xref: /openbmc/linux/mm/kmemleak.c (revision dfc66bef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <catalin.marinas@arm.com>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
17  *   accesses to the object_tree_root. The object_list is the main list
18  *   holding the metadata (struct kmemleak_object) for the allocated memory
19  *   blocks. The object_tree_root is a red black tree used to look-up
20  *   metadata based on a pointer to the corresponding memory block.  The
21  *   kmemleak_object structures are added to the object_list and
22  *   object_tree_root in the create_object() function called from the
23  *   kmemleak_alloc() callback and removed in delete_object() called from the
24  *   kmemleak_free() callback
25  * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
26  *   Accesses to the metadata (e.g. count) are protected by this lock. Note
27  *   that some members of this structure may be protected by other means
28  *   (atomic or kmemleak_lock). This lock is also held when scanning the
29  *   corresponding memory block to avoid the kernel freeing it via the
30  *   kmemleak_free() callback. This is less heavyweight than holding a global
31  *   lock like kmemleak_lock during scanning.
32  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
33  *   unreferenced objects at a time. The gray_list contains the objects which
34  *   are already referenced or marked as false positives and need to be
35  *   scanned. This list is only modified during a scanning episode when the
36  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
37  *   Note that the kmemleak_object.use_count is incremented when an object is
38  *   added to the gray_list and therefore cannot be freed. This mutex also
39  *   prevents multiple users of the "kmemleak" debugfs file together with
40  *   modifications to the memory scanning parameters including the scan_thread
41  *   pointer
42  *
43  * Locks and mutexes are acquired/nested in the following order:
44  *
45  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
46  *
47  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
48  * regions.
49  *
50  * The kmemleak_object structures have a use_count incremented or decremented
51  * using the get_object()/put_object() functions. When the use_count becomes
52  * 0, this count can no longer be incremented and put_object() schedules the
53  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
54  * function must be protected by rcu_read_lock() to avoid accessing a freed
55  * structure.
56  */
57 
58 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59 
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/sched/signal.h>
64 #include <linux/sched/task.h>
65 #include <linux/sched/task_stack.h>
66 #include <linux/jiffies.h>
67 #include <linux/delay.h>
68 #include <linux/export.h>
69 #include <linux/kthread.h>
70 #include <linux/rbtree.h>
71 #include <linux/fs.h>
72 #include <linux/debugfs.h>
73 #include <linux/seq_file.h>
74 #include <linux/cpumask.h>
75 #include <linux/spinlock.h>
76 #include <linux/module.h>
77 #include <linux/mutex.h>
78 #include <linux/rcupdate.h>
79 #include <linux/stacktrace.h>
80 #include <linux/cache.h>
81 #include <linux/percpu.h>
82 #include <linux/memblock.h>
83 #include <linux/pfn.h>
84 #include <linux/mmzone.h>
85 #include <linux/slab.h>
86 #include <linux/thread_info.h>
87 #include <linux/err.h>
88 #include <linux/uaccess.h>
89 #include <linux/string.h>
90 #include <linux/nodemask.h>
91 #include <linux/mm.h>
92 #include <linux/workqueue.h>
93 #include <linux/crc32.h>
94 
95 #include <asm/sections.h>
96 #include <asm/processor.h>
97 #include <linux/atomic.h>
98 
99 #include <linux/kasan.h>
100 #include <linux/kfence.h>
101 #include <linux/kmemleak.h>
102 #include <linux/memory_hotplug.h>
103 
104 /*
105  * Kmemleak configuration and common defines.
106  */
107 #define MAX_TRACE		16	/* stack trace length */
108 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
109 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
110 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
111 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
112 
113 #define BYTES_PER_POINTER	sizeof(void *)
114 
115 /* GFP bitmask for kmemleak internal allocations */
116 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
117 					   __GFP_NOLOCKDEP)) | \
118 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
119 				 __GFP_NOWARN)
120 
121 /* scanning area inside a memory block */
122 struct kmemleak_scan_area {
123 	struct hlist_node node;
124 	unsigned long start;
125 	size_t size;
126 };
127 
128 #define KMEMLEAK_GREY	0
129 #define KMEMLEAK_BLACK	-1
130 
131 /*
132  * Structure holding the metadata for each allocated memory block.
133  * Modifications to such objects should be made while holding the
134  * object->lock. Insertions or deletions from object_list, gray_list or
135  * rb_node are already protected by the corresponding locks or mutex (see
136  * the notes on locking above). These objects are reference-counted
137  * (use_count) and freed using the RCU mechanism.
138  */
139 struct kmemleak_object {
140 	raw_spinlock_t lock;
141 	unsigned int flags;		/* object status flags */
142 	struct list_head object_list;
143 	struct list_head gray_list;
144 	struct rb_node rb_node;
145 	struct rcu_head rcu;		/* object_list lockless traversal */
146 	/* object usage count; object freed when use_count == 0 */
147 	atomic_t use_count;
148 	unsigned long pointer;
149 	size_t size;
150 	/* pass surplus references to this pointer */
151 	unsigned long excess_ref;
152 	/* minimum number of a pointers found before it is considered leak */
153 	int min_count;
154 	/* the total number of pointers found pointing to this object */
155 	int count;
156 	/* checksum for detecting modified objects */
157 	u32 checksum;
158 	/* memory ranges to be scanned inside an object (empty for all) */
159 	struct hlist_head area_list;
160 	unsigned long trace[MAX_TRACE];
161 	unsigned int trace_len;
162 	unsigned long jiffies;		/* creation timestamp */
163 	pid_t pid;			/* pid of the current task */
164 	char comm[TASK_COMM_LEN];	/* executable name */
165 };
166 
167 /* flag representing the memory block allocation status */
168 #define OBJECT_ALLOCATED	(1 << 0)
169 /* flag set after the first reporting of an unreference object */
170 #define OBJECT_REPORTED		(1 << 1)
171 /* flag set to not scan the object */
172 #define OBJECT_NO_SCAN		(1 << 2)
173 /* flag set to fully scan the object when scan_area allocation failed */
174 #define OBJECT_FULL_SCAN	(1 << 3)
175 
176 #define HEX_PREFIX		"    "
177 /* number of bytes to print per line; must be 16 or 32 */
178 #define HEX_ROW_SIZE		16
179 /* number of bytes to print at a time (1, 2, 4, 8) */
180 #define HEX_GROUP_SIZE		1
181 /* include ASCII after the hex output */
182 #define HEX_ASCII		1
183 /* max number of lines to be printed */
184 #define HEX_MAX_LINES		2
185 
186 /* the list of all allocated objects */
187 static LIST_HEAD(object_list);
188 /* the list of gray-colored objects (see color_gray comment below) */
189 static LIST_HEAD(gray_list);
190 /* memory pool allocation */
191 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
192 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
193 static LIST_HEAD(mem_pool_free_list);
194 /* search tree for object boundaries */
195 static struct rb_root object_tree_root = RB_ROOT;
196 /* protecting the access to object_list and object_tree_root */
197 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
198 
199 /* allocation caches for kmemleak internal data */
200 static struct kmem_cache *object_cache;
201 static struct kmem_cache *scan_area_cache;
202 
203 /* set if tracing memory operations is enabled */
204 static int kmemleak_enabled = 1;
205 /* same as above but only for the kmemleak_free() callback */
206 static int kmemleak_free_enabled = 1;
207 /* set in the late_initcall if there were no errors */
208 static int kmemleak_initialized;
209 /* set if a kmemleak warning was issued */
210 static int kmemleak_warning;
211 /* set if a fatal kmemleak error has occurred */
212 static int kmemleak_error;
213 
214 /* minimum and maximum address that may be valid pointers */
215 static unsigned long min_addr = ULONG_MAX;
216 static unsigned long max_addr;
217 
218 static struct task_struct *scan_thread;
219 /* used to avoid reporting of recently allocated objects */
220 static unsigned long jiffies_min_age;
221 static unsigned long jiffies_last_scan;
222 /* delay between automatic memory scannings */
223 static unsigned long jiffies_scan_wait;
224 /* enables or disables the task stacks scanning */
225 static int kmemleak_stack_scan = 1;
226 /* protects the memory scanning, parameters and debug/kmemleak file access */
227 static DEFINE_MUTEX(scan_mutex);
228 /* setting kmemleak=on, will set this var, skipping the disable */
229 static int kmemleak_skip_disable;
230 /* If there are leaks that can be reported */
231 static bool kmemleak_found_leaks;
232 
233 static bool kmemleak_verbose;
234 module_param_named(verbose, kmemleak_verbose, bool, 0600);
235 
236 static void kmemleak_disable(void);
237 
238 /*
239  * Print a warning and dump the stack trace.
240  */
241 #define kmemleak_warn(x...)	do {		\
242 	pr_warn(x);				\
243 	dump_stack();				\
244 	kmemleak_warning = 1;			\
245 } while (0)
246 
247 /*
248  * Macro invoked when a serious kmemleak condition occurred and cannot be
249  * recovered from. Kmemleak will be disabled and further allocation/freeing
250  * tracing no longer available.
251  */
252 #define kmemleak_stop(x...)	do {	\
253 	kmemleak_warn(x);		\
254 	kmemleak_disable();		\
255 } while (0)
256 
257 #define warn_or_seq_printf(seq, fmt, ...)	do {	\
258 	if (seq)					\
259 		seq_printf(seq, fmt, ##__VA_ARGS__);	\
260 	else						\
261 		pr_warn(fmt, ##__VA_ARGS__);		\
262 } while (0)
263 
264 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
265 				 int rowsize, int groupsize, const void *buf,
266 				 size_t len, bool ascii)
267 {
268 	if (seq)
269 		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
270 			     buf, len, ascii);
271 	else
272 		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
273 			       rowsize, groupsize, buf, len, ascii);
274 }
275 
276 /*
277  * Printing of the objects hex dump to the seq file. The number of lines to be
278  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
279  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
280  * with the object->lock held.
281  */
282 static void hex_dump_object(struct seq_file *seq,
283 			    struct kmemleak_object *object)
284 {
285 	const u8 *ptr = (const u8 *)object->pointer;
286 	size_t len;
287 
288 	/* limit the number of lines to HEX_MAX_LINES */
289 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
290 
291 	warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
292 	kasan_disable_current();
293 	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
294 			     HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
295 	kasan_enable_current();
296 }
297 
298 /*
299  * Object colors, encoded with count and min_count:
300  * - white - orphan object, not enough references to it (count < min_count)
301  * - gray  - not orphan, not marked as false positive (min_count == 0) or
302  *		sufficient references to it (count >= min_count)
303  * - black - ignore, it doesn't contain references (e.g. text section)
304  *		(min_count == -1). No function defined for this color.
305  * Newly created objects don't have any color assigned (object->count == -1)
306  * before the next memory scan when they become white.
307  */
308 static bool color_white(const struct kmemleak_object *object)
309 {
310 	return object->count != KMEMLEAK_BLACK &&
311 		object->count < object->min_count;
312 }
313 
314 static bool color_gray(const struct kmemleak_object *object)
315 {
316 	return object->min_count != KMEMLEAK_BLACK &&
317 		object->count >= object->min_count;
318 }
319 
320 /*
321  * Objects are considered unreferenced only if their color is white, they have
322  * not be deleted and have a minimum age to avoid false positives caused by
323  * pointers temporarily stored in CPU registers.
324  */
325 static bool unreferenced_object(struct kmemleak_object *object)
326 {
327 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
328 		time_before_eq(object->jiffies + jiffies_min_age,
329 			       jiffies_last_scan);
330 }
331 
332 /*
333  * Printing of the unreferenced objects information to the seq file. The
334  * print_unreferenced function must be called with the object->lock held.
335  */
336 static void print_unreferenced(struct seq_file *seq,
337 			       struct kmemleak_object *object)
338 {
339 	int i;
340 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
341 
342 	warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
343 		   object->pointer, object->size);
344 	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
345 		   object->comm, object->pid, object->jiffies,
346 		   msecs_age / 1000, msecs_age % 1000);
347 	hex_dump_object(seq, object);
348 	warn_or_seq_printf(seq, "  backtrace:\n");
349 
350 	for (i = 0; i < object->trace_len; i++) {
351 		void *ptr = (void *)object->trace[i];
352 		warn_or_seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
353 	}
354 }
355 
356 /*
357  * Print the kmemleak_object information. This function is used mainly for
358  * debugging special cases when kmemleak operations. It must be called with
359  * the object->lock held.
360  */
361 static void dump_object_info(struct kmemleak_object *object)
362 {
363 	pr_notice("Object 0x%08lx (size %zu):\n",
364 		  object->pointer, object->size);
365 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
366 		  object->comm, object->pid, object->jiffies);
367 	pr_notice("  min_count = %d\n", object->min_count);
368 	pr_notice("  count = %d\n", object->count);
369 	pr_notice("  flags = 0x%x\n", object->flags);
370 	pr_notice("  checksum = %u\n", object->checksum);
371 	pr_notice("  backtrace:\n");
372 	stack_trace_print(object->trace, object->trace_len, 4);
373 }
374 
375 /*
376  * Look-up a memory block metadata (kmemleak_object) in the object search
377  * tree based on a pointer value. If alias is 0, only values pointing to the
378  * beginning of the memory block are allowed. The kmemleak_lock must be held
379  * when calling this function.
380  */
381 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
382 {
383 	struct rb_node *rb = object_tree_root.rb_node;
384 
385 	while (rb) {
386 		struct kmemleak_object *object =
387 			rb_entry(rb, struct kmemleak_object, rb_node);
388 		if (ptr < object->pointer)
389 			rb = object->rb_node.rb_left;
390 		else if (object->pointer + object->size <= ptr)
391 			rb = object->rb_node.rb_right;
392 		else if (object->pointer == ptr || alias)
393 			return object;
394 		else {
395 			kmemleak_warn("Found object by alias at 0x%08lx\n",
396 				      ptr);
397 			dump_object_info(object);
398 			break;
399 		}
400 	}
401 	return NULL;
402 }
403 
404 /*
405  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
406  * that once an object's use_count reached 0, the RCU freeing was already
407  * registered and the object should no longer be used. This function must be
408  * called under the protection of rcu_read_lock().
409  */
410 static int get_object(struct kmemleak_object *object)
411 {
412 	return atomic_inc_not_zero(&object->use_count);
413 }
414 
415 /*
416  * Memory pool allocation and freeing. kmemleak_lock must not be held.
417  */
418 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
419 {
420 	unsigned long flags;
421 	struct kmemleak_object *object;
422 
423 	/* try the slab allocator first */
424 	if (object_cache) {
425 		object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
426 		if (object)
427 			return object;
428 	}
429 
430 	/* slab allocation failed, try the memory pool */
431 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
432 	object = list_first_entry_or_null(&mem_pool_free_list,
433 					  typeof(*object), object_list);
434 	if (object)
435 		list_del(&object->object_list);
436 	else if (mem_pool_free_count)
437 		object = &mem_pool[--mem_pool_free_count];
438 	else
439 		pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
440 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
441 
442 	return object;
443 }
444 
445 /*
446  * Return the object to either the slab allocator or the memory pool.
447  */
448 static void mem_pool_free(struct kmemleak_object *object)
449 {
450 	unsigned long flags;
451 
452 	if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
453 		kmem_cache_free(object_cache, object);
454 		return;
455 	}
456 
457 	/* add the object to the memory pool free list */
458 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
459 	list_add(&object->object_list, &mem_pool_free_list);
460 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
461 }
462 
463 /*
464  * RCU callback to free a kmemleak_object.
465  */
466 static void free_object_rcu(struct rcu_head *rcu)
467 {
468 	struct hlist_node *tmp;
469 	struct kmemleak_scan_area *area;
470 	struct kmemleak_object *object =
471 		container_of(rcu, struct kmemleak_object, rcu);
472 
473 	/*
474 	 * Once use_count is 0 (guaranteed by put_object), there is no other
475 	 * code accessing this object, hence no need for locking.
476 	 */
477 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
478 		hlist_del(&area->node);
479 		kmem_cache_free(scan_area_cache, area);
480 	}
481 	mem_pool_free(object);
482 }
483 
484 /*
485  * Decrement the object use_count. Once the count is 0, free the object using
486  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
487  * delete_object() path, the delayed RCU freeing ensures that there is no
488  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
489  * is also possible.
490  */
491 static void put_object(struct kmemleak_object *object)
492 {
493 	if (!atomic_dec_and_test(&object->use_count))
494 		return;
495 
496 	/* should only get here after delete_object was called */
497 	WARN_ON(object->flags & OBJECT_ALLOCATED);
498 
499 	/*
500 	 * It may be too early for the RCU callbacks, however, there is no
501 	 * concurrent object_list traversal when !object_cache and all objects
502 	 * came from the memory pool. Free the object directly.
503 	 */
504 	if (object_cache)
505 		call_rcu(&object->rcu, free_object_rcu);
506 	else
507 		free_object_rcu(&object->rcu);
508 }
509 
510 /*
511  * Look up an object in the object search tree and increase its use_count.
512  */
513 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
514 {
515 	unsigned long flags;
516 	struct kmemleak_object *object;
517 
518 	rcu_read_lock();
519 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
520 	object = lookup_object(ptr, alias);
521 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
522 
523 	/* check whether the object is still available */
524 	if (object && !get_object(object))
525 		object = NULL;
526 	rcu_read_unlock();
527 
528 	return object;
529 }
530 
531 /*
532  * Remove an object from the object_tree_root and object_list. Must be called
533  * with the kmemleak_lock held _if_ kmemleak is still enabled.
534  */
535 static void __remove_object(struct kmemleak_object *object)
536 {
537 	rb_erase(&object->rb_node, &object_tree_root);
538 	list_del_rcu(&object->object_list);
539 }
540 
541 /*
542  * Look up an object in the object search tree and remove it from both
543  * object_tree_root and object_list. The returned object's use_count should be
544  * at least 1, as initially set by create_object().
545  */
546 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
547 {
548 	unsigned long flags;
549 	struct kmemleak_object *object;
550 
551 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
552 	object = lookup_object(ptr, alias);
553 	if (object)
554 		__remove_object(object);
555 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
556 
557 	return object;
558 }
559 
560 /*
561  * Save stack trace to the given array of MAX_TRACE size.
562  */
563 static int __save_stack_trace(unsigned long *trace)
564 {
565 	return stack_trace_save(trace, MAX_TRACE, 2);
566 }
567 
568 /*
569  * Create the metadata (struct kmemleak_object) corresponding to an allocated
570  * memory block and add it to the object_list and object_tree_root.
571  */
572 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
573 					     int min_count, gfp_t gfp)
574 {
575 	unsigned long flags;
576 	struct kmemleak_object *object, *parent;
577 	struct rb_node **link, *rb_parent;
578 	unsigned long untagged_ptr;
579 
580 	object = mem_pool_alloc(gfp);
581 	if (!object) {
582 		pr_warn("Cannot allocate a kmemleak_object structure\n");
583 		kmemleak_disable();
584 		return NULL;
585 	}
586 
587 	INIT_LIST_HEAD(&object->object_list);
588 	INIT_LIST_HEAD(&object->gray_list);
589 	INIT_HLIST_HEAD(&object->area_list);
590 	raw_spin_lock_init(&object->lock);
591 	atomic_set(&object->use_count, 1);
592 	object->flags = OBJECT_ALLOCATED;
593 	object->pointer = ptr;
594 	object->size = kfence_ksize((void *)ptr) ?: size;
595 	object->excess_ref = 0;
596 	object->min_count = min_count;
597 	object->count = 0;			/* white color initially */
598 	object->jiffies = jiffies;
599 	object->checksum = 0;
600 
601 	/* task information */
602 	if (in_hardirq()) {
603 		object->pid = 0;
604 		strncpy(object->comm, "hardirq", sizeof(object->comm));
605 	} else if (in_serving_softirq()) {
606 		object->pid = 0;
607 		strncpy(object->comm, "softirq", sizeof(object->comm));
608 	} else {
609 		object->pid = current->pid;
610 		/*
611 		 * There is a small chance of a race with set_task_comm(),
612 		 * however using get_task_comm() here may cause locking
613 		 * dependency issues with current->alloc_lock. In the worst
614 		 * case, the command line is not correct.
615 		 */
616 		strncpy(object->comm, current->comm, sizeof(object->comm));
617 	}
618 
619 	/* kernel backtrace */
620 	object->trace_len = __save_stack_trace(object->trace);
621 
622 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
623 
624 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
625 	min_addr = min(min_addr, untagged_ptr);
626 	max_addr = max(max_addr, untagged_ptr + size);
627 	link = &object_tree_root.rb_node;
628 	rb_parent = NULL;
629 	while (*link) {
630 		rb_parent = *link;
631 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
632 		if (ptr + size <= parent->pointer)
633 			link = &parent->rb_node.rb_left;
634 		else if (parent->pointer + parent->size <= ptr)
635 			link = &parent->rb_node.rb_right;
636 		else {
637 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
638 				      ptr);
639 			/*
640 			 * No need for parent->lock here since "parent" cannot
641 			 * be freed while the kmemleak_lock is held.
642 			 */
643 			dump_object_info(parent);
644 			kmem_cache_free(object_cache, object);
645 			object = NULL;
646 			goto out;
647 		}
648 	}
649 	rb_link_node(&object->rb_node, rb_parent, link);
650 	rb_insert_color(&object->rb_node, &object_tree_root);
651 
652 	list_add_tail_rcu(&object->object_list, &object_list);
653 out:
654 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
655 	return object;
656 }
657 
658 /*
659  * Mark the object as not allocated and schedule RCU freeing via put_object().
660  */
661 static void __delete_object(struct kmemleak_object *object)
662 {
663 	unsigned long flags;
664 
665 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
666 	WARN_ON(atomic_read(&object->use_count) < 1);
667 
668 	/*
669 	 * Locking here also ensures that the corresponding memory block
670 	 * cannot be freed when it is being scanned.
671 	 */
672 	raw_spin_lock_irqsave(&object->lock, flags);
673 	object->flags &= ~OBJECT_ALLOCATED;
674 	raw_spin_unlock_irqrestore(&object->lock, flags);
675 	put_object(object);
676 }
677 
678 /*
679  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
680  * delete it.
681  */
682 static void delete_object_full(unsigned long ptr)
683 {
684 	struct kmemleak_object *object;
685 
686 	object = find_and_remove_object(ptr, 0);
687 	if (!object) {
688 #ifdef DEBUG
689 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
690 			      ptr);
691 #endif
692 		return;
693 	}
694 	__delete_object(object);
695 }
696 
697 /*
698  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
699  * delete it. If the memory block is partially freed, the function may create
700  * additional metadata for the remaining parts of the block.
701  */
702 static void delete_object_part(unsigned long ptr, size_t size)
703 {
704 	struct kmemleak_object *object;
705 	unsigned long start, end;
706 
707 	object = find_and_remove_object(ptr, 1);
708 	if (!object) {
709 #ifdef DEBUG
710 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
711 			      ptr, size);
712 #endif
713 		return;
714 	}
715 
716 	/*
717 	 * Create one or two objects that may result from the memory block
718 	 * split. Note that partial freeing is only done by free_bootmem() and
719 	 * this happens before kmemleak_init() is called.
720 	 */
721 	start = object->pointer;
722 	end = object->pointer + object->size;
723 	if (ptr > start)
724 		create_object(start, ptr - start, object->min_count,
725 			      GFP_KERNEL);
726 	if (ptr + size < end)
727 		create_object(ptr + size, end - ptr - size, object->min_count,
728 			      GFP_KERNEL);
729 
730 	__delete_object(object);
731 }
732 
733 static void __paint_it(struct kmemleak_object *object, int color)
734 {
735 	object->min_count = color;
736 	if (color == KMEMLEAK_BLACK)
737 		object->flags |= OBJECT_NO_SCAN;
738 }
739 
740 static void paint_it(struct kmemleak_object *object, int color)
741 {
742 	unsigned long flags;
743 
744 	raw_spin_lock_irqsave(&object->lock, flags);
745 	__paint_it(object, color);
746 	raw_spin_unlock_irqrestore(&object->lock, flags);
747 }
748 
749 static void paint_ptr(unsigned long ptr, int color)
750 {
751 	struct kmemleak_object *object;
752 
753 	object = find_and_get_object(ptr, 0);
754 	if (!object) {
755 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
756 			      ptr,
757 			      (color == KMEMLEAK_GREY) ? "Grey" :
758 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
759 		return;
760 	}
761 	paint_it(object, color);
762 	put_object(object);
763 }
764 
765 /*
766  * Mark an object permanently as gray-colored so that it can no longer be
767  * reported as a leak. This is used in general to mark a false positive.
768  */
769 static void make_gray_object(unsigned long ptr)
770 {
771 	paint_ptr(ptr, KMEMLEAK_GREY);
772 }
773 
774 /*
775  * Mark the object as black-colored so that it is ignored from scans and
776  * reporting.
777  */
778 static void make_black_object(unsigned long ptr)
779 {
780 	paint_ptr(ptr, KMEMLEAK_BLACK);
781 }
782 
783 /*
784  * Add a scanning area to the object. If at least one such area is added,
785  * kmemleak will only scan these ranges rather than the whole memory block.
786  */
787 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
788 {
789 	unsigned long flags;
790 	struct kmemleak_object *object;
791 	struct kmemleak_scan_area *area = NULL;
792 
793 	object = find_and_get_object(ptr, 1);
794 	if (!object) {
795 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
796 			      ptr);
797 		return;
798 	}
799 
800 	if (scan_area_cache)
801 		area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
802 
803 	raw_spin_lock_irqsave(&object->lock, flags);
804 	if (!area) {
805 		pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
806 		/* mark the object for full scan to avoid false positives */
807 		object->flags |= OBJECT_FULL_SCAN;
808 		goto out_unlock;
809 	}
810 	if (size == SIZE_MAX) {
811 		size = object->pointer + object->size - ptr;
812 	} else if (ptr + size > object->pointer + object->size) {
813 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
814 		dump_object_info(object);
815 		kmem_cache_free(scan_area_cache, area);
816 		goto out_unlock;
817 	}
818 
819 	INIT_HLIST_NODE(&area->node);
820 	area->start = ptr;
821 	area->size = size;
822 
823 	hlist_add_head(&area->node, &object->area_list);
824 out_unlock:
825 	raw_spin_unlock_irqrestore(&object->lock, flags);
826 	put_object(object);
827 }
828 
829 /*
830  * Any surplus references (object already gray) to 'ptr' are passed to
831  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
832  * vm_struct may be used as an alternative reference to the vmalloc'ed object
833  * (see free_thread_stack()).
834  */
835 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
836 {
837 	unsigned long flags;
838 	struct kmemleak_object *object;
839 
840 	object = find_and_get_object(ptr, 0);
841 	if (!object) {
842 		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
843 			      ptr);
844 		return;
845 	}
846 
847 	raw_spin_lock_irqsave(&object->lock, flags);
848 	object->excess_ref = excess_ref;
849 	raw_spin_unlock_irqrestore(&object->lock, flags);
850 	put_object(object);
851 }
852 
853 /*
854  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
855  * pointer. Such object will not be scanned by kmemleak but references to it
856  * are searched.
857  */
858 static void object_no_scan(unsigned long ptr)
859 {
860 	unsigned long flags;
861 	struct kmemleak_object *object;
862 
863 	object = find_and_get_object(ptr, 0);
864 	if (!object) {
865 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
866 		return;
867 	}
868 
869 	raw_spin_lock_irqsave(&object->lock, flags);
870 	object->flags |= OBJECT_NO_SCAN;
871 	raw_spin_unlock_irqrestore(&object->lock, flags);
872 	put_object(object);
873 }
874 
875 /**
876  * kmemleak_alloc - register a newly allocated object
877  * @ptr:	pointer to beginning of the object
878  * @size:	size of the object
879  * @min_count:	minimum number of references to this object. If during memory
880  *		scanning a number of references less than @min_count is found,
881  *		the object is reported as a memory leak. If @min_count is 0,
882  *		the object is never reported as a leak. If @min_count is -1,
883  *		the object is ignored (not scanned and not reported as a leak)
884  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
885  *
886  * This function is called from the kernel allocators when a new object
887  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
888  */
889 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
890 			  gfp_t gfp)
891 {
892 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
893 
894 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
895 		create_object((unsigned long)ptr, size, min_count, gfp);
896 }
897 EXPORT_SYMBOL_GPL(kmemleak_alloc);
898 
899 /**
900  * kmemleak_alloc_percpu - register a newly allocated __percpu object
901  * @ptr:	__percpu pointer to beginning of the object
902  * @size:	size of the object
903  * @gfp:	flags used for kmemleak internal memory allocations
904  *
905  * This function is called from the kernel percpu allocator when a new object
906  * (memory block) is allocated (alloc_percpu).
907  */
908 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
909 				 gfp_t gfp)
910 {
911 	unsigned int cpu;
912 
913 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
914 
915 	/*
916 	 * Percpu allocations are only scanned and not reported as leaks
917 	 * (min_count is set to 0).
918 	 */
919 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
920 		for_each_possible_cpu(cpu)
921 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
922 				      size, 0, gfp);
923 }
924 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
925 
926 /**
927  * kmemleak_vmalloc - register a newly vmalloc'ed object
928  * @area:	pointer to vm_struct
929  * @size:	size of the object
930  * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
931  *
932  * This function is called from the vmalloc() kernel allocator when a new
933  * object (memory block) is allocated.
934  */
935 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
936 {
937 	pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
938 
939 	/*
940 	 * A min_count = 2 is needed because vm_struct contains a reference to
941 	 * the virtual address of the vmalloc'ed block.
942 	 */
943 	if (kmemleak_enabled) {
944 		create_object((unsigned long)area->addr, size, 2, gfp);
945 		object_set_excess_ref((unsigned long)area,
946 				      (unsigned long)area->addr);
947 	}
948 }
949 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
950 
951 /**
952  * kmemleak_free - unregister a previously registered object
953  * @ptr:	pointer to beginning of the object
954  *
955  * This function is called from the kernel allocators when an object (memory
956  * block) is freed (kmem_cache_free, kfree, vfree etc.).
957  */
958 void __ref kmemleak_free(const void *ptr)
959 {
960 	pr_debug("%s(0x%p)\n", __func__, ptr);
961 
962 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
963 		delete_object_full((unsigned long)ptr);
964 }
965 EXPORT_SYMBOL_GPL(kmemleak_free);
966 
967 /**
968  * kmemleak_free_part - partially unregister a previously registered object
969  * @ptr:	pointer to the beginning or inside the object. This also
970  *		represents the start of the range to be freed
971  * @size:	size to be unregistered
972  *
973  * This function is called when only a part of a memory block is freed
974  * (usually from the bootmem allocator).
975  */
976 void __ref kmemleak_free_part(const void *ptr, size_t size)
977 {
978 	pr_debug("%s(0x%p)\n", __func__, ptr);
979 
980 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
981 		delete_object_part((unsigned long)ptr, size);
982 }
983 EXPORT_SYMBOL_GPL(kmemleak_free_part);
984 
985 /**
986  * kmemleak_free_percpu - unregister a previously registered __percpu object
987  * @ptr:	__percpu pointer to beginning of the object
988  *
989  * This function is called from the kernel percpu allocator when an object
990  * (memory block) is freed (free_percpu).
991  */
992 void __ref kmemleak_free_percpu(const void __percpu *ptr)
993 {
994 	unsigned int cpu;
995 
996 	pr_debug("%s(0x%p)\n", __func__, ptr);
997 
998 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
999 		for_each_possible_cpu(cpu)
1000 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
1001 								      cpu));
1002 }
1003 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1004 
1005 /**
1006  * kmemleak_update_trace - update object allocation stack trace
1007  * @ptr:	pointer to beginning of the object
1008  *
1009  * Override the object allocation stack trace for cases where the actual
1010  * allocation place is not always useful.
1011  */
1012 void __ref kmemleak_update_trace(const void *ptr)
1013 {
1014 	struct kmemleak_object *object;
1015 	unsigned long flags;
1016 
1017 	pr_debug("%s(0x%p)\n", __func__, ptr);
1018 
1019 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1020 		return;
1021 
1022 	object = find_and_get_object((unsigned long)ptr, 1);
1023 	if (!object) {
1024 #ifdef DEBUG
1025 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1026 			      ptr);
1027 #endif
1028 		return;
1029 	}
1030 
1031 	raw_spin_lock_irqsave(&object->lock, flags);
1032 	object->trace_len = __save_stack_trace(object->trace);
1033 	raw_spin_unlock_irqrestore(&object->lock, flags);
1034 
1035 	put_object(object);
1036 }
1037 EXPORT_SYMBOL(kmemleak_update_trace);
1038 
1039 /**
1040  * kmemleak_not_leak - mark an allocated object as false positive
1041  * @ptr:	pointer to beginning of the object
1042  *
1043  * Calling this function on an object will cause the memory block to no longer
1044  * be reported as leak and always be scanned.
1045  */
1046 void __ref kmemleak_not_leak(const void *ptr)
1047 {
1048 	pr_debug("%s(0x%p)\n", __func__, ptr);
1049 
1050 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1051 		make_gray_object((unsigned long)ptr);
1052 }
1053 EXPORT_SYMBOL(kmemleak_not_leak);
1054 
1055 /**
1056  * kmemleak_ignore - ignore an allocated object
1057  * @ptr:	pointer to beginning of the object
1058  *
1059  * Calling this function on an object will cause the memory block to be
1060  * ignored (not scanned and not reported as a leak). This is usually done when
1061  * it is known that the corresponding block is not a leak and does not contain
1062  * any references to other allocated memory blocks.
1063  */
1064 void __ref kmemleak_ignore(const void *ptr)
1065 {
1066 	pr_debug("%s(0x%p)\n", __func__, ptr);
1067 
1068 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1069 		make_black_object((unsigned long)ptr);
1070 }
1071 EXPORT_SYMBOL(kmemleak_ignore);
1072 
1073 /**
1074  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1075  * @ptr:	pointer to beginning or inside the object. This also
1076  *		represents the start of the scan area
1077  * @size:	size of the scan area
1078  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1079  *
1080  * This function is used when it is known that only certain parts of an object
1081  * contain references to other objects. Kmemleak will only scan these areas
1082  * reducing the number false negatives.
1083  */
1084 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1085 {
1086 	pr_debug("%s(0x%p)\n", __func__, ptr);
1087 
1088 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1089 		add_scan_area((unsigned long)ptr, size, gfp);
1090 }
1091 EXPORT_SYMBOL(kmemleak_scan_area);
1092 
1093 /**
1094  * kmemleak_no_scan - do not scan an allocated object
1095  * @ptr:	pointer to beginning of the object
1096  *
1097  * This function notifies kmemleak not to scan the given memory block. Useful
1098  * in situations where it is known that the given object does not contain any
1099  * references to other objects. Kmemleak will not scan such objects reducing
1100  * the number of false negatives.
1101  */
1102 void __ref kmemleak_no_scan(const void *ptr)
1103 {
1104 	pr_debug("%s(0x%p)\n", __func__, ptr);
1105 
1106 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1107 		object_no_scan((unsigned long)ptr);
1108 }
1109 EXPORT_SYMBOL(kmemleak_no_scan);
1110 
1111 /**
1112  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1113  *			 address argument
1114  * @phys:	physical address of the object
1115  * @size:	size of the object
1116  * @min_count:	minimum number of references to this object.
1117  *              See kmemleak_alloc()
1118  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1119  */
1120 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1121 			       gfp_t gfp)
1122 {
1123 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1124 		kmemleak_alloc(__va(phys), size, min_count, gfp);
1125 }
1126 EXPORT_SYMBOL(kmemleak_alloc_phys);
1127 
1128 /**
1129  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1130  *			     physical address argument
1131  * @phys:	physical address if the beginning or inside an object. This
1132  *		also represents the start of the range to be freed
1133  * @size:	size to be unregistered
1134  */
1135 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1136 {
1137 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1138 		kmemleak_free_part(__va(phys), size);
1139 }
1140 EXPORT_SYMBOL(kmemleak_free_part_phys);
1141 
1142 /**
1143  * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1144  *			    address argument
1145  * @phys:	physical address of the object
1146  */
1147 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1148 {
1149 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1150 		kmemleak_not_leak(__va(phys));
1151 }
1152 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1153 
1154 /**
1155  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1156  *			  address argument
1157  * @phys:	physical address of the object
1158  */
1159 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1160 {
1161 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1162 		kmemleak_ignore(__va(phys));
1163 }
1164 EXPORT_SYMBOL(kmemleak_ignore_phys);
1165 
1166 /*
1167  * Update an object's checksum and return true if it was modified.
1168  */
1169 static bool update_checksum(struct kmemleak_object *object)
1170 {
1171 	u32 old_csum = object->checksum;
1172 
1173 	kasan_disable_current();
1174 	kcsan_disable_current();
1175 	object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1176 	kasan_enable_current();
1177 	kcsan_enable_current();
1178 
1179 	return object->checksum != old_csum;
1180 }
1181 
1182 /*
1183  * Update an object's references. object->lock must be held by the caller.
1184  */
1185 static void update_refs(struct kmemleak_object *object)
1186 {
1187 	if (!color_white(object)) {
1188 		/* non-orphan, ignored or new */
1189 		return;
1190 	}
1191 
1192 	/*
1193 	 * Increase the object's reference count (number of pointers to the
1194 	 * memory block). If this count reaches the required minimum, the
1195 	 * object's color will become gray and it will be added to the
1196 	 * gray_list.
1197 	 */
1198 	object->count++;
1199 	if (color_gray(object)) {
1200 		/* put_object() called when removing from gray_list */
1201 		WARN_ON(!get_object(object));
1202 		list_add_tail(&object->gray_list, &gray_list);
1203 	}
1204 }
1205 
1206 /*
1207  * Memory scanning is a long process and it needs to be interruptible. This
1208  * function checks whether such interrupt condition occurred.
1209  */
1210 static int scan_should_stop(void)
1211 {
1212 	if (!kmemleak_enabled)
1213 		return 1;
1214 
1215 	/*
1216 	 * This function may be called from either process or kthread context,
1217 	 * hence the need to check for both stop conditions.
1218 	 */
1219 	if (current->mm)
1220 		return signal_pending(current);
1221 	else
1222 		return kthread_should_stop();
1223 
1224 	return 0;
1225 }
1226 
1227 /*
1228  * Scan a memory block (exclusive range) for valid pointers and add those
1229  * found to the gray list.
1230  */
1231 static void scan_block(void *_start, void *_end,
1232 		       struct kmemleak_object *scanned)
1233 {
1234 	unsigned long *ptr;
1235 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1236 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1237 	unsigned long flags;
1238 	unsigned long untagged_ptr;
1239 
1240 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
1241 	for (ptr = start; ptr < end; ptr++) {
1242 		struct kmemleak_object *object;
1243 		unsigned long pointer;
1244 		unsigned long excess_ref;
1245 
1246 		if (scan_should_stop())
1247 			break;
1248 
1249 		kasan_disable_current();
1250 		pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1251 		kasan_enable_current();
1252 
1253 		untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1254 		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1255 			continue;
1256 
1257 		/*
1258 		 * No need for get_object() here since we hold kmemleak_lock.
1259 		 * object->use_count cannot be dropped to 0 while the object
1260 		 * is still present in object_tree_root and object_list
1261 		 * (with updates protected by kmemleak_lock).
1262 		 */
1263 		object = lookup_object(pointer, 1);
1264 		if (!object)
1265 			continue;
1266 		if (object == scanned)
1267 			/* self referenced, ignore */
1268 			continue;
1269 
1270 		/*
1271 		 * Avoid the lockdep recursive warning on object->lock being
1272 		 * previously acquired in scan_object(). These locks are
1273 		 * enclosed by scan_mutex.
1274 		 */
1275 		raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1276 		/* only pass surplus references (object already gray) */
1277 		if (color_gray(object)) {
1278 			excess_ref = object->excess_ref;
1279 			/* no need for update_refs() if object already gray */
1280 		} else {
1281 			excess_ref = 0;
1282 			update_refs(object);
1283 		}
1284 		raw_spin_unlock(&object->lock);
1285 
1286 		if (excess_ref) {
1287 			object = lookup_object(excess_ref, 0);
1288 			if (!object)
1289 				continue;
1290 			if (object == scanned)
1291 				/* circular reference, ignore */
1292 				continue;
1293 			raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1294 			update_refs(object);
1295 			raw_spin_unlock(&object->lock);
1296 		}
1297 	}
1298 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1299 }
1300 
1301 /*
1302  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1303  */
1304 #ifdef CONFIG_SMP
1305 static void scan_large_block(void *start, void *end)
1306 {
1307 	void *next;
1308 
1309 	while (start < end) {
1310 		next = min(start + MAX_SCAN_SIZE, end);
1311 		scan_block(start, next, NULL);
1312 		start = next;
1313 		cond_resched();
1314 	}
1315 }
1316 #endif
1317 
1318 /*
1319  * Scan a memory block corresponding to a kmemleak_object. A condition is
1320  * that object->use_count >= 1.
1321  */
1322 static void scan_object(struct kmemleak_object *object)
1323 {
1324 	struct kmemleak_scan_area *area;
1325 	unsigned long flags;
1326 
1327 	/*
1328 	 * Once the object->lock is acquired, the corresponding memory block
1329 	 * cannot be freed (the same lock is acquired in delete_object).
1330 	 */
1331 	raw_spin_lock_irqsave(&object->lock, flags);
1332 	if (object->flags & OBJECT_NO_SCAN)
1333 		goto out;
1334 	if (!(object->flags & OBJECT_ALLOCATED))
1335 		/* already freed object */
1336 		goto out;
1337 	if (hlist_empty(&object->area_list) ||
1338 	    object->flags & OBJECT_FULL_SCAN) {
1339 		void *start = (void *)object->pointer;
1340 		void *end = (void *)(object->pointer + object->size);
1341 		void *next;
1342 
1343 		do {
1344 			next = min(start + MAX_SCAN_SIZE, end);
1345 			scan_block(start, next, object);
1346 
1347 			start = next;
1348 			if (start >= end)
1349 				break;
1350 
1351 			raw_spin_unlock_irqrestore(&object->lock, flags);
1352 			cond_resched();
1353 			raw_spin_lock_irqsave(&object->lock, flags);
1354 		} while (object->flags & OBJECT_ALLOCATED);
1355 	} else
1356 		hlist_for_each_entry(area, &object->area_list, node)
1357 			scan_block((void *)area->start,
1358 				   (void *)(area->start + area->size),
1359 				   object);
1360 out:
1361 	raw_spin_unlock_irqrestore(&object->lock, flags);
1362 }
1363 
1364 /*
1365  * Scan the objects already referenced (gray objects). More objects will be
1366  * referenced and, if there are no memory leaks, all the objects are scanned.
1367  */
1368 static void scan_gray_list(void)
1369 {
1370 	struct kmemleak_object *object, *tmp;
1371 
1372 	/*
1373 	 * The list traversal is safe for both tail additions and removals
1374 	 * from inside the loop. The kmemleak objects cannot be freed from
1375 	 * outside the loop because their use_count was incremented.
1376 	 */
1377 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1378 	while (&object->gray_list != &gray_list) {
1379 		cond_resched();
1380 
1381 		/* may add new objects to the list */
1382 		if (!scan_should_stop())
1383 			scan_object(object);
1384 
1385 		tmp = list_entry(object->gray_list.next, typeof(*object),
1386 				 gray_list);
1387 
1388 		/* remove the object from the list and release it */
1389 		list_del(&object->gray_list);
1390 		put_object(object);
1391 
1392 		object = tmp;
1393 	}
1394 	WARN_ON(!list_empty(&gray_list));
1395 }
1396 
1397 /*
1398  * Scan data sections and all the referenced memory blocks allocated via the
1399  * kernel's standard allocators. This function must be called with the
1400  * scan_mutex held.
1401  */
1402 static void kmemleak_scan(void)
1403 {
1404 	unsigned long flags;
1405 	struct kmemleak_object *object;
1406 	int i;
1407 	int new_leaks = 0;
1408 
1409 	jiffies_last_scan = jiffies;
1410 
1411 	/* prepare the kmemleak_object's */
1412 	rcu_read_lock();
1413 	list_for_each_entry_rcu(object, &object_list, object_list) {
1414 		raw_spin_lock_irqsave(&object->lock, flags);
1415 #ifdef DEBUG
1416 		/*
1417 		 * With a few exceptions there should be a maximum of
1418 		 * 1 reference to any object at this point.
1419 		 */
1420 		if (atomic_read(&object->use_count) > 1) {
1421 			pr_debug("object->use_count = %d\n",
1422 				 atomic_read(&object->use_count));
1423 			dump_object_info(object);
1424 		}
1425 #endif
1426 		/* reset the reference count (whiten the object) */
1427 		object->count = 0;
1428 		if (color_gray(object) && get_object(object))
1429 			list_add_tail(&object->gray_list, &gray_list);
1430 
1431 		raw_spin_unlock_irqrestore(&object->lock, flags);
1432 	}
1433 	rcu_read_unlock();
1434 
1435 #ifdef CONFIG_SMP
1436 	/* per-cpu sections scanning */
1437 	for_each_possible_cpu(i)
1438 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1439 				 __per_cpu_end + per_cpu_offset(i));
1440 #endif
1441 
1442 	/*
1443 	 * Struct page scanning for each node.
1444 	 */
1445 	get_online_mems();
1446 	for_each_online_node(i) {
1447 		unsigned long start_pfn = node_start_pfn(i);
1448 		unsigned long end_pfn = node_end_pfn(i);
1449 		unsigned long pfn;
1450 
1451 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1452 			struct page *page = pfn_to_online_page(pfn);
1453 
1454 			if (!page)
1455 				continue;
1456 
1457 			/* only scan pages belonging to this node */
1458 			if (page_to_nid(page) != i)
1459 				continue;
1460 			/* only scan if page is in use */
1461 			if (page_count(page) == 0)
1462 				continue;
1463 			scan_block(page, page + 1, NULL);
1464 			if (!(pfn & 63))
1465 				cond_resched();
1466 		}
1467 	}
1468 	put_online_mems();
1469 
1470 	/*
1471 	 * Scanning the task stacks (may introduce false negatives).
1472 	 */
1473 	if (kmemleak_stack_scan) {
1474 		struct task_struct *p, *g;
1475 
1476 		rcu_read_lock();
1477 		for_each_process_thread(g, p) {
1478 			void *stack = try_get_task_stack(p);
1479 			if (stack) {
1480 				scan_block(stack, stack + THREAD_SIZE, NULL);
1481 				put_task_stack(p);
1482 			}
1483 		}
1484 		rcu_read_unlock();
1485 	}
1486 
1487 	/*
1488 	 * Scan the objects already referenced from the sections scanned
1489 	 * above.
1490 	 */
1491 	scan_gray_list();
1492 
1493 	/*
1494 	 * Check for new or unreferenced objects modified since the previous
1495 	 * scan and color them gray until the next scan.
1496 	 */
1497 	rcu_read_lock();
1498 	list_for_each_entry_rcu(object, &object_list, object_list) {
1499 		raw_spin_lock_irqsave(&object->lock, flags);
1500 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1501 		    && update_checksum(object) && get_object(object)) {
1502 			/* color it gray temporarily */
1503 			object->count = object->min_count;
1504 			list_add_tail(&object->gray_list, &gray_list);
1505 		}
1506 		raw_spin_unlock_irqrestore(&object->lock, flags);
1507 	}
1508 	rcu_read_unlock();
1509 
1510 	/*
1511 	 * Re-scan the gray list for modified unreferenced objects.
1512 	 */
1513 	scan_gray_list();
1514 
1515 	/*
1516 	 * If scanning was stopped do not report any new unreferenced objects.
1517 	 */
1518 	if (scan_should_stop())
1519 		return;
1520 
1521 	/*
1522 	 * Scanning result reporting.
1523 	 */
1524 	rcu_read_lock();
1525 	list_for_each_entry_rcu(object, &object_list, object_list) {
1526 		raw_spin_lock_irqsave(&object->lock, flags);
1527 		if (unreferenced_object(object) &&
1528 		    !(object->flags & OBJECT_REPORTED)) {
1529 			object->flags |= OBJECT_REPORTED;
1530 
1531 			if (kmemleak_verbose)
1532 				print_unreferenced(NULL, object);
1533 
1534 			new_leaks++;
1535 		}
1536 		raw_spin_unlock_irqrestore(&object->lock, flags);
1537 	}
1538 	rcu_read_unlock();
1539 
1540 	if (new_leaks) {
1541 		kmemleak_found_leaks = true;
1542 
1543 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1544 			new_leaks);
1545 	}
1546 
1547 }
1548 
1549 /*
1550  * Thread function performing automatic memory scanning. Unreferenced objects
1551  * at the end of a memory scan are reported but only the first time.
1552  */
1553 static int kmemleak_scan_thread(void *arg)
1554 {
1555 	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1556 
1557 	pr_info("Automatic memory scanning thread started\n");
1558 	set_user_nice(current, 10);
1559 
1560 	/*
1561 	 * Wait before the first scan to allow the system to fully initialize.
1562 	 */
1563 	if (first_run) {
1564 		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1565 		first_run = 0;
1566 		while (timeout && !kthread_should_stop())
1567 			timeout = schedule_timeout_interruptible(timeout);
1568 	}
1569 
1570 	while (!kthread_should_stop()) {
1571 		signed long timeout = READ_ONCE(jiffies_scan_wait);
1572 
1573 		mutex_lock(&scan_mutex);
1574 		kmemleak_scan();
1575 		mutex_unlock(&scan_mutex);
1576 
1577 		/* wait before the next scan */
1578 		while (timeout && !kthread_should_stop())
1579 			timeout = schedule_timeout_interruptible(timeout);
1580 	}
1581 
1582 	pr_info("Automatic memory scanning thread ended\n");
1583 
1584 	return 0;
1585 }
1586 
1587 /*
1588  * Start the automatic memory scanning thread. This function must be called
1589  * with the scan_mutex held.
1590  */
1591 static void start_scan_thread(void)
1592 {
1593 	if (scan_thread)
1594 		return;
1595 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1596 	if (IS_ERR(scan_thread)) {
1597 		pr_warn("Failed to create the scan thread\n");
1598 		scan_thread = NULL;
1599 	}
1600 }
1601 
1602 /*
1603  * Stop the automatic memory scanning thread.
1604  */
1605 static void stop_scan_thread(void)
1606 {
1607 	if (scan_thread) {
1608 		kthread_stop(scan_thread);
1609 		scan_thread = NULL;
1610 	}
1611 }
1612 
1613 /*
1614  * Iterate over the object_list and return the first valid object at or after
1615  * the required position with its use_count incremented. The function triggers
1616  * a memory scanning when the pos argument points to the first position.
1617  */
1618 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1619 {
1620 	struct kmemleak_object *object;
1621 	loff_t n = *pos;
1622 	int err;
1623 
1624 	err = mutex_lock_interruptible(&scan_mutex);
1625 	if (err < 0)
1626 		return ERR_PTR(err);
1627 
1628 	rcu_read_lock();
1629 	list_for_each_entry_rcu(object, &object_list, object_list) {
1630 		if (n-- > 0)
1631 			continue;
1632 		if (get_object(object))
1633 			goto out;
1634 	}
1635 	object = NULL;
1636 out:
1637 	return object;
1638 }
1639 
1640 /*
1641  * Return the next object in the object_list. The function decrements the
1642  * use_count of the previous object and increases that of the next one.
1643  */
1644 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1645 {
1646 	struct kmemleak_object *prev_obj = v;
1647 	struct kmemleak_object *next_obj = NULL;
1648 	struct kmemleak_object *obj = prev_obj;
1649 
1650 	++(*pos);
1651 
1652 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1653 		if (get_object(obj)) {
1654 			next_obj = obj;
1655 			break;
1656 		}
1657 	}
1658 
1659 	put_object(prev_obj);
1660 	return next_obj;
1661 }
1662 
1663 /*
1664  * Decrement the use_count of the last object required, if any.
1665  */
1666 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1667 {
1668 	if (!IS_ERR(v)) {
1669 		/*
1670 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1671 		 * waiting was interrupted, so only release it if !IS_ERR.
1672 		 */
1673 		rcu_read_unlock();
1674 		mutex_unlock(&scan_mutex);
1675 		if (v)
1676 			put_object(v);
1677 	}
1678 }
1679 
1680 /*
1681  * Print the information for an unreferenced object to the seq file.
1682  */
1683 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1684 {
1685 	struct kmemleak_object *object = v;
1686 	unsigned long flags;
1687 
1688 	raw_spin_lock_irqsave(&object->lock, flags);
1689 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1690 		print_unreferenced(seq, object);
1691 	raw_spin_unlock_irqrestore(&object->lock, flags);
1692 	return 0;
1693 }
1694 
1695 static const struct seq_operations kmemleak_seq_ops = {
1696 	.start = kmemleak_seq_start,
1697 	.next  = kmemleak_seq_next,
1698 	.stop  = kmemleak_seq_stop,
1699 	.show  = kmemleak_seq_show,
1700 };
1701 
1702 static int kmemleak_open(struct inode *inode, struct file *file)
1703 {
1704 	return seq_open(file, &kmemleak_seq_ops);
1705 }
1706 
1707 static int dump_str_object_info(const char *str)
1708 {
1709 	unsigned long flags;
1710 	struct kmemleak_object *object;
1711 	unsigned long addr;
1712 
1713 	if (kstrtoul(str, 0, &addr))
1714 		return -EINVAL;
1715 	object = find_and_get_object(addr, 0);
1716 	if (!object) {
1717 		pr_info("Unknown object at 0x%08lx\n", addr);
1718 		return -EINVAL;
1719 	}
1720 
1721 	raw_spin_lock_irqsave(&object->lock, flags);
1722 	dump_object_info(object);
1723 	raw_spin_unlock_irqrestore(&object->lock, flags);
1724 
1725 	put_object(object);
1726 	return 0;
1727 }
1728 
1729 /*
1730  * We use grey instead of black to ensure we can do future scans on the same
1731  * objects. If we did not do future scans these black objects could
1732  * potentially contain references to newly allocated objects in the future and
1733  * we'd end up with false positives.
1734  */
1735 static void kmemleak_clear(void)
1736 {
1737 	struct kmemleak_object *object;
1738 	unsigned long flags;
1739 
1740 	rcu_read_lock();
1741 	list_for_each_entry_rcu(object, &object_list, object_list) {
1742 		raw_spin_lock_irqsave(&object->lock, flags);
1743 		if ((object->flags & OBJECT_REPORTED) &&
1744 		    unreferenced_object(object))
1745 			__paint_it(object, KMEMLEAK_GREY);
1746 		raw_spin_unlock_irqrestore(&object->lock, flags);
1747 	}
1748 	rcu_read_unlock();
1749 
1750 	kmemleak_found_leaks = false;
1751 }
1752 
1753 static void __kmemleak_do_cleanup(void);
1754 
1755 /*
1756  * File write operation to configure kmemleak at run-time. The following
1757  * commands can be written to the /sys/kernel/debug/kmemleak file:
1758  *   off	- disable kmemleak (irreversible)
1759  *   stack=on	- enable the task stacks scanning
1760  *   stack=off	- disable the tasks stacks scanning
1761  *   scan=on	- start the automatic memory scanning thread
1762  *   scan=off	- stop the automatic memory scanning thread
1763  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1764  *		  disable it)
1765  *   scan	- trigger a memory scan
1766  *   clear	- mark all current reported unreferenced kmemleak objects as
1767  *		  grey to ignore printing them, or free all kmemleak objects
1768  *		  if kmemleak has been disabled.
1769  *   dump=...	- dump information about the object found at the given address
1770  */
1771 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1772 			      size_t size, loff_t *ppos)
1773 {
1774 	char buf[64];
1775 	int buf_size;
1776 	int ret;
1777 
1778 	buf_size = min(size, (sizeof(buf) - 1));
1779 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1780 		return -EFAULT;
1781 	buf[buf_size] = 0;
1782 
1783 	ret = mutex_lock_interruptible(&scan_mutex);
1784 	if (ret < 0)
1785 		return ret;
1786 
1787 	if (strncmp(buf, "clear", 5) == 0) {
1788 		if (kmemleak_enabled)
1789 			kmemleak_clear();
1790 		else
1791 			__kmemleak_do_cleanup();
1792 		goto out;
1793 	}
1794 
1795 	if (!kmemleak_enabled) {
1796 		ret = -EPERM;
1797 		goto out;
1798 	}
1799 
1800 	if (strncmp(buf, "off", 3) == 0)
1801 		kmemleak_disable();
1802 	else if (strncmp(buf, "stack=on", 8) == 0)
1803 		kmemleak_stack_scan = 1;
1804 	else if (strncmp(buf, "stack=off", 9) == 0)
1805 		kmemleak_stack_scan = 0;
1806 	else if (strncmp(buf, "scan=on", 7) == 0)
1807 		start_scan_thread();
1808 	else if (strncmp(buf, "scan=off", 8) == 0)
1809 		stop_scan_thread();
1810 	else if (strncmp(buf, "scan=", 5) == 0) {
1811 		unsigned secs;
1812 		unsigned long msecs;
1813 
1814 		ret = kstrtouint(buf + 5, 0, &secs);
1815 		if (ret < 0)
1816 			goto out;
1817 
1818 		msecs = secs * MSEC_PER_SEC;
1819 		if (msecs > UINT_MAX)
1820 			msecs = UINT_MAX;
1821 
1822 		stop_scan_thread();
1823 		if (msecs) {
1824 			WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
1825 			start_scan_thread();
1826 		}
1827 	} else if (strncmp(buf, "scan", 4) == 0)
1828 		kmemleak_scan();
1829 	else if (strncmp(buf, "dump=", 5) == 0)
1830 		ret = dump_str_object_info(buf + 5);
1831 	else
1832 		ret = -EINVAL;
1833 
1834 out:
1835 	mutex_unlock(&scan_mutex);
1836 	if (ret < 0)
1837 		return ret;
1838 
1839 	/* ignore the rest of the buffer, only one command at a time */
1840 	*ppos += size;
1841 	return size;
1842 }
1843 
1844 static const struct file_operations kmemleak_fops = {
1845 	.owner		= THIS_MODULE,
1846 	.open		= kmemleak_open,
1847 	.read		= seq_read,
1848 	.write		= kmemleak_write,
1849 	.llseek		= seq_lseek,
1850 	.release	= seq_release,
1851 };
1852 
1853 static void __kmemleak_do_cleanup(void)
1854 {
1855 	struct kmemleak_object *object, *tmp;
1856 
1857 	/*
1858 	 * Kmemleak has already been disabled, no need for RCU list traversal
1859 	 * or kmemleak_lock held.
1860 	 */
1861 	list_for_each_entry_safe(object, tmp, &object_list, object_list) {
1862 		__remove_object(object);
1863 		__delete_object(object);
1864 	}
1865 }
1866 
1867 /*
1868  * Stop the memory scanning thread and free the kmemleak internal objects if
1869  * no previous scan thread (otherwise, kmemleak may still have some useful
1870  * information on memory leaks).
1871  */
1872 static void kmemleak_do_cleanup(struct work_struct *work)
1873 {
1874 	stop_scan_thread();
1875 
1876 	mutex_lock(&scan_mutex);
1877 	/*
1878 	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1879 	 * longer track object freeing. Ordering of the scan thread stopping and
1880 	 * the memory accesses below is guaranteed by the kthread_stop()
1881 	 * function.
1882 	 */
1883 	kmemleak_free_enabled = 0;
1884 	mutex_unlock(&scan_mutex);
1885 
1886 	if (!kmemleak_found_leaks)
1887 		__kmemleak_do_cleanup();
1888 	else
1889 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1890 }
1891 
1892 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1893 
1894 /*
1895  * Disable kmemleak. No memory allocation/freeing will be traced once this
1896  * function is called. Disabling kmemleak is an irreversible operation.
1897  */
1898 static void kmemleak_disable(void)
1899 {
1900 	/* atomically check whether it was already invoked */
1901 	if (cmpxchg(&kmemleak_error, 0, 1))
1902 		return;
1903 
1904 	/* stop any memory operation tracing */
1905 	kmemleak_enabled = 0;
1906 
1907 	/* check whether it is too early for a kernel thread */
1908 	if (kmemleak_initialized)
1909 		schedule_work(&cleanup_work);
1910 	else
1911 		kmemleak_free_enabled = 0;
1912 
1913 	pr_info("Kernel memory leak detector disabled\n");
1914 }
1915 
1916 /*
1917  * Allow boot-time kmemleak disabling (enabled by default).
1918  */
1919 static int __init kmemleak_boot_config(char *str)
1920 {
1921 	if (!str)
1922 		return -EINVAL;
1923 	if (strcmp(str, "off") == 0)
1924 		kmemleak_disable();
1925 	else if (strcmp(str, "on") == 0)
1926 		kmemleak_skip_disable = 1;
1927 	else
1928 		return -EINVAL;
1929 	return 0;
1930 }
1931 early_param("kmemleak", kmemleak_boot_config);
1932 
1933 /*
1934  * Kmemleak initialization.
1935  */
1936 void __init kmemleak_init(void)
1937 {
1938 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1939 	if (!kmemleak_skip_disable) {
1940 		kmemleak_disable();
1941 		return;
1942 	}
1943 #endif
1944 
1945 	if (kmemleak_error)
1946 		return;
1947 
1948 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1949 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1950 
1951 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1952 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1953 
1954 	/* register the data/bss sections */
1955 	create_object((unsigned long)_sdata, _edata - _sdata,
1956 		      KMEMLEAK_GREY, GFP_ATOMIC);
1957 	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
1958 		      KMEMLEAK_GREY, GFP_ATOMIC);
1959 	/* only register .data..ro_after_init if not within .data */
1960 	if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
1961 		create_object((unsigned long)__start_ro_after_init,
1962 			      __end_ro_after_init - __start_ro_after_init,
1963 			      KMEMLEAK_GREY, GFP_ATOMIC);
1964 }
1965 
1966 /*
1967  * Late initialization function.
1968  */
1969 static int __init kmemleak_late_init(void)
1970 {
1971 	kmemleak_initialized = 1;
1972 
1973 	debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
1974 
1975 	if (kmemleak_error) {
1976 		/*
1977 		 * Some error occurred and kmemleak was disabled. There is a
1978 		 * small chance that kmemleak_disable() was called immediately
1979 		 * after setting kmemleak_initialized and we may end up with
1980 		 * two clean-up threads but serialized by scan_mutex.
1981 		 */
1982 		schedule_work(&cleanup_work);
1983 		return -ENOMEM;
1984 	}
1985 
1986 	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
1987 		mutex_lock(&scan_mutex);
1988 		start_scan_thread();
1989 		mutex_unlock(&scan_mutex);
1990 	}
1991 
1992 	pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
1993 		mem_pool_free_count);
1994 
1995 	return 0;
1996 }
1997 late_initcall(kmemleak_late_init);
1998