1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/kmemleak.c 4 * 5 * Copyright (C) 2008 ARM Limited 6 * Written by Catalin Marinas <catalin.marinas@arm.com> 7 * 8 * For more information on the algorithm and kmemleak usage, please see 9 * Documentation/dev-tools/kmemleak.rst. 10 * 11 * Notes on locking 12 * ---------------- 13 * 14 * The following locks and mutexes are used by kmemleak: 15 * 16 * - kmemleak_lock (rwlock): protects the object_list modifications and 17 * accesses to the object_tree_root. The object_list is the main list 18 * holding the metadata (struct kmemleak_object) for the allocated memory 19 * blocks. The object_tree_root is a red black tree used to look-up 20 * metadata based on a pointer to the corresponding memory block. The 21 * kmemleak_object structures are added to the object_list and 22 * object_tree_root in the create_object() function called from the 23 * kmemleak_alloc() callback and removed in delete_object() called from the 24 * kmemleak_free() callback 25 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to 26 * the metadata (e.g. count) are protected by this lock. Note that some 27 * members of this structure may be protected by other means (atomic or 28 * kmemleak_lock). This lock is also held when scanning the corresponding 29 * memory block to avoid the kernel freeing it via the kmemleak_free() 30 * callback. This is less heavyweight than holding a global lock like 31 * kmemleak_lock during scanning 32 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 33 * unreferenced objects at a time. The gray_list contains the objects which 34 * are already referenced or marked as false positives and need to be 35 * scanned. This list is only modified during a scanning episode when the 36 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 37 * Note that the kmemleak_object.use_count is incremented when an object is 38 * added to the gray_list and therefore cannot be freed. This mutex also 39 * prevents multiple users of the "kmemleak" debugfs file together with 40 * modifications to the memory scanning parameters including the scan_thread 41 * pointer 42 * 43 * Locks and mutexes are acquired/nested in the following order: 44 * 45 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 46 * 47 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 48 * regions. 49 * 50 * The kmemleak_object structures have a use_count incremented or decremented 51 * using the get_object()/put_object() functions. When the use_count becomes 52 * 0, this count can no longer be incremented and put_object() schedules the 53 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 54 * function must be protected by rcu_read_lock() to avoid accessing a freed 55 * structure. 56 */ 57 58 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 59 60 #include <linux/init.h> 61 #include <linux/kernel.h> 62 #include <linux/list.h> 63 #include <linux/sched/signal.h> 64 #include <linux/sched/task.h> 65 #include <linux/sched/task_stack.h> 66 #include <linux/jiffies.h> 67 #include <linux/delay.h> 68 #include <linux/export.h> 69 #include <linux/kthread.h> 70 #include <linux/rbtree.h> 71 #include <linux/fs.h> 72 #include <linux/debugfs.h> 73 #include <linux/seq_file.h> 74 #include <linux/cpumask.h> 75 #include <linux/spinlock.h> 76 #include <linux/module.h> 77 #include <linux/mutex.h> 78 #include <linux/rcupdate.h> 79 #include <linux/stacktrace.h> 80 #include <linux/cache.h> 81 #include <linux/percpu.h> 82 #include <linux/memblock.h> 83 #include <linux/pfn.h> 84 #include <linux/mmzone.h> 85 #include <linux/slab.h> 86 #include <linux/thread_info.h> 87 #include <linux/err.h> 88 #include <linux/uaccess.h> 89 #include <linux/string.h> 90 #include <linux/nodemask.h> 91 #include <linux/mm.h> 92 #include <linux/workqueue.h> 93 #include <linux/crc32.h> 94 95 #include <asm/sections.h> 96 #include <asm/processor.h> 97 #include <linux/atomic.h> 98 99 #include <linux/kasan.h> 100 #include <linux/kmemleak.h> 101 #include <linux/memory_hotplug.h> 102 103 /* 104 * Kmemleak configuration and common defines. 105 */ 106 #define MAX_TRACE 16 /* stack trace length */ 107 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 108 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 109 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 110 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 111 112 #define BYTES_PER_POINTER sizeof(void *) 113 114 /* GFP bitmask for kmemleak internal allocations */ 115 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \ 116 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 117 __GFP_NOWARN) 118 119 /* scanning area inside a memory block */ 120 struct kmemleak_scan_area { 121 struct hlist_node node; 122 unsigned long start; 123 size_t size; 124 }; 125 126 #define KMEMLEAK_GREY 0 127 #define KMEMLEAK_BLACK -1 128 129 /* 130 * Structure holding the metadata for each allocated memory block. 131 * Modifications to such objects should be made while holding the 132 * object->lock. Insertions or deletions from object_list, gray_list or 133 * rb_node are already protected by the corresponding locks or mutex (see 134 * the notes on locking above). These objects are reference-counted 135 * (use_count) and freed using the RCU mechanism. 136 */ 137 struct kmemleak_object { 138 spinlock_t lock; 139 unsigned int flags; /* object status flags */ 140 struct list_head object_list; 141 struct list_head gray_list; 142 struct rb_node rb_node; 143 struct rcu_head rcu; /* object_list lockless traversal */ 144 /* object usage count; object freed when use_count == 0 */ 145 atomic_t use_count; 146 unsigned long pointer; 147 size_t size; 148 /* pass surplus references to this pointer */ 149 unsigned long excess_ref; 150 /* minimum number of a pointers found before it is considered leak */ 151 int min_count; 152 /* the total number of pointers found pointing to this object */ 153 int count; 154 /* checksum for detecting modified objects */ 155 u32 checksum; 156 /* memory ranges to be scanned inside an object (empty for all) */ 157 struct hlist_head area_list; 158 unsigned long trace[MAX_TRACE]; 159 unsigned int trace_len; 160 unsigned long jiffies; /* creation timestamp */ 161 pid_t pid; /* pid of the current task */ 162 char comm[TASK_COMM_LEN]; /* executable name */ 163 }; 164 165 /* flag representing the memory block allocation status */ 166 #define OBJECT_ALLOCATED (1 << 0) 167 /* flag set after the first reporting of an unreference object */ 168 #define OBJECT_REPORTED (1 << 1) 169 /* flag set to not scan the object */ 170 #define OBJECT_NO_SCAN (1 << 2) 171 /* flag set to fully scan the object when scan_area allocation failed */ 172 #define OBJECT_FULL_SCAN (1 << 3) 173 174 #define HEX_PREFIX " " 175 /* number of bytes to print per line; must be 16 or 32 */ 176 #define HEX_ROW_SIZE 16 177 /* number of bytes to print at a time (1, 2, 4, 8) */ 178 #define HEX_GROUP_SIZE 1 179 /* include ASCII after the hex output */ 180 #define HEX_ASCII 1 181 /* max number of lines to be printed */ 182 #define HEX_MAX_LINES 2 183 184 /* the list of all allocated objects */ 185 static LIST_HEAD(object_list); 186 /* the list of gray-colored objects (see color_gray comment below) */ 187 static LIST_HEAD(gray_list); 188 /* memory pool allocation */ 189 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE]; 190 static int mem_pool_free_count = ARRAY_SIZE(mem_pool); 191 static LIST_HEAD(mem_pool_free_list); 192 /* search tree for object boundaries */ 193 static struct rb_root object_tree_root = RB_ROOT; 194 /* rw_lock protecting the access to object_list and object_tree_root */ 195 static DEFINE_RWLOCK(kmemleak_lock); 196 197 /* allocation caches for kmemleak internal data */ 198 static struct kmem_cache *object_cache; 199 static struct kmem_cache *scan_area_cache; 200 201 /* set if tracing memory operations is enabled */ 202 static int kmemleak_enabled = 1; 203 /* same as above but only for the kmemleak_free() callback */ 204 static int kmemleak_free_enabled = 1; 205 /* set in the late_initcall if there were no errors */ 206 static int kmemleak_initialized; 207 /* set if a kmemleak warning was issued */ 208 static int kmemleak_warning; 209 /* set if a fatal kmemleak error has occurred */ 210 static int kmemleak_error; 211 212 /* minimum and maximum address that may be valid pointers */ 213 static unsigned long min_addr = ULONG_MAX; 214 static unsigned long max_addr; 215 216 static struct task_struct *scan_thread; 217 /* used to avoid reporting of recently allocated objects */ 218 static unsigned long jiffies_min_age; 219 static unsigned long jiffies_last_scan; 220 /* delay between automatic memory scannings */ 221 static signed long jiffies_scan_wait; 222 /* enables or disables the task stacks scanning */ 223 static int kmemleak_stack_scan = 1; 224 /* protects the memory scanning, parameters and debug/kmemleak file access */ 225 static DEFINE_MUTEX(scan_mutex); 226 /* setting kmemleak=on, will set this var, skipping the disable */ 227 static int kmemleak_skip_disable; 228 /* If there are leaks that can be reported */ 229 static bool kmemleak_found_leaks; 230 231 static bool kmemleak_verbose; 232 module_param_named(verbose, kmemleak_verbose, bool, 0600); 233 234 static void kmemleak_disable(void); 235 236 /* 237 * Print a warning and dump the stack trace. 238 */ 239 #define kmemleak_warn(x...) do { \ 240 pr_warn(x); \ 241 dump_stack(); \ 242 kmemleak_warning = 1; \ 243 } while (0) 244 245 /* 246 * Macro invoked when a serious kmemleak condition occurred and cannot be 247 * recovered from. Kmemleak will be disabled and further allocation/freeing 248 * tracing no longer available. 249 */ 250 #define kmemleak_stop(x...) do { \ 251 kmemleak_warn(x); \ 252 kmemleak_disable(); \ 253 } while (0) 254 255 #define warn_or_seq_printf(seq, fmt, ...) do { \ 256 if (seq) \ 257 seq_printf(seq, fmt, ##__VA_ARGS__); \ 258 else \ 259 pr_warn(fmt, ##__VA_ARGS__); \ 260 } while (0) 261 262 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type, 263 int rowsize, int groupsize, const void *buf, 264 size_t len, bool ascii) 265 { 266 if (seq) 267 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize, 268 buf, len, ascii); 269 else 270 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type, 271 rowsize, groupsize, buf, len, ascii); 272 } 273 274 /* 275 * Printing of the objects hex dump to the seq file. The number of lines to be 276 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 277 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 278 * with the object->lock held. 279 */ 280 static void hex_dump_object(struct seq_file *seq, 281 struct kmemleak_object *object) 282 { 283 const u8 *ptr = (const u8 *)object->pointer; 284 size_t len; 285 286 /* limit the number of lines to HEX_MAX_LINES */ 287 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 288 289 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len); 290 kasan_disable_current(); 291 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE, 292 HEX_GROUP_SIZE, ptr, len, HEX_ASCII); 293 kasan_enable_current(); 294 } 295 296 /* 297 * Object colors, encoded with count and min_count: 298 * - white - orphan object, not enough references to it (count < min_count) 299 * - gray - not orphan, not marked as false positive (min_count == 0) or 300 * sufficient references to it (count >= min_count) 301 * - black - ignore, it doesn't contain references (e.g. text section) 302 * (min_count == -1). No function defined for this color. 303 * Newly created objects don't have any color assigned (object->count == -1) 304 * before the next memory scan when they become white. 305 */ 306 static bool color_white(const struct kmemleak_object *object) 307 { 308 return object->count != KMEMLEAK_BLACK && 309 object->count < object->min_count; 310 } 311 312 static bool color_gray(const struct kmemleak_object *object) 313 { 314 return object->min_count != KMEMLEAK_BLACK && 315 object->count >= object->min_count; 316 } 317 318 /* 319 * Objects are considered unreferenced only if their color is white, they have 320 * not be deleted and have a minimum age to avoid false positives caused by 321 * pointers temporarily stored in CPU registers. 322 */ 323 static bool unreferenced_object(struct kmemleak_object *object) 324 { 325 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 326 time_before_eq(object->jiffies + jiffies_min_age, 327 jiffies_last_scan); 328 } 329 330 /* 331 * Printing of the unreferenced objects information to the seq file. The 332 * print_unreferenced function must be called with the object->lock held. 333 */ 334 static void print_unreferenced(struct seq_file *seq, 335 struct kmemleak_object *object) 336 { 337 int i; 338 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 339 340 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 341 object->pointer, object->size); 342 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 343 object->comm, object->pid, object->jiffies, 344 msecs_age / 1000, msecs_age % 1000); 345 hex_dump_object(seq, object); 346 warn_or_seq_printf(seq, " backtrace:\n"); 347 348 for (i = 0; i < object->trace_len; i++) { 349 void *ptr = (void *)object->trace[i]; 350 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); 351 } 352 } 353 354 /* 355 * Print the kmemleak_object information. This function is used mainly for 356 * debugging special cases when kmemleak operations. It must be called with 357 * the object->lock held. 358 */ 359 static void dump_object_info(struct kmemleak_object *object) 360 { 361 pr_notice("Object 0x%08lx (size %zu):\n", 362 object->pointer, object->size); 363 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 364 object->comm, object->pid, object->jiffies); 365 pr_notice(" min_count = %d\n", object->min_count); 366 pr_notice(" count = %d\n", object->count); 367 pr_notice(" flags = 0x%x\n", object->flags); 368 pr_notice(" checksum = %u\n", object->checksum); 369 pr_notice(" backtrace:\n"); 370 stack_trace_print(object->trace, object->trace_len, 4); 371 } 372 373 /* 374 * Look-up a memory block metadata (kmemleak_object) in the object search 375 * tree based on a pointer value. If alias is 0, only values pointing to the 376 * beginning of the memory block are allowed. The kmemleak_lock must be held 377 * when calling this function. 378 */ 379 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 380 { 381 struct rb_node *rb = object_tree_root.rb_node; 382 383 while (rb) { 384 struct kmemleak_object *object = 385 rb_entry(rb, struct kmemleak_object, rb_node); 386 if (ptr < object->pointer) 387 rb = object->rb_node.rb_left; 388 else if (object->pointer + object->size <= ptr) 389 rb = object->rb_node.rb_right; 390 else if (object->pointer == ptr || alias) 391 return object; 392 else { 393 kmemleak_warn("Found object by alias at 0x%08lx\n", 394 ptr); 395 dump_object_info(object); 396 break; 397 } 398 } 399 return NULL; 400 } 401 402 /* 403 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 404 * that once an object's use_count reached 0, the RCU freeing was already 405 * registered and the object should no longer be used. This function must be 406 * called under the protection of rcu_read_lock(). 407 */ 408 static int get_object(struct kmemleak_object *object) 409 { 410 return atomic_inc_not_zero(&object->use_count); 411 } 412 413 /* 414 * Memory pool allocation and freeing. kmemleak_lock must not be held. 415 */ 416 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp) 417 { 418 unsigned long flags; 419 struct kmemleak_object *object; 420 421 /* try the slab allocator first */ 422 if (object_cache) { 423 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 424 if (object) 425 return object; 426 } 427 428 /* slab allocation failed, try the memory pool */ 429 write_lock_irqsave(&kmemleak_lock, flags); 430 object = list_first_entry_or_null(&mem_pool_free_list, 431 typeof(*object), object_list); 432 if (object) 433 list_del(&object->object_list); 434 else if (mem_pool_free_count) 435 object = &mem_pool[--mem_pool_free_count]; 436 else 437 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n"); 438 write_unlock_irqrestore(&kmemleak_lock, flags); 439 440 return object; 441 } 442 443 /* 444 * Return the object to either the slab allocator or the memory pool. 445 */ 446 static void mem_pool_free(struct kmemleak_object *object) 447 { 448 unsigned long flags; 449 450 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) { 451 kmem_cache_free(object_cache, object); 452 return; 453 } 454 455 /* add the object to the memory pool free list */ 456 write_lock_irqsave(&kmemleak_lock, flags); 457 list_add(&object->object_list, &mem_pool_free_list); 458 write_unlock_irqrestore(&kmemleak_lock, flags); 459 } 460 461 /* 462 * RCU callback to free a kmemleak_object. 463 */ 464 static void free_object_rcu(struct rcu_head *rcu) 465 { 466 struct hlist_node *tmp; 467 struct kmemleak_scan_area *area; 468 struct kmemleak_object *object = 469 container_of(rcu, struct kmemleak_object, rcu); 470 471 /* 472 * Once use_count is 0 (guaranteed by put_object), there is no other 473 * code accessing this object, hence no need for locking. 474 */ 475 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 476 hlist_del(&area->node); 477 kmem_cache_free(scan_area_cache, area); 478 } 479 mem_pool_free(object); 480 } 481 482 /* 483 * Decrement the object use_count. Once the count is 0, free the object using 484 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 485 * delete_object() path, the delayed RCU freeing ensures that there is no 486 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 487 * is also possible. 488 */ 489 static void put_object(struct kmemleak_object *object) 490 { 491 if (!atomic_dec_and_test(&object->use_count)) 492 return; 493 494 /* should only get here after delete_object was called */ 495 WARN_ON(object->flags & OBJECT_ALLOCATED); 496 497 /* 498 * It may be too early for the RCU callbacks, however, there is no 499 * concurrent object_list traversal when !object_cache and all objects 500 * came from the memory pool. Free the object directly. 501 */ 502 if (object_cache) 503 call_rcu(&object->rcu, free_object_rcu); 504 else 505 free_object_rcu(&object->rcu); 506 } 507 508 /* 509 * Look up an object in the object search tree and increase its use_count. 510 */ 511 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 512 { 513 unsigned long flags; 514 struct kmemleak_object *object; 515 516 rcu_read_lock(); 517 read_lock_irqsave(&kmemleak_lock, flags); 518 object = lookup_object(ptr, alias); 519 read_unlock_irqrestore(&kmemleak_lock, flags); 520 521 /* check whether the object is still available */ 522 if (object && !get_object(object)) 523 object = NULL; 524 rcu_read_unlock(); 525 526 return object; 527 } 528 529 /* 530 * Look up an object in the object search tree and remove it from both 531 * object_tree_root and object_list. The returned object's use_count should be 532 * at least 1, as initially set by create_object(). 533 */ 534 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias) 535 { 536 unsigned long flags; 537 struct kmemleak_object *object; 538 539 write_lock_irqsave(&kmemleak_lock, flags); 540 object = lookup_object(ptr, alias); 541 if (object) { 542 rb_erase(&object->rb_node, &object_tree_root); 543 list_del_rcu(&object->object_list); 544 } 545 write_unlock_irqrestore(&kmemleak_lock, flags); 546 547 return object; 548 } 549 550 /* 551 * Save stack trace to the given array of MAX_TRACE size. 552 */ 553 static int __save_stack_trace(unsigned long *trace) 554 { 555 return stack_trace_save(trace, MAX_TRACE, 2); 556 } 557 558 /* 559 * Create the metadata (struct kmemleak_object) corresponding to an allocated 560 * memory block and add it to the object_list and object_tree_root. 561 */ 562 static struct kmemleak_object *create_object(unsigned long ptr, size_t size, 563 int min_count, gfp_t gfp) 564 { 565 unsigned long flags; 566 struct kmemleak_object *object, *parent; 567 struct rb_node **link, *rb_parent; 568 unsigned long untagged_ptr; 569 570 object = mem_pool_alloc(gfp); 571 if (!object) { 572 pr_warn("Cannot allocate a kmemleak_object structure\n"); 573 kmemleak_disable(); 574 return NULL; 575 } 576 577 INIT_LIST_HEAD(&object->object_list); 578 INIT_LIST_HEAD(&object->gray_list); 579 INIT_HLIST_HEAD(&object->area_list); 580 spin_lock_init(&object->lock); 581 atomic_set(&object->use_count, 1); 582 object->flags = OBJECT_ALLOCATED; 583 object->pointer = ptr; 584 object->size = size; 585 object->excess_ref = 0; 586 object->min_count = min_count; 587 object->count = 0; /* white color initially */ 588 object->jiffies = jiffies; 589 object->checksum = 0; 590 591 /* task information */ 592 if (in_irq()) { 593 object->pid = 0; 594 strncpy(object->comm, "hardirq", sizeof(object->comm)); 595 } else if (in_serving_softirq()) { 596 object->pid = 0; 597 strncpy(object->comm, "softirq", sizeof(object->comm)); 598 } else { 599 object->pid = current->pid; 600 /* 601 * There is a small chance of a race with set_task_comm(), 602 * however using get_task_comm() here may cause locking 603 * dependency issues with current->alloc_lock. In the worst 604 * case, the command line is not correct. 605 */ 606 strncpy(object->comm, current->comm, sizeof(object->comm)); 607 } 608 609 /* kernel backtrace */ 610 object->trace_len = __save_stack_trace(object->trace); 611 612 write_lock_irqsave(&kmemleak_lock, flags); 613 614 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 615 min_addr = min(min_addr, untagged_ptr); 616 max_addr = max(max_addr, untagged_ptr + size); 617 link = &object_tree_root.rb_node; 618 rb_parent = NULL; 619 while (*link) { 620 rb_parent = *link; 621 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 622 if (ptr + size <= parent->pointer) 623 link = &parent->rb_node.rb_left; 624 else if (parent->pointer + parent->size <= ptr) 625 link = &parent->rb_node.rb_right; 626 else { 627 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 628 ptr); 629 /* 630 * No need for parent->lock here since "parent" cannot 631 * be freed while the kmemleak_lock is held. 632 */ 633 dump_object_info(parent); 634 kmem_cache_free(object_cache, object); 635 object = NULL; 636 goto out; 637 } 638 } 639 rb_link_node(&object->rb_node, rb_parent, link); 640 rb_insert_color(&object->rb_node, &object_tree_root); 641 642 list_add_tail_rcu(&object->object_list, &object_list); 643 out: 644 write_unlock_irqrestore(&kmemleak_lock, flags); 645 return object; 646 } 647 648 /* 649 * Mark the object as not allocated and schedule RCU freeing via put_object(). 650 */ 651 static void __delete_object(struct kmemleak_object *object) 652 { 653 unsigned long flags; 654 655 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 656 WARN_ON(atomic_read(&object->use_count) < 1); 657 658 /* 659 * Locking here also ensures that the corresponding memory block 660 * cannot be freed when it is being scanned. 661 */ 662 spin_lock_irqsave(&object->lock, flags); 663 object->flags &= ~OBJECT_ALLOCATED; 664 spin_unlock_irqrestore(&object->lock, flags); 665 put_object(object); 666 } 667 668 /* 669 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 670 * delete it. 671 */ 672 static void delete_object_full(unsigned long ptr) 673 { 674 struct kmemleak_object *object; 675 676 object = find_and_remove_object(ptr, 0); 677 if (!object) { 678 #ifdef DEBUG 679 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 680 ptr); 681 #endif 682 return; 683 } 684 __delete_object(object); 685 } 686 687 /* 688 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 689 * delete it. If the memory block is partially freed, the function may create 690 * additional metadata for the remaining parts of the block. 691 */ 692 static void delete_object_part(unsigned long ptr, size_t size) 693 { 694 struct kmemleak_object *object; 695 unsigned long start, end; 696 697 object = find_and_remove_object(ptr, 1); 698 if (!object) { 699 #ifdef DEBUG 700 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 701 ptr, size); 702 #endif 703 return; 704 } 705 706 /* 707 * Create one or two objects that may result from the memory block 708 * split. Note that partial freeing is only done by free_bootmem() and 709 * this happens before kmemleak_init() is called. 710 */ 711 start = object->pointer; 712 end = object->pointer + object->size; 713 if (ptr > start) 714 create_object(start, ptr - start, object->min_count, 715 GFP_KERNEL); 716 if (ptr + size < end) 717 create_object(ptr + size, end - ptr - size, object->min_count, 718 GFP_KERNEL); 719 720 __delete_object(object); 721 } 722 723 static void __paint_it(struct kmemleak_object *object, int color) 724 { 725 object->min_count = color; 726 if (color == KMEMLEAK_BLACK) 727 object->flags |= OBJECT_NO_SCAN; 728 } 729 730 static void paint_it(struct kmemleak_object *object, int color) 731 { 732 unsigned long flags; 733 734 spin_lock_irqsave(&object->lock, flags); 735 __paint_it(object, color); 736 spin_unlock_irqrestore(&object->lock, flags); 737 } 738 739 static void paint_ptr(unsigned long ptr, int color) 740 { 741 struct kmemleak_object *object; 742 743 object = find_and_get_object(ptr, 0); 744 if (!object) { 745 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 746 ptr, 747 (color == KMEMLEAK_GREY) ? "Grey" : 748 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 749 return; 750 } 751 paint_it(object, color); 752 put_object(object); 753 } 754 755 /* 756 * Mark an object permanently as gray-colored so that it can no longer be 757 * reported as a leak. This is used in general to mark a false positive. 758 */ 759 static void make_gray_object(unsigned long ptr) 760 { 761 paint_ptr(ptr, KMEMLEAK_GREY); 762 } 763 764 /* 765 * Mark the object as black-colored so that it is ignored from scans and 766 * reporting. 767 */ 768 static void make_black_object(unsigned long ptr) 769 { 770 paint_ptr(ptr, KMEMLEAK_BLACK); 771 } 772 773 /* 774 * Add a scanning area to the object. If at least one such area is added, 775 * kmemleak will only scan these ranges rather than the whole memory block. 776 */ 777 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 778 { 779 unsigned long flags; 780 struct kmemleak_object *object; 781 struct kmemleak_scan_area *area = NULL; 782 783 object = find_and_get_object(ptr, 1); 784 if (!object) { 785 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 786 ptr); 787 return; 788 } 789 790 if (scan_area_cache) 791 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 792 793 spin_lock_irqsave(&object->lock, flags); 794 if (!area) { 795 pr_warn_once("Cannot allocate a scan area, scanning the full object\n"); 796 /* mark the object for full scan to avoid false positives */ 797 object->flags |= OBJECT_FULL_SCAN; 798 goto out_unlock; 799 } 800 if (size == SIZE_MAX) { 801 size = object->pointer + object->size - ptr; 802 } else if (ptr + size > object->pointer + object->size) { 803 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 804 dump_object_info(object); 805 kmem_cache_free(scan_area_cache, area); 806 goto out_unlock; 807 } 808 809 INIT_HLIST_NODE(&area->node); 810 area->start = ptr; 811 area->size = size; 812 813 hlist_add_head(&area->node, &object->area_list); 814 out_unlock: 815 spin_unlock_irqrestore(&object->lock, flags); 816 put_object(object); 817 } 818 819 /* 820 * Any surplus references (object already gray) to 'ptr' are passed to 821 * 'excess_ref'. This is used in the vmalloc() case where a pointer to 822 * vm_struct may be used as an alternative reference to the vmalloc'ed object 823 * (see free_thread_stack()). 824 */ 825 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) 826 { 827 unsigned long flags; 828 struct kmemleak_object *object; 829 830 object = find_and_get_object(ptr, 0); 831 if (!object) { 832 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", 833 ptr); 834 return; 835 } 836 837 spin_lock_irqsave(&object->lock, flags); 838 object->excess_ref = excess_ref; 839 spin_unlock_irqrestore(&object->lock, flags); 840 put_object(object); 841 } 842 843 /* 844 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 845 * pointer. Such object will not be scanned by kmemleak but references to it 846 * are searched. 847 */ 848 static void object_no_scan(unsigned long ptr) 849 { 850 unsigned long flags; 851 struct kmemleak_object *object; 852 853 object = find_and_get_object(ptr, 0); 854 if (!object) { 855 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 856 return; 857 } 858 859 spin_lock_irqsave(&object->lock, flags); 860 object->flags |= OBJECT_NO_SCAN; 861 spin_unlock_irqrestore(&object->lock, flags); 862 put_object(object); 863 } 864 865 /** 866 * kmemleak_alloc - register a newly allocated object 867 * @ptr: pointer to beginning of the object 868 * @size: size of the object 869 * @min_count: minimum number of references to this object. If during memory 870 * scanning a number of references less than @min_count is found, 871 * the object is reported as a memory leak. If @min_count is 0, 872 * the object is never reported as a leak. If @min_count is -1, 873 * the object is ignored (not scanned and not reported as a leak) 874 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 875 * 876 * This function is called from the kernel allocators when a new object 877 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). 878 */ 879 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 880 gfp_t gfp) 881 { 882 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 883 884 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 885 create_object((unsigned long)ptr, size, min_count, gfp); 886 } 887 EXPORT_SYMBOL_GPL(kmemleak_alloc); 888 889 /** 890 * kmemleak_alloc_percpu - register a newly allocated __percpu object 891 * @ptr: __percpu pointer to beginning of the object 892 * @size: size of the object 893 * @gfp: flags used for kmemleak internal memory allocations 894 * 895 * This function is called from the kernel percpu allocator when a new object 896 * (memory block) is allocated (alloc_percpu). 897 */ 898 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 899 gfp_t gfp) 900 { 901 unsigned int cpu; 902 903 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); 904 905 /* 906 * Percpu allocations are only scanned and not reported as leaks 907 * (min_count is set to 0). 908 */ 909 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 910 for_each_possible_cpu(cpu) 911 create_object((unsigned long)per_cpu_ptr(ptr, cpu), 912 size, 0, gfp); 913 } 914 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 915 916 /** 917 * kmemleak_vmalloc - register a newly vmalloc'ed object 918 * @area: pointer to vm_struct 919 * @size: size of the object 920 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations 921 * 922 * This function is called from the vmalloc() kernel allocator when a new 923 * object (memory block) is allocated. 924 */ 925 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) 926 { 927 pr_debug("%s(0x%p, %zu)\n", __func__, area, size); 928 929 /* 930 * A min_count = 2 is needed because vm_struct contains a reference to 931 * the virtual address of the vmalloc'ed block. 932 */ 933 if (kmemleak_enabled) { 934 create_object((unsigned long)area->addr, size, 2, gfp); 935 object_set_excess_ref((unsigned long)area, 936 (unsigned long)area->addr); 937 } 938 } 939 EXPORT_SYMBOL_GPL(kmemleak_vmalloc); 940 941 /** 942 * kmemleak_free - unregister a previously registered object 943 * @ptr: pointer to beginning of the object 944 * 945 * This function is called from the kernel allocators when an object (memory 946 * block) is freed (kmem_cache_free, kfree, vfree etc.). 947 */ 948 void __ref kmemleak_free(const void *ptr) 949 { 950 pr_debug("%s(0x%p)\n", __func__, ptr); 951 952 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 953 delete_object_full((unsigned long)ptr); 954 } 955 EXPORT_SYMBOL_GPL(kmemleak_free); 956 957 /** 958 * kmemleak_free_part - partially unregister a previously registered object 959 * @ptr: pointer to the beginning or inside the object. This also 960 * represents the start of the range to be freed 961 * @size: size to be unregistered 962 * 963 * This function is called when only a part of a memory block is freed 964 * (usually from the bootmem allocator). 965 */ 966 void __ref kmemleak_free_part(const void *ptr, size_t size) 967 { 968 pr_debug("%s(0x%p)\n", __func__, ptr); 969 970 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 971 delete_object_part((unsigned long)ptr, size); 972 } 973 EXPORT_SYMBOL_GPL(kmemleak_free_part); 974 975 /** 976 * kmemleak_free_percpu - unregister a previously registered __percpu object 977 * @ptr: __percpu pointer to beginning of the object 978 * 979 * This function is called from the kernel percpu allocator when an object 980 * (memory block) is freed (free_percpu). 981 */ 982 void __ref kmemleak_free_percpu(const void __percpu *ptr) 983 { 984 unsigned int cpu; 985 986 pr_debug("%s(0x%p)\n", __func__, ptr); 987 988 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 989 for_each_possible_cpu(cpu) 990 delete_object_full((unsigned long)per_cpu_ptr(ptr, 991 cpu)); 992 } 993 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 994 995 /** 996 * kmemleak_update_trace - update object allocation stack trace 997 * @ptr: pointer to beginning of the object 998 * 999 * Override the object allocation stack trace for cases where the actual 1000 * allocation place is not always useful. 1001 */ 1002 void __ref kmemleak_update_trace(const void *ptr) 1003 { 1004 struct kmemleak_object *object; 1005 unsigned long flags; 1006 1007 pr_debug("%s(0x%p)\n", __func__, ptr); 1008 1009 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1010 return; 1011 1012 object = find_and_get_object((unsigned long)ptr, 1); 1013 if (!object) { 1014 #ifdef DEBUG 1015 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1016 ptr); 1017 #endif 1018 return; 1019 } 1020 1021 spin_lock_irqsave(&object->lock, flags); 1022 object->trace_len = __save_stack_trace(object->trace); 1023 spin_unlock_irqrestore(&object->lock, flags); 1024 1025 put_object(object); 1026 } 1027 EXPORT_SYMBOL(kmemleak_update_trace); 1028 1029 /** 1030 * kmemleak_not_leak - mark an allocated object as false positive 1031 * @ptr: pointer to beginning of the object 1032 * 1033 * Calling this function on an object will cause the memory block to no longer 1034 * be reported as leak and always be scanned. 1035 */ 1036 void __ref kmemleak_not_leak(const void *ptr) 1037 { 1038 pr_debug("%s(0x%p)\n", __func__, ptr); 1039 1040 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1041 make_gray_object((unsigned long)ptr); 1042 } 1043 EXPORT_SYMBOL(kmemleak_not_leak); 1044 1045 /** 1046 * kmemleak_ignore - ignore an allocated object 1047 * @ptr: pointer to beginning of the object 1048 * 1049 * Calling this function on an object will cause the memory block to be 1050 * ignored (not scanned and not reported as a leak). This is usually done when 1051 * it is known that the corresponding block is not a leak and does not contain 1052 * any references to other allocated memory blocks. 1053 */ 1054 void __ref kmemleak_ignore(const void *ptr) 1055 { 1056 pr_debug("%s(0x%p)\n", __func__, ptr); 1057 1058 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1059 make_black_object((unsigned long)ptr); 1060 } 1061 EXPORT_SYMBOL(kmemleak_ignore); 1062 1063 /** 1064 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1065 * @ptr: pointer to beginning or inside the object. This also 1066 * represents the start of the scan area 1067 * @size: size of the scan area 1068 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1069 * 1070 * This function is used when it is known that only certain parts of an object 1071 * contain references to other objects. Kmemleak will only scan these areas 1072 * reducing the number false negatives. 1073 */ 1074 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1075 { 1076 pr_debug("%s(0x%p)\n", __func__, ptr); 1077 1078 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1079 add_scan_area((unsigned long)ptr, size, gfp); 1080 } 1081 EXPORT_SYMBOL(kmemleak_scan_area); 1082 1083 /** 1084 * kmemleak_no_scan - do not scan an allocated object 1085 * @ptr: pointer to beginning of the object 1086 * 1087 * This function notifies kmemleak not to scan the given memory block. Useful 1088 * in situations where it is known that the given object does not contain any 1089 * references to other objects. Kmemleak will not scan such objects reducing 1090 * the number of false negatives. 1091 */ 1092 void __ref kmemleak_no_scan(const void *ptr) 1093 { 1094 pr_debug("%s(0x%p)\n", __func__, ptr); 1095 1096 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1097 object_no_scan((unsigned long)ptr); 1098 } 1099 EXPORT_SYMBOL(kmemleak_no_scan); 1100 1101 /** 1102 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1103 * address argument 1104 * @phys: physical address of the object 1105 * @size: size of the object 1106 * @min_count: minimum number of references to this object. 1107 * See kmemleak_alloc() 1108 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1109 */ 1110 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count, 1111 gfp_t gfp) 1112 { 1113 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1114 kmemleak_alloc(__va(phys), size, min_count, gfp); 1115 } 1116 EXPORT_SYMBOL(kmemleak_alloc_phys); 1117 1118 /** 1119 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1120 * physical address argument 1121 * @phys: physical address if the beginning or inside an object. This 1122 * also represents the start of the range to be freed 1123 * @size: size to be unregistered 1124 */ 1125 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1126 { 1127 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1128 kmemleak_free_part(__va(phys), size); 1129 } 1130 EXPORT_SYMBOL(kmemleak_free_part_phys); 1131 1132 /** 1133 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical 1134 * address argument 1135 * @phys: physical address of the object 1136 */ 1137 void __ref kmemleak_not_leak_phys(phys_addr_t phys) 1138 { 1139 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1140 kmemleak_not_leak(__va(phys)); 1141 } 1142 EXPORT_SYMBOL(kmemleak_not_leak_phys); 1143 1144 /** 1145 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1146 * address argument 1147 * @phys: physical address of the object 1148 */ 1149 void __ref kmemleak_ignore_phys(phys_addr_t phys) 1150 { 1151 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1152 kmemleak_ignore(__va(phys)); 1153 } 1154 EXPORT_SYMBOL(kmemleak_ignore_phys); 1155 1156 /* 1157 * Update an object's checksum and return true if it was modified. 1158 */ 1159 static bool update_checksum(struct kmemleak_object *object) 1160 { 1161 u32 old_csum = object->checksum; 1162 1163 kasan_disable_current(); 1164 object->checksum = crc32(0, (void *)object->pointer, object->size); 1165 kasan_enable_current(); 1166 1167 return object->checksum != old_csum; 1168 } 1169 1170 /* 1171 * Update an object's references. object->lock must be held by the caller. 1172 */ 1173 static void update_refs(struct kmemleak_object *object) 1174 { 1175 if (!color_white(object)) { 1176 /* non-orphan, ignored or new */ 1177 return; 1178 } 1179 1180 /* 1181 * Increase the object's reference count (number of pointers to the 1182 * memory block). If this count reaches the required minimum, the 1183 * object's color will become gray and it will be added to the 1184 * gray_list. 1185 */ 1186 object->count++; 1187 if (color_gray(object)) { 1188 /* put_object() called when removing from gray_list */ 1189 WARN_ON(!get_object(object)); 1190 list_add_tail(&object->gray_list, &gray_list); 1191 } 1192 } 1193 1194 /* 1195 * Memory scanning is a long process and it needs to be interruptable. This 1196 * function checks whether such interrupt condition occurred. 1197 */ 1198 static int scan_should_stop(void) 1199 { 1200 if (!kmemleak_enabled) 1201 return 1; 1202 1203 /* 1204 * This function may be called from either process or kthread context, 1205 * hence the need to check for both stop conditions. 1206 */ 1207 if (current->mm) 1208 return signal_pending(current); 1209 else 1210 return kthread_should_stop(); 1211 1212 return 0; 1213 } 1214 1215 /* 1216 * Scan a memory block (exclusive range) for valid pointers and add those 1217 * found to the gray list. 1218 */ 1219 static void scan_block(void *_start, void *_end, 1220 struct kmemleak_object *scanned) 1221 { 1222 unsigned long *ptr; 1223 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1224 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1225 unsigned long flags; 1226 unsigned long untagged_ptr; 1227 1228 read_lock_irqsave(&kmemleak_lock, flags); 1229 for (ptr = start; ptr < end; ptr++) { 1230 struct kmemleak_object *object; 1231 unsigned long pointer; 1232 unsigned long excess_ref; 1233 1234 if (scan_should_stop()) 1235 break; 1236 1237 kasan_disable_current(); 1238 pointer = *ptr; 1239 kasan_enable_current(); 1240 1241 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer); 1242 if (untagged_ptr < min_addr || untagged_ptr >= max_addr) 1243 continue; 1244 1245 /* 1246 * No need for get_object() here since we hold kmemleak_lock. 1247 * object->use_count cannot be dropped to 0 while the object 1248 * is still present in object_tree_root and object_list 1249 * (with updates protected by kmemleak_lock). 1250 */ 1251 object = lookup_object(pointer, 1); 1252 if (!object) 1253 continue; 1254 if (object == scanned) 1255 /* self referenced, ignore */ 1256 continue; 1257 1258 /* 1259 * Avoid the lockdep recursive warning on object->lock being 1260 * previously acquired in scan_object(). These locks are 1261 * enclosed by scan_mutex. 1262 */ 1263 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1264 /* only pass surplus references (object already gray) */ 1265 if (color_gray(object)) { 1266 excess_ref = object->excess_ref; 1267 /* no need for update_refs() if object already gray */ 1268 } else { 1269 excess_ref = 0; 1270 update_refs(object); 1271 } 1272 spin_unlock(&object->lock); 1273 1274 if (excess_ref) { 1275 object = lookup_object(excess_ref, 0); 1276 if (!object) 1277 continue; 1278 if (object == scanned) 1279 /* circular reference, ignore */ 1280 continue; 1281 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1282 update_refs(object); 1283 spin_unlock(&object->lock); 1284 } 1285 } 1286 read_unlock_irqrestore(&kmemleak_lock, flags); 1287 } 1288 1289 /* 1290 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1291 */ 1292 #ifdef CONFIG_SMP 1293 static void scan_large_block(void *start, void *end) 1294 { 1295 void *next; 1296 1297 while (start < end) { 1298 next = min(start + MAX_SCAN_SIZE, end); 1299 scan_block(start, next, NULL); 1300 start = next; 1301 cond_resched(); 1302 } 1303 } 1304 #endif 1305 1306 /* 1307 * Scan a memory block corresponding to a kmemleak_object. A condition is 1308 * that object->use_count >= 1. 1309 */ 1310 static void scan_object(struct kmemleak_object *object) 1311 { 1312 struct kmemleak_scan_area *area; 1313 unsigned long flags; 1314 1315 /* 1316 * Once the object->lock is acquired, the corresponding memory block 1317 * cannot be freed (the same lock is acquired in delete_object). 1318 */ 1319 spin_lock_irqsave(&object->lock, flags); 1320 if (object->flags & OBJECT_NO_SCAN) 1321 goto out; 1322 if (!(object->flags & OBJECT_ALLOCATED)) 1323 /* already freed object */ 1324 goto out; 1325 if (hlist_empty(&object->area_list) || 1326 object->flags & OBJECT_FULL_SCAN) { 1327 void *start = (void *)object->pointer; 1328 void *end = (void *)(object->pointer + object->size); 1329 void *next; 1330 1331 do { 1332 next = min(start + MAX_SCAN_SIZE, end); 1333 scan_block(start, next, object); 1334 1335 start = next; 1336 if (start >= end) 1337 break; 1338 1339 spin_unlock_irqrestore(&object->lock, flags); 1340 cond_resched(); 1341 spin_lock_irqsave(&object->lock, flags); 1342 } while (object->flags & OBJECT_ALLOCATED); 1343 } else 1344 hlist_for_each_entry(area, &object->area_list, node) 1345 scan_block((void *)area->start, 1346 (void *)(area->start + area->size), 1347 object); 1348 out: 1349 spin_unlock_irqrestore(&object->lock, flags); 1350 } 1351 1352 /* 1353 * Scan the objects already referenced (gray objects). More objects will be 1354 * referenced and, if there are no memory leaks, all the objects are scanned. 1355 */ 1356 static void scan_gray_list(void) 1357 { 1358 struct kmemleak_object *object, *tmp; 1359 1360 /* 1361 * The list traversal is safe for both tail additions and removals 1362 * from inside the loop. The kmemleak objects cannot be freed from 1363 * outside the loop because their use_count was incremented. 1364 */ 1365 object = list_entry(gray_list.next, typeof(*object), gray_list); 1366 while (&object->gray_list != &gray_list) { 1367 cond_resched(); 1368 1369 /* may add new objects to the list */ 1370 if (!scan_should_stop()) 1371 scan_object(object); 1372 1373 tmp = list_entry(object->gray_list.next, typeof(*object), 1374 gray_list); 1375 1376 /* remove the object from the list and release it */ 1377 list_del(&object->gray_list); 1378 put_object(object); 1379 1380 object = tmp; 1381 } 1382 WARN_ON(!list_empty(&gray_list)); 1383 } 1384 1385 /* 1386 * Scan data sections and all the referenced memory blocks allocated via the 1387 * kernel's standard allocators. This function must be called with the 1388 * scan_mutex held. 1389 */ 1390 static void kmemleak_scan(void) 1391 { 1392 unsigned long flags; 1393 struct kmemleak_object *object; 1394 int i; 1395 int new_leaks = 0; 1396 1397 jiffies_last_scan = jiffies; 1398 1399 /* prepare the kmemleak_object's */ 1400 rcu_read_lock(); 1401 list_for_each_entry_rcu(object, &object_list, object_list) { 1402 spin_lock_irqsave(&object->lock, flags); 1403 #ifdef DEBUG 1404 /* 1405 * With a few exceptions there should be a maximum of 1406 * 1 reference to any object at this point. 1407 */ 1408 if (atomic_read(&object->use_count) > 1) { 1409 pr_debug("object->use_count = %d\n", 1410 atomic_read(&object->use_count)); 1411 dump_object_info(object); 1412 } 1413 #endif 1414 /* reset the reference count (whiten the object) */ 1415 object->count = 0; 1416 if (color_gray(object) && get_object(object)) 1417 list_add_tail(&object->gray_list, &gray_list); 1418 1419 spin_unlock_irqrestore(&object->lock, flags); 1420 } 1421 rcu_read_unlock(); 1422 1423 #ifdef CONFIG_SMP 1424 /* per-cpu sections scanning */ 1425 for_each_possible_cpu(i) 1426 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1427 __per_cpu_end + per_cpu_offset(i)); 1428 #endif 1429 1430 /* 1431 * Struct page scanning for each node. 1432 */ 1433 get_online_mems(); 1434 for_each_online_node(i) { 1435 unsigned long start_pfn = node_start_pfn(i); 1436 unsigned long end_pfn = node_end_pfn(i); 1437 unsigned long pfn; 1438 1439 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1440 struct page *page = pfn_to_online_page(pfn); 1441 1442 if (!page) 1443 continue; 1444 1445 /* only scan pages belonging to this node */ 1446 if (page_to_nid(page) != i) 1447 continue; 1448 /* only scan if page is in use */ 1449 if (page_count(page) == 0) 1450 continue; 1451 scan_block(page, page + 1, NULL); 1452 if (!(pfn & 63)) 1453 cond_resched(); 1454 } 1455 } 1456 put_online_mems(); 1457 1458 /* 1459 * Scanning the task stacks (may introduce false negatives). 1460 */ 1461 if (kmemleak_stack_scan) { 1462 struct task_struct *p, *g; 1463 1464 read_lock(&tasklist_lock); 1465 do_each_thread(g, p) { 1466 void *stack = try_get_task_stack(p); 1467 if (stack) { 1468 scan_block(stack, stack + THREAD_SIZE, NULL); 1469 put_task_stack(p); 1470 } 1471 } while_each_thread(g, p); 1472 read_unlock(&tasklist_lock); 1473 } 1474 1475 /* 1476 * Scan the objects already referenced from the sections scanned 1477 * above. 1478 */ 1479 scan_gray_list(); 1480 1481 /* 1482 * Check for new or unreferenced objects modified since the previous 1483 * scan and color them gray until the next scan. 1484 */ 1485 rcu_read_lock(); 1486 list_for_each_entry_rcu(object, &object_list, object_list) { 1487 spin_lock_irqsave(&object->lock, flags); 1488 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1489 && update_checksum(object) && get_object(object)) { 1490 /* color it gray temporarily */ 1491 object->count = object->min_count; 1492 list_add_tail(&object->gray_list, &gray_list); 1493 } 1494 spin_unlock_irqrestore(&object->lock, flags); 1495 } 1496 rcu_read_unlock(); 1497 1498 /* 1499 * Re-scan the gray list for modified unreferenced objects. 1500 */ 1501 scan_gray_list(); 1502 1503 /* 1504 * If scanning was stopped do not report any new unreferenced objects. 1505 */ 1506 if (scan_should_stop()) 1507 return; 1508 1509 /* 1510 * Scanning result reporting. 1511 */ 1512 rcu_read_lock(); 1513 list_for_each_entry_rcu(object, &object_list, object_list) { 1514 spin_lock_irqsave(&object->lock, flags); 1515 if (unreferenced_object(object) && 1516 !(object->flags & OBJECT_REPORTED)) { 1517 object->flags |= OBJECT_REPORTED; 1518 1519 if (kmemleak_verbose) 1520 print_unreferenced(NULL, object); 1521 1522 new_leaks++; 1523 } 1524 spin_unlock_irqrestore(&object->lock, flags); 1525 } 1526 rcu_read_unlock(); 1527 1528 if (new_leaks) { 1529 kmemleak_found_leaks = true; 1530 1531 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1532 new_leaks); 1533 } 1534 1535 } 1536 1537 /* 1538 * Thread function performing automatic memory scanning. Unreferenced objects 1539 * at the end of a memory scan are reported but only the first time. 1540 */ 1541 static int kmemleak_scan_thread(void *arg) 1542 { 1543 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN); 1544 1545 pr_info("Automatic memory scanning thread started\n"); 1546 set_user_nice(current, 10); 1547 1548 /* 1549 * Wait before the first scan to allow the system to fully initialize. 1550 */ 1551 if (first_run) { 1552 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); 1553 first_run = 0; 1554 while (timeout && !kthread_should_stop()) 1555 timeout = schedule_timeout_interruptible(timeout); 1556 } 1557 1558 while (!kthread_should_stop()) { 1559 signed long timeout = jiffies_scan_wait; 1560 1561 mutex_lock(&scan_mutex); 1562 kmemleak_scan(); 1563 mutex_unlock(&scan_mutex); 1564 1565 /* wait before the next scan */ 1566 while (timeout && !kthread_should_stop()) 1567 timeout = schedule_timeout_interruptible(timeout); 1568 } 1569 1570 pr_info("Automatic memory scanning thread ended\n"); 1571 1572 return 0; 1573 } 1574 1575 /* 1576 * Start the automatic memory scanning thread. This function must be called 1577 * with the scan_mutex held. 1578 */ 1579 static void start_scan_thread(void) 1580 { 1581 if (scan_thread) 1582 return; 1583 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1584 if (IS_ERR(scan_thread)) { 1585 pr_warn("Failed to create the scan thread\n"); 1586 scan_thread = NULL; 1587 } 1588 } 1589 1590 /* 1591 * Stop the automatic memory scanning thread. 1592 */ 1593 static void stop_scan_thread(void) 1594 { 1595 if (scan_thread) { 1596 kthread_stop(scan_thread); 1597 scan_thread = NULL; 1598 } 1599 } 1600 1601 /* 1602 * Iterate over the object_list and return the first valid object at or after 1603 * the required position with its use_count incremented. The function triggers 1604 * a memory scanning when the pos argument points to the first position. 1605 */ 1606 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1607 { 1608 struct kmemleak_object *object; 1609 loff_t n = *pos; 1610 int err; 1611 1612 err = mutex_lock_interruptible(&scan_mutex); 1613 if (err < 0) 1614 return ERR_PTR(err); 1615 1616 rcu_read_lock(); 1617 list_for_each_entry_rcu(object, &object_list, object_list) { 1618 if (n-- > 0) 1619 continue; 1620 if (get_object(object)) 1621 goto out; 1622 } 1623 object = NULL; 1624 out: 1625 return object; 1626 } 1627 1628 /* 1629 * Return the next object in the object_list. The function decrements the 1630 * use_count of the previous object and increases that of the next one. 1631 */ 1632 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1633 { 1634 struct kmemleak_object *prev_obj = v; 1635 struct kmemleak_object *next_obj = NULL; 1636 struct kmemleak_object *obj = prev_obj; 1637 1638 ++(*pos); 1639 1640 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1641 if (get_object(obj)) { 1642 next_obj = obj; 1643 break; 1644 } 1645 } 1646 1647 put_object(prev_obj); 1648 return next_obj; 1649 } 1650 1651 /* 1652 * Decrement the use_count of the last object required, if any. 1653 */ 1654 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1655 { 1656 if (!IS_ERR(v)) { 1657 /* 1658 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1659 * waiting was interrupted, so only release it if !IS_ERR. 1660 */ 1661 rcu_read_unlock(); 1662 mutex_unlock(&scan_mutex); 1663 if (v) 1664 put_object(v); 1665 } 1666 } 1667 1668 /* 1669 * Print the information for an unreferenced object to the seq file. 1670 */ 1671 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1672 { 1673 struct kmemleak_object *object = v; 1674 unsigned long flags; 1675 1676 spin_lock_irqsave(&object->lock, flags); 1677 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1678 print_unreferenced(seq, object); 1679 spin_unlock_irqrestore(&object->lock, flags); 1680 return 0; 1681 } 1682 1683 static const struct seq_operations kmemleak_seq_ops = { 1684 .start = kmemleak_seq_start, 1685 .next = kmemleak_seq_next, 1686 .stop = kmemleak_seq_stop, 1687 .show = kmemleak_seq_show, 1688 }; 1689 1690 static int kmemleak_open(struct inode *inode, struct file *file) 1691 { 1692 return seq_open(file, &kmemleak_seq_ops); 1693 } 1694 1695 static int dump_str_object_info(const char *str) 1696 { 1697 unsigned long flags; 1698 struct kmemleak_object *object; 1699 unsigned long addr; 1700 1701 if (kstrtoul(str, 0, &addr)) 1702 return -EINVAL; 1703 object = find_and_get_object(addr, 0); 1704 if (!object) { 1705 pr_info("Unknown object at 0x%08lx\n", addr); 1706 return -EINVAL; 1707 } 1708 1709 spin_lock_irqsave(&object->lock, flags); 1710 dump_object_info(object); 1711 spin_unlock_irqrestore(&object->lock, flags); 1712 1713 put_object(object); 1714 return 0; 1715 } 1716 1717 /* 1718 * We use grey instead of black to ensure we can do future scans on the same 1719 * objects. If we did not do future scans these black objects could 1720 * potentially contain references to newly allocated objects in the future and 1721 * we'd end up with false positives. 1722 */ 1723 static void kmemleak_clear(void) 1724 { 1725 struct kmemleak_object *object; 1726 unsigned long flags; 1727 1728 rcu_read_lock(); 1729 list_for_each_entry_rcu(object, &object_list, object_list) { 1730 spin_lock_irqsave(&object->lock, flags); 1731 if ((object->flags & OBJECT_REPORTED) && 1732 unreferenced_object(object)) 1733 __paint_it(object, KMEMLEAK_GREY); 1734 spin_unlock_irqrestore(&object->lock, flags); 1735 } 1736 rcu_read_unlock(); 1737 1738 kmemleak_found_leaks = false; 1739 } 1740 1741 static void __kmemleak_do_cleanup(void); 1742 1743 /* 1744 * File write operation to configure kmemleak at run-time. The following 1745 * commands can be written to the /sys/kernel/debug/kmemleak file: 1746 * off - disable kmemleak (irreversible) 1747 * stack=on - enable the task stacks scanning 1748 * stack=off - disable the tasks stacks scanning 1749 * scan=on - start the automatic memory scanning thread 1750 * scan=off - stop the automatic memory scanning thread 1751 * scan=... - set the automatic memory scanning period in seconds (0 to 1752 * disable it) 1753 * scan - trigger a memory scan 1754 * clear - mark all current reported unreferenced kmemleak objects as 1755 * grey to ignore printing them, or free all kmemleak objects 1756 * if kmemleak has been disabled. 1757 * dump=... - dump information about the object found at the given address 1758 */ 1759 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1760 size_t size, loff_t *ppos) 1761 { 1762 char buf[64]; 1763 int buf_size; 1764 int ret; 1765 1766 buf_size = min(size, (sizeof(buf) - 1)); 1767 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1768 return -EFAULT; 1769 buf[buf_size] = 0; 1770 1771 ret = mutex_lock_interruptible(&scan_mutex); 1772 if (ret < 0) 1773 return ret; 1774 1775 if (strncmp(buf, "clear", 5) == 0) { 1776 if (kmemleak_enabled) 1777 kmemleak_clear(); 1778 else 1779 __kmemleak_do_cleanup(); 1780 goto out; 1781 } 1782 1783 if (!kmemleak_enabled) { 1784 ret = -EPERM; 1785 goto out; 1786 } 1787 1788 if (strncmp(buf, "off", 3) == 0) 1789 kmemleak_disable(); 1790 else if (strncmp(buf, "stack=on", 8) == 0) 1791 kmemleak_stack_scan = 1; 1792 else if (strncmp(buf, "stack=off", 9) == 0) 1793 kmemleak_stack_scan = 0; 1794 else if (strncmp(buf, "scan=on", 7) == 0) 1795 start_scan_thread(); 1796 else if (strncmp(buf, "scan=off", 8) == 0) 1797 stop_scan_thread(); 1798 else if (strncmp(buf, "scan=", 5) == 0) { 1799 unsigned long secs; 1800 1801 ret = kstrtoul(buf + 5, 0, &secs); 1802 if (ret < 0) 1803 goto out; 1804 stop_scan_thread(); 1805 if (secs) { 1806 jiffies_scan_wait = msecs_to_jiffies(secs * 1000); 1807 start_scan_thread(); 1808 } 1809 } else if (strncmp(buf, "scan", 4) == 0) 1810 kmemleak_scan(); 1811 else if (strncmp(buf, "dump=", 5) == 0) 1812 ret = dump_str_object_info(buf + 5); 1813 else 1814 ret = -EINVAL; 1815 1816 out: 1817 mutex_unlock(&scan_mutex); 1818 if (ret < 0) 1819 return ret; 1820 1821 /* ignore the rest of the buffer, only one command at a time */ 1822 *ppos += size; 1823 return size; 1824 } 1825 1826 static const struct file_operations kmemleak_fops = { 1827 .owner = THIS_MODULE, 1828 .open = kmemleak_open, 1829 .read = seq_read, 1830 .write = kmemleak_write, 1831 .llseek = seq_lseek, 1832 .release = seq_release, 1833 }; 1834 1835 static void __kmemleak_do_cleanup(void) 1836 { 1837 struct kmemleak_object *object; 1838 1839 rcu_read_lock(); 1840 list_for_each_entry_rcu(object, &object_list, object_list) 1841 delete_object_full(object->pointer); 1842 rcu_read_unlock(); 1843 } 1844 1845 /* 1846 * Stop the memory scanning thread and free the kmemleak internal objects if 1847 * no previous scan thread (otherwise, kmemleak may still have some useful 1848 * information on memory leaks). 1849 */ 1850 static void kmemleak_do_cleanup(struct work_struct *work) 1851 { 1852 stop_scan_thread(); 1853 1854 mutex_lock(&scan_mutex); 1855 /* 1856 * Once it is made sure that kmemleak_scan has stopped, it is safe to no 1857 * longer track object freeing. Ordering of the scan thread stopping and 1858 * the memory accesses below is guaranteed by the kthread_stop() 1859 * function. 1860 */ 1861 kmemleak_free_enabled = 0; 1862 mutex_unlock(&scan_mutex); 1863 1864 if (!kmemleak_found_leaks) 1865 __kmemleak_do_cleanup(); 1866 else 1867 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 1868 } 1869 1870 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 1871 1872 /* 1873 * Disable kmemleak. No memory allocation/freeing will be traced once this 1874 * function is called. Disabling kmemleak is an irreversible operation. 1875 */ 1876 static void kmemleak_disable(void) 1877 { 1878 /* atomically check whether it was already invoked */ 1879 if (cmpxchg(&kmemleak_error, 0, 1)) 1880 return; 1881 1882 /* stop any memory operation tracing */ 1883 kmemleak_enabled = 0; 1884 1885 /* check whether it is too early for a kernel thread */ 1886 if (kmemleak_initialized) 1887 schedule_work(&cleanup_work); 1888 else 1889 kmemleak_free_enabled = 0; 1890 1891 pr_info("Kernel memory leak detector disabled\n"); 1892 } 1893 1894 /* 1895 * Allow boot-time kmemleak disabling (enabled by default). 1896 */ 1897 static int __init kmemleak_boot_config(char *str) 1898 { 1899 if (!str) 1900 return -EINVAL; 1901 if (strcmp(str, "off") == 0) 1902 kmemleak_disable(); 1903 else if (strcmp(str, "on") == 0) 1904 kmemleak_skip_disable = 1; 1905 else 1906 return -EINVAL; 1907 return 0; 1908 } 1909 early_param("kmemleak", kmemleak_boot_config); 1910 1911 /* 1912 * Kmemleak initialization. 1913 */ 1914 void __init kmemleak_init(void) 1915 { 1916 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 1917 if (!kmemleak_skip_disable) { 1918 kmemleak_disable(); 1919 return; 1920 } 1921 #endif 1922 1923 if (kmemleak_error) 1924 return; 1925 1926 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 1927 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 1928 1929 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 1930 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 1931 1932 /* register the data/bss sections */ 1933 create_object((unsigned long)_sdata, _edata - _sdata, 1934 KMEMLEAK_GREY, GFP_ATOMIC); 1935 create_object((unsigned long)__bss_start, __bss_stop - __bss_start, 1936 KMEMLEAK_GREY, GFP_ATOMIC); 1937 /* only register .data..ro_after_init if not within .data */ 1938 if (__start_ro_after_init < _sdata || __end_ro_after_init > _edata) 1939 create_object((unsigned long)__start_ro_after_init, 1940 __end_ro_after_init - __start_ro_after_init, 1941 KMEMLEAK_GREY, GFP_ATOMIC); 1942 } 1943 1944 /* 1945 * Late initialization function. 1946 */ 1947 static int __init kmemleak_late_init(void) 1948 { 1949 kmemleak_initialized = 1; 1950 1951 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops); 1952 1953 if (kmemleak_error) { 1954 /* 1955 * Some error occurred and kmemleak was disabled. There is a 1956 * small chance that kmemleak_disable() was called immediately 1957 * after setting kmemleak_initialized and we may end up with 1958 * two clean-up threads but serialized by scan_mutex. 1959 */ 1960 schedule_work(&cleanup_work); 1961 return -ENOMEM; 1962 } 1963 1964 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) { 1965 mutex_lock(&scan_mutex); 1966 start_scan_thread(); 1967 mutex_unlock(&scan_mutex); 1968 } 1969 1970 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n", 1971 mem_pool_free_count); 1972 1973 return 0; 1974 } 1975 late_initcall(kmemleak_late_init); 1976