437 			if (!pfn_valid(pfn))
1438 				continue;
1439 			page = pfn_to_page(pfn);
1440 			/* only scan if page is in use */
1441 			if (page_count(page) == 0)
1442 				continue;
1443 			scan_block(page, page + 1, NULL);
1444 		}
1445 	}
1446 	put_online_mems();
1447 
1448 	/*
1449 	 * Scanning the task stacks (may introduce false negatives).
1450 	 */
1451 	if (kmemleak_stack_scan) {
1452 		struct task_struct *p, *g;
1453 
1454 		read_lock(&tasklist_lock);
1455 		do_each_thread(g, p) {
1456 			scan_block(task_stack_page(p), task_stack_page(p) +
1457 				   THREAD_SIZE, NULL);
1458 		} while_each_thread(g, p);
1459 		read_unlock(&tasklist_lock);
1460 	}
1461 
1462 	/*
1463 	 * Scan the objects already referenced from the sections scanned
1464 	 * above.
1465 	 */
1466 	scan_gray_list();
1467 
1468 	/*
1469 	 * Check for new or unreferenced objects modified since the previous
1470 	 * scan and color them gray until the next scan.
1471 	 */
1472 	rcu_read_lock();
1473 	list_for_each_entry_rcu(object, &object_list, object_list) {
1474 		spin_lock_irqsave(&object->lock, flags);
1475 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1476 		    && update_checksum(object) && get_object(object)) {
1477 			/* color it gray temporarily */
1478 			object->count = object->min_count;
1479 			list_add_tail(&object->gray_list, &gray_list);
1480 		}
1481 		spin_unlock_irqrestore(&object->lock, flags);
1482 	}
1483 	rcu_read_unlock();
1484 
1485 	/*
1486 	 * Re-scan the gray list for modified unreferenced objects.
1487 	 */
1488 	scan_gray_list();
1489 
1490 	/*
1491 	 * If scanning was stopped do not report any new unreferenced objects.
1492 	 */
1493 	if (scan_should_stop())
1494 		return;
1495 
1496 	/*
1497 	 * Scanning result reporting.
1498 	 */
1499 	rcu_read_lock();
1500 	list_for_each_entry_rcu(object, &object_list, object_list) {
1501 		spin_lock_irqsave(&object->lock, flags);
1502 		if (unreferenced_object(object) &&
1503 		    !(object->flags & OBJECT_REPORTED)) {
1504 			object->flags |= OBJECT_REPORTED;
1505 			new_leaks++;
1506 		}
1507 		spin_unlock_irqrestore(&object->lock, flags);
1508 	}
1509 	rcu_read_unlock();
1510 
1511 	if (new_leaks) {
1512 		kmemleak_found_leaks = true;
1513 
1514 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1515 			new_leaks);
1516 	}
1517 
1518 }
1519 
1520 /*
1521  * Thread function performing automatic memory scanning. Unreferenced objects
1522  * at the end of a memory scan are reported but only the first time.
1523  */
1524 static int kmemleak_scan_thread(void *arg)
1525 {
1526 	static int first_run = 1;
1527 
1528 	pr_info("Automatic memory scanning thread started\n");
1529 	set_user_nice(current, 10);
1530 
1531 	/*
1532 	 * Wait before the first scan to allow the system to fully initialize.
1533 	 */
1534 	if (first_run) {
1535 		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1536 		first_run = 0;
1537 		while (timeout && !kthread_should_stop())
1538 			timeout = schedule_timeout_interruptible(timeout);
1539 	}
1540 
1541 	while (!kthread_should_stop()) {
1542 		signed long timeout = jiffies_scan_wait;
1543 
1544 		mutex_lock(&scan_mutex);
1545 		kmemleak_scan();
1546 		mutex_unlock(&scan_mutex);
1547 
1548 		/* wait before the next scan */
1549 		while (timeout && !kthread_should_stop())
1550 			timeout = schedule_timeout_interruptible(timeout);
1551 	}
1552 
1553 	pr_info("Automatic memory scanning thread ended\n");
1554 
1555 	return 0;
1556 }
1557 
1558 /*
1559  * Start the automatic memory scanning thread. This function must be called
1560  * with the scan_mutex held.
1561  */
1562 static void start_scan_thread(void)
1563 {
1564 	if (scan_thread)
1565 		return;
1566 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1567 	if (IS_ERR(scan_thread)) {
1568 		pr_warn("Failed to create the scan thread\n");
1569 		scan_thread = NULL;
1570 	}
1571 }
1572 
1573 /*
1574  * Stop the automatic memory scanning thread. This function must be called
1575  * with the scan_mutex held.
1576  */
1577 static void stop_scan_thread(void)
1578 {
1579 	if (scan_thread) {
1580 		kthread_stop(scan_thread);
1581 		scan_thread = NULL;
1582 	}
1583 }
1584 
1585 /*
1586  * Iterate over the object_list and return the first valid object at or after
1587  * the required position with its use_count incremented. The function triggers
1588  * a memory scanning when the pos argument points to the first position.
1589  */
1590 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1591 {
1592 	struct kmemleak_object *object;
1593 	loff_t n = *pos;
1594 	int err;
1595 
1596 	err = mutex_lock_interruptible(&scan_mutex);
1597 	if (err < 0)
1598 		return ERR_PTR(err);
1599 
1600 	rcu_read_lock();
1601 	list_for_each_entry_rcu(object, &object_list, object_list) {
1602 		if (n-- > 0)
1603 			continue;
1604 		if (get_object(object))
1605 			goto out;
1606 	}
1607 	object = NULL;
1608 out:
1609 	return object;
1610 }
1611 
1612 /*
1613  * Return the next object in the object_list. The function decrements the
1614  * use_count of the previous object and increases that of the next one.
1615  */
1616 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1617 {
1618 	struct kmemleak_object *prev_obj = v;
1619 	struct kmemleak_object *next_obj = NULL;
1620 	struct kmemleak_object *obj = prev_obj;
1621 
1622 	++(*pos);
1623 
1624 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1625 		if (get_object(obj)) {
1626 			next_obj = obj;
1627 			break;
1628 		}
1629 	}
1630 
1631 	put_object(prev_obj);
1632 	return next_obj;
1633 }
1634 
1635 /*
1636  * Decrement the use_count of the last object required, if any.
1637  */
1638 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1639 {
1640 	if (!IS_ERR(v)) {
1641 		/*
1642 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1643 		 * waiting was interrupted, so only release it if !IS_ERR.
1644 		 */
1645 		rcu_read_unlock();
1646 		mutex_unlock(&scan_mutex);
1647 		if (v)
1648 			put_object(v);
1649 	}
1650 }
1651 
1652 /*
1653  * Print the information for an unreferenced object to the seq file.
1654  */
1655 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1656 {
1657 	struct kmemleak_object *object = v;
1658 	unsigned long flags;
1659 
1660 	spin_lock_irqsave(&object->lock, flags);
1661 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1662 		print_unreferenced(seq, object);
1663 	spin_unlock_irqrestore(&object->lock, flags);
1664 	return 0;
1665 }
1666 
1667 static const struct seq_operations kmemleak_seq_ops = {
1668 	.start = kmemleak_seq_start,
1669 	.next  = kmemleak_seq_next,
1670 	.stop  = kmemleak_seq_stop,
1671 	.show  = kmemleak_seq_show,
1672 };
1673 
1674 static int kmemleak_open(struct inode *inode, struct file *file)
1675 {
1676 	return seq_open(file, &kmemleak_seq_ops);
1677 }
1678 
1679 static int dump_str_object_info(const char *str)
1680 {
1681 	unsigned long flags;
1682 	struct kmemleak_object *object;
1683 	unsigned long addr;
1684 
1685 	if (kstrtoul(str, 0, &addr))
1686 		return -EINVAL;
1687 	object = find_and_get_object(addr, 0);
1688 	if (!object) {
1689 		pr_info("Unknown object at 0x%08lx\n", addr);
1690 		return -EINVAL;
1691 	}
1692 
1693 	spin_lock_irqsave(&object->lock, flags);
1694 	dump_object_info(object);
1695 	spin_unlock_irqrestore(&object->lock, flags);
1696 
1697 	put_object(object);
1698 	return 0;
1699 }
1700 
1701 /*
1702  * We use grey instead of black to ensure we can do future scans on the same
1703  * objects. If we did not do future scans these black objects could
1704  * potentially contain references to newly allocated objects in the future and
1705  * we'd end up with false positives.
1706  */
1707 static void kmemleak_clear(void)
1708 {
1709 	struct kmemleak_object *object;
1710 	unsigned long flags;
1711 
1712 	rcu_read_lock();
1713 	list_for_each_entry_rcu(object, &object_list, object_list) {
1714 		spin_lock_irqsave(&object->lock, flags);
1715 		if ((object->flags & OBJECT_REPORTED) &&
1716 		    unreferenced_object(object))
1717 			__paint_it(object, KMEMLEAK_GREY);
1718 		spin_unlock_irqrestore(&object->lock, flags);
1719 	}
1720 	rcu_read_unlock();
1721 
1722 	kmemleak_found_leaks = false;
1723 }
1724 
1725 static void __kmemleak_do_cleanup(void);
1726 
1727 /*
1728  * File write operation to configure kmemleak at run-time. The following
1729  * commands can be written to the /sys/kernel/debug/kmemleak file:
1730  *   off	- disable kmemleak (irreversible)
1731  *   stack=on	- enable the task stacks scanning
1732  *   stack=off	- disable the tasks stacks scanning
1733  *   scan=on	- start the automatic memory scanning thread
1734  *   scan=off	- stop the automatic memory scanning thread
1735  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1736  *		  disable it)
1737  *   scan	- trigger a memory scan
1738  *   clear	- mark all current reported unreferenced kmemleak objects as
1739  *		  grey to ignore printing them, or free all kmemleak objects
1740  *		  if kmemleak has been disabled.
1741  *   dump=...	- dump information about the object found at the given address
1742  */
1743 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1744 			      size_t size, loff_t *ppos)
1745 {
1746 	char buf[64];
1747 	int buf_size;
1748 	int ret;
1749 
1750 	buf_size = min(size, (sizeof(buf) - 1));
1751 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1752 		return -EFAULT;
1753 	buf[buf_size] = 0;
1754 
1755 	ret = mutex_lock_interruptible(&scan_mutex);
1756 	if (ret < 0)
1757 		return ret;
1758 
1759 	if (strncmp(buf, "clear", 5) == 0) {
1760 		if (kmemleak_enabled)
1761 			kmemleak_clear();
1762 		else
1763 			__kmemleak_do_cleanup();
1764 		goto out;
1765 	}
1766 
1767 	if (!kmemleak_enabled) {
1768 		ret = -EBUSY;
1769 		goto out;
1770 	}
1771 
1772 	if (strncmp(buf, "off", 3) == 0)
1773 		kmemleak_disable();
1774 	else if (strncmp(buf, "stack=on", 8) == 0)
1775 		kmemleak_stack_scan = 1;
1776 	else if (strncmp(buf, "stack=off", 9) == 0)
1777 		kmemleak_stack_scan = 0;
1778 	else if (strncmp(buf, "scan=on", 7) == 0)
1779 		start_scan_thread();
1780 	else if (strncmp(buf, "scan=off", 8) == 0)
1781 		stop_scan_thread();
1782 	else if (strncmp(buf, "scan=", 5) == 0) {
1783 		unsigned long secs;
1784 
1785 		ret = kstrtoul(buf + 5, 0, &secs);
1786 		if (ret < 0)
1787 			goto out;
1788 		stop_scan_thread();
1789 		if (secs) {
1790 			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1791 			start_scan_thread();
1792 		}
1793 	} else if (strncmp(buf, "scan", 4) == 0)
1794 		kmemleak_scan();
1795 	else if (strncmp(buf, "dump=", 5) == 0)
1796 		ret = dump_str_object_info(buf + 5);
1797 	else
1798 		ret = -EINVAL;
1799 
1800 out:
1801 	mutex_unlock(&scan_mutex);
1802 	if (ret < 0)
1803 		return ret;
1804 
1805 	/* ignore the rest of the buffer, only one command at a time */
1806 	*ppos += size;
1807 	return size;
1808 }
1809 
1810 static const struct file_operations kmemleak_fops = {
1811 	.owner		= THIS_MODULE,
1812 	.open		= kmemleak_open,
1813 	.read		= seq_read,
1814 	.write		= kmemleak_write,
1815 	.llseek		= seq_lseek,
1816 	.release	= seq_release,
1817 };
1818 
1819 static void __kmemleak_do_cleanup(void)
1820 {
1821 	struct kmemleak_object *object;
1822 
1823 	rcu_read_lock();
1824 	list_for_each_entry_rcu(object, &object_list, object_list)
1825 		delete_object_full(object->pointer);
1826 	rcu_read_unlock();
1827 }
1828 
1829 /*
1830  * Stop the memory scanning thread and free the kmemleak internal objects if
1831  * no previous scan thread (otherwise, kmemleak may still have some useful
1832  * information on memory leaks).
1833  */
1834 static void kmemleak_do_cleanup(struct work_struct *work)
1835 {
1836 	stop_scan_thread();
1837 
1838 	/*
1839 	 * Once the scan thread has stopped, it is safe to no longer track
1840 	 * object freeing. Ordering of the scan thread stopping and the memory
1841 	 * accesses below is guaranteed by the kthread_stop() function.
1842 	 */
1843 	kmemleak_free_enabled = 0;
1844 
1845 	if (!kmemleak_found_leaks)
1846 		__kmemleak_do_cleanup();
1847 	else
1848 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1849 }
1850 
1851 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1852 
1853 /*
1854  * Disable kmemleak. No memory allocation/freeing will be traced once this
1855  * function is called. Disabling kmemleak is an irreversible operation.
1856  */
1857 static void kmemleak_disable(void)
1858 {
1859 	/* atomically check whether it was already invoked */
1860 	if (cmpxchg(&kmemleak_error, 0, 1))
1861 		return;
1862 
1863 	/* stop any memory operation tracing */
1864 	kmemleak_enabled = 0;
1865 
1866 	/* check whether it is too early for a kernel thread */
1867 	if (kmemleak_initialized)
1868 		schedule_work(&cleanup_work);
1869 	else
1870 		kmemleak_free_enabled = 0;
1871 
1872 	pr_info("Kernel memory leak detector disabled\n");
1873 }
1874 
1875 /*
1876  * Allow boot-time kmemleak disabling (enabled by default).
1877  */
1878 static int kmemleak_boot_config(char *str)
1879 {
1880 	if (!str)
1881 		return -EINVAL;
1882 	if (strcmp(str, "off") == 0)
1883 		kmemleak_disable();
1884 	else if (strcmp(str, "on") == 0)
1885 		kmemleak_skip_disable = 1;
1886 	else
1887 		return -EINVAL;
1888 	return 0;
1889 }
1890 early_param("kmemleak", kmemleak_boot_config);
1891 
1892 static void __init print_log_trace(struct early_log *log)
1893 {
1894 	struct stack_trace trace;
1895 
1896 	trace.nr_entries = log->trace_len;
1897 	trace.entries = log->trace;
1898 
1899 	pr_notice("Early log backtrace:\n");
1900 	print_stack_trace(&trace, 2);
1901 }
1902 
1903 /*
1904  * Kmemleak initialization.
1905  */
1906 void __init kmemleak_init(void)
1907 {
1908 	int i;
1909 	unsigned long flags;
1910 
1911 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1912 	if (!kmemleak_skip_disable) {
1913 		kmemleak_early_log = 0;
1914 		kmemleak_disable();
1915 		return;
1916 	}
1917 #endif
1918 
1919 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1920 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1921 
1922 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1923 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1924 
1925 	if (crt_early_log > ARRAY_SIZE(early_log))
1926 		pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
1927 			crt_early_log);
1928 
1929 	/* the kernel is still in UP mode, so disabling the IRQs is enough */
1930 	local_irq_save(flags);
1931 	kmemleak_early_log = 0;
1932 	if (kmemleak_error) {
1933 		local_irq_restore(flags);
1934 		return;
1935 	} else {
1936 		kmemleak_enabled = 1;
1937 		kmemleak_free_enabled = 1;
1938 	}
1939 	local_irq_restore(flags);
1940 
1941 	/*
1942 	 * This is the point where tracking allocations is safe. Automatic
1943 	 * scanning is started during the late initcall. Add the early logged
1944 	 * callbacks to the kmemleak infrastructure.
1945 	 */
1946 	for (i = 0; i < crt_early_log; i++) {
1947 		struct early_log *log = &early_log[i];
1948 
1949 		switch (log->op_type) {
1950 		case KMEMLEAK_ALLOC:
1951 			early_alloc(log);
1952 			break;
1953 		case KMEMLEAK_ALLOC_PERCPU:
1954 			early_alloc_percpu(log);
1955 			break;
1956 		case KMEMLEAK_FREE:
1957 			kmemleak_free(log->ptr);
1958 			break;
1959 		case KMEMLEAK_FREE_PART:
1960 			kmemleak_free_part(log->ptr, log->size);
1961 			break;
1962 		case KMEMLEAK_FREE_PERCPU:
1963 			kmemleak_free_percpu(log->ptr);
1964 			break;
1965 		case KMEMLEAK_NOT_LEAK:
1966 			kmemleak_not_leak(log->ptr);
1967 			break;
1968 		case KMEMLEAK_IGNORE:
1969 			kmemleak_ignore(log->ptr);
1970 			break;
1971 		case KMEMLEAK_SCAN_AREA:
1972 			kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1973 			break;
1974 		case KMEMLEAK_NO_SCAN:
1975 			kmemleak_no_scan(log->ptr);
1976 			break;
1977 		default:
1978 			kmemleak_warn("Unknown early log operation: %d\n",
1979 				      log->op_type);
1980 		}
1981 
1982 		if (kmemleak_warning) {
1983 			print_log_trace(log);
1984 			kmemleak_warning = 0;
1985 		}
1986 	}
1987 }
1988 
1989 /*
1990  * Late initialization function.
1991  */
1992 static int __init kmemleak_late_init(void)
1993 {
1994 	struct dentry *dentry;
1995 
1996 	kmemleak_initialized = 1;
1997 
1998 	if (kmemleak_error) {
1999 		/*
2000 		 * Some error occurred and kmemleak was disabled. There is a
2001 		 * small chance that kmemleak_disable() was called immediately
2002 		 * after setting kmemleak_initialized and we may end up with
2003 		 * two clean-up threads but serialized by scan_mutex.
2004 		 */
2005 		schedule_work(&cleanup_work);
2006 		return -ENOMEM;
2007 	}
2008 
2009 	dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
2010 				     &kmemleak_fops);
2011 	if (!dentry)
2012 		pr_warn("Failed to create the debugfs kmemleak file\n");
2013 	mutex_lock(&scan_mutex);
2014 	start_scan_thread();
2015 	mutex_unlock(&scan_mutex);
2016 
2017 	pr_info("Kernel memory leak detector initialized\n");
2018 
2019 	return 0;
2020 }
2021 late_initcall(kmemleak_late_init);
2022