xref: /openbmc/linux/mm/kmemleak.c (revision cf028200)
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/kmemleak.txt.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a red black tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * The kmemleak_object structures have a use_count incremented or decremented
57  * using the get_object()/put_object() functions. When the use_count becomes
58  * 0, this count can no longer be incremented and put_object() schedules the
59  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60  * function must be protected by rcu_read_lock() to avoid accessing a freed
61  * structure.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 
66 #include <linux/init.h>
67 #include <linux/kernel.h>
68 #include <linux/list.h>
69 #include <linux/sched.h>
70 #include <linux/jiffies.h>
71 #include <linux/delay.h>
72 #include <linux/export.h>
73 #include <linux/kthread.h>
74 #include <linux/rbtree.h>
75 #include <linux/fs.h>
76 #include <linux/debugfs.h>
77 #include <linux/seq_file.h>
78 #include <linux/cpumask.h>
79 #include <linux/spinlock.h>
80 #include <linux/mutex.h>
81 #include <linux/rcupdate.h>
82 #include <linux/stacktrace.h>
83 #include <linux/cache.h>
84 #include <linux/percpu.h>
85 #include <linux/hardirq.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96 
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
100 
101 #include <linux/kmemcheck.h>
102 #include <linux/kmemleak.h>
103 #include <linux/memory_hotplug.h>
104 
105 /*
106  * Kmemleak configuration and common defines.
107  */
108 #define MAX_TRACE		16	/* stack trace length */
109 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
110 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
111 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
112 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
113 
114 #define BYTES_PER_POINTER	sizeof(void *)
115 
116 /* GFP bitmask for kmemleak internal allocations */
117 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
118 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
119 				 __GFP_NOWARN)
120 
121 /* scanning area inside a memory block */
122 struct kmemleak_scan_area {
123 	struct hlist_node node;
124 	unsigned long start;
125 	size_t size;
126 };
127 
128 #define KMEMLEAK_GREY	0
129 #define KMEMLEAK_BLACK	-1
130 
131 /*
132  * Structure holding the metadata for each allocated memory block.
133  * Modifications to such objects should be made while holding the
134  * object->lock. Insertions or deletions from object_list, gray_list or
135  * rb_node are already protected by the corresponding locks or mutex (see
136  * the notes on locking above). These objects are reference-counted
137  * (use_count) and freed using the RCU mechanism.
138  */
139 struct kmemleak_object {
140 	spinlock_t lock;
141 	unsigned long flags;		/* object status flags */
142 	struct list_head object_list;
143 	struct list_head gray_list;
144 	struct rb_node rb_node;
145 	struct rcu_head rcu;		/* object_list lockless traversal */
146 	/* object usage count; object freed when use_count == 0 */
147 	atomic_t use_count;
148 	unsigned long pointer;
149 	size_t size;
150 	/* minimum number of a pointers found before it is considered leak */
151 	int min_count;
152 	/* the total number of pointers found pointing to this object */
153 	int count;
154 	/* checksum for detecting modified objects */
155 	u32 checksum;
156 	/* memory ranges to be scanned inside an object (empty for all) */
157 	struct hlist_head area_list;
158 	unsigned long trace[MAX_TRACE];
159 	unsigned int trace_len;
160 	unsigned long jiffies;		/* creation timestamp */
161 	pid_t pid;			/* pid of the current task */
162 	char comm[TASK_COMM_LEN];	/* executable name */
163 };
164 
165 /* flag representing the memory block allocation status */
166 #define OBJECT_ALLOCATED	(1 << 0)
167 /* flag set after the first reporting of an unreference object */
168 #define OBJECT_REPORTED		(1 << 1)
169 /* flag set to not scan the object */
170 #define OBJECT_NO_SCAN		(1 << 2)
171 
172 /* number of bytes to print per line; must be 16 or 32 */
173 #define HEX_ROW_SIZE		16
174 /* number of bytes to print at a time (1, 2, 4, 8) */
175 #define HEX_GROUP_SIZE		1
176 /* include ASCII after the hex output */
177 #define HEX_ASCII		1
178 /* max number of lines to be printed */
179 #define HEX_MAX_LINES		2
180 
181 /* the list of all allocated objects */
182 static LIST_HEAD(object_list);
183 /* the list of gray-colored objects (see color_gray comment below) */
184 static LIST_HEAD(gray_list);
185 /* search tree for object boundaries */
186 static struct rb_root object_tree_root = RB_ROOT;
187 /* rw_lock protecting the access to object_list and object_tree_root */
188 static DEFINE_RWLOCK(kmemleak_lock);
189 
190 /* allocation caches for kmemleak internal data */
191 static struct kmem_cache *object_cache;
192 static struct kmem_cache *scan_area_cache;
193 
194 /* set if tracing memory operations is enabled */
195 static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
196 /* set in the late_initcall if there were no errors */
197 static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
198 /* enables or disables early logging of the memory operations */
199 static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
200 /* set if a kmemleak warning was issued */
201 static atomic_t kmemleak_warning = ATOMIC_INIT(0);
202 /* set if a fatal kmemleak error has occurred */
203 static atomic_t kmemleak_error = ATOMIC_INIT(0);
204 
205 /* minimum and maximum address that may be valid pointers */
206 static unsigned long min_addr = ULONG_MAX;
207 static unsigned long max_addr;
208 
209 static struct task_struct *scan_thread;
210 /* used to avoid reporting of recently allocated objects */
211 static unsigned long jiffies_min_age;
212 static unsigned long jiffies_last_scan;
213 /* delay between automatic memory scannings */
214 static signed long jiffies_scan_wait;
215 /* enables or disables the task stacks scanning */
216 static int kmemleak_stack_scan = 1;
217 /* protects the memory scanning, parameters and debug/kmemleak file access */
218 static DEFINE_MUTEX(scan_mutex);
219 /* setting kmemleak=on, will set this var, skipping the disable */
220 static int kmemleak_skip_disable;
221 
222 
223 /*
224  * Early object allocation/freeing logging. Kmemleak is initialized after the
225  * kernel allocator. However, both the kernel allocator and kmemleak may
226  * allocate memory blocks which need to be tracked. Kmemleak defines an
227  * arbitrary buffer to hold the allocation/freeing information before it is
228  * fully initialized.
229  */
230 
231 /* kmemleak operation type for early logging */
232 enum {
233 	KMEMLEAK_ALLOC,
234 	KMEMLEAK_ALLOC_PERCPU,
235 	KMEMLEAK_FREE,
236 	KMEMLEAK_FREE_PART,
237 	KMEMLEAK_FREE_PERCPU,
238 	KMEMLEAK_NOT_LEAK,
239 	KMEMLEAK_IGNORE,
240 	KMEMLEAK_SCAN_AREA,
241 	KMEMLEAK_NO_SCAN
242 };
243 
244 /*
245  * Structure holding the information passed to kmemleak callbacks during the
246  * early logging.
247  */
248 struct early_log {
249 	int op_type;			/* kmemleak operation type */
250 	const void *ptr;		/* allocated/freed memory block */
251 	size_t size;			/* memory block size */
252 	int min_count;			/* minimum reference count */
253 	unsigned long trace[MAX_TRACE];	/* stack trace */
254 	unsigned int trace_len;		/* stack trace length */
255 };
256 
257 /* early logging buffer and current position */
258 static struct early_log
259 	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
260 static int crt_early_log __initdata;
261 
262 static void kmemleak_disable(void);
263 
264 /*
265  * Print a warning and dump the stack trace.
266  */
267 #define kmemleak_warn(x...)	do {		\
268 	pr_warning(x);				\
269 	dump_stack();				\
270 	atomic_set(&kmemleak_warning, 1);	\
271 } while (0)
272 
273 /*
274  * Macro invoked when a serious kmemleak condition occurred and cannot be
275  * recovered from. Kmemleak will be disabled and further allocation/freeing
276  * tracing no longer available.
277  */
278 #define kmemleak_stop(x...)	do {	\
279 	kmemleak_warn(x);		\
280 	kmemleak_disable();		\
281 } while (0)
282 
283 /*
284  * Printing of the objects hex dump to the seq file. The number of lines to be
285  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
286  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
287  * with the object->lock held.
288  */
289 static void hex_dump_object(struct seq_file *seq,
290 			    struct kmemleak_object *object)
291 {
292 	const u8 *ptr = (const u8 *)object->pointer;
293 	int i, len, remaining;
294 	unsigned char linebuf[HEX_ROW_SIZE * 5];
295 
296 	/* limit the number of lines to HEX_MAX_LINES */
297 	remaining = len =
298 		min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
299 
300 	seq_printf(seq, "  hex dump (first %d bytes):\n", len);
301 	for (i = 0; i < len; i += HEX_ROW_SIZE) {
302 		int linelen = min(remaining, HEX_ROW_SIZE);
303 
304 		remaining -= HEX_ROW_SIZE;
305 		hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
306 				   HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
307 				   HEX_ASCII);
308 		seq_printf(seq, "    %s\n", linebuf);
309 	}
310 }
311 
312 /*
313  * Object colors, encoded with count and min_count:
314  * - white - orphan object, not enough references to it (count < min_count)
315  * - gray  - not orphan, not marked as false positive (min_count == 0) or
316  *		sufficient references to it (count >= min_count)
317  * - black - ignore, it doesn't contain references (e.g. text section)
318  *		(min_count == -1). No function defined for this color.
319  * Newly created objects don't have any color assigned (object->count == -1)
320  * before the next memory scan when they become white.
321  */
322 static bool color_white(const struct kmemleak_object *object)
323 {
324 	return object->count != KMEMLEAK_BLACK &&
325 		object->count < object->min_count;
326 }
327 
328 static bool color_gray(const struct kmemleak_object *object)
329 {
330 	return object->min_count != KMEMLEAK_BLACK &&
331 		object->count >= object->min_count;
332 }
333 
334 /*
335  * Objects are considered unreferenced only if their color is white, they have
336  * not be deleted and have a minimum age to avoid false positives caused by
337  * pointers temporarily stored in CPU registers.
338  */
339 static bool unreferenced_object(struct kmemleak_object *object)
340 {
341 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
342 		time_before_eq(object->jiffies + jiffies_min_age,
343 			       jiffies_last_scan);
344 }
345 
346 /*
347  * Printing of the unreferenced objects information to the seq file. The
348  * print_unreferenced function must be called with the object->lock held.
349  */
350 static void print_unreferenced(struct seq_file *seq,
351 			       struct kmemleak_object *object)
352 {
353 	int i;
354 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
355 
356 	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
357 		   object->pointer, object->size);
358 	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
359 		   object->comm, object->pid, object->jiffies,
360 		   msecs_age / 1000, msecs_age % 1000);
361 	hex_dump_object(seq, object);
362 	seq_printf(seq, "  backtrace:\n");
363 
364 	for (i = 0; i < object->trace_len; i++) {
365 		void *ptr = (void *)object->trace[i];
366 		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
367 	}
368 }
369 
370 /*
371  * Print the kmemleak_object information. This function is used mainly for
372  * debugging special cases when kmemleak operations. It must be called with
373  * the object->lock held.
374  */
375 static void dump_object_info(struct kmemleak_object *object)
376 {
377 	struct stack_trace trace;
378 
379 	trace.nr_entries = object->trace_len;
380 	trace.entries = object->trace;
381 
382 	pr_notice("Object 0x%08lx (size %zu):\n",
383 		  object->pointer, object->size);
384 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
385 		  object->comm, object->pid, object->jiffies);
386 	pr_notice("  min_count = %d\n", object->min_count);
387 	pr_notice("  count = %d\n", object->count);
388 	pr_notice("  flags = 0x%lx\n", object->flags);
389 	pr_notice("  checksum = %d\n", object->checksum);
390 	pr_notice("  backtrace:\n");
391 	print_stack_trace(&trace, 4);
392 }
393 
394 /*
395  * Look-up a memory block metadata (kmemleak_object) in the object search
396  * tree based on a pointer value. If alias is 0, only values pointing to the
397  * beginning of the memory block are allowed. The kmemleak_lock must be held
398  * when calling this function.
399  */
400 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
401 {
402 	struct rb_node *rb = object_tree_root.rb_node;
403 
404 	while (rb) {
405 		struct kmemleak_object *object =
406 			rb_entry(rb, struct kmemleak_object, rb_node);
407 		if (ptr < object->pointer)
408 			rb = object->rb_node.rb_left;
409 		else if (object->pointer + object->size <= ptr)
410 			rb = object->rb_node.rb_right;
411 		else if (object->pointer == ptr || alias)
412 			return object;
413 		else {
414 			kmemleak_warn("Found object by alias at 0x%08lx\n",
415 				      ptr);
416 			dump_object_info(object);
417 			break;
418 		}
419 	}
420 	return NULL;
421 }
422 
423 /*
424  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
425  * that once an object's use_count reached 0, the RCU freeing was already
426  * registered and the object should no longer be used. This function must be
427  * called under the protection of rcu_read_lock().
428  */
429 static int get_object(struct kmemleak_object *object)
430 {
431 	return atomic_inc_not_zero(&object->use_count);
432 }
433 
434 /*
435  * RCU callback to free a kmemleak_object.
436  */
437 static void free_object_rcu(struct rcu_head *rcu)
438 {
439 	struct hlist_node *elem, *tmp;
440 	struct kmemleak_scan_area *area;
441 	struct kmemleak_object *object =
442 		container_of(rcu, struct kmemleak_object, rcu);
443 
444 	/*
445 	 * Once use_count is 0 (guaranteed by put_object), there is no other
446 	 * code accessing this object, hence no need for locking.
447 	 */
448 	hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
449 		hlist_del(elem);
450 		kmem_cache_free(scan_area_cache, area);
451 	}
452 	kmem_cache_free(object_cache, object);
453 }
454 
455 /*
456  * Decrement the object use_count. Once the count is 0, free the object using
457  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
458  * delete_object() path, the delayed RCU freeing ensures that there is no
459  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
460  * is also possible.
461  */
462 static void put_object(struct kmemleak_object *object)
463 {
464 	if (!atomic_dec_and_test(&object->use_count))
465 		return;
466 
467 	/* should only get here after delete_object was called */
468 	WARN_ON(object->flags & OBJECT_ALLOCATED);
469 
470 	call_rcu(&object->rcu, free_object_rcu);
471 }
472 
473 /*
474  * Look up an object in the object search tree and increase its use_count.
475  */
476 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
477 {
478 	unsigned long flags;
479 	struct kmemleak_object *object = NULL;
480 
481 	rcu_read_lock();
482 	read_lock_irqsave(&kmemleak_lock, flags);
483 	if (ptr >= min_addr && ptr < max_addr)
484 		object = lookup_object(ptr, alias);
485 	read_unlock_irqrestore(&kmemleak_lock, flags);
486 
487 	/* check whether the object is still available */
488 	if (object && !get_object(object))
489 		object = NULL;
490 	rcu_read_unlock();
491 
492 	return object;
493 }
494 
495 /*
496  * Save stack trace to the given array of MAX_TRACE size.
497  */
498 static int __save_stack_trace(unsigned long *trace)
499 {
500 	struct stack_trace stack_trace;
501 
502 	stack_trace.max_entries = MAX_TRACE;
503 	stack_trace.nr_entries = 0;
504 	stack_trace.entries = trace;
505 	stack_trace.skip = 2;
506 	save_stack_trace(&stack_trace);
507 
508 	return stack_trace.nr_entries;
509 }
510 
511 /*
512  * Create the metadata (struct kmemleak_object) corresponding to an allocated
513  * memory block and add it to the object_list and object_tree_root.
514  */
515 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
516 					     int min_count, gfp_t gfp)
517 {
518 	unsigned long flags;
519 	struct kmemleak_object *object, *parent;
520 	struct rb_node **link, *rb_parent;
521 
522 	object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
523 	if (!object) {
524 		pr_warning("Cannot allocate a kmemleak_object structure\n");
525 		kmemleak_disable();
526 		return NULL;
527 	}
528 
529 	INIT_LIST_HEAD(&object->object_list);
530 	INIT_LIST_HEAD(&object->gray_list);
531 	INIT_HLIST_HEAD(&object->area_list);
532 	spin_lock_init(&object->lock);
533 	atomic_set(&object->use_count, 1);
534 	object->flags = OBJECT_ALLOCATED;
535 	object->pointer = ptr;
536 	object->size = size;
537 	object->min_count = min_count;
538 	object->count = 0;			/* white color initially */
539 	object->jiffies = jiffies;
540 	object->checksum = 0;
541 
542 	/* task information */
543 	if (in_irq()) {
544 		object->pid = 0;
545 		strncpy(object->comm, "hardirq", sizeof(object->comm));
546 	} else if (in_softirq()) {
547 		object->pid = 0;
548 		strncpy(object->comm, "softirq", sizeof(object->comm));
549 	} else {
550 		object->pid = current->pid;
551 		/*
552 		 * There is a small chance of a race with set_task_comm(),
553 		 * however using get_task_comm() here may cause locking
554 		 * dependency issues with current->alloc_lock. In the worst
555 		 * case, the command line is not correct.
556 		 */
557 		strncpy(object->comm, current->comm, sizeof(object->comm));
558 	}
559 
560 	/* kernel backtrace */
561 	object->trace_len = __save_stack_trace(object->trace);
562 
563 	write_lock_irqsave(&kmemleak_lock, flags);
564 
565 	min_addr = min(min_addr, ptr);
566 	max_addr = max(max_addr, ptr + size);
567 	link = &object_tree_root.rb_node;
568 	rb_parent = NULL;
569 	while (*link) {
570 		rb_parent = *link;
571 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
572 		if (ptr + size <= parent->pointer)
573 			link = &parent->rb_node.rb_left;
574 		else if (parent->pointer + parent->size <= ptr)
575 			link = &parent->rb_node.rb_right;
576 		else {
577 			kmemleak_stop("Cannot insert 0x%lx into the object "
578 				      "search tree (overlaps existing)\n",
579 				      ptr);
580 			kmem_cache_free(object_cache, object);
581 			object = parent;
582 			spin_lock(&object->lock);
583 			dump_object_info(object);
584 			spin_unlock(&object->lock);
585 			goto out;
586 		}
587 	}
588 	rb_link_node(&object->rb_node, rb_parent, link);
589 	rb_insert_color(&object->rb_node, &object_tree_root);
590 
591 	list_add_tail_rcu(&object->object_list, &object_list);
592 out:
593 	write_unlock_irqrestore(&kmemleak_lock, flags);
594 	return object;
595 }
596 
597 /*
598  * Remove the metadata (struct kmemleak_object) for a memory block from the
599  * object_list and object_tree_root and decrement its use_count.
600  */
601 static void __delete_object(struct kmemleak_object *object)
602 {
603 	unsigned long flags;
604 
605 	write_lock_irqsave(&kmemleak_lock, flags);
606 	rb_erase(&object->rb_node, &object_tree_root);
607 	list_del_rcu(&object->object_list);
608 	write_unlock_irqrestore(&kmemleak_lock, flags);
609 
610 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
611 	WARN_ON(atomic_read(&object->use_count) < 2);
612 
613 	/*
614 	 * Locking here also ensures that the corresponding memory block
615 	 * cannot be freed when it is being scanned.
616 	 */
617 	spin_lock_irqsave(&object->lock, flags);
618 	object->flags &= ~OBJECT_ALLOCATED;
619 	spin_unlock_irqrestore(&object->lock, flags);
620 	put_object(object);
621 }
622 
623 /*
624  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
625  * delete it.
626  */
627 static void delete_object_full(unsigned long ptr)
628 {
629 	struct kmemleak_object *object;
630 
631 	object = find_and_get_object(ptr, 0);
632 	if (!object) {
633 #ifdef DEBUG
634 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
635 			      ptr);
636 #endif
637 		return;
638 	}
639 	__delete_object(object);
640 	put_object(object);
641 }
642 
643 /*
644  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
645  * delete it. If the memory block is partially freed, the function may create
646  * additional metadata for the remaining parts of the block.
647  */
648 static void delete_object_part(unsigned long ptr, size_t size)
649 {
650 	struct kmemleak_object *object;
651 	unsigned long start, end;
652 
653 	object = find_and_get_object(ptr, 1);
654 	if (!object) {
655 #ifdef DEBUG
656 		kmemleak_warn("Partially freeing unknown object at 0x%08lx "
657 			      "(size %zu)\n", ptr, size);
658 #endif
659 		return;
660 	}
661 	__delete_object(object);
662 
663 	/*
664 	 * Create one or two objects that may result from the memory block
665 	 * split. Note that partial freeing is only done by free_bootmem() and
666 	 * this happens before kmemleak_init() is called. The path below is
667 	 * only executed during early log recording in kmemleak_init(), so
668 	 * GFP_KERNEL is enough.
669 	 */
670 	start = object->pointer;
671 	end = object->pointer + object->size;
672 	if (ptr > start)
673 		create_object(start, ptr - start, object->min_count,
674 			      GFP_KERNEL);
675 	if (ptr + size < end)
676 		create_object(ptr + size, end - ptr - size, object->min_count,
677 			      GFP_KERNEL);
678 
679 	put_object(object);
680 }
681 
682 static void __paint_it(struct kmemleak_object *object, int color)
683 {
684 	object->min_count = color;
685 	if (color == KMEMLEAK_BLACK)
686 		object->flags |= OBJECT_NO_SCAN;
687 }
688 
689 static void paint_it(struct kmemleak_object *object, int color)
690 {
691 	unsigned long flags;
692 
693 	spin_lock_irqsave(&object->lock, flags);
694 	__paint_it(object, color);
695 	spin_unlock_irqrestore(&object->lock, flags);
696 }
697 
698 static void paint_ptr(unsigned long ptr, int color)
699 {
700 	struct kmemleak_object *object;
701 
702 	object = find_and_get_object(ptr, 0);
703 	if (!object) {
704 		kmemleak_warn("Trying to color unknown object "
705 			      "at 0x%08lx as %s\n", ptr,
706 			      (color == KMEMLEAK_GREY) ? "Grey" :
707 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
708 		return;
709 	}
710 	paint_it(object, color);
711 	put_object(object);
712 }
713 
714 /*
715  * Mark an object permanently as gray-colored so that it can no longer be
716  * reported as a leak. This is used in general to mark a false positive.
717  */
718 static void make_gray_object(unsigned long ptr)
719 {
720 	paint_ptr(ptr, KMEMLEAK_GREY);
721 }
722 
723 /*
724  * Mark the object as black-colored so that it is ignored from scans and
725  * reporting.
726  */
727 static void make_black_object(unsigned long ptr)
728 {
729 	paint_ptr(ptr, KMEMLEAK_BLACK);
730 }
731 
732 /*
733  * Add a scanning area to the object. If at least one such area is added,
734  * kmemleak will only scan these ranges rather than the whole memory block.
735  */
736 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
737 {
738 	unsigned long flags;
739 	struct kmemleak_object *object;
740 	struct kmemleak_scan_area *area;
741 
742 	object = find_and_get_object(ptr, 1);
743 	if (!object) {
744 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
745 			      ptr);
746 		return;
747 	}
748 
749 	area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
750 	if (!area) {
751 		pr_warning("Cannot allocate a scan area\n");
752 		goto out;
753 	}
754 
755 	spin_lock_irqsave(&object->lock, flags);
756 	if (ptr + size > object->pointer + object->size) {
757 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
758 		dump_object_info(object);
759 		kmem_cache_free(scan_area_cache, area);
760 		goto out_unlock;
761 	}
762 
763 	INIT_HLIST_NODE(&area->node);
764 	area->start = ptr;
765 	area->size = size;
766 
767 	hlist_add_head(&area->node, &object->area_list);
768 out_unlock:
769 	spin_unlock_irqrestore(&object->lock, flags);
770 out:
771 	put_object(object);
772 }
773 
774 /*
775  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
776  * pointer. Such object will not be scanned by kmemleak but references to it
777  * are searched.
778  */
779 static void object_no_scan(unsigned long ptr)
780 {
781 	unsigned long flags;
782 	struct kmemleak_object *object;
783 
784 	object = find_and_get_object(ptr, 0);
785 	if (!object) {
786 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
787 		return;
788 	}
789 
790 	spin_lock_irqsave(&object->lock, flags);
791 	object->flags |= OBJECT_NO_SCAN;
792 	spin_unlock_irqrestore(&object->lock, flags);
793 	put_object(object);
794 }
795 
796 /*
797  * Log an early kmemleak_* call to the early_log buffer. These calls will be
798  * processed later once kmemleak is fully initialized.
799  */
800 static void __init log_early(int op_type, const void *ptr, size_t size,
801 			     int min_count)
802 {
803 	unsigned long flags;
804 	struct early_log *log;
805 
806 	if (atomic_read(&kmemleak_error)) {
807 		/* kmemleak stopped recording, just count the requests */
808 		crt_early_log++;
809 		return;
810 	}
811 
812 	if (crt_early_log >= ARRAY_SIZE(early_log)) {
813 		kmemleak_disable();
814 		return;
815 	}
816 
817 	/*
818 	 * There is no need for locking since the kernel is still in UP mode
819 	 * at this stage. Disabling the IRQs is enough.
820 	 */
821 	local_irq_save(flags);
822 	log = &early_log[crt_early_log];
823 	log->op_type = op_type;
824 	log->ptr = ptr;
825 	log->size = size;
826 	log->min_count = min_count;
827 	log->trace_len = __save_stack_trace(log->trace);
828 	crt_early_log++;
829 	local_irq_restore(flags);
830 }
831 
832 /*
833  * Log an early allocated block and populate the stack trace.
834  */
835 static void early_alloc(struct early_log *log)
836 {
837 	struct kmemleak_object *object;
838 	unsigned long flags;
839 	int i;
840 
841 	if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
842 		return;
843 
844 	/*
845 	 * RCU locking needed to ensure object is not freed via put_object().
846 	 */
847 	rcu_read_lock();
848 	object = create_object((unsigned long)log->ptr, log->size,
849 			       log->min_count, GFP_ATOMIC);
850 	if (!object)
851 		goto out;
852 	spin_lock_irqsave(&object->lock, flags);
853 	for (i = 0; i < log->trace_len; i++)
854 		object->trace[i] = log->trace[i];
855 	object->trace_len = log->trace_len;
856 	spin_unlock_irqrestore(&object->lock, flags);
857 out:
858 	rcu_read_unlock();
859 }
860 
861 /*
862  * Log an early allocated block and populate the stack trace.
863  */
864 static void early_alloc_percpu(struct early_log *log)
865 {
866 	unsigned int cpu;
867 	const void __percpu *ptr = log->ptr;
868 
869 	for_each_possible_cpu(cpu) {
870 		log->ptr = per_cpu_ptr(ptr, cpu);
871 		early_alloc(log);
872 	}
873 }
874 
875 /**
876  * kmemleak_alloc - register a newly allocated object
877  * @ptr:	pointer to beginning of the object
878  * @size:	size of the object
879  * @min_count:	minimum number of references to this object. If during memory
880  *		scanning a number of references less than @min_count is found,
881  *		the object is reported as a memory leak. If @min_count is 0,
882  *		the object is never reported as a leak. If @min_count is -1,
883  *		the object is ignored (not scanned and not reported as a leak)
884  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
885  *
886  * This function is called from the kernel allocators when a new object
887  * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
888  */
889 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
890 			  gfp_t gfp)
891 {
892 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
893 
894 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
895 		create_object((unsigned long)ptr, size, min_count, gfp);
896 	else if (atomic_read(&kmemleak_early_log))
897 		log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
898 }
899 EXPORT_SYMBOL_GPL(kmemleak_alloc);
900 
901 /**
902  * kmemleak_alloc_percpu - register a newly allocated __percpu object
903  * @ptr:	__percpu pointer to beginning of the object
904  * @size:	size of the object
905  *
906  * This function is called from the kernel percpu allocator when a new object
907  * (memory block) is allocated (alloc_percpu). It assumes GFP_KERNEL
908  * allocation.
909  */
910 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size)
911 {
912 	unsigned int cpu;
913 
914 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
915 
916 	/*
917 	 * Percpu allocations are only scanned and not reported as leaks
918 	 * (min_count is set to 0).
919 	 */
920 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
921 		for_each_possible_cpu(cpu)
922 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
923 				      size, 0, GFP_KERNEL);
924 	else if (atomic_read(&kmemleak_early_log))
925 		log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
926 }
927 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
928 
929 /**
930  * kmemleak_free - unregister a previously registered object
931  * @ptr:	pointer to beginning of the object
932  *
933  * This function is called from the kernel allocators when an object (memory
934  * block) is freed (kmem_cache_free, kfree, vfree etc.).
935  */
936 void __ref kmemleak_free(const void *ptr)
937 {
938 	pr_debug("%s(0x%p)\n", __func__, ptr);
939 
940 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
941 		delete_object_full((unsigned long)ptr);
942 	else if (atomic_read(&kmemleak_early_log))
943 		log_early(KMEMLEAK_FREE, ptr, 0, 0);
944 }
945 EXPORT_SYMBOL_GPL(kmemleak_free);
946 
947 /**
948  * kmemleak_free_part - partially unregister a previously registered object
949  * @ptr:	pointer to the beginning or inside the object. This also
950  *		represents the start of the range to be freed
951  * @size:	size to be unregistered
952  *
953  * This function is called when only a part of a memory block is freed
954  * (usually from the bootmem allocator).
955  */
956 void __ref kmemleak_free_part(const void *ptr, size_t size)
957 {
958 	pr_debug("%s(0x%p)\n", __func__, ptr);
959 
960 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
961 		delete_object_part((unsigned long)ptr, size);
962 	else if (atomic_read(&kmemleak_early_log))
963 		log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
964 }
965 EXPORT_SYMBOL_GPL(kmemleak_free_part);
966 
967 /**
968  * kmemleak_free_percpu - unregister a previously registered __percpu object
969  * @ptr:	__percpu pointer to beginning of the object
970  *
971  * This function is called from the kernel percpu allocator when an object
972  * (memory block) is freed (free_percpu).
973  */
974 void __ref kmemleak_free_percpu(const void __percpu *ptr)
975 {
976 	unsigned int cpu;
977 
978 	pr_debug("%s(0x%p)\n", __func__, ptr);
979 
980 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
981 		for_each_possible_cpu(cpu)
982 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
983 								      cpu));
984 	else if (atomic_read(&kmemleak_early_log))
985 		log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
986 }
987 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
988 
989 /**
990  * kmemleak_not_leak - mark an allocated object as false positive
991  * @ptr:	pointer to beginning of the object
992  *
993  * Calling this function on an object will cause the memory block to no longer
994  * be reported as leak and always be scanned.
995  */
996 void __ref kmemleak_not_leak(const void *ptr)
997 {
998 	pr_debug("%s(0x%p)\n", __func__, ptr);
999 
1000 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
1001 		make_gray_object((unsigned long)ptr);
1002 	else if (atomic_read(&kmemleak_early_log))
1003 		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1004 }
1005 EXPORT_SYMBOL(kmemleak_not_leak);
1006 
1007 /**
1008  * kmemleak_ignore - ignore an allocated object
1009  * @ptr:	pointer to beginning of the object
1010  *
1011  * Calling this function on an object will cause the memory block to be
1012  * ignored (not scanned and not reported as a leak). This is usually done when
1013  * it is known that the corresponding block is not a leak and does not contain
1014  * any references to other allocated memory blocks.
1015  */
1016 void __ref kmemleak_ignore(const void *ptr)
1017 {
1018 	pr_debug("%s(0x%p)\n", __func__, ptr);
1019 
1020 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
1021 		make_black_object((unsigned long)ptr);
1022 	else if (atomic_read(&kmemleak_early_log))
1023 		log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1024 }
1025 EXPORT_SYMBOL(kmemleak_ignore);
1026 
1027 /**
1028  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1029  * @ptr:	pointer to beginning or inside the object. This also
1030  *		represents the start of the scan area
1031  * @size:	size of the scan area
1032  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1033  *
1034  * This function is used when it is known that only certain parts of an object
1035  * contain references to other objects. Kmemleak will only scan these areas
1036  * reducing the number false negatives.
1037  */
1038 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1039 {
1040 	pr_debug("%s(0x%p)\n", __func__, ptr);
1041 
1042 	if (atomic_read(&kmemleak_enabled) && ptr && size && !IS_ERR(ptr))
1043 		add_scan_area((unsigned long)ptr, size, gfp);
1044 	else if (atomic_read(&kmemleak_early_log))
1045 		log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1046 }
1047 EXPORT_SYMBOL(kmemleak_scan_area);
1048 
1049 /**
1050  * kmemleak_no_scan - do not scan an allocated object
1051  * @ptr:	pointer to beginning of the object
1052  *
1053  * This function notifies kmemleak not to scan the given memory block. Useful
1054  * in situations where it is known that the given object does not contain any
1055  * references to other objects. Kmemleak will not scan such objects reducing
1056  * the number of false negatives.
1057  */
1058 void __ref kmemleak_no_scan(const void *ptr)
1059 {
1060 	pr_debug("%s(0x%p)\n", __func__, ptr);
1061 
1062 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
1063 		object_no_scan((unsigned long)ptr);
1064 	else if (atomic_read(&kmemleak_early_log))
1065 		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1066 }
1067 EXPORT_SYMBOL(kmemleak_no_scan);
1068 
1069 /*
1070  * Update an object's checksum and return true if it was modified.
1071  */
1072 static bool update_checksum(struct kmemleak_object *object)
1073 {
1074 	u32 old_csum = object->checksum;
1075 
1076 	if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1077 		return false;
1078 
1079 	object->checksum = crc32(0, (void *)object->pointer, object->size);
1080 	return object->checksum != old_csum;
1081 }
1082 
1083 /*
1084  * Memory scanning is a long process and it needs to be interruptable. This
1085  * function checks whether such interrupt condition occurred.
1086  */
1087 static int scan_should_stop(void)
1088 {
1089 	if (!atomic_read(&kmemleak_enabled))
1090 		return 1;
1091 
1092 	/*
1093 	 * This function may be called from either process or kthread context,
1094 	 * hence the need to check for both stop conditions.
1095 	 */
1096 	if (current->mm)
1097 		return signal_pending(current);
1098 	else
1099 		return kthread_should_stop();
1100 
1101 	return 0;
1102 }
1103 
1104 /*
1105  * Scan a memory block (exclusive range) for valid pointers and add those
1106  * found to the gray list.
1107  */
1108 static void scan_block(void *_start, void *_end,
1109 		       struct kmemleak_object *scanned, int allow_resched)
1110 {
1111 	unsigned long *ptr;
1112 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1113 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1114 
1115 	for (ptr = start; ptr < end; ptr++) {
1116 		struct kmemleak_object *object;
1117 		unsigned long flags;
1118 		unsigned long pointer;
1119 
1120 		if (allow_resched)
1121 			cond_resched();
1122 		if (scan_should_stop())
1123 			break;
1124 
1125 		/* don't scan uninitialized memory */
1126 		if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1127 						  BYTES_PER_POINTER))
1128 			continue;
1129 
1130 		pointer = *ptr;
1131 
1132 		object = find_and_get_object(pointer, 1);
1133 		if (!object)
1134 			continue;
1135 		if (object == scanned) {
1136 			/* self referenced, ignore */
1137 			put_object(object);
1138 			continue;
1139 		}
1140 
1141 		/*
1142 		 * Avoid the lockdep recursive warning on object->lock being
1143 		 * previously acquired in scan_object(). These locks are
1144 		 * enclosed by scan_mutex.
1145 		 */
1146 		spin_lock_irqsave_nested(&object->lock, flags,
1147 					 SINGLE_DEPTH_NESTING);
1148 		if (!color_white(object)) {
1149 			/* non-orphan, ignored or new */
1150 			spin_unlock_irqrestore(&object->lock, flags);
1151 			put_object(object);
1152 			continue;
1153 		}
1154 
1155 		/*
1156 		 * Increase the object's reference count (number of pointers
1157 		 * to the memory block). If this count reaches the required
1158 		 * minimum, the object's color will become gray and it will be
1159 		 * added to the gray_list.
1160 		 */
1161 		object->count++;
1162 		if (color_gray(object)) {
1163 			list_add_tail(&object->gray_list, &gray_list);
1164 			spin_unlock_irqrestore(&object->lock, flags);
1165 			continue;
1166 		}
1167 
1168 		spin_unlock_irqrestore(&object->lock, flags);
1169 		put_object(object);
1170 	}
1171 }
1172 
1173 /*
1174  * Scan a memory block corresponding to a kmemleak_object. A condition is
1175  * that object->use_count >= 1.
1176  */
1177 static void scan_object(struct kmemleak_object *object)
1178 {
1179 	struct kmemleak_scan_area *area;
1180 	struct hlist_node *elem;
1181 	unsigned long flags;
1182 
1183 	/*
1184 	 * Once the object->lock is acquired, the corresponding memory block
1185 	 * cannot be freed (the same lock is acquired in delete_object).
1186 	 */
1187 	spin_lock_irqsave(&object->lock, flags);
1188 	if (object->flags & OBJECT_NO_SCAN)
1189 		goto out;
1190 	if (!(object->flags & OBJECT_ALLOCATED))
1191 		/* already freed object */
1192 		goto out;
1193 	if (hlist_empty(&object->area_list)) {
1194 		void *start = (void *)object->pointer;
1195 		void *end = (void *)(object->pointer + object->size);
1196 
1197 		while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1198 		       !(object->flags & OBJECT_NO_SCAN)) {
1199 			scan_block(start, min(start + MAX_SCAN_SIZE, end),
1200 				   object, 0);
1201 			start += MAX_SCAN_SIZE;
1202 
1203 			spin_unlock_irqrestore(&object->lock, flags);
1204 			cond_resched();
1205 			spin_lock_irqsave(&object->lock, flags);
1206 		}
1207 	} else
1208 		hlist_for_each_entry(area, elem, &object->area_list, node)
1209 			scan_block((void *)area->start,
1210 				   (void *)(area->start + area->size),
1211 				   object, 0);
1212 out:
1213 	spin_unlock_irqrestore(&object->lock, flags);
1214 }
1215 
1216 /*
1217  * Scan the objects already referenced (gray objects). More objects will be
1218  * referenced and, if there are no memory leaks, all the objects are scanned.
1219  */
1220 static void scan_gray_list(void)
1221 {
1222 	struct kmemleak_object *object, *tmp;
1223 
1224 	/*
1225 	 * The list traversal is safe for both tail additions and removals
1226 	 * from inside the loop. The kmemleak objects cannot be freed from
1227 	 * outside the loop because their use_count was incremented.
1228 	 */
1229 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1230 	while (&object->gray_list != &gray_list) {
1231 		cond_resched();
1232 
1233 		/* may add new objects to the list */
1234 		if (!scan_should_stop())
1235 			scan_object(object);
1236 
1237 		tmp = list_entry(object->gray_list.next, typeof(*object),
1238 				 gray_list);
1239 
1240 		/* remove the object from the list and release it */
1241 		list_del(&object->gray_list);
1242 		put_object(object);
1243 
1244 		object = tmp;
1245 	}
1246 	WARN_ON(!list_empty(&gray_list));
1247 }
1248 
1249 /*
1250  * Scan data sections and all the referenced memory blocks allocated via the
1251  * kernel's standard allocators. This function must be called with the
1252  * scan_mutex held.
1253  */
1254 static void kmemleak_scan(void)
1255 {
1256 	unsigned long flags;
1257 	struct kmemleak_object *object;
1258 	int i;
1259 	int new_leaks = 0;
1260 
1261 	jiffies_last_scan = jiffies;
1262 
1263 	/* prepare the kmemleak_object's */
1264 	rcu_read_lock();
1265 	list_for_each_entry_rcu(object, &object_list, object_list) {
1266 		spin_lock_irqsave(&object->lock, flags);
1267 #ifdef DEBUG
1268 		/*
1269 		 * With a few exceptions there should be a maximum of
1270 		 * 1 reference to any object at this point.
1271 		 */
1272 		if (atomic_read(&object->use_count) > 1) {
1273 			pr_debug("object->use_count = %d\n",
1274 				 atomic_read(&object->use_count));
1275 			dump_object_info(object);
1276 		}
1277 #endif
1278 		/* reset the reference count (whiten the object) */
1279 		object->count = 0;
1280 		if (color_gray(object) && get_object(object))
1281 			list_add_tail(&object->gray_list, &gray_list);
1282 
1283 		spin_unlock_irqrestore(&object->lock, flags);
1284 	}
1285 	rcu_read_unlock();
1286 
1287 	/* data/bss scanning */
1288 	scan_block(_sdata, _edata, NULL, 1);
1289 	scan_block(__bss_start, __bss_stop, NULL, 1);
1290 
1291 #ifdef CONFIG_SMP
1292 	/* per-cpu sections scanning */
1293 	for_each_possible_cpu(i)
1294 		scan_block(__per_cpu_start + per_cpu_offset(i),
1295 			   __per_cpu_end + per_cpu_offset(i), NULL, 1);
1296 #endif
1297 
1298 	/*
1299 	 * Struct page scanning for each node.
1300 	 */
1301 	lock_memory_hotplug();
1302 	for_each_online_node(i) {
1303 		pg_data_t *pgdat = NODE_DATA(i);
1304 		unsigned long start_pfn = pgdat->node_start_pfn;
1305 		unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1306 		unsigned long pfn;
1307 
1308 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1309 			struct page *page;
1310 
1311 			if (!pfn_valid(pfn))
1312 				continue;
1313 			page = pfn_to_page(pfn);
1314 			/* only scan if page is in use */
1315 			if (page_count(page) == 0)
1316 				continue;
1317 			scan_block(page, page + 1, NULL, 1);
1318 		}
1319 	}
1320 	unlock_memory_hotplug();
1321 
1322 	/*
1323 	 * Scanning the task stacks (may introduce false negatives).
1324 	 */
1325 	if (kmemleak_stack_scan) {
1326 		struct task_struct *p, *g;
1327 
1328 		read_lock(&tasklist_lock);
1329 		do_each_thread(g, p) {
1330 			scan_block(task_stack_page(p), task_stack_page(p) +
1331 				   THREAD_SIZE, NULL, 0);
1332 		} while_each_thread(g, p);
1333 		read_unlock(&tasklist_lock);
1334 	}
1335 
1336 	/*
1337 	 * Scan the objects already referenced from the sections scanned
1338 	 * above.
1339 	 */
1340 	scan_gray_list();
1341 
1342 	/*
1343 	 * Check for new or unreferenced objects modified since the previous
1344 	 * scan and color them gray until the next scan.
1345 	 */
1346 	rcu_read_lock();
1347 	list_for_each_entry_rcu(object, &object_list, object_list) {
1348 		spin_lock_irqsave(&object->lock, flags);
1349 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1350 		    && update_checksum(object) && get_object(object)) {
1351 			/* color it gray temporarily */
1352 			object->count = object->min_count;
1353 			list_add_tail(&object->gray_list, &gray_list);
1354 		}
1355 		spin_unlock_irqrestore(&object->lock, flags);
1356 	}
1357 	rcu_read_unlock();
1358 
1359 	/*
1360 	 * Re-scan the gray list for modified unreferenced objects.
1361 	 */
1362 	scan_gray_list();
1363 
1364 	/*
1365 	 * If scanning was stopped do not report any new unreferenced objects.
1366 	 */
1367 	if (scan_should_stop())
1368 		return;
1369 
1370 	/*
1371 	 * Scanning result reporting.
1372 	 */
1373 	rcu_read_lock();
1374 	list_for_each_entry_rcu(object, &object_list, object_list) {
1375 		spin_lock_irqsave(&object->lock, flags);
1376 		if (unreferenced_object(object) &&
1377 		    !(object->flags & OBJECT_REPORTED)) {
1378 			object->flags |= OBJECT_REPORTED;
1379 			new_leaks++;
1380 		}
1381 		spin_unlock_irqrestore(&object->lock, flags);
1382 	}
1383 	rcu_read_unlock();
1384 
1385 	if (new_leaks)
1386 		pr_info("%d new suspected memory leaks (see "
1387 			"/sys/kernel/debug/kmemleak)\n", new_leaks);
1388 
1389 }
1390 
1391 /*
1392  * Thread function performing automatic memory scanning. Unreferenced objects
1393  * at the end of a memory scan are reported but only the first time.
1394  */
1395 static int kmemleak_scan_thread(void *arg)
1396 {
1397 	static int first_run = 1;
1398 
1399 	pr_info("Automatic memory scanning thread started\n");
1400 	set_user_nice(current, 10);
1401 
1402 	/*
1403 	 * Wait before the first scan to allow the system to fully initialize.
1404 	 */
1405 	if (first_run) {
1406 		first_run = 0;
1407 		ssleep(SECS_FIRST_SCAN);
1408 	}
1409 
1410 	while (!kthread_should_stop()) {
1411 		signed long timeout = jiffies_scan_wait;
1412 
1413 		mutex_lock(&scan_mutex);
1414 		kmemleak_scan();
1415 		mutex_unlock(&scan_mutex);
1416 
1417 		/* wait before the next scan */
1418 		while (timeout && !kthread_should_stop())
1419 			timeout = schedule_timeout_interruptible(timeout);
1420 	}
1421 
1422 	pr_info("Automatic memory scanning thread ended\n");
1423 
1424 	return 0;
1425 }
1426 
1427 /*
1428  * Start the automatic memory scanning thread. This function must be called
1429  * with the scan_mutex held.
1430  */
1431 static void start_scan_thread(void)
1432 {
1433 	if (scan_thread)
1434 		return;
1435 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1436 	if (IS_ERR(scan_thread)) {
1437 		pr_warning("Failed to create the scan thread\n");
1438 		scan_thread = NULL;
1439 	}
1440 }
1441 
1442 /*
1443  * Stop the automatic memory scanning thread. This function must be called
1444  * with the scan_mutex held.
1445  */
1446 static void stop_scan_thread(void)
1447 {
1448 	if (scan_thread) {
1449 		kthread_stop(scan_thread);
1450 		scan_thread = NULL;
1451 	}
1452 }
1453 
1454 /*
1455  * Iterate over the object_list and return the first valid object at or after
1456  * the required position with its use_count incremented. The function triggers
1457  * a memory scanning when the pos argument points to the first position.
1458  */
1459 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1460 {
1461 	struct kmemleak_object *object;
1462 	loff_t n = *pos;
1463 	int err;
1464 
1465 	err = mutex_lock_interruptible(&scan_mutex);
1466 	if (err < 0)
1467 		return ERR_PTR(err);
1468 
1469 	rcu_read_lock();
1470 	list_for_each_entry_rcu(object, &object_list, object_list) {
1471 		if (n-- > 0)
1472 			continue;
1473 		if (get_object(object))
1474 			goto out;
1475 	}
1476 	object = NULL;
1477 out:
1478 	return object;
1479 }
1480 
1481 /*
1482  * Return the next object in the object_list. The function decrements the
1483  * use_count of the previous object and increases that of the next one.
1484  */
1485 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1486 {
1487 	struct kmemleak_object *prev_obj = v;
1488 	struct kmemleak_object *next_obj = NULL;
1489 	struct kmemleak_object *obj = prev_obj;
1490 
1491 	++(*pos);
1492 
1493 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1494 		if (get_object(obj)) {
1495 			next_obj = obj;
1496 			break;
1497 		}
1498 	}
1499 
1500 	put_object(prev_obj);
1501 	return next_obj;
1502 }
1503 
1504 /*
1505  * Decrement the use_count of the last object required, if any.
1506  */
1507 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1508 {
1509 	if (!IS_ERR(v)) {
1510 		/*
1511 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1512 		 * waiting was interrupted, so only release it if !IS_ERR.
1513 		 */
1514 		rcu_read_unlock();
1515 		mutex_unlock(&scan_mutex);
1516 		if (v)
1517 			put_object(v);
1518 	}
1519 }
1520 
1521 /*
1522  * Print the information for an unreferenced object to the seq file.
1523  */
1524 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1525 {
1526 	struct kmemleak_object *object = v;
1527 	unsigned long flags;
1528 
1529 	spin_lock_irqsave(&object->lock, flags);
1530 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1531 		print_unreferenced(seq, object);
1532 	spin_unlock_irqrestore(&object->lock, flags);
1533 	return 0;
1534 }
1535 
1536 static const struct seq_operations kmemleak_seq_ops = {
1537 	.start = kmemleak_seq_start,
1538 	.next  = kmemleak_seq_next,
1539 	.stop  = kmemleak_seq_stop,
1540 	.show  = kmemleak_seq_show,
1541 };
1542 
1543 static int kmemleak_open(struct inode *inode, struct file *file)
1544 {
1545 	return seq_open(file, &kmemleak_seq_ops);
1546 }
1547 
1548 static int kmemleak_release(struct inode *inode, struct file *file)
1549 {
1550 	return seq_release(inode, file);
1551 }
1552 
1553 static int dump_str_object_info(const char *str)
1554 {
1555 	unsigned long flags;
1556 	struct kmemleak_object *object;
1557 	unsigned long addr;
1558 
1559 	addr= simple_strtoul(str, NULL, 0);
1560 	object = find_and_get_object(addr, 0);
1561 	if (!object) {
1562 		pr_info("Unknown object at 0x%08lx\n", addr);
1563 		return -EINVAL;
1564 	}
1565 
1566 	spin_lock_irqsave(&object->lock, flags);
1567 	dump_object_info(object);
1568 	spin_unlock_irqrestore(&object->lock, flags);
1569 
1570 	put_object(object);
1571 	return 0;
1572 }
1573 
1574 /*
1575  * We use grey instead of black to ensure we can do future scans on the same
1576  * objects. If we did not do future scans these black objects could
1577  * potentially contain references to newly allocated objects in the future and
1578  * we'd end up with false positives.
1579  */
1580 static void kmemleak_clear(void)
1581 {
1582 	struct kmemleak_object *object;
1583 	unsigned long flags;
1584 
1585 	rcu_read_lock();
1586 	list_for_each_entry_rcu(object, &object_list, object_list) {
1587 		spin_lock_irqsave(&object->lock, flags);
1588 		if ((object->flags & OBJECT_REPORTED) &&
1589 		    unreferenced_object(object))
1590 			__paint_it(object, KMEMLEAK_GREY);
1591 		spin_unlock_irqrestore(&object->lock, flags);
1592 	}
1593 	rcu_read_unlock();
1594 }
1595 
1596 /*
1597  * File write operation to configure kmemleak at run-time. The following
1598  * commands can be written to the /sys/kernel/debug/kmemleak file:
1599  *   off	- disable kmemleak (irreversible)
1600  *   stack=on	- enable the task stacks scanning
1601  *   stack=off	- disable the tasks stacks scanning
1602  *   scan=on	- start the automatic memory scanning thread
1603  *   scan=off	- stop the automatic memory scanning thread
1604  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1605  *		  disable it)
1606  *   scan	- trigger a memory scan
1607  *   clear	- mark all current reported unreferenced kmemleak objects as
1608  *		  grey to ignore printing them
1609  *   dump=...	- dump information about the object found at the given address
1610  */
1611 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1612 			      size_t size, loff_t *ppos)
1613 {
1614 	char buf[64];
1615 	int buf_size;
1616 	int ret;
1617 
1618 	if (!atomic_read(&kmemleak_enabled))
1619 		return -EBUSY;
1620 
1621 	buf_size = min(size, (sizeof(buf) - 1));
1622 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1623 		return -EFAULT;
1624 	buf[buf_size] = 0;
1625 
1626 	ret = mutex_lock_interruptible(&scan_mutex);
1627 	if (ret < 0)
1628 		return ret;
1629 
1630 	if (strncmp(buf, "off", 3) == 0)
1631 		kmemleak_disable();
1632 	else if (strncmp(buf, "stack=on", 8) == 0)
1633 		kmemleak_stack_scan = 1;
1634 	else if (strncmp(buf, "stack=off", 9) == 0)
1635 		kmemleak_stack_scan = 0;
1636 	else if (strncmp(buf, "scan=on", 7) == 0)
1637 		start_scan_thread();
1638 	else if (strncmp(buf, "scan=off", 8) == 0)
1639 		stop_scan_thread();
1640 	else if (strncmp(buf, "scan=", 5) == 0) {
1641 		unsigned long secs;
1642 
1643 		ret = strict_strtoul(buf + 5, 0, &secs);
1644 		if (ret < 0)
1645 			goto out;
1646 		stop_scan_thread();
1647 		if (secs) {
1648 			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1649 			start_scan_thread();
1650 		}
1651 	} else if (strncmp(buf, "scan", 4) == 0)
1652 		kmemleak_scan();
1653 	else if (strncmp(buf, "clear", 5) == 0)
1654 		kmemleak_clear();
1655 	else if (strncmp(buf, "dump=", 5) == 0)
1656 		ret = dump_str_object_info(buf + 5);
1657 	else
1658 		ret = -EINVAL;
1659 
1660 out:
1661 	mutex_unlock(&scan_mutex);
1662 	if (ret < 0)
1663 		return ret;
1664 
1665 	/* ignore the rest of the buffer, only one command at a time */
1666 	*ppos += size;
1667 	return size;
1668 }
1669 
1670 static const struct file_operations kmemleak_fops = {
1671 	.owner		= THIS_MODULE,
1672 	.open		= kmemleak_open,
1673 	.read		= seq_read,
1674 	.write		= kmemleak_write,
1675 	.llseek		= seq_lseek,
1676 	.release	= kmemleak_release,
1677 };
1678 
1679 /*
1680  * Stop the memory scanning thread and free the kmemleak internal objects if
1681  * no previous scan thread (otherwise, kmemleak may still have some useful
1682  * information on memory leaks).
1683  */
1684 static void kmemleak_do_cleanup(struct work_struct *work)
1685 {
1686 	struct kmemleak_object *object;
1687 	bool cleanup = scan_thread == NULL;
1688 
1689 	mutex_lock(&scan_mutex);
1690 	stop_scan_thread();
1691 
1692 	if (cleanup) {
1693 		rcu_read_lock();
1694 		list_for_each_entry_rcu(object, &object_list, object_list)
1695 			delete_object_full(object->pointer);
1696 		rcu_read_unlock();
1697 	}
1698 	mutex_unlock(&scan_mutex);
1699 }
1700 
1701 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1702 
1703 /*
1704  * Disable kmemleak. No memory allocation/freeing will be traced once this
1705  * function is called. Disabling kmemleak is an irreversible operation.
1706  */
1707 static void kmemleak_disable(void)
1708 {
1709 	/* atomically check whether it was already invoked */
1710 	if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1711 		return;
1712 
1713 	/* stop any memory operation tracing */
1714 	atomic_set(&kmemleak_enabled, 0);
1715 
1716 	/* check whether it is too early for a kernel thread */
1717 	if (atomic_read(&kmemleak_initialized))
1718 		schedule_work(&cleanup_work);
1719 
1720 	pr_info("Kernel memory leak detector disabled\n");
1721 }
1722 
1723 /*
1724  * Allow boot-time kmemleak disabling (enabled by default).
1725  */
1726 static int kmemleak_boot_config(char *str)
1727 {
1728 	if (!str)
1729 		return -EINVAL;
1730 	if (strcmp(str, "off") == 0)
1731 		kmemleak_disable();
1732 	else if (strcmp(str, "on") == 0)
1733 		kmemleak_skip_disable = 1;
1734 	else
1735 		return -EINVAL;
1736 	return 0;
1737 }
1738 early_param("kmemleak", kmemleak_boot_config);
1739 
1740 static void __init print_log_trace(struct early_log *log)
1741 {
1742 	struct stack_trace trace;
1743 
1744 	trace.nr_entries = log->trace_len;
1745 	trace.entries = log->trace;
1746 
1747 	pr_notice("Early log backtrace:\n");
1748 	print_stack_trace(&trace, 2);
1749 }
1750 
1751 /*
1752  * Kmemleak initialization.
1753  */
1754 void __init kmemleak_init(void)
1755 {
1756 	int i;
1757 	unsigned long flags;
1758 
1759 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1760 	if (!kmemleak_skip_disable) {
1761 		atomic_set(&kmemleak_early_log, 0);
1762 		kmemleak_disable();
1763 		return;
1764 	}
1765 #endif
1766 
1767 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1768 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1769 
1770 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1771 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1772 
1773 	if (crt_early_log >= ARRAY_SIZE(early_log))
1774 		pr_warning("Early log buffer exceeded (%d), please increase "
1775 			   "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
1776 
1777 	/* the kernel is still in UP mode, so disabling the IRQs is enough */
1778 	local_irq_save(flags);
1779 	atomic_set(&kmemleak_early_log, 0);
1780 	if (atomic_read(&kmemleak_error)) {
1781 		local_irq_restore(flags);
1782 		return;
1783 	} else
1784 		atomic_set(&kmemleak_enabled, 1);
1785 	local_irq_restore(flags);
1786 
1787 	/*
1788 	 * This is the point where tracking allocations is safe. Automatic
1789 	 * scanning is started during the late initcall. Add the early logged
1790 	 * callbacks to the kmemleak infrastructure.
1791 	 */
1792 	for (i = 0; i < crt_early_log; i++) {
1793 		struct early_log *log = &early_log[i];
1794 
1795 		switch (log->op_type) {
1796 		case KMEMLEAK_ALLOC:
1797 			early_alloc(log);
1798 			break;
1799 		case KMEMLEAK_ALLOC_PERCPU:
1800 			early_alloc_percpu(log);
1801 			break;
1802 		case KMEMLEAK_FREE:
1803 			kmemleak_free(log->ptr);
1804 			break;
1805 		case KMEMLEAK_FREE_PART:
1806 			kmemleak_free_part(log->ptr, log->size);
1807 			break;
1808 		case KMEMLEAK_FREE_PERCPU:
1809 			kmemleak_free_percpu(log->ptr);
1810 			break;
1811 		case KMEMLEAK_NOT_LEAK:
1812 			kmemleak_not_leak(log->ptr);
1813 			break;
1814 		case KMEMLEAK_IGNORE:
1815 			kmemleak_ignore(log->ptr);
1816 			break;
1817 		case KMEMLEAK_SCAN_AREA:
1818 			kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1819 			break;
1820 		case KMEMLEAK_NO_SCAN:
1821 			kmemleak_no_scan(log->ptr);
1822 			break;
1823 		default:
1824 			kmemleak_warn("Unknown early log operation: %d\n",
1825 				      log->op_type);
1826 		}
1827 
1828 		if (atomic_read(&kmemleak_warning)) {
1829 			print_log_trace(log);
1830 			atomic_set(&kmemleak_warning, 0);
1831 		}
1832 	}
1833 }
1834 
1835 /*
1836  * Late initialization function.
1837  */
1838 static int __init kmemleak_late_init(void)
1839 {
1840 	struct dentry *dentry;
1841 
1842 	atomic_set(&kmemleak_initialized, 1);
1843 
1844 	if (atomic_read(&kmemleak_error)) {
1845 		/*
1846 		 * Some error occurred and kmemleak was disabled. There is a
1847 		 * small chance that kmemleak_disable() was called immediately
1848 		 * after setting kmemleak_initialized and we may end up with
1849 		 * two clean-up threads but serialized by scan_mutex.
1850 		 */
1851 		schedule_work(&cleanup_work);
1852 		return -ENOMEM;
1853 	}
1854 
1855 	dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1856 				     &kmemleak_fops);
1857 	if (!dentry)
1858 		pr_warning("Failed to create the debugfs kmemleak file\n");
1859 	mutex_lock(&scan_mutex);
1860 	start_scan_thread();
1861 	mutex_unlock(&scan_mutex);
1862 
1863 	pr_info("Kernel memory leak detector initialized\n");
1864 
1865 	return 0;
1866 }
1867 late_initcall(kmemleak_late_init);
1868