xref: /openbmc/linux/mm/kmemleak.c (revision e190bfe5)
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/kmemleak.txt.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a priority search tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * The kmemleak_object structures have a use_count incremented or decremented
57  * using the get_object()/put_object() functions. When the use_count becomes
58  * 0, this count can no longer be incremented and put_object() schedules the
59  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60  * function must be protected by rcu_read_lock() to avoid accessing a freed
61  * structure.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 
66 #include <linux/init.h>
67 #include <linux/kernel.h>
68 #include <linux/list.h>
69 #include <linux/sched.h>
70 #include <linux/jiffies.h>
71 #include <linux/delay.h>
72 #include <linux/module.h>
73 #include <linux/kthread.h>
74 #include <linux/prio_tree.h>
75 #include <linux/fs.h>
76 #include <linux/debugfs.h>
77 #include <linux/seq_file.h>
78 #include <linux/cpumask.h>
79 #include <linux/spinlock.h>
80 #include <linux/mutex.h>
81 #include <linux/rcupdate.h>
82 #include <linux/stacktrace.h>
83 #include <linux/cache.h>
84 #include <linux/percpu.h>
85 #include <linux/hardirq.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96 
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <asm/atomic.h>
100 
101 #include <linux/kmemcheck.h>
102 #include <linux/kmemleak.h>
103 
104 /*
105  * Kmemleak configuration and common defines.
106  */
107 #define MAX_TRACE		16	/* stack trace length */
108 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
109 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
110 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
111 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
112 
113 #define BYTES_PER_POINTER	sizeof(void *)
114 
115 /* GFP bitmask for kmemleak internal allocations */
116 #define GFP_KMEMLEAK_MASK	(GFP_KERNEL | GFP_ATOMIC)
117 
118 /* scanning area inside a memory block */
119 struct kmemleak_scan_area {
120 	struct hlist_node node;
121 	unsigned long start;
122 	size_t size;
123 };
124 
125 #define KMEMLEAK_GREY	0
126 #define KMEMLEAK_BLACK	-1
127 
128 /*
129  * Structure holding the metadata for each allocated memory block.
130  * Modifications to such objects should be made while holding the
131  * object->lock. Insertions or deletions from object_list, gray_list or
132  * tree_node are already protected by the corresponding locks or mutex (see
133  * the notes on locking above). These objects are reference-counted
134  * (use_count) and freed using the RCU mechanism.
135  */
136 struct kmemleak_object {
137 	spinlock_t lock;
138 	unsigned long flags;		/* object status flags */
139 	struct list_head object_list;
140 	struct list_head gray_list;
141 	struct prio_tree_node tree_node;
142 	struct rcu_head rcu;		/* object_list lockless traversal */
143 	/* object usage count; object freed when use_count == 0 */
144 	atomic_t use_count;
145 	unsigned long pointer;
146 	size_t size;
147 	/* minimum number of a pointers found before it is considered leak */
148 	int min_count;
149 	/* the total number of pointers found pointing to this object */
150 	int count;
151 	/* checksum for detecting modified objects */
152 	u32 checksum;
153 	/* memory ranges to be scanned inside an object (empty for all) */
154 	struct hlist_head area_list;
155 	unsigned long trace[MAX_TRACE];
156 	unsigned int trace_len;
157 	unsigned long jiffies;		/* creation timestamp */
158 	pid_t pid;			/* pid of the current task */
159 	char comm[TASK_COMM_LEN];	/* executable name */
160 };
161 
162 /* flag representing the memory block allocation status */
163 #define OBJECT_ALLOCATED	(1 << 0)
164 /* flag set after the first reporting of an unreference object */
165 #define OBJECT_REPORTED		(1 << 1)
166 /* flag set to not scan the object */
167 #define OBJECT_NO_SCAN		(1 << 2)
168 
169 /* number of bytes to print per line; must be 16 or 32 */
170 #define HEX_ROW_SIZE		16
171 /* number of bytes to print at a time (1, 2, 4, 8) */
172 #define HEX_GROUP_SIZE		1
173 /* include ASCII after the hex output */
174 #define HEX_ASCII		1
175 /* max number of lines to be printed */
176 #define HEX_MAX_LINES		2
177 
178 /* the list of all allocated objects */
179 static LIST_HEAD(object_list);
180 /* the list of gray-colored objects (see color_gray comment below) */
181 static LIST_HEAD(gray_list);
182 /* prio search tree for object boundaries */
183 static struct prio_tree_root object_tree_root;
184 /* rw_lock protecting the access to object_list and prio_tree_root */
185 static DEFINE_RWLOCK(kmemleak_lock);
186 
187 /* allocation caches for kmemleak internal data */
188 static struct kmem_cache *object_cache;
189 static struct kmem_cache *scan_area_cache;
190 
191 /* set if tracing memory operations is enabled */
192 static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
193 /* set in the late_initcall if there were no errors */
194 static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
195 /* enables or disables early logging of the memory operations */
196 static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
197 /* set if a fata kmemleak error has occurred */
198 static atomic_t kmemleak_error = ATOMIC_INIT(0);
199 
200 /* minimum and maximum address that may be valid pointers */
201 static unsigned long min_addr = ULONG_MAX;
202 static unsigned long max_addr;
203 
204 static struct task_struct *scan_thread;
205 /* used to avoid reporting of recently allocated objects */
206 static unsigned long jiffies_min_age;
207 static unsigned long jiffies_last_scan;
208 /* delay between automatic memory scannings */
209 static signed long jiffies_scan_wait;
210 /* enables or disables the task stacks scanning */
211 static int kmemleak_stack_scan = 1;
212 /* protects the memory scanning, parameters and debug/kmemleak file access */
213 static DEFINE_MUTEX(scan_mutex);
214 
215 /*
216  * Early object allocation/freeing logging. Kmemleak is initialized after the
217  * kernel allocator. However, both the kernel allocator and kmemleak may
218  * allocate memory blocks which need to be tracked. Kmemleak defines an
219  * arbitrary buffer to hold the allocation/freeing information before it is
220  * fully initialized.
221  */
222 
223 /* kmemleak operation type for early logging */
224 enum {
225 	KMEMLEAK_ALLOC,
226 	KMEMLEAK_FREE,
227 	KMEMLEAK_FREE_PART,
228 	KMEMLEAK_NOT_LEAK,
229 	KMEMLEAK_IGNORE,
230 	KMEMLEAK_SCAN_AREA,
231 	KMEMLEAK_NO_SCAN
232 };
233 
234 /*
235  * Structure holding the information passed to kmemleak callbacks during the
236  * early logging.
237  */
238 struct early_log {
239 	int op_type;			/* kmemleak operation type */
240 	const void *ptr;		/* allocated/freed memory block */
241 	size_t size;			/* memory block size */
242 	int min_count;			/* minimum reference count */
243 	unsigned long trace[MAX_TRACE];	/* stack trace */
244 	unsigned int trace_len;		/* stack trace length */
245 };
246 
247 /* early logging buffer and current position */
248 static struct early_log
249 	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
250 static int crt_early_log __initdata;
251 
252 static void kmemleak_disable(void);
253 
254 /*
255  * Print a warning and dump the stack trace.
256  */
257 #define kmemleak_warn(x...)	do {	\
258 	pr_warning(x);			\
259 	dump_stack();			\
260 } while (0)
261 
262 /*
263  * Macro invoked when a serious kmemleak condition occured and cannot be
264  * recovered from. Kmemleak will be disabled and further allocation/freeing
265  * tracing no longer available.
266  */
267 #define kmemleak_stop(x...)	do {	\
268 	kmemleak_warn(x);		\
269 	kmemleak_disable();		\
270 } while (0)
271 
272 /*
273  * Printing of the objects hex dump to the seq file. The number of lines to be
274  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
275  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
276  * with the object->lock held.
277  */
278 static void hex_dump_object(struct seq_file *seq,
279 			    struct kmemleak_object *object)
280 {
281 	const u8 *ptr = (const u8 *)object->pointer;
282 	int i, len, remaining;
283 	unsigned char linebuf[HEX_ROW_SIZE * 5];
284 
285 	/* limit the number of lines to HEX_MAX_LINES */
286 	remaining = len =
287 		min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
288 
289 	seq_printf(seq, "  hex dump (first %d bytes):\n", len);
290 	for (i = 0; i < len; i += HEX_ROW_SIZE) {
291 		int linelen = min(remaining, HEX_ROW_SIZE);
292 
293 		remaining -= HEX_ROW_SIZE;
294 		hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
295 				   HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
296 				   HEX_ASCII);
297 		seq_printf(seq, "    %s\n", linebuf);
298 	}
299 }
300 
301 /*
302  * Object colors, encoded with count and min_count:
303  * - white - orphan object, not enough references to it (count < min_count)
304  * - gray  - not orphan, not marked as false positive (min_count == 0) or
305  *		sufficient references to it (count >= min_count)
306  * - black - ignore, it doesn't contain references (e.g. text section)
307  *		(min_count == -1). No function defined for this color.
308  * Newly created objects don't have any color assigned (object->count == -1)
309  * before the next memory scan when they become white.
310  */
311 static bool color_white(const struct kmemleak_object *object)
312 {
313 	return object->count != KMEMLEAK_BLACK &&
314 		object->count < object->min_count;
315 }
316 
317 static bool color_gray(const struct kmemleak_object *object)
318 {
319 	return object->min_count != KMEMLEAK_BLACK &&
320 		object->count >= object->min_count;
321 }
322 
323 /*
324  * Objects are considered unreferenced only if their color is white, they have
325  * not be deleted and have a minimum age to avoid false positives caused by
326  * pointers temporarily stored in CPU registers.
327  */
328 static bool unreferenced_object(struct kmemleak_object *object)
329 {
330 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
331 		time_before_eq(object->jiffies + jiffies_min_age,
332 			       jiffies_last_scan);
333 }
334 
335 /*
336  * Printing of the unreferenced objects information to the seq file. The
337  * print_unreferenced function must be called with the object->lock held.
338  */
339 static void print_unreferenced(struct seq_file *seq,
340 			       struct kmemleak_object *object)
341 {
342 	int i;
343 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
344 
345 	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
346 		   object->pointer, object->size);
347 	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
348 		   object->comm, object->pid, object->jiffies,
349 		   msecs_age / 1000, msecs_age % 1000);
350 	hex_dump_object(seq, object);
351 	seq_printf(seq, "  backtrace:\n");
352 
353 	for (i = 0; i < object->trace_len; i++) {
354 		void *ptr = (void *)object->trace[i];
355 		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
356 	}
357 }
358 
359 /*
360  * Print the kmemleak_object information. This function is used mainly for
361  * debugging special cases when kmemleak operations. It must be called with
362  * the object->lock held.
363  */
364 static void dump_object_info(struct kmemleak_object *object)
365 {
366 	struct stack_trace trace;
367 
368 	trace.nr_entries = object->trace_len;
369 	trace.entries = object->trace;
370 
371 	pr_notice("Object 0x%08lx (size %zu):\n",
372 		  object->tree_node.start, object->size);
373 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
374 		  object->comm, object->pid, object->jiffies);
375 	pr_notice("  min_count = %d\n", object->min_count);
376 	pr_notice("  count = %d\n", object->count);
377 	pr_notice("  flags = 0x%lx\n", object->flags);
378 	pr_notice("  checksum = %d\n", object->checksum);
379 	pr_notice("  backtrace:\n");
380 	print_stack_trace(&trace, 4);
381 }
382 
383 /*
384  * Look-up a memory block metadata (kmemleak_object) in the priority search
385  * tree based on a pointer value. If alias is 0, only values pointing to the
386  * beginning of the memory block are allowed. The kmemleak_lock must be held
387  * when calling this function.
388  */
389 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
390 {
391 	struct prio_tree_node *node;
392 	struct prio_tree_iter iter;
393 	struct kmemleak_object *object;
394 
395 	prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
396 	node = prio_tree_next(&iter);
397 	if (node) {
398 		object = prio_tree_entry(node, struct kmemleak_object,
399 					 tree_node);
400 		if (!alias && object->pointer != ptr) {
401 			kmemleak_warn("Found object by alias");
402 			object = NULL;
403 		}
404 	} else
405 		object = NULL;
406 
407 	return object;
408 }
409 
410 /*
411  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
412  * that once an object's use_count reached 0, the RCU freeing was already
413  * registered and the object should no longer be used. This function must be
414  * called under the protection of rcu_read_lock().
415  */
416 static int get_object(struct kmemleak_object *object)
417 {
418 	return atomic_inc_not_zero(&object->use_count);
419 }
420 
421 /*
422  * RCU callback to free a kmemleak_object.
423  */
424 static void free_object_rcu(struct rcu_head *rcu)
425 {
426 	struct hlist_node *elem, *tmp;
427 	struct kmemleak_scan_area *area;
428 	struct kmemleak_object *object =
429 		container_of(rcu, struct kmemleak_object, rcu);
430 
431 	/*
432 	 * Once use_count is 0 (guaranteed by put_object), there is no other
433 	 * code accessing this object, hence no need for locking.
434 	 */
435 	hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
436 		hlist_del(elem);
437 		kmem_cache_free(scan_area_cache, area);
438 	}
439 	kmem_cache_free(object_cache, object);
440 }
441 
442 /*
443  * Decrement the object use_count. Once the count is 0, free the object using
444  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
445  * delete_object() path, the delayed RCU freeing ensures that there is no
446  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
447  * is also possible.
448  */
449 static void put_object(struct kmemleak_object *object)
450 {
451 	if (!atomic_dec_and_test(&object->use_count))
452 		return;
453 
454 	/* should only get here after delete_object was called */
455 	WARN_ON(object->flags & OBJECT_ALLOCATED);
456 
457 	call_rcu(&object->rcu, free_object_rcu);
458 }
459 
460 /*
461  * Look up an object in the prio search tree and increase its use_count.
462  */
463 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
464 {
465 	unsigned long flags;
466 	struct kmemleak_object *object = NULL;
467 
468 	rcu_read_lock();
469 	read_lock_irqsave(&kmemleak_lock, flags);
470 	if (ptr >= min_addr && ptr < max_addr)
471 		object = lookup_object(ptr, alias);
472 	read_unlock_irqrestore(&kmemleak_lock, flags);
473 
474 	/* check whether the object is still available */
475 	if (object && !get_object(object))
476 		object = NULL;
477 	rcu_read_unlock();
478 
479 	return object;
480 }
481 
482 /*
483  * Save stack trace to the given array of MAX_TRACE size.
484  */
485 static int __save_stack_trace(unsigned long *trace)
486 {
487 	struct stack_trace stack_trace;
488 
489 	stack_trace.max_entries = MAX_TRACE;
490 	stack_trace.nr_entries = 0;
491 	stack_trace.entries = trace;
492 	stack_trace.skip = 2;
493 	save_stack_trace(&stack_trace);
494 
495 	return stack_trace.nr_entries;
496 }
497 
498 /*
499  * Create the metadata (struct kmemleak_object) corresponding to an allocated
500  * memory block and add it to the object_list and object_tree_root.
501  */
502 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
503 					     int min_count, gfp_t gfp)
504 {
505 	unsigned long flags;
506 	struct kmemleak_object *object;
507 	struct prio_tree_node *node;
508 
509 	object = kmem_cache_alloc(object_cache, gfp & GFP_KMEMLEAK_MASK);
510 	if (!object) {
511 		kmemleak_stop("Cannot allocate a kmemleak_object structure\n");
512 		return NULL;
513 	}
514 
515 	INIT_LIST_HEAD(&object->object_list);
516 	INIT_LIST_HEAD(&object->gray_list);
517 	INIT_HLIST_HEAD(&object->area_list);
518 	spin_lock_init(&object->lock);
519 	atomic_set(&object->use_count, 1);
520 	object->flags = OBJECT_ALLOCATED;
521 	object->pointer = ptr;
522 	object->size = size;
523 	object->min_count = min_count;
524 	object->count = 0;			/* white color initially */
525 	object->jiffies = jiffies;
526 	object->checksum = 0;
527 
528 	/* task information */
529 	if (in_irq()) {
530 		object->pid = 0;
531 		strncpy(object->comm, "hardirq", sizeof(object->comm));
532 	} else if (in_softirq()) {
533 		object->pid = 0;
534 		strncpy(object->comm, "softirq", sizeof(object->comm));
535 	} else {
536 		object->pid = current->pid;
537 		/*
538 		 * There is a small chance of a race with set_task_comm(),
539 		 * however using get_task_comm() here may cause locking
540 		 * dependency issues with current->alloc_lock. In the worst
541 		 * case, the command line is not correct.
542 		 */
543 		strncpy(object->comm, current->comm, sizeof(object->comm));
544 	}
545 
546 	/* kernel backtrace */
547 	object->trace_len = __save_stack_trace(object->trace);
548 
549 	INIT_PRIO_TREE_NODE(&object->tree_node);
550 	object->tree_node.start = ptr;
551 	object->tree_node.last = ptr + size - 1;
552 
553 	write_lock_irqsave(&kmemleak_lock, flags);
554 
555 	min_addr = min(min_addr, ptr);
556 	max_addr = max(max_addr, ptr + size);
557 	node = prio_tree_insert(&object_tree_root, &object->tree_node);
558 	/*
559 	 * The code calling the kernel does not yet have the pointer to the
560 	 * memory block to be able to free it.  However, we still hold the
561 	 * kmemleak_lock here in case parts of the kernel started freeing
562 	 * random memory blocks.
563 	 */
564 	if (node != &object->tree_node) {
565 		kmemleak_stop("Cannot insert 0x%lx into the object search tree "
566 			      "(already existing)\n", ptr);
567 		object = lookup_object(ptr, 1);
568 		spin_lock(&object->lock);
569 		dump_object_info(object);
570 		spin_unlock(&object->lock);
571 
572 		goto out;
573 	}
574 	list_add_tail_rcu(&object->object_list, &object_list);
575 out:
576 	write_unlock_irqrestore(&kmemleak_lock, flags);
577 	return object;
578 }
579 
580 /*
581  * Remove the metadata (struct kmemleak_object) for a memory block from the
582  * object_list and object_tree_root and decrement its use_count.
583  */
584 static void __delete_object(struct kmemleak_object *object)
585 {
586 	unsigned long flags;
587 
588 	write_lock_irqsave(&kmemleak_lock, flags);
589 	prio_tree_remove(&object_tree_root, &object->tree_node);
590 	list_del_rcu(&object->object_list);
591 	write_unlock_irqrestore(&kmemleak_lock, flags);
592 
593 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
594 	WARN_ON(atomic_read(&object->use_count) < 2);
595 
596 	/*
597 	 * Locking here also ensures that the corresponding memory block
598 	 * cannot be freed when it is being scanned.
599 	 */
600 	spin_lock_irqsave(&object->lock, flags);
601 	object->flags &= ~OBJECT_ALLOCATED;
602 	spin_unlock_irqrestore(&object->lock, flags);
603 	put_object(object);
604 }
605 
606 /*
607  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
608  * delete it.
609  */
610 static void delete_object_full(unsigned long ptr)
611 {
612 	struct kmemleak_object *object;
613 
614 	object = find_and_get_object(ptr, 0);
615 	if (!object) {
616 #ifdef DEBUG
617 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
618 			      ptr);
619 #endif
620 		return;
621 	}
622 	__delete_object(object);
623 	put_object(object);
624 }
625 
626 /*
627  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
628  * delete it. If the memory block is partially freed, the function may create
629  * additional metadata for the remaining parts of the block.
630  */
631 static void delete_object_part(unsigned long ptr, size_t size)
632 {
633 	struct kmemleak_object *object;
634 	unsigned long start, end;
635 
636 	object = find_and_get_object(ptr, 1);
637 	if (!object) {
638 #ifdef DEBUG
639 		kmemleak_warn("Partially freeing unknown object at 0x%08lx "
640 			      "(size %zu)\n", ptr, size);
641 #endif
642 		return;
643 	}
644 	__delete_object(object);
645 
646 	/*
647 	 * Create one or two objects that may result from the memory block
648 	 * split. Note that partial freeing is only done by free_bootmem() and
649 	 * this happens before kmemleak_init() is called. The path below is
650 	 * only executed during early log recording in kmemleak_init(), so
651 	 * GFP_KERNEL is enough.
652 	 */
653 	start = object->pointer;
654 	end = object->pointer + object->size;
655 	if (ptr > start)
656 		create_object(start, ptr - start, object->min_count,
657 			      GFP_KERNEL);
658 	if (ptr + size < end)
659 		create_object(ptr + size, end - ptr - size, object->min_count,
660 			      GFP_KERNEL);
661 
662 	put_object(object);
663 }
664 
665 static void __paint_it(struct kmemleak_object *object, int color)
666 {
667 	object->min_count = color;
668 	if (color == KMEMLEAK_BLACK)
669 		object->flags |= OBJECT_NO_SCAN;
670 }
671 
672 static void paint_it(struct kmemleak_object *object, int color)
673 {
674 	unsigned long flags;
675 
676 	spin_lock_irqsave(&object->lock, flags);
677 	__paint_it(object, color);
678 	spin_unlock_irqrestore(&object->lock, flags);
679 }
680 
681 static void paint_ptr(unsigned long ptr, int color)
682 {
683 	struct kmemleak_object *object;
684 
685 	object = find_and_get_object(ptr, 0);
686 	if (!object) {
687 		kmemleak_warn("Trying to color unknown object "
688 			      "at 0x%08lx as %s\n", ptr,
689 			      (color == KMEMLEAK_GREY) ? "Grey" :
690 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
691 		return;
692 	}
693 	paint_it(object, color);
694 	put_object(object);
695 }
696 
697 /*
698  * Make a object permanently as gray-colored so that it can no longer be
699  * reported as a leak. This is used in general to mark a false positive.
700  */
701 static void make_gray_object(unsigned long ptr)
702 {
703 	paint_ptr(ptr, KMEMLEAK_GREY);
704 }
705 
706 /*
707  * Mark the object as black-colored so that it is ignored from scans and
708  * reporting.
709  */
710 static void make_black_object(unsigned long ptr)
711 {
712 	paint_ptr(ptr, KMEMLEAK_BLACK);
713 }
714 
715 /*
716  * Add a scanning area to the object. If at least one such area is added,
717  * kmemleak will only scan these ranges rather than the whole memory block.
718  */
719 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
720 {
721 	unsigned long flags;
722 	struct kmemleak_object *object;
723 	struct kmemleak_scan_area *area;
724 
725 	object = find_and_get_object(ptr, 1);
726 	if (!object) {
727 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
728 			      ptr);
729 		return;
730 	}
731 
732 	area = kmem_cache_alloc(scan_area_cache, gfp & GFP_KMEMLEAK_MASK);
733 	if (!area) {
734 		kmemleak_warn("Cannot allocate a scan area\n");
735 		goto out;
736 	}
737 
738 	spin_lock_irqsave(&object->lock, flags);
739 	if (ptr + size > object->pointer + object->size) {
740 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
741 		dump_object_info(object);
742 		kmem_cache_free(scan_area_cache, area);
743 		goto out_unlock;
744 	}
745 
746 	INIT_HLIST_NODE(&area->node);
747 	area->start = ptr;
748 	area->size = size;
749 
750 	hlist_add_head(&area->node, &object->area_list);
751 out_unlock:
752 	spin_unlock_irqrestore(&object->lock, flags);
753 out:
754 	put_object(object);
755 }
756 
757 /*
758  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
759  * pointer. Such object will not be scanned by kmemleak but references to it
760  * are searched.
761  */
762 static void object_no_scan(unsigned long ptr)
763 {
764 	unsigned long flags;
765 	struct kmemleak_object *object;
766 
767 	object = find_and_get_object(ptr, 0);
768 	if (!object) {
769 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
770 		return;
771 	}
772 
773 	spin_lock_irqsave(&object->lock, flags);
774 	object->flags |= OBJECT_NO_SCAN;
775 	spin_unlock_irqrestore(&object->lock, flags);
776 	put_object(object);
777 }
778 
779 /*
780  * Log an early kmemleak_* call to the early_log buffer. These calls will be
781  * processed later once kmemleak is fully initialized.
782  */
783 static void __init log_early(int op_type, const void *ptr, size_t size,
784 			     int min_count)
785 {
786 	unsigned long flags;
787 	struct early_log *log;
788 
789 	if (crt_early_log >= ARRAY_SIZE(early_log)) {
790 		pr_warning("Early log buffer exceeded, "
791 			   "please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n");
792 		kmemleak_disable();
793 		return;
794 	}
795 
796 	/*
797 	 * There is no need for locking since the kernel is still in UP mode
798 	 * at this stage. Disabling the IRQs is enough.
799 	 */
800 	local_irq_save(flags);
801 	log = &early_log[crt_early_log];
802 	log->op_type = op_type;
803 	log->ptr = ptr;
804 	log->size = size;
805 	log->min_count = min_count;
806 	if (op_type == KMEMLEAK_ALLOC)
807 		log->trace_len = __save_stack_trace(log->trace);
808 	crt_early_log++;
809 	local_irq_restore(flags);
810 }
811 
812 /*
813  * Log an early allocated block and populate the stack trace.
814  */
815 static void early_alloc(struct early_log *log)
816 {
817 	struct kmemleak_object *object;
818 	unsigned long flags;
819 	int i;
820 
821 	if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
822 		return;
823 
824 	/*
825 	 * RCU locking needed to ensure object is not freed via put_object().
826 	 */
827 	rcu_read_lock();
828 	object = create_object((unsigned long)log->ptr, log->size,
829 			       log->min_count, GFP_ATOMIC);
830 	if (!object)
831 		goto out;
832 	spin_lock_irqsave(&object->lock, flags);
833 	for (i = 0; i < log->trace_len; i++)
834 		object->trace[i] = log->trace[i];
835 	object->trace_len = log->trace_len;
836 	spin_unlock_irqrestore(&object->lock, flags);
837 out:
838 	rcu_read_unlock();
839 }
840 
841 /*
842  * Memory allocation function callback. This function is called from the
843  * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc,
844  * vmalloc etc.).
845  */
846 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
847 			  gfp_t gfp)
848 {
849 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
850 
851 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
852 		create_object((unsigned long)ptr, size, min_count, gfp);
853 	else if (atomic_read(&kmemleak_early_log))
854 		log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
855 }
856 EXPORT_SYMBOL_GPL(kmemleak_alloc);
857 
858 /*
859  * Memory freeing function callback. This function is called from the kernel
860  * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.).
861  */
862 void __ref kmemleak_free(const void *ptr)
863 {
864 	pr_debug("%s(0x%p)\n", __func__, ptr);
865 
866 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
867 		delete_object_full((unsigned long)ptr);
868 	else if (atomic_read(&kmemleak_early_log))
869 		log_early(KMEMLEAK_FREE, ptr, 0, 0);
870 }
871 EXPORT_SYMBOL_GPL(kmemleak_free);
872 
873 /*
874  * Partial memory freeing function callback. This function is usually called
875  * from bootmem allocator when (part of) a memory block is freed.
876  */
877 void __ref kmemleak_free_part(const void *ptr, size_t size)
878 {
879 	pr_debug("%s(0x%p)\n", __func__, ptr);
880 
881 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
882 		delete_object_part((unsigned long)ptr, size);
883 	else if (atomic_read(&kmemleak_early_log))
884 		log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
885 }
886 EXPORT_SYMBOL_GPL(kmemleak_free_part);
887 
888 /*
889  * Mark an already allocated memory block as a false positive. This will cause
890  * the block to no longer be reported as leak and always be scanned.
891  */
892 void __ref kmemleak_not_leak(const void *ptr)
893 {
894 	pr_debug("%s(0x%p)\n", __func__, ptr);
895 
896 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
897 		make_gray_object((unsigned long)ptr);
898 	else if (atomic_read(&kmemleak_early_log))
899 		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
900 }
901 EXPORT_SYMBOL(kmemleak_not_leak);
902 
903 /*
904  * Ignore a memory block. This is usually done when it is known that the
905  * corresponding block is not a leak and does not contain any references to
906  * other allocated memory blocks.
907  */
908 void __ref kmemleak_ignore(const void *ptr)
909 {
910 	pr_debug("%s(0x%p)\n", __func__, ptr);
911 
912 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
913 		make_black_object((unsigned long)ptr);
914 	else if (atomic_read(&kmemleak_early_log))
915 		log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
916 }
917 EXPORT_SYMBOL(kmemleak_ignore);
918 
919 /*
920  * Limit the range to be scanned in an allocated memory block.
921  */
922 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
923 {
924 	pr_debug("%s(0x%p)\n", __func__, ptr);
925 
926 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
927 		add_scan_area((unsigned long)ptr, size, gfp);
928 	else if (atomic_read(&kmemleak_early_log))
929 		log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
930 }
931 EXPORT_SYMBOL(kmemleak_scan_area);
932 
933 /*
934  * Inform kmemleak not to scan the given memory block.
935  */
936 void __ref kmemleak_no_scan(const void *ptr)
937 {
938 	pr_debug("%s(0x%p)\n", __func__, ptr);
939 
940 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
941 		object_no_scan((unsigned long)ptr);
942 	else if (atomic_read(&kmemleak_early_log))
943 		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
944 }
945 EXPORT_SYMBOL(kmemleak_no_scan);
946 
947 /*
948  * Update an object's checksum and return true if it was modified.
949  */
950 static bool update_checksum(struct kmemleak_object *object)
951 {
952 	u32 old_csum = object->checksum;
953 
954 	if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
955 		return false;
956 
957 	object->checksum = crc32(0, (void *)object->pointer, object->size);
958 	return object->checksum != old_csum;
959 }
960 
961 /*
962  * Memory scanning is a long process and it needs to be interruptable. This
963  * function checks whether such interrupt condition occured.
964  */
965 static int scan_should_stop(void)
966 {
967 	if (!atomic_read(&kmemleak_enabled))
968 		return 1;
969 
970 	/*
971 	 * This function may be called from either process or kthread context,
972 	 * hence the need to check for both stop conditions.
973 	 */
974 	if (current->mm)
975 		return signal_pending(current);
976 	else
977 		return kthread_should_stop();
978 
979 	return 0;
980 }
981 
982 /*
983  * Scan a memory block (exclusive range) for valid pointers and add those
984  * found to the gray list.
985  */
986 static void scan_block(void *_start, void *_end,
987 		       struct kmemleak_object *scanned, int allow_resched)
988 {
989 	unsigned long *ptr;
990 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
991 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
992 
993 	for (ptr = start; ptr < end; ptr++) {
994 		struct kmemleak_object *object;
995 		unsigned long flags;
996 		unsigned long pointer;
997 
998 		if (allow_resched)
999 			cond_resched();
1000 		if (scan_should_stop())
1001 			break;
1002 
1003 		/* don't scan uninitialized memory */
1004 		if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1005 						  BYTES_PER_POINTER))
1006 			continue;
1007 
1008 		pointer = *ptr;
1009 
1010 		object = find_and_get_object(pointer, 1);
1011 		if (!object)
1012 			continue;
1013 		if (object == scanned) {
1014 			/* self referenced, ignore */
1015 			put_object(object);
1016 			continue;
1017 		}
1018 
1019 		/*
1020 		 * Avoid the lockdep recursive warning on object->lock being
1021 		 * previously acquired in scan_object(). These locks are
1022 		 * enclosed by scan_mutex.
1023 		 */
1024 		spin_lock_irqsave_nested(&object->lock, flags,
1025 					 SINGLE_DEPTH_NESTING);
1026 		if (!color_white(object)) {
1027 			/* non-orphan, ignored or new */
1028 			spin_unlock_irqrestore(&object->lock, flags);
1029 			put_object(object);
1030 			continue;
1031 		}
1032 
1033 		/*
1034 		 * Increase the object's reference count (number of pointers
1035 		 * to the memory block). If this count reaches the required
1036 		 * minimum, the object's color will become gray and it will be
1037 		 * added to the gray_list.
1038 		 */
1039 		object->count++;
1040 		if (color_gray(object)) {
1041 			list_add_tail(&object->gray_list, &gray_list);
1042 			spin_unlock_irqrestore(&object->lock, flags);
1043 			continue;
1044 		}
1045 
1046 		spin_unlock_irqrestore(&object->lock, flags);
1047 		put_object(object);
1048 	}
1049 }
1050 
1051 /*
1052  * Scan a memory block corresponding to a kmemleak_object. A condition is
1053  * that object->use_count >= 1.
1054  */
1055 static void scan_object(struct kmemleak_object *object)
1056 {
1057 	struct kmemleak_scan_area *area;
1058 	struct hlist_node *elem;
1059 	unsigned long flags;
1060 
1061 	/*
1062 	 * Once the object->lock is acquired, the corresponding memory block
1063 	 * cannot be freed (the same lock is acquired in delete_object).
1064 	 */
1065 	spin_lock_irqsave(&object->lock, flags);
1066 	if (object->flags & OBJECT_NO_SCAN)
1067 		goto out;
1068 	if (!(object->flags & OBJECT_ALLOCATED))
1069 		/* already freed object */
1070 		goto out;
1071 	if (hlist_empty(&object->area_list)) {
1072 		void *start = (void *)object->pointer;
1073 		void *end = (void *)(object->pointer + object->size);
1074 
1075 		while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1076 		       !(object->flags & OBJECT_NO_SCAN)) {
1077 			scan_block(start, min(start + MAX_SCAN_SIZE, end),
1078 				   object, 0);
1079 			start += MAX_SCAN_SIZE;
1080 
1081 			spin_unlock_irqrestore(&object->lock, flags);
1082 			cond_resched();
1083 			spin_lock_irqsave(&object->lock, flags);
1084 		}
1085 	} else
1086 		hlist_for_each_entry(area, elem, &object->area_list, node)
1087 			scan_block((void *)area->start,
1088 				   (void *)(area->start + area->size),
1089 				   object, 0);
1090 out:
1091 	spin_unlock_irqrestore(&object->lock, flags);
1092 }
1093 
1094 /*
1095  * Scan the objects already referenced (gray objects). More objects will be
1096  * referenced and, if there are no memory leaks, all the objects are scanned.
1097  */
1098 static void scan_gray_list(void)
1099 {
1100 	struct kmemleak_object *object, *tmp;
1101 
1102 	/*
1103 	 * The list traversal is safe for both tail additions and removals
1104 	 * from inside the loop. The kmemleak objects cannot be freed from
1105 	 * outside the loop because their use_count was incremented.
1106 	 */
1107 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1108 	while (&object->gray_list != &gray_list) {
1109 		cond_resched();
1110 
1111 		/* may add new objects to the list */
1112 		if (!scan_should_stop())
1113 			scan_object(object);
1114 
1115 		tmp = list_entry(object->gray_list.next, typeof(*object),
1116 				 gray_list);
1117 
1118 		/* remove the object from the list and release it */
1119 		list_del(&object->gray_list);
1120 		put_object(object);
1121 
1122 		object = tmp;
1123 	}
1124 	WARN_ON(!list_empty(&gray_list));
1125 }
1126 
1127 /*
1128  * Scan data sections and all the referenced memory blocks allocated via the
1129  * kernel's standard allocators. This function must be called with the
1130  * scan_mutex held.
1131  */
1132 static void kmemleak_scan(void)
1133 {
1134 	unsigned long flags;
1135 	struct kmemleak_object *object;
1136 	int i;
1137 	int new_leaks = 0;
1138 
1139 	jiffies_last_scan = jiffies;
1140 
1141 	/* prepare the kmemleak_object's */
1142 	rcu_read_lock();
1143 	list_for_each_entry_rcu(object, &object_list, object_list) {
1144 		spin_lock_irqsave(&object->lock, flags);
1145 #ifdef DEBUG
1146 		/*
1147 		 * With a few exceptions there should be a maximum of
1148 		 * 1 reference to any object at this point.
1149 		 */
1150 		if (atomic_read(&object->use_count) > 1) {
1151 			pr_debug("object->use_count = %d\n",
1152 				 atomic_read(&object->use_count));
1153 			dump_object_info(object);
1154 		}
1155 #endif
1156 		/* reset the reference count (whiten the object) */
1157 		object->count = 0;
1158 		if (color_gray(object) && get_object(object))
1159 			list_add_tail(&object->gray_list, &gray_list);
1160 
1161 		spin_unlock_irqrestore(&object->lock, flags);
1162 	}
1163 	rcu_read_unlock();
1164 
1165 	/* data/bss scanning */
1166 	scan_block(_sdata, _edata, NULL, 1);
1167 	scan_block(__bss_start, __bss_stop, NULL, 1);
1168 
1169 #ifdef CONFIG_SMP
1170 	/* per-cpu sections scanning */
1171 	for_each_possible_cpu(i)
1172 		scan_block(__per_cpu_start + per_cpu_offset(i),
1173 			   __per_cpu_end + per_cpu_offset(i), NULL, 1);
1174 #endif
1175 
1176 	/*
1177 	 * Struct page scanning for each node. The code below is not yet safe
1178 	 * with MEMORY_HOTPLUG.
1179 	 */
1180 	for_each_online_node(i) {
1181 		pg_data_t *pgdat = NODE_DATA(i);
1182 		unsigned long start_pfn = pgdat->node_start_pfn;
1183 		unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1184 		unsigned long pfn;
1185 
1186 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1187 			struct page *page;
1188 
1189 			if (!pfn_valid(pfn))
1190 				continue;
1191 			page = pfn_to_page(pfn);
1192 			/* only scan if page is in use */
1193 			if (page_count(page) == 0)
1194 				continue;
1195 			scan_block(page, page + 1, NULL, 1);
1196 		}
1197 	}
1198 
1199 	/*
1200 	 * Scanning the task stacks (may introduce false negatives).
1201 	 */
1202 	if (kmemleak_stack_scan) {
1203 		struct task_struct *p, *g;
1204 
1205 		read_lock(&tasklist_lock);
1206 		do_each_thread(g, p) {
1207 			scan_block(task_stack_page(p), task_stack_page(p) +
1208 				   THREAD_SIZE, NULL, 0);
1209 		} while_each_thread(g, p);
1210 		read_unlock(&tasklist_lock);
1211 	}
1212 
1213 	/*
1214 	 * Scan the objects already referenced from the sections scanned
1215 	 * above.
1216 	 */
1217 	scan_gray_list();
1218 
1219 	/*
1220 	 * Check for new or unreferenced objects modified since the previous
1221 	 * scan and color them gray until the next scan.
1222 	 */
1223 	rcu_read_lock();
1224 	list_for_each_entry_rcu(object, &object_list, object_list) {
1225 		spin_lock_irqsave(&object->lock, flags);
1226 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1227 		    && update_checksum(object) && get_object(object)) {
1228 			/* color it gray temporarily */
1229 			object->count = object->min_count;
1230 			list_add_tail(&object->gray_list, &gray_list);
1231 		}
1232 		spin_unlock_irqrestore(&object->lock, flags);
1233 	}
1234 	rcu_read_unlock();
1235 
1236 	/*
1237 	 * Re-scan the gray list for modified unreferenced objects.
1238 	 */
1239 	scan_gray_list();
1240 
1241 	/*
1242 	 * If scanning was stopped do not report any new unreferenced objects.
1243 	 */
1244 	if (scan_should_stop())
1245 		return;
1246 
1247 	/*
1248 	 * Scanning result reporting.
1249 	 */
1250 	rcu_read_lock();
1251 	list_for_each_entry_rcu(object, &object_list, object_list) {
1252 		spin_lock_irqsave(&object->lock, flags);
1253 		if (unreferenced_object(object) &&
1254 		    !(object->flags & OBJECT_REPORTED)) {
1255 			object->flags |= OBJECT_REPORTED;
1256 			new_leaks++;
1257 		}
1258 		spin_unlock_irqrestore(&object->lock, flags);
1259 	}
1260 	rcu_read_unlock();
1261 
1262 	if (new_leaks)
1263 		pr_info("%d new suspected memory leaks (see "
1264 			"/sys/kernel/debug/kmemleak)\n", new_leaks);
1265 
1266 }
1267 
1268 /*
1269  * Thread function performing automatic memory scanning. Unreferenced objects
1270  * at the end of a memory scan are reported but only the first time.
1271  */
1272 static int kmemleak_scan_thread(void *arg)
1273 {
1274 	static int first_run = 1;
1275 
1276 	pr_info("Automatic memory scanning thread started\n");
1277 	set_user_nice(current, 10);
1278 
1279 	/*
1280 	 * Wait before the first scan to allow the system to fully initialize.
1281 	 */
1282 	if (first_run) {
1283 		first_run = 0;
1284 		ssleep(SECS_FIRST_SCAN);
1285 	}
1286 
1287 	while (!kthread_should_stop()) {
1288 		signed long timeout = jiffies_scan_wait;
1289 
1290 		mutex_lock(&scan_mutex);
1291 		kmemleak_scan();
1292 		mutex_unlock(&scan_mutex);
1293 
1294 		/* wait before the next scan */
1295 		while (timeout && !kthread_should_stop())
1296 			timeout = schedule_timeout_interruptible(timeout);
1297 	}
1298 
1299 	pr_info("Automatic memory scanning thread ended\n");
1300 
1301 	return 0;
1302 }
1303 
1304 /*
1305  * Start the automatic memory scanning thread. This function must be called
1306  * with the scan_mutex held.
1307  */
1308 static void start_scan_thread(void)
1309 {
1310 	if (scan_thread)
1311 		return;
1312 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1313 	if (IS_ERR(scan_thread)) {
1314 		pr_warning("Failed to create the scan thread\n");
1315 		scan_thread = NULL;
1316 	}
1317 }
1318 
1319 /*
1320  * Stop the automatic memory scanning thread. This function must be called
1321  * with the scan_mutex held.
1322  */
1323 static void stop_scan_thread(void)
1324 {
1325 	if (scan_thread) {
1326 		kthread_stop(scan_thread);
1327 		scan_thread = NULL;
1328 	}
1329 }
1330 
1331 /*
1332  * Iterate over the object_list and return the first valid object at or after
1333  * the required position with its use_count incremented. The function triggers
1334  * a memory scanning when the pos argument points to the first position.
1335  */
1336 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1337 {
1338 	struct kmemleak_object *object;
1339 	loff_t n = *pos;
1340 	int err;
1341 
1342 	err = mutex_lock_interruptible(&scan_mutex);
1343 	if (err < 0)
1344 		return ERR_PTR(err);
1345 
1346 	rcu_read_lock();
1347 	list_for_each_entry_rcu(object, &object_list, object_list) {
1348 		if (n-- > 0)
1349 			continue;
1350 		if (get_object(object))
1351 			goto out;
1352 	}
1353 	object = NULL;
1354 out:
1355 	return object;
1356 }
1357 
1358 /*
1359  * Return the next object in the object_list. The function decrements the
1360  * use_count of the previous object and increases that of the next one.
1361  */
1362 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1363 {
1364 	struct kmemleak_object *prev_obj = v;
1365 	struct kmemleak_object *next_obj = NULL;
1366 	struct list_head *n = &prev_obj->object_list;
1367 
1368 	++(*pos);
1369 
1370 	list_for_each_continue_rcu(n, &object_list) {
1371 		next_obj = list_entry(n, struct kmemleak_object, object_list);
1372 		if (get_object(next_obj))
1373 			break;
1374 	}
1375 
1376 	put_object(prev_obj);
1377 	return next_obj;
1378 }
1379 
1380 /*
1381  * Decrement the use_count of the last object required, if any.
1382  */
1383 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1384 {
1385 	if (!IS_ERR(v)) {
1386 		/*
1387 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1388 		 * waiting was interrupted, so only release it if !IS_ERR.
1389 		 */
1390 		rcu_read_unlock();
1391 		mutex_unlock(&scan_mutex);
1392 		if (v)
1393 			put_object(v);
1394 	}
1395 }
1396 
1397 /*
1398  * Print the information for an unreferenced object to the seq file.
1399  */
1400 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1401 {
1402 	struct kmemleak_object *object = v;
1403 	unsigned long flags;
1404 
1405 	spin_lock_irqsave(&object->lock, flags);
1406 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1407 		print_unreferenced(seq, object);
1408 	spin_unlock_irqrestore(&object->lock, flags);
1409 	return 0;
1410 }
1411 
1412 static const struct seq_operations kmemleak_seq_ops = {
1413 	.start = kmemleak_seq_start,
1414 	.next  = kmemleak_seq_next,
1415 	.stop  = kmemleak_seq_stop,
1416 	.show  = kmemleak_seq_show,
1417 };
1418 
1419 static int kmemleak_open(struct inode *inode, struct file *file)
1420 {
1421 	if (!atomic_read(&kmemleak_enabled))
1422 		return -EBUSY;
1423 
1424 	return seq_open(file, &kmemleak_seq_ops);
1425 }
1426 
1427 static int kmemleak_release(struct inode *inode, struct file *file)
1428 {
1429 	return seq_release(inode, file);
1430 }
1431 
1432 static int dump_str_object_info(const char *str)
1433 {
1434 	unsigned long flags;
1435 	struct kmemleak_object *object;
1436 	unsigned long addr;
1437 
1438 	addr= simple_strtoul(str, NULL, 0);
1439 	object = find_and_get_object(addr, 0);
1440 	if (!object) {
1441 		pr_info("Unknown object at 0x%08lx\n", addr);
1442 		return -EINVAL;
1443 	}
1444 
1445 	spin_lock_irqsave(&object->lock, flags);
1446 	dump_object_info(object);
1447 	spin_unlock_irqrestore(&object->lock, flags);
1448 
1449 	put_object(object);
1450 	return 0;
1451 }
1452 
1453 /*
1454  * We use grey instead of black to ensure we can do future scans on the same
1455  * objects. If we did not do future scans these black objects could
1456  * potentially contain references to newly allocated objects in the future and
1457  * we'd end up with false positives.
1458  */
1459 static void kmemleak_clear(void)
1460 {
1461 	struct kmemleak_object *object;
1462 	unsigned long flags;
1463 
1464 	rcu_read_lock();
1465 	list_for_each_entry_rcu(object, &object_list, object_list) {
1466 		spin_lock_irqsave(&object->lock, flags);
1467 		if ((object->flags & OBJECT_REPORTED) &&
1468 		    unreferenced_object(object))
1469 			__paint_it(object, KMEMLEAK_GREY);
1470 		spin_unlock_irqrestore(&object->lock, flags);
1471 	}
1472 	rcu_read_unlock();
1473 }
1474 
1475 /*
1476  * File write operation to configure kmemleak at run-time. The following
1477  * commands can be written to the /sys/kernel/debug/kmemleak file:
1478  *   off	- disable kmemleak (irreversible)
1479  *   stack=on	- enable the task stacks scanning
1480  *   stack=off	- disable the tasks stacks scanning
1481  *   scan=on	- start the automatic memory scanning thread
1482  *   scan=off	- stop the automatic memory scanning thread
1483  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1484  *		  disable it)
1485  *   scan	- trigger a memory scan
1486  *   clear	- mark all current reported unreferenced kmemleak objects as
1487  *		  grey to ignore printing them
1488  *   dump=...	- dump information about the object found at the given address
1489  */
1490 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1491 			      size_t size, loff_t *ppos)
1492 {
1493 	char buf[64];
1494 	int buf_size;
1495 	int ret;
1496 
1497 	buf_size = min(size, (sizeof(buf) - 1));
1498 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1499 		return -EFAULT;
1500 	buf[buf_size] = 0;
1501 
1502 	ret = mutex_lock_interruptible(&scan_mutex);
1503 	if (ret < 0)
1504 		return ret;
1505 
1506 	if (strncmp(buf, "off", 3) == 0)
1507 		kmemleak_disable();
1508 	else if (strncmp(buf, "stack=on", 8) == 0)
1509 		kmemleak_stack_scan = 1;
1510 	else if (strncmp(buf, "stack=off", 9) == 0)
1511 		kmemleak_stack_scan = 0;
1512 	else if (strncmp(buf, "scan=on", 7) == 0)
1513 		start_scan_thread();
1514 	else if (strncmp(buf, "scan=off", 8) == 0)
1515 		stop_scan_thread();
1516 	else if (strncmp(buf, "scan=", 5) == 0) {
1517 		unsigned long secs;
1518 
1519 		ret = strict_strtoul(buf + 5, 0, &secs);
1520 		if (ret < 0)
1521 			goto out;
1522 		stop_scan_thread();
1523 		if (secs) {
1524 			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1525 			start_scan_thread();
1526 		}
1527 	} else if (strncmp(buf, "scan", 4) == 0)
1528 		kmemleak_scan();
1529 	else if (strncmp(buf, "clear", 5) == 0)
1530 		kmemleak_clear();
1531 	else if (strncmp(buf, "dump=", 5) == 0)
1532 		ret = dump_str_object_info(buf + 5);
1533 	else
1534 		ret = -EINVAL;
1535 
1536 out:
1537 	mutex_unlock(&scan_mutex);
1538 	if (ret < 0)
1539 		return ret;
1540 
1541 	/* ignore the rest of the buffer, only one command at a time */
1542 	*ppos += size;
1543 	return size;
1544 }
1545 
1546 static const struct file_operations kmemleak_fops = {
1547 	.owner		= THIS_MODULE,
1548 	.open		= kmemleak_open,
1549 	.read		= seq_read,
1550 	.write		= kmemleak_write,
1551 	.llseek		= seq_lseek,
1552 	.release	= kmemleak_release,
1553 };
1554 
1555 /*
1556  * Perform the freeing of the kmemleak internal objects after waiting for any
1557  * current memory scan to complete.
1558  */
1559 static void kmemleak_do_cleanup(struct work_struct *work)
1560 {
1561 	struct kmemleak_object *object;
1562 
1563 	mutex_lock(&scan_mutex);
1564 	stop_scan_thread();
1565 
1566 	rcu_read_lock();
1567 	list_for_each_entry_rcu(object, &object_list, object_list)
1568 		delete_object_full(object->pointer);
1569 	rcu_read_unlock();
1570 	mutex_unlock(&scan_mutex);
1571 }
1572 
1573 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1574 
1575 /*
1576  * Disable kmemleak. No memory allocation/freeing will be traced once this
1577  * function is called. Disabling kmemleak is an irreversible operation.
1578  */
1579 static void kmemleak_disable(void)
1580 {
1581 	/* atomically check whether it was already invoked */
1582 	if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1583 		return;
1584 
1585 	/* stop any memory operation tracing */
1586 	atomic_set(&kmemleak_early_log, 0);
1587 	atomic_set(&kmemleak_enabled, 0);
1588 
1589 	/* check whether it is too early for a kernel thread */
1590 	if (atomic_read(&kmemleak_initialized))
1591 		schedule_work(&cleanup_work);
1592 
1593 	pr_info("Kernel memory leak detector disabled\n");
1594 }
1595 
1596 /*
1597  * Allow boot-time kmemleak disabling (enabled by default).
1598  */
1599 static int kmemleak_boot_config(char *str)
1600 {
1601 	if (!str)
1602 		return -EINVAL;
1603 	if (strcmp(str, "off") == 0)
1604 		kmemleak_disable();
1605 	else if (strcmp(str, "on") != 0)
1606 		return -EINVAL;
1607 	return 0;
1608 }
1609 early_param("kmemleak", kmemleak_boot_config);
1610 
1611 /*
1612  * Kmemleak initialization.
1613  */
1614 void __init kmemleak_init(void)
1615 {
1616 	int i;
1617 	unsigned long flags;
1618 
1619 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1620 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1621 
1622 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1623 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1624 	INIT_PRIO_TREE_ROOT(&object_tree_root);
1625 
1626 	/* the kernel is still in UP mode, so disabling the IRQs is enough */
1627 	local_irq_save(flags);
1628 	if (!atomic_read(&kmemleak_error)) {
1629 		atomic_set(&kmemleak_enabled, 1);
1630 		atomic_set(&kmemleak_early_log, 0);
1631 	}
1632 	local_irq_restore(flags);
1633 
1634 	/*
1635 	 * This is the point where tracking allocations is safe. Automatic
1636 	 * scanning is started during the late initcall. Add the early logged
1637 	 * callbacks to the kmemleak infrastructure.
1638 	 */
1639 	for (i = 0; i < crt_early_log; i++) {
1640 		struct early_log *log = &early_log[i];
1641 
1642 		switch (log->op_type) {
1643 		case KMEMLEAK_ALLOC:
1644 			early_alloc(log);
1645 			break;
1646 		case KMEMLEAK_FREE:
1647 			kmemleak_free(log->ptr);
1648 			break;
1649 		case KMEMLEAK_FREE_PART:
1650 			kmemleak_free_part(log->ptr, log->size);
1651 			break;
1652 		case KMEMLEAK_NOT_LEAK:
1653 			kmemleak_not_leak(log->ptr);
1654 			break;
1655 		case KMEMLEAK_IGNORE:
1656 			kmemleak_ignore(log->ptr);
1657 			break;
1658 		case KMEMLEAK_SCAN_AREA:
1659 			kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1660 			break;
1661 		case KMEMLEAK_NO_SCAN:
1662 			kmemleak_no_scan(log->ptr);
1663 			break;
1664 		default:
1665 			WARN_ON(1);
1666 		}
1667 	}
1668 }
1669 
1670 /*
1671  * Late initialization function.
1672  */
1673 static int __init kmemleak_late_init(void)
1674 {
1675 	struct dentry *dentry;
1676 
1677 	atomic_set(&kmemleak_initialized, 1);
1678 
1679 	if (atomic_read(&kmemleak_error)) {
1680 		/*
1681 		 * Some error occured and kmemleak was disabled. There is a
1682 		 * small chance that kmemleak_disable() was called immediately
1683 		 * after setting kmemleak_initialized and we may end up with
1684 		 * two clean-up threads but serialized by scan_mutex.
1685 		 */
1686 		schedule_work(&cleanup_work);
1687 		return -ENOMEM;
1688 	}
1689 
1690 	dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1691 				     &kmemleak_fops);
1692 	if (!dentry)
1693 		pr_warning("Failed to create the debugfs kmemleak file\n");
1694 	mutex_lock(&scan_mutex);
1695 	start_scan_thread();
1696 	mutex_unlock(&scan_mutex);
1697 
1698 	pr_info("Kernel memory leak detector initialized\n");
1699 
1700 	return 0;
1701 }
1702 late_initcall(kmemleak_late_init);
1703