xref: /openbmc/linux/mm/kmemleak.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/kmemleak.txt.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a priority search tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * The kmemleak_object structures have a use_count incremented or decremented
57  * using the get_object()/put_object() functions. When the use_count becomes
58  * 0, this count can no longer be incremented and put_object() schedules the
59  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60  * function must be protected by rcu_read_lock() to avoid accessing a freed
61  * structure.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 
66 #include <linux/init.h>
67 #include <linux/kernel.h>
68 #include <linux/list.h>
69 #include <linux/sched.h>
70 #include <linux/jiffies.h>
71 #include <linux/delay.h>
72 #include <linux/module.h>
73 #include <linux/kthread.h>
74 #include <linux/prio_tree.h>
75 #include <linux/fs.h>
76 #include <linux/debugfs.h>
77 #include <linux/seq_file.h>
78 #include <linux/cpumask.h>
79 #include <linux/spinlock.h>
80 #include <linux/mutex.h>
81 #include <linux/rcupdate.h>
82 #include <linux/stacktrace.h>
83 #include <linux/cache.h>
84 #include <linux/percpu.h>
85 #include <linux/hardirq.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96 
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <asm/atomic.h>
100 
101 #include <linux/kmemcheck.h>
102 #include <linux/kmemleak.h>
103 
104 /*
105  * Kmemleak configuration and common defines.
106  */
107 #define MAX_TRACE		16	/* stack trace length */
108 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
109 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
110 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
111 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
112 
113 #define BYTES_PER_POINTER	sizeof(void *)
114 
115 /* GFP bitmask for kmemleak internal allocations */
116 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
117 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
118 				 __GFP_NOWARN)
119 
120 /* scanning area inside a memory block */
121 struct kmemleak_scan_area {
122 	struct hlist_node node;
123 	unsigned long start;
124 	size_t size;
125 };
126 
127 #define KMEMLEAK_GREY	0
128 #define KMEMLEAK_BLACK	-1
129 
130 /*
131  * Structure holding the metadata for each allocated memory block.
132  * Modifications to such objects should be made while holding the
133  * object->lock. Insertions or deletions from object_list, gray_list or
134  * tree_node are already protected by the corresponding locks or mutex (see
135  * the notes on locking above). These objects are reference-counted
136  * (use_count) and freed using the RCU mechanism.
137  */
138 struct kmemleak_object {
139 	spinlock_t lock;
140 	unsigned long flags;		/* object status flags */
141 	struct list_head object_list;
142 	struct list_head gray_list;
143 	struct prio_tree_node tree_node;
144 	struct rcu_head rcu;		/* object_list lockless traversal */
145 	/* object usage count; object freed when use_count == 0 */
146 	atomic_t use_count;
147 	unsigned long pointer;
148 	size_t size;
149 	/* minimum number of a pointers found before it is considered leak */
150 	int min_count;
151 	/* the total number of pointers found pointing to this object */
152 	int count;
153 	/* checksum for detecting modified objects */
154 	u32 checksum;
155 	/* memory ranges to be scanned inside an object (empty for all) */
156 	struct hlist_head area_list;
157 	unsigned long trace[MAX_TRACE];
158 	unsigned int trace_len;
159 	unsigned long jiffies;		/* creation timestamp */
160 	pid_t pid;			/* pid of the current task */
161 	char comm[TASK_COMM_LEN];	/* executable name */
162 };
163 
164 /* flag representing the memory block allocation status */
165 #define OBJECT_ALLOCATED	(1 << 0)
166 /* flag set after the first reporting of an unreference object */
167 #define OBJECT_REPORTED		(1 << 1)
168 /* flag set to not scan the object */
169 #define OBJECT_NO_SCAN		(1 << 2)
170 
171 /* number of bytes to print per line; must be 16 or 32 */
172 #define HEX_ROW_SIZE		16
173 /* number of bytes to print at a time (1, 2, 4, 8) */
174 #define HEX_GROUP_SIZE		1
175 /* include ASCII after the hex output */
176 #define HEX_ASCII		1
177 /* max number of lines to be printed */
178 #define HEX_MAX_LINES		2
179 
180 /* the list of all allocated objects */
181 static LIST_HEAD(object_list);
182 /* the list of gray-colored objects (see color_gray comment below) */
183 static LIST_HEAD(gray_list);
184 /* prio search tree for object boundaries */
185 static struct prio_tree_root object_tree_root;
186 /* rw_lock protecting the access to object_list and prio_tree_root */
187 static DEFINE_RWLOCK(kmemleak_lock);
188 
189 /* allocation caches for kmemleak internal data */
190 static struct kmem_cache *object_cache;
191 static struct kmem_cache *scan_area_cache;
192 
193 /* set if tracing memory operations is enabled */
194 static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
195 /* set in the late_initcall if there were no errors */
196 static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
197 /* enables or disables early logging of the memory operations */
198 static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
199 /* set if a fata kmemleak error has occurred */
200 static atomic_t kmemleak_error = ATOMIC_INIT(0);
201 
202 /* minimum and maximum address that may be valid pointers */
203 static unsigned long min_addr = ULONG_MAX;
204 static unsigned long max_addr;
205 
206 static struct task_struct *scan_thread;
207 /* used to avoid reporting of recently allocated objects */
208 static unsigned long jiffies_min_age;
209 static unsigned long jiffies_last_scan;
210 /* delay between automatic memory scannings */
211 static signed long jiffies_scan_wait;
212 /* enables or disables the task stacks scanning */
213 static int kmemleak_stack_scan = 1;
214 /* protects the memory scanning, parameters and debug/kmemleak file access */
215 static DEFINE_MUTEX(scan_mutex);
216 /* setting kmemleak=on, will set this var, skipping the disable */
217 static int kmemleak_skip_disable;
218 
219 
220 /*
221  * Early object allocation/freeing logging. Kmemleak is initialized after the
222  * kernel allocator. However, both the kernel allocator and kmemleak may
223  * allocate memory blocks which need to be tracked. Kmemleak defines an
224  * arbitrary buffer to hold the allocation/freeing information before it is
225  * fully initialized.
226  */
227 
228 /* kmemleak operation type for early logging */
229 enum {
230 	KMEMLEAK_ALLOC,
231 	KMEMLEAK_FREE,
232 	KMEMLEAK_FREE_PART,
233 	KMEMLEAK_NOT_LEAK,
234 	KMEMLEAK_IGNORE,
235 	KMEMLEAK_SCAN_AREA,
236 	KMEMLEAK_NO_SCAN
237 };
238 
239 /*
240  * Structure holding the information passed to kmemleak callbacks during the
241  * early logging.
242  */
243 struct early_log {
244 	int op_type;			/* kmemleak operation type */
245 	const void *ptr;		/* allocated/freed memory block */
246 	size_t size;			/* memory block size */
247 	int min_count;			/* minimum reference count */
248 	unsigned long trace[MAX_TRACE];	/* stack trace */
249 	unsigned int trace_len;		/* stack trace length */
250 };
251 
252 /* early logging buffer and current position */
253 static struct early_log
254 	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
255 static int crt_early_log __initdata;
256 
257 static void kmemleak_disable(void);
258 
259 /*
260  * Print a warning and dump the stack trace.
261  */
262 #define kmemleak_warn(x...)	do {	\
263 	pr_warning(x);			\
264 	dump_stack();			\
265 } while (0)
266 
267 /*
268  * Macro invoked when a serious kmemleak condition occured and cannot be
269  * recovered from. Kmemleak will be disabled and further allocation/freeing
270  * tracing no longer available.
271  */
272 #define kmemleak_stop(x...)	do {	\
273 	kmemleak_warn(x);		\
274 	kmemleak_disable();		\
275 } while (0)
276 
277 /*
278  * Printing of the objects hex dump to the seq file. The number of lines to be
279  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
280  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
281  * with the object->lock held.
282  */
283 static void hex_dump_object(struct seq_file *seq,
284 			    struct kmemleak_object *object)
285 {
286 	const u8 *ptr = (const u8 *)object->pointer;
287 	int i, len, remaining;
288 	unsigned char linebuf[HEX_ROW_SIZE * 5];
289 
290 	/* limit the number of lines to HEX_MAX_LINES */
291 	remaining = len =
292 		min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
293 
294 	seq_printf(seq, "  hex dump (first %d bytes):\n", len);
295 	for (i = 0; i < len; i += HEX_ROW_SIZE) {
296 		int linelen = min(remaining, HEX_ROW_SIZE);
297 
298 		remaining -= HEX_ROW_SIZE;
299 		hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
300 				   HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
301 				   HEX_ASCII);
302 		seq_printf(seq, "    %s\n", linebuf);
303 	}
304 }
305 
306 /*
307  * Object colors, encoded with count and min_count:
308  * - white - orphan object, not enough references to it (count < min_count)
309  * - gray  - not orphan, not marked as false positive (min_count == 0) or
310  *		sufficient references to it (count >= min_count)
311  * - black - ignore, it doesn't contain references (e.g. text section)
312  *		(min_count == -1). No function defined for this color.
313  * Newly created objects don't have any color assigned (object->count == -1)
314  * before the next memory scan when they become white.
315  */
316 static bool color_white(const struct kmemleak_object *object)
317 {
318 	return object->count != KMEMLEAK_BLACK &&
319 		object->count < object->min_count;
320 }
321 
322 static bool color_gray(const struct kmemleak_object *object)
323 {
324 	return object->min_count != KMEMLEAK_BLACK &&
325 		object->count >= object->min_count;
326 }
327 
328 /*
329  * Objects are considered unreferenced only if their color is white, they have
330  * not be deleted and have a minimum age to avoid false positives caused by
331  * pointers temporarily stored in CPU registers.
332  */
333 static bool unreferenced_object(struct kmemleak_object *object)
334 {
335 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
336 		time_before_eq(object->jiffies + jiffies_min_age,
337 			       jiffies_last_scan);
338 }
339 
340 /*
341  * Printing of the unreferenced objects information to the seq file. The
342  * print_unreferenced function must be called with the object->lock held.
343  */
344 static void print_unreferenced(struct seq_file *seq,
345 			       struct kmemleak_object *object)
346 {
347 	int i;
348 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
349 
350 	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
351 		   object->pointer, object->size);
352 	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
353 		   object->comm, object->pid, object->jiffies,
354 		   msecs_age / 1000, msecs_age % 1000);
355 	hex_dump_object(seq, object);
356 	seq_printf(seq, "  backtrace:\n");
357 
358 	for (i = 0; i < object->trace_len; i++) {
359 		void *ptr = (void *)object->trace[i];
360 		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
361 	}
362 }
363 
364 /*
365  * Print the kmemleak_object information. This function is used mainly for
366  * debugging special cases when kmemleak operations. It must be called with
367  * the object->lock held.
368  */
369 static void dump_object_info(struct kmemleak_object *object)
370 {
371 	struct stack_trace trace;
372 
373 	trace.nr_entries = object->trace_len;
374 	trace.entries = object->trace;
375 
376 	pr_notice("Object 0x%08lx (size %zu):\n",
377 		  object->tree_node.start, object->size);
378 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
379 		  object->comm, object->pid, object->jiffies);
380 	pr_notice("  min_count = %d\n", object->min_count);
381 	pr_notice("  count = %d\n", object->count);
382 	pr_notice("  flags = 0x%lx\n", object->flags);
383 	pr_notice("  checksum = %d\n", object->checksum);
384 	pr_notice("  backtrace:\n");
385 	print_stack_trace(&trace, 4);
386 }
387 
388 /*
389  * Look-up a memory block metadata (kmemleak_object) in the priority search
390  * tree based on a pointer value. If alias is 0, only values pointing to the
391  * beginning of the memory block are allowed. The kmemleak_lock must be held
392  * when calling this function.
393  */
394 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
395 {
396 	struct prio_tree_node *node;
397 	struct prio_tree_iter iter;
398 	struct kmemleak_object *object;
399 
400 	prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
401 	node = prio_tree_next(&iter);
402 	if (node) {
403 		object = prio_tree_entry(node, struct kmemleak_object,
404 					 tree_node);
405 		if (!alias && object->pointer != ptr) {
406 			pr_warning("Found object by alias at 0x%08lx\n", ptr);
407 			dump_stack();
408 			dump_object_info(object);
409 			object = NULL;
410 		}
411 	} else
412 		object = NULL;
413 
414 	return object;
415 }
416 
417 /*
418  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
419  * that once an object's use_count reached 0, the RCU freeing was already
420  * registered and the object should no longer be used. This function must be
421  * called under the protection of rcu_read_lock().
422  */
423 static int get_object(struct kmemleak_object *object)
424 {
425 	return atomic_inc_not_zero(&object->use_count);
426 }
427 
428 /*
429  * RCU callback to free a kmemleak_object.
430  */
431 static void free_object_rcu(struct rcu_head *rcu)
432 {
433 	struct hlist_node *elem, *tmp;
434 	struct kmemleak_scan_area *area;
435 	struct kmemleak_object *object =
436 		container_of(rcu, struct kmemleak_object, rcu);
437 
438 	/*
439 	 * Once use_count is 0 (guaranteed by put_object), there is no other
440 	 * code accessing this object, hence no need for locking.
441 	 */
442 	hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
443 		hlist_del(elem);
444 		kmem_cache_free(scan_area_cache, area);
445 	}
446 	kmem_cache_free(object_cache, object);
447 }
448 
449 /*
450  * Decrement the object use_count. Once the count is 0, free the object using
451  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
452  * delete_object() path, the delayed RCU freeing ensures that there is no
453  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
454  * is also possible.
455  */
456 static void put_object(struct kmemleak_object *object)
457 {
458 	if (!atomic_dec_and_test(&object->use_count))
459 		return;
460 
461 	/* should only get here after delete_object was called */
462 	WARN_ON(object->flags & OBJECT_ALLOCATED);
463 
464 	call_rcu(&object->rcu, free_object_rcu);
465 }
466 
467 /*
468  * Look up an object in the prio search tree and increase its use_count.
469  */
470 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
471 {
472 	unsigned long flags;
473 	struct kmemleak_object *object = NULL;
474 
475 	rcu_read_lock();
476 	read_lock_irqsave(&kmemleak_lock, flags);
477 	if (ptr >= min_addr && ptr < max_addr)
478 		object = lookup_object(ptr, alias);
479 	read_unlock_irqrestore(&kmemleak_lock, flags);
480 
481 	/* check whether the object is still available */
482 	if (object && !get_object(object))
483 		object = NULL;
484 	rcu_read_unlock();
485 
486 	return object;
487 }
488 
489 /*
490  * Save stack trace to the given array of MAX_TRACE size.
491  */
492 static int __save_stack_trace(unsigned long *trace)
493 {
494 	struct stack_trace stack_trace;
495 
496 	stack_trace.max_entries = MAX_TRACE;
497 	stack_trace.nr_entries = 0;
498 	stack_trace.entries = trace;
499 	stack_trace.skip = 2;
500 	save_stack_trace(&stack_trace);
501 
502 	return stack_trace.nr_entries;
503 }
504 
505 /*
506  * Create the metadata (struct kmemleak_object) corresponding to an allocated
507  * memory block and add it to the object_list and object_tree_root.
508  */
509 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
510 					     int min_count, gfp_t gfp)
511 {
512 	unsigned long flags;
513 	struct kmemleak_object *object;
514 	struct prio_tree_node *node;
515 
516 	object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
517 	if (!object) {
518 		pr_warning("Cannot allocate a kmemleak_object structure\n");
519 		kmemleak_disable();
520 		return NULL;
521 	}
522 
523 	INIT_LIST_HEAD(&object->object_list);
524 	INIT_LIST_HEAD(&object->gray_list);
525 	INIT_HLIST_HEAD(&object->area_list);
526 	spin_lock_init(&object->lock);
527 	atomic_set(&object->use_count, 1);
528 	object->flags = OBJECT_ALLOCATED;
529 	object->pointer = ptr;
530 	object->size = size;
531 	object->min_count = min_count;
532 	object->count = 0;			/* white color initially */
533 	object->jiffies = jiffies;
534 	object->checksum = 0;
535 
536 	/* task information */
537 	if (in_irq()) {
538 		object->pid = 0;
539 		strncpy(object->comm, "hardirq", sizeof(object->comm));
540 	} else if (in_softirq()) {
541 		object->pid = 0;
542 		strncpy(object->comm, "softirq", sizeof(object->comm));
543 	} else {
544 		object->pid = current->pid;
545 		/*
546 		 * There is a small chance of a race with set_task_comm(),
547 		 * however using get_task_comm() here may cause locking
548 		 * dependency issues with current->alloc_lock. In the worst
549 		 * case, the command line is not correct.
550 		 */
551 		strncpy(object->comm, current->comm, sizeof(object->comm));
552 	}
553 
554 	/* kernel backtrace */
555 	object->trace_len = __save_stack_trace(object->trace);
556 
557 	INIT_PRIO_TREE_NODE(&object->tree_node);
558 	object->tree_node.start = ptr;
559 	object->tree_node.last = ptr + size - 1;
560 
561 	write_lock_irqsave(&kmemleak_lock, flags);
562 
563 	min_addr = min(min_addr, ptr);
564 	max_addr = max(max_addr, ptr + size);
565 	node = prio_tree_insert(&object_tree_root, &object->tree_node);
566 	/*
567 	 * The code calling the kernel does not yet have the pointer to the
568 	 * memory block to be able to free it.  However, we still hold the
569 	 * kmemleak_lock here in case parts of the kernel started freeing
570 	 * random memory blocks.
571 	 */
572 	if (node != &object->tree_node) {
573 		kmemleak_stop("Cannot insert 0x%lx into the object search tree "
574 			      "(already existing)\n", ptr);
575 		object = lookup_object(ptr, 1);
576 		spin_lock(&object->lock);
577 		dump_object_info(object);
578 		spin_unlock(&object->lock);
579 
580 		goto out;
581 	}
582 	list_add_tail_rcu(&object->object_list, &object_list);
583 out:
584 	write_unlock_irqrestore(&kmemleak_lock, flags);
585 	return object;
586 }
587 
588 /*
589  * Remove the metadata (struct kmemleak_object) for a memory block from the
590  * object_list and object_tree_root and decrement its use_count.
591  */
592 static void __delete_object(struct kmemleak_object *object)
593 {
594 	unsigned long flags;
595 
596 	write_lock_irqsave(&kmemleak_lock, flags);
597 	prio_tree_remove(&object_tree_root, &object->tree_node);
598 	list_del_rcu(&object->object_list);
599 	write_unlock_irqrestore(&kmemleak_lock, flags);
600 
601 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
602 	WARN_ON(atomic_read(&object->use_count) < 2);
603 
604 	/*
605 	 * Locking here also ensures that the corresponding memory block
606 	 * cannot be freed when it is being scanned.
607 	 */
608 	spin_lock_irqsave(&object->lock, flags);
609 	object->flags &= ~OBJECT_ALLOCATED;
610 	spin_unlock_irqrestore(&object->lock, flags);
611 	put_object(object);
612 }
613 
614 /*
615  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
616  * delete it.
617  */
618 static void delete_object_full(unsigned long ptr)
619 {
620 	struct kmemleak_object *object;
621 
622 	object = find_and_get_object(ptr, 0);
623 	if (!object) {
624 #ifdef DEBUG
625 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
626 			      ptr);
627 #endif
628 		return;
629 	}
630 	__delete_object(object);
631 	put_object(object);
632 }
633 
634 /*
635  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
636  * delete it. If the memory block is partially freed, the function may create
637  * additional metadata for the remaining parts of the block.
638  */
639 static void delete_object_part(unsigned long ptr, size_t size)
640 {
641 	struct kmemleak_object *object;
642 	unsigned long start, end;
643 
644 	object = find_and_get_object(ptr, 1);
645 	if (!object) {
646 #ifdef DEBUG
647 		kmemleak_warn("Partially freeing unknown object at 0x%08lx "
648 			      "(size %zu)\n", ptr, size);
649 #endif
650 		return;
651 	}
652 	__delete_object(object);
653 
654 	/*
655 	 * Create one or two objects that may result from the memory block
656 	 * split. Note that partial freeing is only done by free_bootmem() and
657 	 * this happens before kmemleak_init() is called. The path below is
658 	 * only executed during early log recording in kmemleak_init(), so
659 	 * GFP_KERNEL is enough.
660 	 */
661 	start = object->pointer;
662 	end = object->pointer + object->size;
663 	if (ptr > start)
664 		create_object(start, ptr - start, object->min_count,
665 			      GFP_KERNEL);
666 	if (ptr + size < end)
667 		create_object(ptr + size, end - ptr - size, object->min_count,
668 			      GFP_KERNEL);
669 
670 	put_object(object);
671 }
672 
673 static void __paint_it(struct kmemleak_object *object, int color)
674 {
675 	object->min_count = color;
676 	if (color == KMEMLEAK_BLACK)
677 		object->flags |= OBJECT_NO_SCAN;
678 }
679 
680 static void paint_it(struct kmemleak_object *object, int color)
681 {
682 	unsigned long flags;
683 
684 	spin_lock_irqsave(&object->lock, flags);
685 	__paint_it(object, color);
686 	spin_unlock_irqrestore(&object->lock, flags);
687 }
688 
689 static void paint_ptr(unsigned long ptr, int color)
690 {
691 	struct kmemleak_object *object;
692 
693 	object = find_and_get_object(ptr, 0);
694 	if (!object) {
695 		kmemleak_warn("Trying to color unknown object "
696 			      "at 0x%08lx as %s\n", ptr,
697 			      (color == KMEMLEAK_GREY) ? "Grey" :
698 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
699 		return;
700 	}
701 	paint_it(object, color);
702 	put_object(object);
703 }
704 
705 /*
706  * Mark an object permanently as gray-colored so that it can no longer be
707  * reported as a leak. This is used in general to mark a false positive.
708  */
709 static void make_gray_object(unsigned long ptr)
710 {
711 	paint_ptr(ptr, KMEMLEAK_GREY);
712 }
713 
714 /*
715  * Mark the object as black-colored so that it is ignored from scans and
716  * reporting.
717  */
718 static void make_black_object(unsigned long ptr)
719 {
720 	paint_ptr(ptr, KMEMLEAK_BLACK);
721 }
722 
723 /*
724  * Add a scanning area to the object. If at least one such area is added,
725  * kmemleak will only scan these ranges rather than the whole memory block.
726  */
727 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
728 {
729 	unsigned long flags;
730 	struct kmemleak_object *object;
731 	struct kmemleak_scan_area *area;
732 
733 	object = find_and_get_object(ptr, 1);
734 	if (!object) {
735 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
736 			      ptr);
737 		return;
738 	}
739 
740 	area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
741 	if (!area) {
742 		pr_warning("Cannot allocate a scan area\n");
743 		goto out;
744 	}
745 
746 	spin_lock_irqsave(&object->lock, flags);
747 	if (ptr + size > object->pointer + object->size) {
748 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
749 		dump_object_info(object);
750 		kmem_cache_free(scan_area_cache, area);
751 		goto out_unlock;
752 	}
753 
754 	INIT_HLIST_NODE(&area->node);
755 	area->start = ptr;
756 	area->size = size;
757 
758 	hlist_add_head(&area->node, &object->area_list);
759 out_unlock:
760 	spin_unlock_irqrestore(&object->lock, flags);
761 out:
762 	put_object(object);
763 }
764 
765 /*
766  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
767  * pointer. Such object will not be scanned by kmemleak but references to it
768  * are searched.
769  */
770 static void object_no_scan(unsigned long ptr)
771 {
772 	unsigned long flags;
773 	struct kmemleak_object *object;
774 
775 	object = find_and_get_object(ptr, 0);
776 	if (!object) {
777 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
778 		return;
779 	}
780 
781 	spin_lock_irqsave(&object->lock, flags);
782 	object->flags |= OBJECT_NO_SCAN;
783 	spin_unlock_irqrestore(&object->lock, flags);
784 	put_object(object);
785 }
786 
787 /*
788  * Log an early kmemleak_* call to the early_log buffer. These calls will be
789  * processed later once kmemleak is fully initialized.
790  */
791 static void __init log_early(int op_type, const void *ptr, size_t size,
792 			     int min_count)
793 {
794 	unsigned long flags;
795 	struct early_log *log;
796 
797 	if (crt_early_log >= ARRAY_SIZE(early_log)) {
798 		pr_warning("Early log buffer exceeded, "
799 			   "please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n");
800 		kmemleak_disable();
801 		return;
802 	}
803 
804 	/*
805 	 * There is no need for locking since the kernel is still in UP mode
806 	 * at this stage. Disabling the IRQs is enough.
807 	 */
808 	local_irq_save(flags);
809 	log = &early_log[crt_early_log];
810 	log->op_type = op_type;
811 	log->ptr = ptr;
812 	log->size = size;
813 	log->min_count = min_count;
814 	if (op_type == KMEMLEAK_ALLOC)
815 		log->trace_len = __save_stack_trace(log->trace);
816 	crt_early_log++;
817 	local_irq_restore(flags);
818 }
819 
820 /*
821  * Log an early allocated block and populate the stack trace.
822  */
823 static void early_alloc(struct early_log *log)
824 {
825 	struct kmemleak_object *object;
826 	unsigned long flags;
827 	int i;
828 
829 	if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
830 		return;
831 
832 	/*
833 	 * RCU locking needed to ensure object is not freed via put_object().
834 	 */
835 	rcu_read_lock();
836 	object = create_object((unsigned long)log->ptr, log->size,
837 			       log->min_count, GFP_ATOMIC);
838 	if (!object)
839 		goto out;
840 	spin_lock_irqsave(&object->lock, flags);
841 	for (i = 0; i < log->trace_len; i++)
842 		object->trace[i] = log->trace[i];
843 	object->trace_len = log->trace_len;
844 	spin_unlock_irqrestore(&object->lock, flags);
845 out:
846 	rcu_read_unlock();
847 }
848 
849 /**
850  * kmemleak_alloc - register a newly allocated object
851  * @ptr:	pointer to beginning of the object
852  * @size:	size of the object
853  * @min_count:	minimum number of references to this object. If during memory
854  *		scanning a number of references less than @min_count is found,
855  *		the object is reported as a memory leak. If @min_count is 0,
856  *		the object is never reported as a leak. If @min_count is -1,
857  *		the object is ignored (not scanned and not reported as a leak)
858  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
859  *
860  * This function is called from the kernel allocators when a new object
861  * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
862  */
863 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
864 			  gfp_t gfp)
865 {
866 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
867 
868 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
869 		create_object((unsigned long)ptr, size, min_count, gfp);
870 	else if (atomic_read(&kmemleak_early_log))
871 		log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
872 }
873 EXPORT_SYMBOL_GPL(kmemleak_alloc);
874 
875 /**
876  * kmemleak_free - unregister a previously registered object
877  * @ptr:	pointer to beginning of the object
878  *
879  * This function is called from the kernel allocators when an object (memory
880  * block) is freed (kmem_cache_free, kfree, vfree etc.).
881  */
882 void __ref kmemleak_free(const void *ptr)
883 {
884 	pr_debug("%s(0x%p)\n", __func__, ptr);
885 
886 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
887 		delete_object_full((unsigned long)ptr);
888 	else if (atomic_read(&kmemleak_early_log))
889 		log_early(KMEMLEAK_FREE, ptr, 0, 0);
890 }
891 EXPORT_SYMBOL_GPL(kmemleak_free);
892 
893 /**
894  * kmemleak_free_part - partially unregister a previously registered object
895  * @ptr:	pointer to the beginning or inside the object. This also
896  *		represents the start of the range to be freed
897  * @size:	size to be unregistered
898  *
899  * This function is called when only a part of a memory block is freed
900  * (usually from the bootmem allocator).
901  */
902 void __ref kmemleak_free_part(const void *ptr, size_t size)
903 {
904 	pr_debug("%s(0x%p)\n", __func__, ptr);
905 
906 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
907 		delete_object_part((unsigned long)ptr, size);
908 	else if (atomic_read(&kmemleak_early_log))
909 		log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
910 }
911 EXPORT_SYMBOL_GPL(kmemleak_free_part);
912 
913 /**
914  * kmemleak_not_leak - mark an allocated object as false positive
915  * @ptr:	pointer to beginning of the object
916  *
917  * Calling this function on an object will cause the memory block to no longer
918  * be reported as leak and always be scanned.
919  */
920 void __ref kmemleak_not_leak(const void *ptr)
921 {
922 	pr_debug("%s(0x%p)\n", __func__, ptr);
923 
924 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
925 		make_gray_object((unsigned long)ptr);
926 	else if (atomic_read(&kmemleak_early_log))
927 		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
928 }
929 EXPORT_SYMBOL(kmemleak_not_leak);
930 
931 /**
932  * kmemleak_ignore - ignore an allocated object
933  * @ptr:	pointer to beginning of the object
934  *
935  * Calling this function on an object will cause the memory block to be
936  * ignored (not scanned and not reported as a leak). This is usually done when
937  * it is known that the corresponding block is not a leak and does not contain
938  * any references to other allocated memory blocks.
939  */
940 void __ref kmemleak_ignore(const void *ptr)
941 {
942 	pr_debug("%s(0x%p)\n", __func__, ptr);
943 
944 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
945 		make_black_object((unsigned long)ptr);
946 	else if (atomic_read(&kmemleak_early_log))
947 		log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
948 }
949 EXPORT_SYMBOL(kmemleak_ignore);
950 
951 /**
952  * kmemleak_scan_area - limit the range to be scanned in an allocated object
953  * @ptr:	pointer to beginning or inside the object. This also
954  *		represents the start of the scan area
955  * @size:	size of the scan area
956  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
957  *
958  * This function is used when it is known that only certain parts of an object
959  * contain references to other objects. Kmemleak will only scan these areas
960  * reducing the number false negatives.
961  */
962 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
963 {
964 	pr_debug("%s(0x%p)\n", __func__, ptr);
965 
966 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
967 		add_scan_area((unsigned long)ptr, size, gfp);
968 	else if (atomic_read(&kmemleak_early_log))
969 		log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
970 }
971 EXPORT_SYMBOL(kmemleak_scan_area);
972 
973 /**
974  * kmemleak_no_scan - do not scan an allocated object
975  * @ptr:	pointer to beginning of the object
976  *
977  * This function notifies kmemleak not to scan the given memory block. Useful
978  * in situations where it is known that the given object does not contain any
979  * references to other objects. Kmemleak will not scan such objects reducing
980  * the number of false negatives.
981  */
982 void __ref kmemleak_no_scan(const void *ptr)
983 {
984 	pr_debug("%s(0x%p)\n", __func__, ptr);
985 
986 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
987 		object_no_scan((unsigned long)ptr);
988 	else if (atomic_read(&kmemleak_early_log))
989 		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
990 }
991 EXPORT_SYMBOL(kmemleak_no_scan);
992 
993 /*
994  * Update an object's checksum and return true if it was modified.
995  */
996 static bool update_checksum(struct kmemleak_object *object)
997 {
998 	u32 old_csum = object->checksum;
999 
1000 	if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1001 		return false;
1002 
1003 	object->checksum = crc32(0, (void *)object->pointer, object->size);
1004 	return object->checksum != old_csum;
1005 }
1006 
1007 /*
1008  * Memory scanning is a long process and it needs to be interruptable. This
1009  * function checks whether such interrupt condition occured.
1010  */
1011 static int scan_should_stop(void)
1012 {
1013 	if (!atomic_read(&kmemleak_enabled))
1014 		return 1;
1015 
1016 	/*
1017 	 * This function may be called from either process or kthread context,
1018 	 * hence the need to check for both stop conditions.
1019 	 */
1020 	if (current->mm)
1021 		return signal_pending(current);
1022 	else
1023 		return kthread_should_stop();
1024 
1025 	return 0;
1026 }
1027 
1028 /*
1029  * Scan a memory block (exclusive range) for valid pointers and add those
1030  * found to the gray list.
1031  */
1032 static void scan_block(void *_start, void *_end,
1033 		       struct kmemleak_object *scanned, int allow_resched)
1034 {
1035 	unsigned long *ptr;
1036 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1037 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1038 
1039 	for (ptr = start; ptr < end; ptr++) {
1040 		struct kmemleak_object *object;
1041 		unsigned long flags;
1042 		unsigned long pointer;
1043 
1044 		if (allow_resched)
1045 			cond_resched();
1046 		if (scan_should_stop())
1047 			break;
1048 
1049 		/* don't scan uninitialized memory */
1050 		if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1051 						  BYTES_PER_POINTER))
1052 			continue;
1053 
1054 		pointer = *ptr;
1055 
1056 		object = find_and_get_object(pointer, 1);
1057 		if (!object)
1058 			continue;
1059 		if (object == scanned) {
1060 			/* self referenced, ignore */
1061 			put_object(object);
1062 			continue;
1063 		}
1064 
1065 		/*
1066 		 * Avoid the lockdep recursive warning on object->lock being
1067 		 * previously acquired in scan_object(). These locks are
1068 		 * enclosed by scan_mutex.
1069 		 */
1070 		spin_lock_irqsave_nested(&object->lock, flags,
1071 					 SINGLE_DEPTH_NESTING);
1072 		if (!color_white(object)) {
1073 			/* non-orphan, ignored or new */
1074 			spin_unlock_irqrestore(&object->lock, flags);
1075 			put_object(object);
1076 			continue;
1077 		}
1078 
1079 		/*
1080 		 * Increase the object's reference count (number of pointers
1081 		 * to the memory block). If this count reaches the required
1082 		 * minimum, the object's color will become gray and it will be
1083 		 * added to the gray_list.
1084 		 */
1085 		object->count++;
1086 		if (color_gray(object)) {
1087 			list_add_tail(&object->gray_list, &gray_list);
1088 			spin_unlock_irqrestore(&object->lock, flags);
1089 			continue;
1090 		}
1091 
1092 		spin_unlock_irqrestore(&object->lock, flags);
1093 		put_object(object);
1094 	}
1095 }
1096 
1097 /*
1098  * Scan a memory block corresponding to a kmemleak_object. A condition is
1099  * that object->use_count >= 1.
1100  */
1101 static void scan_object(struct kmemleak_object *object)
1102 {
1103 	struct kmemleak_scan_area *area;
1104 	struct hlist_node *elem;
1105 	unsigned long flags;
1106 
1107 	/*
1108 	 * Once the object->lock is acquired, the corresponding memory block
1109 	 * cannot be freed (the same lock is acquired in delete_object).
1110 	 */
1111 	spin_lock_irqsave(&object->lock, flags);
1112 	if (object->flags & OBJECT_NO_SCAN)
1113 		goto out;
1114 	if (!(object->flags & OBJECT_ALLOCATED))
1115 		/* already freed object */
1116 		goto out;
1117 	if (hlist_empty(&object->area_list)) {
1118 		void *start = (void *)object->pointer;
1119 		void *end = (void *)(object->pointer + object->size);
1120 
1121 		while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1122 		       !(object->flags & OBJECT_NO_SCAN)) {
1123 			scan_block(start, min(start + MAX_SCAN_SIZE, end),
1124 				   object, 0);
1125 			start += MAX_SCAN_SIZE;
1126 
1127 			spin_unlock_irqrestore(&object->lock, flags);
1128 			cond_resched();
1129 			spin_lock_irqsave(&object->lock, flags);
1130 		}
1131 	} else
1132 		hlist_for_each_entry(area, elem, &object->area_list, node)
1133 			scan_block((void *)area->start,
1134 				   (void *)(area->start + area->size),
1135 				   object, 0);
1136 out:
1137 	spin_unlock_irqrestore(&object->lock, flags);
1138 }
1139 
1140 /*
1141  * Scan the objects already referenced (gray objects). More objects will be
1142  * referenced and, if there are no memory leaks, all the objects are scanned.
1143  */
1144 static void scan_gray_list(void)
1145 {
1146 	struct kmemleak_object *object, *tmp;
1147 
1148 	/*
1149 	 * The list traversal is safe for both tail additions and removals
1150 	 * from inside the loop. The kmemleak objects cannot be freed from
1151 	 * outside the loop because their use_count was incremented.
1152 	 */
1153 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1154 	while (&object->gray_list != &gray_list) {
1155 		cond_resched();
1156 
1157 		/* may add new objects to the list */
1158 		if (!scan_should_stop())
1159 			scan_object(object);
1160 
1161 		tmp = list_entry(object->gray_list.next, typeof(*object),
1162 				 gray_list);
1163 
1164 		/* remove the object from the list and release it */
1165 		list_del(&object->gray_list);
1166 		put_object(object);
1167 
1168 		object = tmp;
1169 	}
1170 	WARN_ON(!list_empty(&gray_list));
1171 }
1172 
1173 /*
1174  * Scan data sections and all the referenced memory blocks allocated via the
1175  * kernel's standard allocators. This function must be called with the
1176  * scan_mutex held.
1177  */
1178 static void kmemleak_scan(void)
1179 {
1180 	unsigned long flags;
1181 	struct kmemleak_object *object;
1182 	int i;
1183 	int new_leaks = 0;
1184 
1185 	jiffies_last_scan = jiffies;
1186 
1187 	/* prepare the kmemleak_object's */
1188 	rcu_read_lock();
1189 	list_for_each_entry_rcu(object, &object_list, object_list) {
1190 		spin_lock_irqsave(&object->lock, flags);
1191 #ifdef DEBUG
1192 		/*
1193 		 * With a few exceptions there should be a maximum of
1194 		 * 1 reference to any object at this point.
1195 		 */
1196 		if (atomic_read(&object->use_count) > 1) {
1197 			pr_debug("object->use_count = %d\n",
1198 				 atomic_read(&object->use_count));
1199 			dump_object_info(object);
1200 		}
1201 #endif
1202 		/* reset the reference count (whiten the object) */
1203 		object->count = 0;
1204 		if (color_gray(object) && get_object(object))
1205 			list_add_tail(&object->gray_list, &gray_list);
1206 
1207 		spin_unlock_irqrestore(&object->lock, flags);
1208 	}
1209 	rcu_read_unlock();
1210 
1211 	/* data/bss scanning */
1212 	scan_block(_sdata, _edata, NULL, 1);
1213 	scan_block(__bss_start, __bss_stop, NULL, 1);
1214 
1215 #ifdef CONFIG_SMP
1216 	/* per-cpu sections scanning */
1217 	for_each_possible_cpu(i)
1218 		scan_block(__per_cpu_start + per_cpu_offset(i),
1219 			   __per_cpu_end + per_cpu_offset(i), NULL, 1);
1220 #endif
1221 
1222 	/*
1223 	 * Struct page scanning for each node. The code below is not yet safe
1224 	 * with MEMORY_HOTPLUG.
1225 	 */
1226 	for_each_online_node(i) {
1227 		pg_data_t *pgdat = NODE_DATA(i);
1228 		unsigned long start_pfn = pgdat->node_start_pfn;
1229 		unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1230 		unsigned long pfn;
1231 
1232 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1233 			struct page *page;
1234 
1235 			if (!pfn_valid(pfn))
1236 				continue;
1237 			page = pfn_to_page(pfn);
1238 			/* only scan if page is in use */
1239 			if (page_count(page) == 0)
1240 				continue;
1241 			scan_block(page, page + 1, NULL, 1);
1242 		}
1243 	}
1244 
1245 	/*
1246 	 * Scanning the task stacks (may introduce false negatives).
1247 	 */
1248 	if (kmemleak_stack_scan) {
1249 		struct task_struct *p, *g;
1250 
1251 		read_lock(&tasklist_lock);
1252 		do_each_thread(g, p) {
1253 			scan_block(task_stack_page(p), task_stack_page(p) +
1254 				   THREAD_SIZE, NULL, 0);
1255 		} while_each_thread(g, p);
1256 		read_unlock(&tasklist_lock);
1257 	}
1258 
1259 	/*
1260 	 * Scan the objects already referenced from the sections scanned
1261 	 * above.
1262 	 */
1263 	scan_gray_list();
1264 
1265 	/*
1266 	 * Check for new or unreferenced objects modified since the previous
1267 	 * scan and color them gray until the next scan.
1268 	 */
1269 	rcu_read_lock();
1270 	list_for_each_entry_rcu(object, &object_list, object_list) {
1271 		spin_lock_irqsave(&object->lock, flags);
1272 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1273 		    && update_checksum(object) && get_object(object)) {
1274 			/* color it gray temporarily */
1275 			object->count = object->min_count;
1276 			list_add_tail(&object->gray_list, &gray_list);
1277 		}
1278 		spin_unlock_irqrestore(&object->lock, flags);
1279 	}
1280 	rcu_read_unlock();
1281 
1282 	/*
1283 	 * Re-scan the gray list for modified unreferenced objects.
1284 	 */
1285 	scan_gray_list();
1286 
1287 	/*
1288 	 * If scanning was stopped do not report any new unreferenced objects.
1289 	 */
1290 	if (scan_should_stop())
1291 		return;
1292 
1293 	/*
1294 	 * Scanning result reporting.
1295 	 */
1296 	rcu_read_lock();
1297 	list_for_each_entry_rcu(object, &object_list, object_list) {
1298 		spin_lock_irqsave(&object->lock, flags);
1299 		if (unreferenced_object(object) &&
1300 		    !(object->flags & OBJECT_REPORTED)) {
1301 			object->flags |= OBJECT_REPORTED;
1302 			new_leaks++;
1303 		}
1304 		spin_unlock_irqrestore(&object->lock, flags);
1305 	}
1306 	rcu_read_unlock();
1307 
1308 	if (new_leaks)
1309 		pr_info("%d new suspected memory leaks (see "
1310 			"/sys/kernel/debug/kmemleak)\n", new_leaks);
1311 
1312 }
1313 
1314 /*
1315  * Thread function performing automatic memory scanning. Unreferenced objects
1316  * at the end of a memory scan are reported but only the first time.
1317  */
1318 static int kmemleak_scan_thread(void *arg)
1319 {
1320 	static int first_run = 1;
1321 
1322 	pr_info("Automatic memory scanning thread started\n");
1323 	set_user_nice(current, 10);
1324 
1325 	/*
1326 	 * Wait before the first scan to allow the system to fully initialize.
1327 	 */
1328 	if (first_run) {
1329 		first_run = 0;
1330 		ssleep(SECS_FIRST_SCAN);
1331 	}
1332 
1333 	while (!kthread_should_stop()) {
1334 		signed long timeout = jiffies_scan_wait;
1335 
1336 		mutex_lock(&scan_mutex);
1337 		kmemleak_scan();
1338 		mutex_unlock(&scan_mutex);
1339 
1340 		/* wait before the next scan */
1341 		while (timeout && !kthread_should_stop())
1342 			timeout = schedule_timeout_interruptible(timeout);
1343 	}
1344 
1345 	pr_info("Automatic memory scanning thread ended\n");
1346 
1347 	return 0;
1348 }
1349 
1350 /*
1351  * Start the automatic memory scanning thread. This function must be called
1352  * with the scan_mutex held.
1353  */
1354 static void start_scan_thread(void)
1355 {
1356 	if (scan_thread)
1357 		return;
1358 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1359 	if (IS_ERR(scan_thread)) {
1360 		pr_warning("Failed to create the scan thread\n");
1361 		scan_thread = NULL;
1362 	}
1363 }
1364 
1365 /*
1366  * Stop the automatic memory scanning thread. This function must be called
1367  * with the scan_mutex held.
1368  */
1369 static void stop_scan_thread(void)
1370 {
1371 	if (scan_thread) {
1372 		kthread_stop(scan_thread);
1373 		scan_thread = NULL;
1374 	}
1375 }
1376 
1377 /*
1378  * Iterate over the object_list and return the first valid object at or after
1379  * the required position with its use_count incremented. The function triggers
1380  * a memory scanning when the pos argument points to the first position.
1381  */
1382 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1383 {
1384 	struct kmemleak_object *object;
1385 	loff_t n = *pos;
1386 	int err;
1387 
1388 	err = mutex_lock_interruptible(&scan_mutex);
1389 	if (err < 0)
1390 		return ERR_PTR(err);
1391 
1392 	rcu_read_lock();
1393 	list_for_each_entry_rcu(object, &object_list, object_list) {
1394 		if (n-- > 0)
1395 			continue;
1396 		if (get_object(object))
1397 			goto out;
1398 	}
1399 	object = NULL;
1400 out:
1401 	return object;
1402 }
1403 
1404 /*
1405  * Return the next object in the object_list. The function decrements the
1406  * use_count of the previous object and increases that of the next one.
1407  */
1408 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1409 {
1410 	struct kmemleak_object *prev_obj = v;
1411 	struct kmemleak_object *next_obj = NULL;
1412 	struct list_head *n = &prev_obj->object_list;
1413 
1414 	++(*pos);
1415 
1416 	list_for_each_continue_rcu(n, &object_list) {
1417 		next_obj = list_entry(n, struct kmemleak_object, object_list);
1418 		if (get_object(next_obj))
1419 			break;
1420 	}
1421 
1422 	put_object(prev_obj);
1423 	return next_obj;
1424 }
1425 
1426 /*
1427  * Decrement the use_count of the last object required, if any.
1428  */
1429 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1430 {
1431 	if (!IS_ERR(v)) {
1432 		/*
1433 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1434 		 * waiting was interrupted, so only release it if !IS_ERR.
1435 		 */
1436 		rcu_read_unlock();
1437 		mutex_unlock(&scan_mutex);
1438 		if (v)
1439 			put_object(v);
1440 	}
1441 }
1442 
1443 /*
1444  * Print the information for an unreferenced object to the seq file.
1445  */
1446 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1447 {
1448 	struct kmemleak_object *object = v;
1449 	unsigned long flags;
1450 
1451 	spin_lock_irqsave(&object->lock, flags);
1452 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1453 		print_unreferenced(seq, object);
1454 	spin_unlock_irqrestore(&object->lock, flags);
1455 	return 0;
1456 }
1457 
1458 static const struct seq_operations kmemleak_seq_ops = {
1459 	.start = kmemleak_seq_start,
1460 	.next  = kmemleak_seq_next,
1461 	.stop  = kmemleak_seq_stop,
1462 	.show  = kmemleak_seq_show,
1463 };
1464 
1465 static int kmemleak_open(struct inode *inode, struct file *file)
1466 {
1467 	if (!atomic_read(&kmemleak_enabled))
1468 		return -EBUSY;
1469 
1470 	return seq_open(file, &kmemleak_seq_ops);
1471 }
1472 
1473 static int kmemleak_release(struct inode *inode, struct file *file)
1474 {
1475 	return seq_release(inode, file);
1476 }
1477 
1478 static int dump_str_object_info(const char *str)
1479 {
1480 	unsigned long flags;
1481 	struct kmemleak_object *object;
1482 	unsigned long addr;
1483 
1484 	addr= simple_strtoul(str, NULL, 0);
1485 	object = find_and_get_object(addr, 0);
1486 	if (!object) {
1487 		pr_info("Unknown object at 0x%08lx\n", addr);
1488 		return -EINVAL;
1489 	}
1490 
1491 	spin_lock_irqsave(&object->lock, flags);
1492 	dump_object_info(object);
1493 	spin_unlock_irqrestore(&object->lock, flags);
1494 
1495 	put_object(object);
1496 	return 0;
1497 }
1498 
1499 /*
1500  * We use grey instead of black to ensure we can do future scans on the same
1501  * objects. If we did not do future scans these black objects could
1502  * potentially contain references to newly allocated objects in the future and
1503  * we'd end up with false positives.
1504  */
1505 static void kmemleak_clear(void)
1506 {
1507 	struct kmemleak_object *object;
1508 	unsigned long flags;
1509 
1510 	rcu_read_lock();
1511 	list_for_each_entry_rcu(object, &object_list, object_list) {
1512 		spin_lock_irqsave(&object->lock, flags);
1513 		if ((object->flags & OBJECT_REPORTED) &&
1514 		    unreferenced_object(object))
1515 			__paint_it(object, KMEMLEAK_GREY);
1516 		spin_unlock_irqrestore(&object->lock, flags);
1517 	}
1518 	rcu_read_unlock();
1519 }
1520 
1521 /*
1522  * File write operation to configure kmemleak at run-time. The following
1523  * commands can be written to the /sys/kernel/debug/kmemleak file:
1524  *   off	- disable kmemleak (irreversible)
1525  *   stack=on	- enable the task stacks scanning
1526  *   stack=off	- disable the tasks stacks scanning
1527  *   scan=on	- start the automatic memory scanning thread
1528  *   scan=off	- stop the automatic memory scanning thread
1529  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1530  *		  disable it)
1531  *   scan	- trigger a memory scan
1532  *   clear	- mark all current reported unreferenced kmemleak objects as
1533  *		  grey to ignore printing them
1534  *   dump=...	- dump information about the object found at the given address
1535  */
1536 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1537 			      size_t size, loff_t *ppos)
1538 {
1539 	char buf[64];
1540 	int buf_size;
1541 	int ret;
1542 
1543 	buf_size = min(size, (sizeof(buf) - 1));
1544 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1545 		return -EFAULT;
1546 	buf[buf_size] = 0;
1547 
1548 	ret = mutex_lock_interruptible(&scan_mutex);
1549 	if (ret < 0)
1550 		return ret;
1551 
1552 	if (strncmp(buf, "off", 3) == 0)
1553 		kmemleak_disable();
1554 	else if (strncmp(buf, "stack=on", 8) == 0)
1555 		kmemleak_stack_scan = 1;
1556 	else if (strncmp(buf, "stack=off", 9) == 0)
1557 		kmemleak_stack_scan = 0;
1558 	else if (strncmp(buf, "scan=on", 7) == 0)
1559 		start_scan_thread();
1560 	else if (strncmp(buf, "scan=off", 8) == 0)
1561 		stop_scan_thread();
1562 	else if (strncmp(buf, "scan=", 5) == 0) {
1563 		unsigned long secs;
1564 
1565 		ret = strict_strtoul(buf + 5, 0, &secs);
1566 		if (ret < 0)
1567 			goto out;
1568 		stop_scan_thread();
1569 		if (secs) {
1570 			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1571 			start_scan_thread();
1572 		}
1573 	} else if (strncmp(buf, "scan", 4) == 0)
1574 		kmemleak_scan();
1575 	else if (strncmp(buf, "clear", 5) == 0)
1576 		kmemleak_clear();
1577 	else if (strncmp(buf, "dump=", 5) == 0)
1578 		ret = dump_str_object_info(buf + 5);
1579 	else
1580 		ret = -EINVAL;
1581 
1582 out:
1583 	mutex_unlock(&scan_mutex);
1584 	if (ret < 0)
1585 		return ret;
1586 
1587 	/* ignore the rest of the buffer, only one command at a time */
1588 	*ppos += size;
1589 	return size;
1590 }
1591 
1592 static const struct file_operations kmemleak_fops = {
1593 	.owner		= THIS_MODULE,
1594 	.open		= kmemleak_open,
1595 	.read		= seq_read,
1596 	.write		= kmemleak_write,
1597 	.llseek		= seq_lseek,
1598 	.release	= kmemleak_release,
1599 };
1600 
1601 /*
1602  * Perform the freeing of the kmemleak internal objects after waiting for any
1603  * current memory scan to complete.
1604  */
1605 static void kmemleak_do_cleanup(struct work_struct *work)
1606 {
1607 	struct kmemleak_object *object;
1608 
1609 	mutex_lock(&scan_mutex);
1610 	stop_scan_thread();
1611 
1612 	rcu_read_lock();
1613 	list_for_each_entry_rcu(object, &object_list, object_list)
1614 		delete_object_full(object->pointer);
1615 	rcu_read_unlock();
1616 	mutex_unlock(&scan_mutex);
1617 }
1618 
1619 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1620 
1621 /*
1622  * Disable kmemleak. No memory allocation/freeing will be traced once this
1623  * function is called. Disabling kmemleak is an irreversible operation.
1624  */
1625 static void kmemleak_disable(void)
1626 {
1627 	/* atomically check whether it was already invoked */
1628 	if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1629 		return;
1630 
1631 	/* stop any memory operation tracing */
1632 	atomic_set(&kmemleak_early_log, 0);
1633 	atomic_set(&kmemleak_enabled, 0);
1634 
1635 	/* check whether it is too early for a kernel thread */
1636 	if (atomic_read(&kmemleak_initialized))
1637 		schedule_work(&cleanup_work);
1638 
1639 	pr_info("Kernel memory leak detector disabled\n");
1640 }
1641 
1642 /*
1643  * Allow boot-time kmemleak disabling (enabled by default).
1644  */
1645 static int kmemleak_boot_config(char *str)
1646 {
1647 	if (!str)
1648 		return -EINVAL;
1649 	if (strcmp(str, "off") == 0)
1650 		kmemleak_disable();
1651 	else if (strcmp(str, "on") == 0)
1652 		kmemleak_skip_disable = 1;
1653 	else
1654 		return -EINVAL;
1655 	return 0;
1656 }
1657 early_param("kmemleak", kmemleak_boot_config);
1658 
1659 /*
1660  * Kmemleak initialization.
1661  */
1662 void __init kmemleak_init(void)
1663 {
1664 	int i;
1665 	unsigned long flags;
1666 
1667 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1668 	if (!kmemleak_skip_disable) {
1669 		kmemleak_disable();
1670 		return;
1671 	}
1672 #endif
1673 
1674 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1675 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1676 
1677 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1678 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1679 	INIT_PRIO_TREE_ROOT(&object_tree_root);
1680 
1681 	/* the kernel is still in UP mode, so disabling the IRQs is enough */
1682 	local_irq_save(flags);
1683 	if (!atomic_read(&kmemleak_error)) {
1684 		atomic_set(&kmemleak_enabled, 1);
1685 		atomic_set(&kmemleak_early_log, 0);
1686 	}
1687 	local_irq_restore(flags);
1688 
1689 	/*
1690 	 * This is the point where tracking allocations is safe. Automatic
1691 	 * scanning is started during the late initcall. Add the early logged
1692 	 * callbacks to the kmemleak infrastructure.
1693 	 */
1694 	for (i = 0; i < crt_early_log; i++) {
1695 		struct early_log *log = &early_log[i];
1696 
1697 		switch (log->op_type) {
1698 		case KMEMLEAK_ALLOC:
1699 			early_alloc(log);
1700 			break;
1701 		case KMEMLEAK_FREE:
1702 			kmemleak_free(log->ptr);
1703 			break;
1704 		case KMEMLEAK_FREE_PART:
1705 			kmemleak_free_part(log->ptr, log->size);
1706 			break;
1707 		case KMEMLEAK_NOT_LEAK:
1708 			kmemleak_not_leak(log->ptr);
1709 			break;
1710 		case KMEMLEAK_IGNORE:
1711 			kmemleak_ignore(log->ptr);
1712 			break;
1713 		case KMEMLEAK_SCAN_AREA:
1714 			kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1715 			break;
1716 		case KMEMLEAK_NO_SCAN:
1717 			kmemleak_no_scan(log->ptr);
1718 			break;
1719 		default:
1720 			WARN_ON(1);
1721 		}
1722 	}
1723 }
1724 
1725 /*
1726  * Late initialization function.
1727  */
1728 static int __init kmemleak_late_init(void)
1729 {
1730 	struct dentry *dentry;
1731 
1732 	atomic_set(&kmemleak_initialized, 1);
1733 
1734 	if (atomic_read(&kmemleak_error)) {
1735 		/*
1736 		 * Some error occured and kmemleak was disabled. There is a
1737 		 * small chance that kmemleak_disable() was called immediately
1738 		 * after setting kmemleak_initialized and we may end up with
1739 		 * two clean-up threads but serialized by scan_mutex.
1740 		 */
1741 		schedule_work(&cleanup_work);
1742 		return -ENOMEM;
1743 	}
1744 
1745 	dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1746 				     &kmemleak_fops);
1747 	if (!dentry)
1748 		pr_warning("Failed to create the debugfs kmemleak file\n");
1749 	mutex_lock(&scan_mutex);
1750 	start_scan_thread();
1751 	mutex_unlock(&scan_mutex);
1752 
1753 	pr_info("Kernel memory leak detector initialized\n");
1754 
1755 	return 0;
1756 }
1757 late_initcall(kmemleak_late_init);
1758