xref: /openbmc/linux/mm/kmemleak.c (revision cd4d09ec)
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/kmemleak.txt.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a red black tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * Locks and mutexes are acquired/nested in the following order:
57  *
58  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59  *
60  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61  * regions.
62  *
63  * The kmemleak_object structures have a use_count incremented or decremented
64  * using the get_object()/put_object() functions. When the use_count becomes
65  * 0, this count can no longer be incremented and put_object() schedules the
66  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67  * function must be protected by rcu_read_lock() to avoid accessing a freed
68  * structure.
69  */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/init.h>
74 #include <linux/kernel.h>
75 #include <linux/list.h>
76 #include <linux/sched.h>
77 #include <linux/jiffies.h>
78 #include <linux/delay.h>
79 #include <linux/export.h>
80 #include <linux/kthread.h>
81 #include <linux/rbtree.h>
82 #include <linux/fs.h>
83 #include <linux/debugfs.h>
84 #include <linux/seq_file.h>
85 #include <linux/cpumask.h>
86 #include <linux/spinlock.h>
87 #include <linux/mutex.h>
88 #include <linux/rcupdate.h>
89 #include <linux/stacktrace.h>
90 #include <linux/cache.h>
91 #include <linux/percpu.h>
92 #include <linux/hardirq.h>
93 #include <linux/mmzone.h>
94 #include <linux/slab.h>
95 #include <linux/thread_info.h>
96 #include <linux/err.h>
97 #include <linux/uaccess.h>
98 #include <linux/string.h>
99 #include <linux/nodemask.h>
100 #include <linux/mm.h>
101 #include <linux/workqueue.h>
102 #include <linux/crc32.h>
103 
104 #include <asm/sections.h>
105 #include <asm/processor.h>
106 #include <linux/atomic.h>
107 
108 #include <linux/kasan.h>
109 #include <linux/kmemcheck.h>
110 #include <linux/kmemleak.h>
111 #include <linux/memory_hotplug.h>
112 
113 /*
114  * Kmemleak configuration and common defines.
115  */
116 #define MAX_TRACE		16	/* stack trace length */
117 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
118 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
119 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
120 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
121 
122 #define BYTES_PER_POINTER	sizeof(void *)
123 
124 /* GFP bitmask for kmemleak internal allocations */
125 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
126 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
127 				 __GFP_NOWARN)
128 
129 /* scanning area inside a memory block */
130 struct kmemleak_scan_area {
131 	struct hlist_node node;
132 	unsigned long start;
133 	size_t size;
134 };
135 
136 #define KMEMLEAK_GREY	0
137 #define KMEMLEAK_BLACK	-1
138 
139 /*
140  * Structure holding the metadata for each allocated memory block.
141  * Modifications to such objects should be made while holding the
142  * object->lock. Insertions or deletions from object_list, gray_list or
143  * rb_node are already protected by the corresponding locks or mutex (see
144  * the notes on locking above). These objects are reference-counted
145  * (use_count) and freed using the RCU mechanism.
146  */
147 struct kmemleak_object {
148 	spinlock_t lock;
149 	unsigned long flags;		/* object status flags */
150 	struct list_head object_list;
151 	struct list_head gray_list;
152 	struct rb_node rb_node;
153 	struct rcu_head rcu;		/* object_list lockless traversal */
154 	/* object usage count; object freed when use_count == 0 */
155 	atomic_t use_count;
156 	unsigned long pointer;
157 	size_t size;
158 	/* minimum number of a pointers found before it is considered leak */
159 	int min_count;
160 	/* the total number of pointers found pointing to this object */
161 	int count;
162 	/* checksum for detecting modified objects */
163 	u32 checksum;
164 	/* memory ranges to be scanned inside an object (empty for all) */
165 	struct hlist_head area_list;
166 	unsigned long trace[MAX_TRACE];
167 	unsigned int trace_len;
168 	unsigned long jiffies;		/* creation timestamp */
169 	pid_t pid;			/* pid of the current task */
170 	char comm[TASK_COMM_LEN];	/* executable name */
171 };
172 
173 /* flag representing the memory block allocation status */
174 #define OBJECT_ALLOCATED	(1 << 0)
175 /* flag set after the first reporting of an unreference object */
176 #define OBJECT_REPORTED		(1 << 1)
177 /* flag set to not scan the object */
178 #define OBJECT_NO_SCAN		(1 << 2)
179 
180 /* number of bytes to print per line; must be 16 or 32 */
181 #define HEX_ROW_SIZE		16
182 /* number of bytes to print at a time (1, 2, 4, 8) */
183 #define HEX_GROUP_SIZE		1
184 /* include ASCII after the hex output */
185 #define HEX_ASCII		1
186 /* max number of lines to be printed */
187 #define HEX_MAX_LINES		2
188 
189 /* the list of all allocated objects */
190 static LIST_HEAD(object_list);
191 /* the list of gray-colored objects (see color_gray comment below) */
192 static LIST_HEAD(gray_list);
193 /* search tree for object boundaries */
194 static struct rb_root object_tree_root = RB_ROOT;
195 /* rw_lock protecting the access to object_list and object_tree_root */
196 static DEFINE_RWLOCK(kmemleak_lock);
197 
198 /* allocation caches for kmemleak internal data */
199 static struct kmem_cache *object_cache;
200 static struct kmem_cache *scan_area_cache;
201 
202 /* set if tracing memory operations is enabled */
203 static int kmemleak_enabled;
204 /* same as above but only for the kmemleak_free() callback */
205 static int kmemleak_free_enabled;
206 /* set in the late_initcall if there were no errors */
207 static int kmemleak_initialized;
208 /* enables or disables early logging of the memory operations */
209 static int kmemleak_early_log = 1;
210 /* set if a kmemleak warning was issued */
211 static int kmemleak_warning;
212 /* set if a fatal kmemleak error has occurred */
213 static int kmemleak_error;
214 
215 /* minimum and maximum address that may be valid pointers */
216 static unsigned long min_addr = ULONG_MAX;
217 static unsigned long max_addr;
218 
219 static struct task_struct *scan_thread;
220 /* used to avoid reporting of recently allocated objects */
221 static unsigned long jiffies_min_age;
222 static unsigned long jiffies_last_scan;
223 /* delay between automatic memory scannings */
224 static signed long jiffies_scan_wait;
225 /* enables or disables the task stacks scanning */
226 static int kmemleak_stack_scan = 1;
227 /* protects the memory scanning, parameters and debug/kmemleak file access */
228 static DEFINE_MUTEX(scan_mutex);
229 /* setting kmemleak=on, will set this var, skipping the disable */
230 static int kmemleak_skip_disable;
231 /* If there are leaks that can be reported */
232 static bool kmemleak_found_leaks;
233 
234 /*
235  * Early object allocation/freeing logging. Kmemleak is initialized after the
236  * kernel allocator. However, both the kernel allocator and kmemleak may
237  * allocate memory blocks which need to be tracked. Kmemleak defines an
238  * arbitrary buffer to hold the allocation/freeing information before it is
239  * fully initialized.
240  */
241 
242 /* kmemleak operation type for early logging */
243 enum {
244 	KMEMLEAK_ALLOC,
245 	KMEMLEAK_ALLOC_PERCPU,
246 	KMEMLEAK_FREE,
247 	KMEMLEAK_FREE_PART,
248 	KMEMLEAK_FREE_PERCPU,
249 	KMEMLEAK_NOT_LEAK,
250 	KMEMLEAK_IGNORE,
251 	KMEMLEAK_SCAN_AREA,
252 	KMEMLEAK_NO_SCAN
253 };
254 
255 /*
256  * Structure holding the information passed to kmemleak callbacks during the
257  * early logging.
258  */
259 struct early_log {
260 	int op_type;			/* kmemleak operation type */
261 	const void *ptr;		/* allocated/freed memory block */
262 	size_t size;			/* memory block size */
263 	int min_count;			/* minimum reference count */
264 	unsigned long trace[MAX_TRACE];	/* stack trace */
265 	unsigned int trace_len;		/* stack trace length */
266 };
267 
268 /* early logging buffer and current position */
269 static struct early_log
270 	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
271 static int crt_early_log __initdata;
272 
273 static void kmemleak_disable(void);
274 
275 /*
276  * Print a warning and dump the stack trace.
277  */
278 #define kmemleak_warn(x...)	do {		\
279 	pr_warning(x);				\
280 	dump_stack();				\
281 	kmemleak_warning = 1;			\
282 } while (0)
283 
284 /*
285  * Macro invoked when a serious kmemleak condition occurred and cannot be
286  * recovered from. Kmemleak will be disabled and further allocation/freeing
287  * tracing no longer available.
288  */
289 #define kmemleak_stop(x...)	do {	\
290 	kmemleak_warn(x);		\
291 	kmemleak_disable();		\
292 } while (0)
293 
294 /*
295  * Printing of the objects hex dump to the seq file. The number of lines to be
296  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
297  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
298  * with the object->lock held.
299  */
300 static void hex_dump_object(struct seq_file *seq,
301 			    struct kmemleak_object *object)
302 {
303 	const u8 *ptr = (const u8 *)object->pointer;
304 	size_t len;
305 
306 	/* limit the number of lines to HEX_MAX_LINES */
307 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
308 
309 	seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
310 	seq_hex_dump(seq, "    ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
311 		     HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
312 }
313 
314 /*
315  * Object colors, encoded with count and min_count:
316  * - white - orphan object, not enough references to it (count < min_count)
317  * - gray  - not orphan, not marked as false positive (min_count == 0) or
318  *		sufficient references to it (count >= min_count)
319  * - black - ignore, it doesn't contain references (e.g. text section)
320  *		(min_count == -1). No function defined for this color.
321  * Newly created objects don't have any color assigned (object->count == -1)
322  * before the next memory scan when they become white.
323  */
324 static bool color_white(const struct kmemleak_object *object)
325 {
326 	return object->count != KMEMLEAK_BLACK &&
327 		object->count < object->min_count;
328 }
329 
330 static bool color_gray(const struct kmemleak_object *object)
331 {
332 	return object->min_count != KMEMLEAK_BLACK &&
333 		object->count >= object->min_count;
334 }
335 
336 /*
337  * Objects are considered unreferenced only if their color is white, they have
338  * not be deleted and have a minimum age to avoid false positives caused by
339  * pointers temporarily stored in CPU registers.
340  */
341 static bool unreferenced_object(struct kmemleak_object *object)
342 {
343 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
344 		time_before_eq(object->jiffies + jiffies_min_age,
345 			       jiffies_last_scan);
346 }
347 
348 /*
349  * Printing of the unreferenced objects information to the seq file. The
350  * print_unreferenced function must be called with the object->lock held.
351  */
352 static void print_unreferenced(struct seq_file *seq,
353 			       struct kmemleak_object *object)
354 {
355 	int i;
356 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
357 
358 	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
359 		   object->pointer, object->size);
360 	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
361 		   object->comm, object->pid, object->jiffies,
362 		   msecs_age / 1000, msecs_age % 1000);
363 	hex_dump_object(seq, object);
364 	seq_printf(seq, "  backtrace:\n");
365 
366 	for (i = 0; i < object->trace_len; i++) {
367 		void *ptr = (void *)object->trace[i];
368 		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
369 	}
370 }
371 
372 /*
373  * Print the kmemleak_object information. This function is used mainly for
374  * debugging special cases when kmemleak operations. It must be called with
375  * the object->lock held.
376  */
377 static void dump_object_info(struct kmemleak_object *object)
378 {
379 	struct stack_trace trace;
380 
381 	trace.nr_entries = object->trace_len;
382 	trace.entries = object->trace;
383 
384 	pr_notice("Object 0x%08lx (size %zu):\n",
385 		  object->pointer, object->size);
386 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
387 		  object->comm, object->pid, object->jiffies);
388 	pr_notice("  min_count = %d\n", object->min_count);
389 	pr_notice("  count = %d\n", object->count);
390 	pr_notice("  flags = 0x%lx\n", object->flags);
391 	pr_notice("  checksum = %u\n", object->checksum);
392 	pr_notice("  backtrace:\n");
393 	print_stack_trace(&trace, 4);
394 }
395 
396 /*
397  * Look-up a memory block metadata (kmemleak_object) in the object search
398  * tree based on a pointer value. If alias is 0, only values pointing to the
399  * beginning of the memory block are allowed. The kmemleak_lock must be held
400  * when calling this function.
401  */
402 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
403 {
404 	struct rb_node *rb = object_tree_root.rb_node;
405 
406 	while (rb) {
407 		struct kmemleak_object *object =
408 			rb_entry(rb, struct kmemleak_object, rb_node);
409 		if (ptr < object->pointer)
410 			rb = object->rb_node.rb_left;
411 		else if (object->pointer + object->size <= ptr)
412 			rb = object->rb_node.rb_right;
413 		else if (object->pointer == ptr || alias)
414 			return object;
415 		else {
416 			kmemleak_warn("Found object by alias at 0x%08lx\n",
417 				      ptr);
418 			dump_object_info(object);
419 			break;
420 		}
421 	}
422 	return NULL;
423 }
424 
425 /*
426  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
427  * that once an object's use_count reached 0, the RCU freeing was already
428  * registered and the object should no longer be used. This function must be
429  * called under the protection of rcu_read_lock().
430  */
431 static int get_object(struct kmemleak_object *object)
432 {
433 	return atomic_inc_not_zero(&object->use_count);
434 }
435 
436 /*
437  * RCU callback to free a kmemleak_object.
438  */
439 static void free_object_rcu(struct rcu_head *rcu)
440 {
441 	struct hlist_node *tmp;
442 	struct kmemleak_scan_area *area;
443 	struct kmemleak_object *object =
444 		container_of(rcu, struct kmemleak_object, rcu);
445 
446 	/*
447 	 * Once use_count is 0 (guaranteed by put_object), there is no other
448 	 * code accessing this object, hence no need for locking.
449 	 */
450 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
451 		hlist_del(&area->node);
452 		kmem_cache_free(scan_area_cache, area);
453 	}
454 	kmem_cache_free(object_cache, object);
455 }
456 
457 /*
458  * Decrement the object use_count. Once the count is 0, free the object using
459  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
460  * delete_object() path, the delayed RCU freeing ensures that there is no
461  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
462  * is also possible.
463  */
464 static void put_object(struct kmemleak_object *object)
465 {
466 	if (!atomic_dec_and_test(&object->use_count))
467 		return;
468 
469 	/* should only get here after delete_object was called */
470 	WARN_ON(object->flags & OBJECT_ALLOCATED);
471 
472 	call_rcu(&object->rcu, free_object_rcu);
473 }
474 
475 /*
476  * Look up an object in the object search tree and increase its use_count.
477  */
478 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
479 {
480 	unsigned long flags;
481 	struct kmemleak_object *object;
482 
483 	rcu_read_lock();
484 	read_lock_irqsave(&kmemleak_lock, flags);
485 	object = lookup_object(ptr, alias);
486 	read_unlock_irqrestore(&kmemleak_lock, flags);
487 
488 	/* check whether the object is still available */
489 	if (object && !get_object(object))
490 		object = NULL;
491 	rcu_read_unlock();
492 
493 	return object;
494 }
495 
496 /*
497  * Look up an object in the object search tree and remove it from both
498  * object_tree_root and object_list. The returned object's use_count should be
499  * at least 1, as initially set by create_object().
500  */
501 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
502 {
503 	unsigned long flags;
504 	struct kmemleak_object *object;
505 
506 	write_lock_irqsave(&kmemleak_lock, flags);
507 	object = lookup_object(ptr, alias);
508 	if (object) {
509 		rb_erase(&object->rb_node, &object_tree_root);
510 		list_del_rcu(&object->object_list);
511 	}
512 	write_unlock_irqrestore(&kmemleak_lock, flags);
513 
514 	return object;
515 }
516 
517 /*
518  * Save stack trace to the given array of MAX_TRACE size.
519  */
520 static int __save_stack_trace(unsigned long *trace)
521 {
522 	struct stack_trace stack_trace;
523 
524 	stack_trace.max_entries = MAX_TRACE;
525 	stack_trace.nr_entries = 0;
526 	stack_trace.entries = trace;
527 	stack_trace.skip = 2;
528 	save_stack_trace(&stack_trace);
529 
530 	return stack_trace.nr_entries;
531 }
532 
533 /*
534  * Create the metadata (struct kmemleak_object) corresponding to an allocated
535  * memory block and add it to the object_list and object_tree_root.
536  */
537 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
538 					     int min_count, gfp_t gfp)
539 {
540 	unsigned long flags;
541 	struct kmemleak_object *object, *parent;
542 	struct rb_node **link, *rb_parent;
543 
544 	object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
545 	if (!object) {
546 		pr_warning("Cannot allocate a kmemleak_object structure\n");
547 		kmemleak_disable();
548 		return NULL;
549 	}
550 
551 	INIT_LIST_HEAD(&object->object_list);
552 	INIT_LIST_HEAD(&object->gray_list);
553 	INIT_HLIST_HEAD(&object->area_list);
554 	spin_lock_init(&object->lock);
555 	atomic_set(&object->use_count, 1);
556 	object->flags = OBJECT_ALLOCATED;
557 	object->pointer = ptr;
558 	object->size = size;
559 	object->min_count = min_count;
560 	object->count = 0;			/* white color initially */
561 	object->jiffies = jiffies;
562 	object->checksum = 0;
563 
564 	/* task information */
565 	if (in_irq()) {
566 		object->pid = 0;
567 		strncpy(object->comm, "hardirq", sizeof(object->comm));
568 	} else if (in_softirq()) {
569 		object->pid = 0;
570 		strncpy(object->comm, "softirq", sizeof(object->comm));
571 	} else {
572 		object->pid = current->pid;
573 		/*
574 		 * There is a small chance of a race with set_task_comm(),
575 		 * however using get_task_comm() here may cause locking
576 		 * dependency issues with current->alloc_lock. In the worst
577 		 * case, the command line is not correct.
578 		 */
579 		strncpy(object->comm, current->comm, sizeof(object->comm));
580 	}
581 
582 	/* kernel backtrace */
583 	object->trace_len = __save_stack_trace(object->trace);
584 
585 	write_lock_irqsave(&kmemleak_lock, flags);
586 
587 	min_addr = min(min_addr, ptr);
588 	max_addr = max(max_addr, ptr + size);
589 	link = &object_tree_root.rb_node;
590 	rb_parent = NULL;
591 	while (*link) {
592 		rb_parent = *link;
593 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
594 		if (ptr + size <= parent->pointer)
595 			link = &parent->rb_node.rb_left;
596 		else if (parent->pointer + parent->size <= ptr)
597 			link = &parent->rb_node.rb_right;
598 		else {
599 			kmemleak_stop("Cannot insert 0x%lx into the object "
600 				      "search tree (overlaps existing)\n",
601 				      ptr);
602 			/*
603 			 * No need for parent->lock here since "parent" cannot
604 			 * be freed while the kmemleak_lock is held.
605 			 */
606 			dump_object_info(parent);
607 			kmem_cache_free(object_cache, object);
608 			object = NULL;
609 			goto out;
610 		}
611 	}
612 	rb_link_node(&object->rb_node, rb_parent, link);
613 	rb_insert_color(&object->rb_node, &object_tree_root);
614 
615 	list_add_tail_rcu(&object->object_list, &object_list);
616 out:
617 	write_unlock_irqrestore(&kmemleak_lock, flags);
618 	return object;
619 }
620 
621 /*
622  * Mark the object as not allocated and schedule RCU freeing via put_object().
623  */
624 static void __delete_object(struct kmemleak_object *object)
625 {
626 	unsigned long flags;
627 
628 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
629 	WARN_ON(atomic_read(&object->use_count) < 1);
630 
631 	/*
632 	 * Locking here also ensures that the corresponding memory block
633 	 * cannot be freed when it is being scanned.
634 	 */
635 	spin_lock_irqsave(&object->lock, flags);
636 	object->flags &= ~OBJECT_ALLOCATED;
637 	spin_unlock_irqrestore(&object->lock, flags);
638 	put_object(object);
639 }
640 
641 /*
642  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
643  * delete it.
644  */
645 static void delete_object_full(unsigned long ptr)
646 {
647 	struct kmemleak_object *object;
648 
649 	object = find_and_remove_object(ptr, 0);
650 	if (!object) {
651 #ifdef DEBUG
652 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
653 			      ptr);
654 #endif
655 		return;
656 	}
657 	__delete_object(object);
658 }
659 
660 /*
661  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
662  * delete it. If the memory block is partially freed, the function may create
663  * additional metadata for the remaining parts of the block.
664  */
665 static void delete_object_part(unsigned long ptr, size_t size)
666 {
667 	struct kmemleak_object *object;
668 	unsigned long start, end;
669 
670 	object = find_and_remove_object(ptr, 1);
671 	if (!object) {
672 #ifdef DEBUG
673 		kmemleak_warn("Partially freeing unknown object at 0x%08lx "
674 			      "(size %zu)\n", ptr, size);
675 #endif
676 		return;
677 	}
678 
679 	/*
680 	 * Create one or two objects that may result from the memory block
681 	 * split. Note that partial freeing is only done by free_bootmem() and
682 	 * this happens before kmemleak_init() is called. The path below is
683 	 * only executed during early log recording in kmemleak_init(), so
684 	 * GFP_KERNEL is enough.
685 	 */
686 	start = object->pointer;
687 	end = object->pointer + object->size;
688 	if (ptr > start)
689 		create_object(start, ptr - start, object->min_count,
690 			      GFP_KERNEL);
691 	if (ptr + size < end)
692 		create_object(ptr + size, end - ptr - size, object->min_count,
693 			      GFP_KERNEL);
694 
695 	__delete_object(object);
696 }
697 
698 static void __paint_it(struct kmemleak_object *object, int color)
699 {
700 	object->min_count = color;
701 	if (color == KMEMLEAK_BLACK)
702 		object->flags |= OBJECT_NO_SCAN;
703 }
704 
705 static void paint_it(struct kmemleak_object *object, int color)
706 {
707 	unsigned long flags;
708 
709 	spin_lock_irqsave(&object->lock, flags);
710 	__paint_it(object, color);
711 	spin_unlock_irqrestore(&object->lock, flags);
712 }
713 
714 static void paint_ptr(unsigned long ptr, int color)
715 {
716 	struct kmemleak_object *object;
717 
718 	object = find_and_get_object(ptr, 0);
719 	if (!object) {
720 		kmemleak_warn("Trying to color unknown object "
721 			      "at 0x%08lx as %s\n", ptr,
722 			      (color == KMEMLEAK_GREY) ? "Grey" :
723 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
724 		return;
725 	}
726 	paint_it(object, color);
727 	put_object(object);
728 }
729 
730 /*
731  * Mark an object permanently as gray-colored so that it can no longer be
732  * reported as a leak. This is used in general to mark a false positive.
733  */
734 static void make_gray_object(unsigned long ptr)
735 {
736 	paint_ptr(ptr, KMEMLEAK_GREY);
737 }
738 
739 /*
740  * Mark the object as black-colored so that it is ignored from scans and
741  * reporting.
742  */
743 static void make_black_object(unsigned long ptr)
744 {
745 	paint_ptr(ptr, KMEMLEAK_BLACK);
746 }
747 
748 /*
749  * Add a scanning area to the object. If at least one such area is added,
750  * kmemleak will only scan these ranges rather than the whole memory block.
751  */
752 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
753 {
754 	unsigned long flags;
755 	struct kmemleak_object *object;
756 	struct kmemleak_scan_area *area;
757 
758 	object = find_and_get_object(ptr, 1);
759 	if (!object) {
760 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
761 			      ptr);
762 		return;
763 	}
764 
765 	area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
766 	if (!area) {
767 		pr_warning("Cannot allocate a scan area\n");
768 		goto out;
769 	}
770 
771 	spin_lock_irqsave(&object->lock, flags);
772 	if (size == SIZE_MAX) {
773 		size = object->pointer + object->size - ptr;
774 	} else if (ptr + size > object->pointer + object->size) {
775 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
776 		dump_object_info(object);
777 		kmem_cache_free(scan_area_cache, area);
778 		goto out_unlock;
779 	}
780 
781 	INIT_HLIST_NODE(&area->node);
782 	area->start = ptr;
783 	area->size = size;
784 
785 	hlist_add_head(&area->node, &object->area_list);
786 out_unlock:
787 	spin_unlock_irqrestore(&object->lock, flags);
788 out:
789 	put_object(object);
790 }
791 
792 /*
793  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
794  * pointer. Such object will not be scanned by kmemleak but references to it
795  * are searched.
796  */
797 static void object_no_scan(unsigned long ptr)
798 {
799 	unsigned long flags;
800 	struct kmemleak_object *object;
801 
802 	object = find_and_get_object(ptr, 0);
803 	if (!object) {
804 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
805 		return;
806 	}
807 
808 	spin_lock_irqsave(&object->lock, flags);
809 	object->flags |= OBJECT_NO_SCAN;
810 	spin_unlock_irqrestore(&object->lock, flags);
811 	put_object(object);
812 }
813 
814 /*
815  * Log an early kmemleak_* call to the early_log buffer. These calls will be
816  * processed later once kmemleak is fully initialized.
817  */
818 static void __init log_early(int op_type, const void *ptr, size_t size,
819 			     int min_count)
820 {
821 	unsigned long flags;
822 	struct early_log *log;
823 
824 	if (kmemleak_error) {
825 		/* kmemleak stopped recording, just count the requests */
826 		crt_early_log++;
827 		return;
828 	}
829 
830 	if (crt_early_log >= ARRAY_SIZE(early_log)) {
831 		crt_early_log++;
832 		kmemleak_disable();
833 		return;
834 	}
835 
836 	/*
837 	 * There is no need for locking since the kernel is still in UP mode
838 	 * at this stage. Disabling the IRQs is enough.
839 	 */
840 	local_irq_save(flags);
841 	log = &early_log[crt_early_log];
842 	log->op_type = op_type;
843 	log->ptr = ptr;
844 	log->size = size;
845 	log->min_count = min_count;
846 	log->trace_len = __save_stack_trace(log->trace);
847 	crt_early_log++;
848 	local_irq_restore(flags);
849 }
850 
851 /*
852  * Log an early allocated block and populate the stack trace.
853  */
854 static void early_alloc(struct early_log *log)
855 {
856 	struct kmemleak_object *object;
857 	unsigned long flags;
858 	int i;
859 
860 	if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
861 		return;
862 
863 	/*
864 	 * RCU locking needed to ensure object is not freed via put_object().
865 	 */
866 	rcu_read_lock();
867 	object = create_object((unsigned long)log->ptr, log->size,
868 			       log->min_count, GFP_ATOMIC);
869 	if (!object)
870 		goto out;
871 	spin_lock_irqsave(&object->lock, flags);
872 	for (i = 0; i < log->trace_len; i++)
873 		object->trace[i] = log->trace[i];
874 	object->trace_len = log->trace_len;
875 	spin_unlock_irqrestore(&object->lock, flags);
876 out:
877 	rcu_read_unlock();
878 }
879 
880 /*
881  * Log an early allocated block and populate the stack trace.
882  */
883 static void early_alloc_percpu(struct early_log *log)
884 {
885 	unsigned int cpu;
886 	const void __percpu *ptr = log->ptr;
887 
888 	for_each_possible_cpu(cpu) {
889 		log->ptr = per_cpu_ptr(ptr, cpu);
890 		early_alloc(log);
891 	}
892 }
893 
894 /**
895  * kmemleak_alloc - register a newly allocated object
896  * @ptr:	pointer to beginning of the object
897  * @size:	size of the object
898  * @min_count:	minimum number of references to this object. If during memory
899  *		scanning a number of references less than @min_count is found,
900  *		the object is reported as a memory leak. If @min_count is 0,
901  *		the object is never reported as a leak. If @min_count is -1,
902  *		the object is ignored (not scanned and not reported as a leak)
903  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
904  *
905  * This function is called from the kernel allocators when a new object
906  * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
907  */
908 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
909 			  gfp_t gfp)
910 {
911 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
912 
913 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
914 		create_object((unsigned long)ptr, size, min_count, gfp);
915 	else if (kmemleak_early_log)
916 		log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
917 }
918 EXPORT_SYMBOL_GPL(kmemleak_alloc);
919 
920 /**
921  * kmemleak_alloc_percpu - register a newly allocated __percpu object
922  * @ptr:	__percpu pointer to beginning of the object
923  * @size:	size of the object
924  * @gfp:	flags used for kmemleak internal memory allocations
925  *
926  * This function is called from the kernel percpu allocator when a new object
927  * (memory block) is allocated (alloc_percpu).
928  */
929 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
930 				 gfp_t gfp)
931 {
932 	unsigned int cpu;
933 
934 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
935 
936 	/*
937 	 * Percpu allocations are only scanned and not reported as leaks
938 	 * (min_count is set to 0).
939 	 */
940 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
941 		for_each_possible_cpu(cpu)
942 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
943 				      size, 0, gfp);
944 	else if (kmemleak_early_log)
945 		log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
946 }
947 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
948 
949 /**
950  * kmemleak_free - unregister a previously registered object
951  * @ptr:	pointer to beginning of the object
952  *
953  * This function is called from the kernel allocators when an object (memory
954  * block) is freed (kmem_cache_free, kfree, vfree etc.).
955  */
956 void __ref kmemleak_free(const void *ptr)
957 {
958 	pr_debug("%s(0x%p)\n", __func__, ptr);
959 
960 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
961 		delete_object_full((unsigned long)ptr);
962 	else if (kmemleak_early_log)
963 		log_early(KMEMLEAK_FREE, ptr, 0, 0);
964 }
965 EXPORT_SYMBOL_GPL(kmemleak_free);
966 
967 /**
968  * kmemleak_free_part - partially unregister a previously registered object
969  * @ptr:	pointer to the beginning or inside the object. This also
970  *		represents the start of the range to be freed
971  * @size:	size to be unregistered
972  *
973  * This function is called when only a part of a memory block is freed
974  * (usually from the bootmem allocator).
975  */
976 void __ref kmemleak_free_part(const void *ptr, size_t size)
977 {
978 	pr_debug("%s(0x%p)\n", __func__, ptr);
979 
980 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
981 		delete_object_part((unsigned long)ptr, size);
982 	else if (kmemleak_early_log)
983 		log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
984 }
985 EXPORT_SYMBOL_GPL(kmemleak_free_part);
986 
987 /**
988  * kmemleak_free_percpu - unregister a previously registered __percpu object
989  * @ptr:	__percpu pointer to beginning of the object
990  *
991  * This function is called from the kernel percpu allocator when an object
992  * (memory block) is freed (free_percpu).
993  */
994 void __ref kmemleak_free_percpu(const void __percpu *ptr)
995 {
996 	unsigned int cpu;
997 
998 	pr_debug("%s(0x%p)\n", __func__, ptr);
999 
1000 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1001 		for_each_possible_cpu(cpu)
1002 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
1003 								      cpu));
1004 	else if (kmemleak_early_log)
1005 		log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1006 }
1007 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1008 
1009 /**
1010  * kmemleak_update_trace - update object allocation stack trace
1011  * @ptr:	pointer to beginning of the object
1012  *
1013  * Override the object allocation stack trace for cases where the actual
1014  * allocation place is not always useful.
1015  */
1016 void __ref kmemleak_update_trace(const void *ptr)
1017 {
1018 	struct kmemleak_object *object;
1019 	unsigned long flags;
1020 
1021 	pr_debug("%s(0x%p)\n", __func__, ptr);
1022 
1023 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1024 		return;
1025 
1026 	object = find_and_get_object((unsigned long)ptr, 1);
1027 	if (!object) {
1028 #ifdef DEBUG
1029 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1030 			      ptr);
1031 #endif
1032 		return;
1033 	}
1034 
1035 	spin_lock_irqsave(&object->lock, flags);
1036 	object->trace_len = __save_stack_trace(object->trace);
1037 	spin_unlock_irqrestore(&object->lock, flags);
1038 
1039 	put_object(object);
1040 }
1041 EXPORT_SYMBOL(kmemleak_update_trace);
1042 
1043 /**
1044  * kmemleak_not_leak - mark an allocated object as false positive
1045  * @ptr:	pointer to beginning of the object
1046  *
1047  * Calling this function on an object will cause the memory block to no longer
1048  * be reported as leak and always be scanned.
1049  */
1050 void __ref kmemleak_not_leak(const void *ptr)
1051 {
1052 	pr_debug("%s(0x%p)\n", __func__, ptr);
1053 
1054 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1055 		make_gray_object((unsigned long)ptr);
1056 	else if (kmemleak_early_log)
1057 		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1058 }
1059 EXPORT_SYMBOL(kmemleak_not_leak);
1060 
1061 /**
1062  * kmemleak_ignore - ignore an allocated object
1063  * @ptr:	pointer to beginning of the object
1064  *
1065  * Calling this function on an object will cause the memory block to be
1066  * ignored (not scanned and not reported as a leak). This is usually done when
1067  * it is known that the corresponding block is not a leak and does not contain
1068  * any references to other allocated memory blocks.
1069  */
1070 void __ref kmemleak_ignore(const void *ptr)
1071 {
1072 	pr_debug("%s(0x%p)\n", __func__, ptr);
1073 
1074 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1075 		make_black_object((unsigned long)ptr);
1076 	else if (kmemleak_early_log)
1077 		log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1078 }
1079 EXPORT_SYMBOL(kmemleak_ignore);
1080 
1081 /**
1082  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1083  * @ptr:	pointer to beginning or inside the object. This also
1084  *		represents the start of the scan area
1085  * @size:	size of the scan area
1086  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1087  *
1088  * This function is used when it is known that only certain parts of an object
1089  * contain references to other objects. Kmemleak will only scan these areas
1090  * reducing the number false negatives.
1091  */
1092 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1093 {
1094 	pr_debug("%s(0x%p)\n", __func__, ptr);
1095 
1096 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1097 		add_scan_area((unsigned long)ptr, size, gfp);
1098 	else if (kmemleak_early_log)
1099 		log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1100 }
1101 EXPORT_SYMBOL(kmemleak_scan_area);
1102 
1103 /**
1104  * kmemleak_no_scan - do not scan an allocated object
1105  * @ptr:	pointer to beginning of the object
1106  *
1107  * This function notifies kmemleak not to scan the given memory block. Useful
1108  * in situations where it is known that the given object does not contain any
1109  * references to other objects. Kmemleak will not scan such objects reducing
1110  * the number of false negatives.
1111  */
1112 void __ref kmemleak_no_scan(const void *ptr)
1113 {
1114 	pr_debug("%s(0x%p)\n", __func__, ptr);
1115 
1116 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1117 		object_no_scan((unsigned long)ptr);
1118 	else if (kmemleak_early_log)
1119 		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1120 }
1121 EXPORT_SYMBOL(kmemleak_no_scan);
1122 
1123 /*
1124  * Update an object's checksum and return true if it was modified.
1125  */
1126 static bool update_checksum(struct kmemleak_object *object)
1127 {
1128 	u32 old_csum = object->checksum;
1129 
1130 	if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1131 		return false;
1132 
1133 	kasan_disable_current();
1134 	object->checksum = crc32(0, (void *)object->pointer, object->size);
1135 	kasan_enable_current();
1136 
1137 	return object->checksum != old_csum;
1138 }
1139 
1140 /*
1141  * Memory scanning is a long process and it needs to be interruptable. This
1142  * function checks whether such interrupt condition occurred.
1143  */
1144 static int scan_should_stop(void)
1145 {
1146 	if (!kmemleak_enabled)
1147 		return 1;
1148 
1149 	/*
1150 	 * This function may be called from either process or kthread context,
1151 	 * hence the need to check for both stop conditions.
1152 	 */
1153 	if (current->mm)
1154 		return signal_pending(current);
1155 	else
1156 		return kthread_should_stop();
1157 
1158 	return 0;
1159 }
1160 
1161 /*
1162  * Scan a memory block (exclusive range) for valid pointers and add those
1163  * found to the gray list.
1164  */
1165 static void scan_block(void *_start, void *_end,
1166 		       struct kmemleak_object *scanned)
1167 {
1168 	unsigned long *ptr;
1169 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1170 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1171 	unsigned long flags;
1172 
1173 	read_lock_irqsave(&kmemleak_lock, flags);
1174 	for (ptr = start; ptr < end; ptr++) {
1175 		struct kmemleak_object *object;
1176 		unsigned long pointer;
1177 
1178 		if (scan_should_stop())
1179 			break;
1180 
1181 		/* don't scan uninitialized memory */
1182 		if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1183 						  BYTES_PER_POINTER))
1184 			continue;
1185 
1186 		kasan_disable_current();
1187 		pointer = *ptr;
1188 		kasan_enable_current();
1189 
1190 		if (pointer < min_addr || pointer >= max_addr)
1191 			continue;
1192 
1193 		/*
1194 		 * No need for get_object() here since we hold kmemleak_lock.
1195 		 * object->use_count cannot be dropped to 0 while the object
1196 		 * is still present in object_tree_root and object_list
1197 		 * (with updates protected by kmemleak_lock).
1198 		 */
1199 		object = lookup_object(pointer, 1);
1200 		if (!object)
1201 			continue;
1202 		if (object == scanned)
1203 			/* self referenced, ignore */
1204 			continue;
1205 
1206 		/*
1207 		 * Avoid the lockdep recursive warning on object->lock being
1208 		 * previously acquired in scan_object(). These locks are
1209 		 * enclosed by scan_mutex.
1210 		 */
1211 		spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1212 		if (!color_white(object)) {
1213 			/* non-orphan, ignored or new */
1214 			spin_unlock(&object->lock);
1215 			continue;
1216 		}
1217 
1218 		/*
1219 		 * Increase the object's reference count (number of pointers
1220 		 * to the memory block). If this count reaches the required
1221 		 * minimum, the object's color will become gray and it will be
1222 		 * added to the gray_list.
1223 		 */
1224 		object->count++;
1225 		if (color_gray(object)) {
1226 			/* put_object() called when removing from gray_list */
1227 			WARN_ON(!get_object(object));
1228 			list_add_tail(&object->gray_list, &gray_list);
1229 		}
1230 		spin_unlock(&object->lock);
1231 	}
1232 	read_unlock_irqrestore(&kmemleak_lock, flags);
1233 }
1234 
1235 /*
1236  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1237  */
1238 static void scan_large_block(void *start, void *end)
1239 {
1240 	void *next;
1241 
1242 	while (start < end) {
1243 		next = min(start + MAX_SCAN_SIZE, end);
1244 		scan_block(start, next, NULL);
1245 		start = next;
1246 		cond_resched();
1247 	}
1248 }
1249 
1250 /*
1251  * Scan a memory block corresponding to a kmemleak_object. A condition is
1252  * that object->use_count >= 1.
1253  */
1254 static void scan_object(struct kmemleak_object *object)
1255 {
1256 	struct kmemleak_scan_area *area;
1257 	unsigned long flags;
1258 
1259 	/*
1260 	 * Once the object->lock is acquired, the corresponding memory block
1261 	 * cannot be freed (the same lock is acquired in delete_object).
1262 	 */
1263 	spin_lock_irqsave(&object->lock, flags);
1264 	if (object->flags & OBJECT_NO_SCAN)
1265 		goto out;
1266 	if (!(object->flags & OBJECT_ALLOCATED))
1267 		/* already freed object */
1268 		goto out;
1269 	if (hlist_empty(&object->area_list)) {
1270 		void *start = (void *)object->pointer;
1271 		void *end = (void *)(object->pointer + object->size);
1272 		void *next;
1273 
1274 		do {
1275 			next = min(start + MAX_SCAN_SIZE, end);
1276 			scan_block(start, next, object);
1277 
1278 			start = next;
1279 			if (start >= end)
1280 				break;
1281 
1282 			spin_unlock_irqrestore(&object->lock, flags);
1283 			cond_resched();
1284 			spin_lock_irqsave(&object->lock, flags);
1285 		} while (object->flags & OBJECT_ALLOCATED);
1286 	} else
1287 		hlist_for_each_entry(area, &object->area_list, node)
1288 			scan_block((void *)area->start,
1289 				   (void *)(area->start + area->size),
1290 				   object);
1291 out:
1292 	spin_unlock_irqrestore(&object->lock, flags);
1293 }
1294 
1295 /*
1296  * Scan the objects already referenced (gray objects). More objects will be
1297  * referenced and, if there are no memory leaks, all the objects are scanned.
1298  */
1299 static void scan_gray_list(void)
1300 {
1301 	struct kmemleak_object *object, *tmp;
1302 
1303 	/*
1304 	 * The list traversal is safe for both tail additions and removals
1305 	 * from inside the loop. The kmemleak objects cannot be freed from
1306 	 * outside the loop because their use_count was incremented.
1307 	 */
1308 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1309 	while (&object->gray_list != &gray_list) {
1310 		cond_resched();
1311 
1312 		/* may add new objects to the list */
1313 		if (!scan_should_stop())
1314 			scan_object(object);
1315 
1316 		tmp = list_entry(object->gray_list.next, typeof(*object),
1317 				 gray_list);
1318 
1319 		/* remove the object from the list and release it */
1320 		list_del(&object->gray_list);
1321 		put_object(object);
1322 
1323 		object = tmp;
1324 	}
1325 	WARN_ON(!list_empty(&gray_list));
1326 }
1327 
1328 /*
1329  * Scan data sections and all the referenced memory blocks allocated via the
1330  * kernel's standard allocators. This function must be called with the
1331  * scan_mutex held.
1332  */
1333 static void kmemleak_scan(void)
1334 {
1335 	unsigned long flags;
1336 	struct kmemleak_object *object;
1337 	int i;
1338 	int new_leaks = 0;
1339 
1340 	jiffies_last_scan = jiffies;
1341 
1342 	/* prepare the kmemleak_object's */
1343 	rcu_read_lock();
1344 	list_for_each_entry_rcu(object, &object_list, object_list) {
1345 		spin_lock_irqsave(&object->lock, flags);
1346 #ifdef DEBUG
1347 		/*
1348 		 * With a few exceptions there should be a maximum of
1349 		 * 1 reference to any object at this point.
1350 		 */
1351 		if (atomic_read(&object->use_count) > 1) {
1352 			pr_debug("object->use_count = %d\n",
1353 				 atomic_read(&object->use_count));
1354 			dump_object_info(object);
1355 		}
1356 #endif
1357 		/* reset the reference count (whiten the object) */
1358 		object->count = 0;
1359 		if (color_gray(object) && get_object(object))
1360 			list_add_tail(&object->gray_list, &gray_list);
1361 
1362 		spin_unlock_irqrestore(&object->lock, flags);
1363 	}
1364 	rcu_read_unlock();
1365 
1366 	/* data/bss scanning */
1367 	scan_large_block(_sdata, _edata);
1368 	scan_large_block(__bss_start, __bss_stop);
1369 
1370 #ifdef CONFIG_SMP
1371 	/* per-cpu sections scanning */
1372 	for_each_possible_cpu(i)
1373 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1374 				 __per_cpu_end + per_cpu_offset(i));
1375 #endif
1376 
1377 	/*
1378 	 * Struct page scanning for each node.
1379 	 */
1380 	get_online_mems();
1381 	for_each_online_node(i) {
1382 		unsigned long start_pfn = node_start_pfn(i);
1383 		unsigned long end_pfn = node_end_pfn(i);
1384 		unsigned long pfn;
1385 
1386 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1387 			struct page *page;
1388 
1389 			if (!pfn_valid(pfn))
1390 				continue;
1391 			page = pfn_to_page(pfn);
1392 			/* only scan if page is in use */
1393 			if (page_count(page) == 0)
1394 				continue;
1395 			scan_block(page, page + 1, NULL);
1396 		}
1397 	}
1398 	put_online_mems();
1399 
1400 	/*
1401 	 * Scanning the task stacks (may introduce false negatives).
1402 	 */
1403 	if (kmemleak_stack_scan) {
1404 		struct task_struct *p, *g;
1405 
1406 		read_lock(&tasklist_lock);
1407 		do_each_thread(g, p) {
1408 			scan_block(task_stack_page(p), task_stack_page(p) +
1409 				   THREAD_SIZE, NULL);
1410 		} while_each_thread(g, p);
1411 		read_unlock(&tasklist_lock);
1412 	}
1413 
1414 	/*
1415 	 * Scan the objects already referenced from the sections scanned
1416 	 * above.
1417 	 */
1418 	scan_gray_list();
1419 
1420 	/*
1421 	 * Check for new or unreferenced objects modified since the previous
1422 	 * scan and color them gray until the next scan.
1423 	 */
1424 	rcu_read_lock();
1425 	list_for_each_entry_rcu(object, &object_list, object_list) {
1426 		spin_lock_irqsave(&object->lock, flags);
1427 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1428 		    && update_checksum(object) && get_object(object)) {
1429 			/* color it gray temporarily */
1430 			object->count = object->min_count;
1431 			list_add_tail(&object->gray_list, &gray_list);
1432 		}
1433 		spin_unlock_irqrestore(&object->lock, flags);
1434 	}
1435 	rcu_read_unlock();
1436 
1437 	/*
1438 	 * Re-scan the gray list for modified unreferenced objects.
1439 	 */
1440 	scan_gray_list();
1441 
1442 	/*
1443 	 * If scanning was stopped do not report any new unreferenced objects.
1444 	 */
1445 	if (scan_should_stop())
1446 		return;
1447 
1448 	/*
1449 	 * Scanning result reporting.
1450 	 */
1451 	rcu_read_lock();
1452 	list_for_each_entry_rcu(object, &object_list, object_list) {
1453 		spin_lock_irqsave(&object->lock, flags);
1454 		if (unreferenced_object(object) &&
1455 		    !(object->flags & OBJECT_REPORTED)) {
1456 			object->flags |= OBJECT_REPORTED;
1457 			new_leaks++;
1458 		}
1459 		spin_unlock_irqrestore(&object->lock, flags);
1460 	}
1461 	rcu_read_unlock();
1462 
1463 	if (new_leaks) {
1464 		kmemleak_found_leaks = true;
1465 
1466 		pr_info("%d new suspected memory leaks (see "
1467 			"/sys/kernel/debug/kmemleak)\n", new_leaks);
1468 	}
1469 
1470 }
1471 
1472 /*
1473  * Thread function performing automatic memory scanning. Unreferenced objects
1474  * at the end of a memory scan are reported but only the first time.
1475  */
1476 static int kmemleak_scan_thread(void *arg)
1477 {
1478 	static int first_run = 1;
1479 
1480 	pr_info("Automatic memory scanning thread started\n");
1481 	set_user_nice(current, 10);
1482 
1483 	/*
1484 	 * Wait before the first scan to allow the system to fully initialize.
1485 	 */
1486 	if (first_run) {
1487 		first_run = 0;
1488 		ssleep(SECS_FIRST_SCAN);
1489 	}
1490 
1491 	while (!kthread_should_stop()) {
1492 		signed long timeout = jiffies_scan_wait;
1493 
1494 		mutex_lock(&scan_mutex);
1495 		kmemleak_scan();
1496 		mutex_unlock(&scan_mutex);
1497 
1498 		/* wait before the next scan */
1499 		while (timeout && !kthread_should_stop())
1500 			timeout = schedule_timeout_interruptible(timeout);
1501 	}
1502 
1503 	pr_info("Automatic memory scanning thread ended\n");
1504 
1505 	return 0;
1506 }
1507 
1508 /*
1509  * Start the automatic memory scanning thread. This function must be called
1510  * with the scan_mutex held.
1511  */
1512 static void start_scan_thread(void)
1513 {
1514 	if (scan_thread)
1515 		return;
1516 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1517 	if (IS_ERR(scan_thread)) {
1518 		pr_warning("Failed to create the scan thread\n");
1519 		scan_thread = NULL;
1520 	}
1521 }
1522 
1523 /*
1524  * Stop the automatic memory scanning thread. This function must be called
1525  * with the scan_mutex held.
1526  */
1527 static void stop_scan_thread(void)
1528 {
1529 	if (scan_thread) {
1530 		kthread_stop(scan_thread);
1531 		scan_thread = NULL;
1532 	}
1533 }
1534 
1535 /*
1536  * Iterate over the object_list and return the first valid object at or after
1537  * the required position with its use_count incremented. The function triggers
1538  * a memory scanning when the pos argument points to the first position.
1539  */
1540 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1541 {
1542 	struct kmemleak_object *object;
1543 	loff_t n = *pos;
1544 	int err;
1545 
1546 	err = mutex_lock_interruptible(&scan_mutex);
1547 	if (err < 0)
1548 		return ERR_PTR(err);
1549 
1550 	rcu_read_lock();
1551 	list_for_each_entry_rcu(object, &object_list, object_list) {
1552 		if (n-- > 0)
1553 			continue;
1554 		if (get_object(object))
1555 			goto out;
1556 	}
1557 	object = NULL;
1558 out:
1559 	return object;
1560 }
1561 
1562 /*
1563  * Return the next object in the object_list. The function decrements the
1564  * use_count of the previous object and increases that of the next one.
1565  */
1566 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1567 {
1568 	struct kmemleak_object *prev_obj = v;
1569 	struct kmemleak_object *next_obj = NULL;
1570 	struct kmemleak_object *obj = prev_obj;
1571 
1572 	++(*pos);
1573 
1574 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1575 		if (get_object(obj)) {
1576 			next_obj = obj;
1577 			break;
1578 		}
1579 	}
1580 
1581 	put_object(prev_obj);
1582 	return next_obj;
1583 }
1584 
1585 /*
1586  * Decrement the use_count of the last object required, if any.
1587  */
1588 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1589 {
1590 	if (!IS_ERR(v)) {
1591 		/*
1592 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1593 		 * waiting was interrupted, so only release it if !IS_ERR.
1594 		 */
1595 		rcu_read_unlock();
1596 		mutex_unlock(&scan_mutex);
1597 		if (v)
1598 			put_object(v);
1599 	}
1600 }
1601 
1602 /*
1603  * Print the information for an unreferenced object to the seq file.
1604  */
1605 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1606 {
1607 	struct kmemleak_object *object = v;
1608 	unsigned long flags;
1609 
1610 	spin_lock_irqsave(&object->lock, flags);
1611 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1612 		print_unreferenced(seq, object);
1613 	spin_unlock_irqrestore(&object->lock, flags);
1614 	return 0;
1615 }
1616 
1617 static const struct seq_operations kmemleak_seq_ops = {
1618 	.start = kmemleak_seq_start,
1619 	.next  = kmemleak_seq_next,
1620 	.stop  = kmemleak_seq_stop,
1621 	.show  = kmemleak_seq_show,
1622 };
1623 
1624 static int kmemleak_open(struct inode *inode, struct file *file)
1625 {
1626 	return seq_open(file, &kmemleak_seq_ops);
1627 }
1628 
1629 static int dump_str_object_info(const char *str)
1630 {
1631 	unsigned long flags;
1632 	struct kmemleak_object *object;
1633 	unsigned long addr;
1634 
1635 	if (kstrtoul(str, 0, &addr))
1636 		return -EINVAL;
1637 	object = find_and_get_object(addr, 0);
1638 	if (!object) {
1639 		pr_info("Unknown object at 0x%08lx\n", addr);
1640 		return -EINVAL;
1641 	}
1642 
1643 	spin_lock_irqsave(&object->lock, flags);
1644 	dump_object_info(object);
1645 	spin_unlock_irqrestore(&object->lock, flags);
1646 
1647 	put_object(object);
1648 	return 0;
1649 }
1650 
1651 /*
1652  * We use grey instead of black to ensure we can do future scans on the same
1653  * objects. If we did not do future scans these black objects could
1654  * potentially contain references to newly allocated objects in the future and
1655  * we'd end up with false positives.
1656  */
1657 static void kmemleak_clear(void)
1658 {
1659 	struct kmemleak_object *object;
1660 	unsigned long flags;
1661 
1662 	rcu_read_lock();
1663 	list_for_each_entry_rcu(object, &object_list, object_list) {
1664 		spin_lock_irqsave(&object->lock, flags);
1665 		if ((object->flags & OBJECT_REPORTED) &&
1666 		    unreferenced_object(object))
1667 			__paint_it(object, KMEMLEAK_GREY);
1668 		spin_unlock_irqrestore(&object->lock, flags);
1669 	}
1670 	rcu_read_unlock();
1671 
1672 	kmemleak_found_leaks = false;
1673 }
1674 
1675 static void __kmemleak_do_cleanup(void);
1676 
1677 /*
1678  * File write operation to configure kmemleak at run-time. The following
1679  * commands can be written to the /sys/kernel/debug/kmemleak file:
1680  *   off	- disable kmemleak (irreversible)
1681  *   stack=on	- enable the task stacks scanning
1682  *   stack=off	- disable the tasks stacks scanning
1683  *   scan=on	- start the automatic memory scanning thread
1684  *   scan=off	- stop the automatic memory scanning thread
1685  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1686  *		  disable it)
1687  *   scan	- trigger a memory scan
1688  *   clear	- mark all current reported unreferenced kmemleak objects as
1689  *		  grey to ignore printing them, or free all kmemleak objects
1690  *		  if kmemleak has been disabled.
1691  *   dump=...	- dump information about the object found at the given address
1692  */
1693 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1694 			      size_t size, loff_t *ppos)
1695 {
1696 	char buf[64];
1697 	int buf_size;
1698 	int ret;
1699 
1700 	buf_size = min(size, (sizeof(buf) - 1));
1701 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1702 		return -EFAULT;
1703 	buf[buf_size] = 0;
1704 
1705 	ret = mutex_lock_interruptible(&scan_mutex);
1706 	if (ret < 0)
1707 		return ret;
1708 
1709 	if (strncmp(buf, "clear", 5) == 0) {
1710 		if (kmemleak_enabled)
1711 			kmemleak_clear();
1712 		else
1713 			__kmemleak_do_cleanup();
1714 		goto out;
1715 	}
1716 
1717 	if (!kmemleak_enabled) {
1718 		ret = -EBUSY;
1719 		goto out;
1720 	}
1721 
1722 	if (strncmp(buf, "off", 3) == 0)
1723 		kmemleak_disable();
1724 	else if (strncmp(buf, "stack=on", 8) == 0)
1725 		kmemleak_stack_scan = 1;
1726 	else if (strncmp(buf, "stack=off", 9) == 0)
1727 		kmemleak_stack_scan = 0;
1728 	else if (strncmp(buf, "scan=on", 7) == 0)
1729 		start_scan_thread();
1730 	else if (strncmp(buf, "scan=off", 8) == 0)
1731 		stop_scan_thread();
1732 	else if (strncmp(buf, "scan=", 5) == 0) {
1733 		unsigned long secs;
1734 
1735 		ret = kstrtoul(buf + 5, 0, &secs);
1736 		if (ret < 0)
1737 			goto out;
1738 		stop_scan_thread();
1739 		if (secs) {
1740 			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1741 			start_scan_thread();
1742 		}
1743 	} else if (strncmp(buf, "scan", 4) == 0)
1744 		kmemleak_scan();
1745 	else if (strncmp(buf, "dump=", 5) == 0)
1746 		ret = dump_str_object_info(buf + 5);
1747 	else
1748 		ret = -EINVAL;
1749 
1750 out:
1751 	mutex_unlock(&scan_mutex);
1752 	if (ret < 0)
1753 		return ret;
1754 
1755 	/* ignore the rest of the buffer, only one command at a time */
1756 	*ppos += size;
1757 	return size;
1758 }
1759 
1760 static const struct file_operations kmemleak_fops = {
1761 	.owner		= THIS_MODULE,
1762 	.open		= kmemleak_open,
1763 	.read		= seq_read,
1764 	.write		= kmemleak_write,
1765 	.llseek		= seq_lseek,
1766 	.release	= seq_release,
1767 };
1768 
1769 static void __kmemleak_do_cleanup(void)
1770 {
1771 	struct kmemleak_object *object;
1772 
1773 	rcu_read_lock();
1774 	list_for_each_entry_rcu(object, &object_list, object_list)
1775 		delete_object_full(object->pointer);
1776 	rcu_read_unlock();
1777 }
1778 
1779 /*
1780  * Stop the memory scanning thread and free the kmemleak internal objects if
1781  * no previous scan thread (otherwise, kmemleak may still have some useful
1782  * information on memory leaks).
1783  */
1784 static void kmemleak_do_cleanup(struct work_struct *work)
1785 {
1786 	stop_scan_thread();
1787 
1788 	/*
1789 	 * Once the scan thread has stopped, it is safe to no longer track
1790 	 * object freeing. Ordering of the scan thread stopping and the memory
1791 	 * accesses below is guaranteed by the kthread_stop() function.
1792 	 */
1793 	kmemleak_free_enabled = 0;
1794 
1795 	if (!kmemleak_found_leaks)
1796 		__kmemleak_do_cleanup();
1797 	else
1798 		pr_info("Kmemleak disabled without freeing internal data. "
1799 			"Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\"\n");
1800 }
1801 
1802 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1803 
1804 /*
1805  * Disable kmemleak. No memory allocation/freeing will be traced once this
1806  * function is called. Disabling kmemleak is an irreversible operation.
1807  */
1808 static void kmemleak_disable(void)
1809 {
1810 	/* atomically check whether it was already invoked */
1811 	if (cmpxchg(&kmemleak_error, 0, 1))
1812 		return;
1813 
1814 	/* stop any memory operation tracing */
1815 	kmemleak_enabled = 0;
1816 
1817 	/* check whether it is too early for a kernel thread */
1818 	if (kmemleak_initialized)
1819 		schedule_work(&cleanup_work);
1820 	else
1821 		kmemleak_free_enabled = 0;
1822 
1823 	pr_info("Kernel memory leak detector disabled\n");
1824 }
1825 
1826 /*
1827  * Allow boot-time kmemleak disabling (enabled by default).
1828  */
1829 static int kmemleak_boot_config(char *str)
1830 {
1831 	if (!str)
1832 		return -EINVAL;
1833 	if (strcmp(str, "off") == 0)
1834 		kmemleak_disable();
1835 	else if (strcmp(str, "on") == 0)
1836 		kmemleak_skip_disable = 1;
1837 	else
1838 		return -EINVAL;
1839 	return 0;
1840 }
1841 early_param("kmemleak", kmemleak_boot_config);
1842 
1843 static void __init print_log_trace(struct early_log *log)
1844 {
1845 	struct stack_trace trace;
1846 
1847 	trace.nr_entries = log->trace_len;
1848 	trace.entries = log->trace;
1849 
1850 	pr_notice("Early log backtrace:\n");
1851 	print_stack_trace(&trace, 2);
1852 }
1853 
1854 /*
1855  * Kmemleak initialization.
1856  */
1857 void __init kmemleak_init(void)
1858 {
1859 	int i;
1860 	unsigned long flags;
1861 
1862 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1863 	if (!kmemleak_skip_disable) {
1864 		kmemleak_early_log = 0;
1865 		kmemleak_disable();
1866 		return;
1867 	}
1868 #endif
1869 
1870 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1871 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1872 
1873 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1874 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1875 
1876 	if (crt_early_log > ARRAY_SIZE(early_log))
1877 		pr_warning("Early log buffer exceeded (%d), please increase "
1878 			   "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
1879 
1880 	/* the kernel is still in UP mode, so disabling the IRQs is enough */
1881 	local_irq_save(flags);
1882 	kmemleak_early_log = 0;
1883 	if (kmemleak_error) {
1884 		local_irq_restore(flags);
1885 		return;
1886 	} else {
1887 		kmemleak_enabled = 1;
1888 		kmemleak_free_enabled = 1;
1889 	}
1890 	local_irq_restore(flags);
1891 
1892 	/*
1893 	 * This is the point where tracking allocations is safe. Automatic
1894 	 * scanning is started during the late initcall. Add the early logged
1895 	 * callbacks to the kmemleak infrastructure.
1896 	 */
1897 	for (i = 0; i < crt_early_log; i++) {
1898 		struct early_log *log = &early_log[i];
1899 
1900 		switch (log->op_type) {
1901 		case KMEMLEAK_ALLOC:
1902 			early_alloc(log);
1903 			break;
1904 		case KMEMLEAK_ALLOC_PERCPU:
1905 			early_alloc_percpu(log);
1906 			break;
1907 		case KMEMLEAK_FREE:
1908 			kmemleak_free(log->ptr);
1909 			break;
1910 		case KMEMLEAK_FREE_PART:
1911 			kmemleak_free_part(log->ptr, log->size);
1912 			break;
1913 		case KMEMLEAK_FREE_PERCPU:
1914 			kmemleak_free_percpu(log->ptr);
1915 			break;
1916 		case KMEMLEAK_NOT_LEAK:
1917 			kmemleak_not_leak(log->ptr);
1918 			break;
1919 		case KMEMLEAK_IGNORE:
1920 			kmemleak_ignore(log->ptr);
1921 			break;
1922 		case KMEMLEAK_SCAN_AREA:
1923 			kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1924 			break;
1925 		case KMEMLEAK_NO_SCAN:
1926 			kmemleak_no_scan(log->ptr);
1927 			break;
1928 		default:
1929 			kmemleak_warn("Unknown early log operation: %d\n",
1930 				      log->op_type);
1931 		}
1932 
1933 		if (kmemleak_warning) {
1934 			print_log_trace(log);
1935 			kmemleak_warning = 0;
1936 		}
1937 	}
1938 }
1939 
1940 /*
1941  * Late initialization function.
1942  */
1943 static int __init kmemleak_late_init(void)
1944 {
1945 	struct dentry *dentry;
1946 
1947 	kmemleak_initialized = 1;
1948 
1949 	if (kmemleak_error) {
1950 		/*
1951 		 * Some error occurred and kmemleak was disabled. There is a
1952 		 * small chance that kmemleak_disable() was called immediately
1953 		 * after setting kmemleak_initialized and we may end up with
1954 		 * two clean-up threads but serialized by scan_mutex.
1955 		 */
1956 		schedule_work(&cleanup_work);
1957 		return -ENOMEM;
1958 	}
1959 
1960 	dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1961 				     &kmemleak_fops);
1962 	if (!dentry)
1963 		pr_warning("Failed to create the debugfs kmemleak file\n");
1964 	mutex_lock(&scan_mutex);
1965 	start_scan_thread();
1966 	mutex_unlock(&scan_mutex);
1967 
1968 	pr_info("Kernel memory leak detector initialized\n");
1969 
1970 	return 0;
1971 }
1972 late_initcall(kmemleak_late_init);
1973