1 /* 2 * mm/kmemleak.c 3 * 4 * Copyright (C) 2008 ARM Limited 5 * Written by Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 * 21 * For more information on the algorithm and kmemleak usage, please see 22 * Documentation/kmemleak.txt. 23 * 24 * Notes on locking 25 * ---------------- 26 * 27 * The following locks and mutexes are used by kmemleak: 28 * 29 * - kmemleak_lock (rwlock): protects the object_list modifications and 30 * accesses to the object_tree_root. The object_list is the main list 31 * holding the metadata (struct kmemleak_object) for the allocated memory 32 * blocks. The object_tree_root is a priority search tree used to look-up 33 * metadata based on a pointer to the corresponding memory block. The 34 * kmemleak_object structures are added to the object_list and 35 * object_tree_root in the create_object() function called from the 36 * kmemleak_alloc() callback and removed in delete_object() called from the 37 * kmemleak_free() callback 38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to 39 * the metadata (e.g. count) are protected by this lock. Note that some 40 * members of this structure may be protected by other means (atomic or 41 * kmemleak_lock). This lock is also held when scanning the corresponding 42 * memory block to avoid the kernel freeing it via the kmemleak_free() 43 * callback. This is less heavyweight than holding a global lock like 44 * kmemleak_lock during scanning 45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 46 * unreferenced objects at a time. The gray_list contains the objects which 47 * are already referenced or marked as false positives and need to be 48 * scanned. This list is only modified during a scanning episode when the 49 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 50 * Note that the kmemleak_object.use_count is incremented when an object is 51 * added to the gray_list and therefore cannot be freed. This mutex also 52 * prevents multiple users of the "kmemleak" debugfs file together with 53 * modifications to the memory scanning parameters including the scan_thread 54 * pointer 55 * 56 * The kmemleak_object structures have a use_count incremented or decremented 57 * using the get_object()/put_object() functions. When the use_count becomes 58 * 0, this count can no longer be incremented and put_object() schedules the 59 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 60 * function must be protected by rcu_read_lock() to avoid accessing a freed 61 * structure. 62 */ 63 64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 65 66 #include <linux/init.h> 67 #include <linux/kernel.h> 68 #include <linux/list.h> 69 #include <linux/sched.h> 70 #include <linux/jiffies.h> 71 #include <linux/delay.h> 72 #include <linux/module.h> 73 #include <linux/kthread.h> 74 #include <linux/prio_tree.h> 75 #include <linux/gfp.h> 76 #include <linux/fs.h> 77 #include <linux/debugfs.h> 78 #include <linux/seq_file.h> 79 #include <linux/cpumask.h> 80 #include <linux/spinlock.h> 81 #include <linux/mutex.h> 82 #include <linux/rcupdate.h> 83 #include <linux/stacktrace.h> 84 #include <linux/cache.h> 85 #include <linux/percpu.h> 86 #include <linux/hardirq.h> 87 #include <linux/mmzone.h> 88 #include <linux/slab.h> 89 #include <linux/thread_info.h> 90 #include <linux/err.h> 91 #include <linux/uaccess.h> 92 #include <linux/string.h> 93 #include <linux/nodemask.h> 94 #include <linux/mm.h> 95 #include <linux/workqueue.h> 96 #include <linux/crc32.h> 97 98 #include <asm/sections.h> 99 #include <asm/processor.h> 100 #include <asm/atomic.h> 101 102 #include <linux/kmemcheck.h> 103 #include <linux/kmemleak.h> 104 105 /* 106 * Kmemleak configuration and common defines. 107 */ 108 #define MAX_TRACE 16 /* stack trace length */ 109 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 110 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 111 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 112 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 113 114 #define BYTES_PER_POINTER sizeof(void *) 115 116 /* GFP bitmask for kmemleak internal allocations */ 117 #define GFP_KMEMLEAK_MASK (GFP_KERNEL | GFP_ATOMIC) 118 119 /* scanning area inside a memory block */ 120 struct kmemleak_scan_area { 121 struct hlist_node node; 122 unsigned long start; 123 size_t size; 124 }; 125 126 #define KMEMLEAK_GREY 0 127 #define KMEMLEAK_BLACK -1 128 129 /* 130 * Structure holding the metadata for each allocated memory block. 131 * Modifications to such objects should be made while holding the 132 * object->lock. Insertions or deletions from object_list, gray_list or 133 * tree_node are already protected by the corresponding locks or mutex (see 134 * the notes on locking above). These objects are reference-counted 135 * (use_count) and freed using the RCU mechanism. 136 */ 137 struct kmemleak_object { 138 spinlock_t lock; 139 unsigned long flags; /* object status flags */ 140 struct list_head object_list; 141 struct list_head gray_list; 142 struct prio_tree_node tree_node; 143 struct rcu_head rcu; /* object_list lockless traversal */ 144 /* object usage count; object freed when use_count == 0 */ 145 atomic_t use_count; 146 unsigned long pointer; 147 size_t size; 148 /* minimum number of a pointers found before it is considered leak */ 149 int min_count; 150 /* the total number of pointers found pointing to this object */ 151 int count; 152 /* checksum for detecting modified objects */ 153 u32 checksum; 154 /* memory ranges to be scanned inside an object (empty for all) */ 155 struct hlist_head area_list; 156 unsigned long trace[MAX_TRACE]; 157 unsigned int trace_len; 158 unsigned long jiffies; /* creation timestamp */ 159 pid_t pid; /* pid of the current task */ 160 char comm[TASK_COMM_LEN]; /* executable name */ 161 }; 162 163 /* flag representing the memory block allocation status */ 164 #define OBJECT_ALLOCATED (1 << 0) 165 /* flag set after the first reporting of an unreference object */ 166 #define OBJECT_REPORTED (1 << 1) 167 /* flag set to not scan the object */ 168 #define OBJECT_NO_SCAN (1 << 2) 169 170 /* number of bytes to print per line; must be 16 or 32 */ 171 #define HEX_ROW_SIZE 16 172 /* number of bytes to print at a time (1, 2, 4, 8) */ 173 #define HEX_GROUP_SIZE 1 174 /* include ASCII after the hex output */ 175 #define HEX_ASCII 1 176 /* max number of lines to be printed */ 177 #define HEX_MAX_LINES 2 178 179 /* the list of all allocated objects */ 180 static LIST_HEAD(object_list); 181 /* the list of gray-colored objects (see color_gray comment below) */ 182 static LIST_HEAD(gray_list); 183 /* prio search tree for object boundaries */ 184 static struct prio_tree_root object_tree_root; 185 /* rw_lock protecting the access to object_list and prio_tree_root */ 186 static DEFINE_RWLOCK(kmemleak_lock); 187 188 /* allocation caches for kmemleak internal data */ 189 static struct kmem_cache *object_cache; 190 static struct kmem_cache *scan_area_cache; 191 192 /* set if tracing memory operations is enabled */ 193 static atomic_t kmemleak_enabled = ATOMIC_INIT(0); 194 /* set in the late_initcall if there were no errors */ 195 static atomic_t kmemleak_initialized = ATOMIC_INIT(0); 196 /* enables or disables early logging of the memory operations */ 197 static atomic_t kmemleak_early_log = ATOMIC_INIT(1); 198 /* set if a fata kmemleak error has occurred */ 199 static atomic_t kmemleak_error = ATOMIC_INIT(0); 200 201 /* minimum and maximum address that may be valid pointers */ 202 static unsigned long min_addr = ULONG_MAX; 203 static unsigned long max_addr; 204 205 static struct task_struct *scan_thread; 206 /* used to avoid reporting of recently allocated objects */ 207 static unsigned long jiffies_min_age; 208 static unsigned long jiffies_last_scan; 209 /* delay between automatic memory scannings */ 210 static signed long jiffies_scan_wait; 211 /* enables or disables the task stacks scanning */ 212 static int kmemleak_stack_scan = 1; 213 /* protects the memory scanning, parameters and debug/kmemleak file access */ 214 static DEFINE_MUTEX(scan_mutex); 215 216 /* 217 * Early object allocation/freeing logging. Kmemleak is initialized after the 218 * kernel allocator. However, both the kernel allocator and kmemleak may 219 * allocate memory blocks which need to be tracked. Kmemleak defines an 220 * arbitrary buffer to hold the allocation/freeing information before it is 221 * fully initialized. 222 */ 223 224 /* kmemleak operation type for early logging */ 225 enum { 226 KMEMLEAK_ALLOC, 227 KMEMLEAK_FREE, 228 KMEMLEAK_FREE_PART, 229 KMEMLEAK_NOT_LEAK, 230 KMEMLEAK_IGNORE, 231 KMEMLEAK_SCAN_AREA, 232 KMEMLEAK_NO_SCAN 233 }; 234 235 /* 236 * Structure holding the information passed to kmemleak callbacks during the 237 * early logging. 238 */ 239 struct early_log { 240 int op_type; /* kmemleak operation type */ 241 const void *ptr; /* allocated/freed memory block */ 242 size_t size; /* memory block size */ 243 int min_count; /* minimum reference count */ 244 unsigned long trace[MAX_TRACE]; /* stack trace */ 245 unsigned int trace_len; /* stack trace length */ 246 }; 247 248 /* early logging buffer and current position */ 249 static struct early_log 250 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata; 251 static int crt_early_log __initdata; 252 253 static void kmemleak_disable(void); 254 255 /* 256 * Print a warning and dump the stack trace. 257 */ 258 #define kmemleak_warn(x...) do { \ 259 pr_warning(x); \ 260 dump_stack(); \ 261 } while (0) 262 263 /* 264 * Macro invoked when a serious kmemleak condition occured and cannot be 265 * recovered from. Kmemleak will be disabled and further allocation/freeing 266 * tracing no longer available. 267 */ 268 #define kmemleak_stop(x...) do { \ 269 kmemleak_warn(x); \ 270 kmemleak_disable(); \ 271 } while (0) 272 273 /* 274 * Printing of the objects hex dump to the seq file. The number of lines to be 275 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 276 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 277 * with the object->lock held. 278 */ 279 static void hex_dump_object(struct seq_file *seq, 280 struct kmemleak_object *object) 281 { 282 const u8 *ptr = (const u8 *)object->pointer; 283 int i, len, remaining; 284 unsigned char linebuf[HEX_ROW_SIZE * 5]; 285 286 /* limit the number of lines to HEX_MAX_LINES */ 287 remaining = len = 288 min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE)); 289 290 seq_printf(seq, " hex dump (first %d bytes):\n", len); 291 for (i = 0; i < len; i += HEX_ROW_SIZE) { 292 int linelen = min(remaining, HEX_ROW_SIZE); 293 294 remaining -= HEX_ROW_SIZE; 295 hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE, 296 HEX_GROUP_SIZE, linebuf, sizeof(linebuf), 297 HEX_ASCII); 298 seq_printf(seq, " %s\n", linebuf); 299 } 300 } 301 302 /* 303 * Object colors, encoded with count and min_count: 304 * - white - orphan object, not enough references to it (count < min_count) 305 * - gray - not orphan, not marked as false positive (min_count == 0) or 306 * sufficient references to it (count >= min_count) 307 * - black - ignore, it doesn't contain references (e.g. text section) 308 * (min_count == -1). No function defined for this color. 309 * Newly created objects don't have any color assigned (object->count == -1) 310 * before the next memory scan when they become white. 311 */ 312 static bool color_white(const struct kmemleak_object *object) 313 { 314 return object->count != KMEMLEAK_BLACK && 315 object->count < object->min_count; 316 } 317 318 static bool color_gray(const struct kmemleak_object *object) 319 { 320 return object->min_count != KMEMLEAK_BLACK && 321 object->count >= object->min_count; 322 } 323 324 /* 325 * Objects are considered unreferenced only if their color is white, they have 326 * not be deleted and have a minimum age to avoid false positives caused by 327 * pointers temporarily stored in CPU registers. 328 */ 329 static bool unreferenced_object(struct kmemleak_object *object) 330 { 331 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 332 time_before_eq(object->jiffies + jiffies_min_age, 333 jiffies_last_scan); 334 } 335 336 /* 337 * Printing of the unreferenced objects information to the seq file. The 338 * print_unreferenced function must be called with the object->lock held. 339 */ 340 static void print_unreferenced(struct seq_file *seq, 341 struct kmemleak_object *object) 342 { 343 int i; 344 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 345 346 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 347 object->pointer, object->size); 348 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 349 object->comm, object->pid, object->jiffies, 350 msecs_age / 1000, msecs_age % 1000); 351 hex_dump_object(seq, object); 352 seq_printf(seq, " backtrace:\n"); 353 354 for (i = 0; i < object->trace_len; i++) { 355 void *ptr = (void *)object->trace[i]; 356 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); 357 } 358 } 359 360 /* 361 * Print the kmemleak_object information. This function is used mainly for 362 * debugging special cases when kmemleak operations. It must be called with 363 * the object->lock held. 364 */ 365 static void dump_object_info(struct kmemleak_object *object) 366 { 367 struct stack_trace trace; 368 369 trace.nr_entries = object->trace_len; 370 trace.entries = object->trace; 371 372 pr_notice("Object 0x%08lx (size %zu):\n", 373 object->tree_node.start, object->size); 374 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 375 object->comm, object->pid, object->jiffies); 376 pr_notice(" min_count = %d\n", object->min_count); 377 pr_notice(" count = %d\n", object->count); 378 pr_notice(" flags = 0x%lx\n", object->flags); 379 pr_notice(" checksum = %d\n", object->checksum); 380 pr_notice(" backtrace:\n"); 381 print_stack_trace(&trace, 4); 382 } 383 384 /* 385 * Look-up a memory block metadata (kmemleak_object) in the priority search 386 * tree based on a pointer value. If alias is 0, only values pointing to the 387 * beginning of the memory block are allowed. The kmemleak_lock must be held 388 * when calling this function. 389 */ 390 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 391 { 392 struct prio_tree_node *node; 393 struct prio_tree_iter iter; 394 struct kmemleak_object *object; 395 396 prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr); 397 node = prio_tree_next(&iter); 398 if (node) { 399 object = prio_tree_entry(node, struct kmemleak_object, 400 tree_node); 401 if (!alias && object->pointer != ptr) { 402 kmemleak_warn("Found object by alias"); 403 object = NULL; 404 } 405 } else 406 object = NULL; 407 408 return object; 409 } 410 411 /* 412 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 413 * that once an object's use_count reached 0, the RCU freeing was already 414 * registered and the object should no longer be used. This function must be 415 * called under the protection of rcu_read_lock(). 416 */ 417 static int get_object(struct kmemleak_object *object) 418 { 419 return atomic_inc_not_zero(&object->use_count); 420 } 421 422 /* 423 * RCU callback to free a kmemleak_object. 424 */ 425 static void free_object_rcu(struct rcu_head *rcu) 426 { 427 struct hlist_node *elem, *tmp; 428 struct kmemleak_scan_area *area; 429 struct kmemleak_object *object = 430 container_of(rcu, struct kmemleak_object, rcu); 431 432 /* 433 * Once use_count is 0 (guaranteed by put_object), there is no other 434 * code accessing this object, hence no need for locking. 435 */ 436 hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) { 437 hlist_del(elem); 438 kmem_cache_free(scan_area_cache, area); 439 } 440 kmem_cache_free(object_cache, object); 441 } 442 443 /* 444 * Decrement the object use_count. Once the count is 0, free the object using 445 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 446 * delete_object() path, the delayed RCU freeing ensures that there is no 447 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 448 * is also possible. 449 */ 450 static void put_object(struct kmemleak_object *object) 451 { 452 if (!atomic_dec_and_test(&object->use_count)) 453 return; 454 455 /* should only get here after delete_object was called */ 456 WARN_ON(object->flags & OBJECT_ALLOCATED); 457 458 call_rcu(&object->rcu, free_object_rcu); 459 } 460 461 /* 462 * Look up an object in the prio search tree and increase its use_count. 463 */ 464 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 465 { 466 unsigned long flags; 467 struct kmemleak_object *object = NULL; 468 469 rcu_read_lock(); 470 read_lock_irqsave(&kmemleak_lock, flags); 471 if (ptr >= min_addr && ptr < max_addr) 472 object = lookup_object(ptr, alias); 473 read_unlock_irqrestore(&kmemleak_lock, flags); 474 475 /* check whether the object is still available */ 476 if (object && !get_object(object)) 477 object = NULL; 478 rcu_read_unlock(); 479 480 return object; 481 } 482 483 /* 484 * Save stack trace to the given array of MAX_TRACE size. 485 */ 486 static int __save_stack_trace(unsigned long *trace) 487 { 488 struct stack_trace stack_trace; 489 490 stack_trace.max_entries = MAX_TRACE; 491 stack_trace.nr_entries = 0; 492 stack_trace.entries = trace; 493 stack_trace.skip = 2; 494 save_stack_trace(&stack_trace); 495 496 return stack_trace.nr_entries; 497 } 498 499 /* 500 * Create the metadata (struct kmemleak_object) corresponding to an allocated 501 * memory block and add it to the object_list and object_tree_root. 502 */ 503 static struct kmemleak_object *create_object(unsigned long ptr, size_t size, 504 int min_count, gfp_t gfp) 505 { 506 unsigned long flags; 507 struct kmemleak_object *object; 508 struct prio_tree_node *node; 509 510 object = kmem_cache_alloc(object_cache, gfp & GFP_KMEMLEAK_MASK); 511 if (!object) { 512 kmemleak_stop("Cannot allocate a kmemleak_object structure\n"); 513 return NULL; 514 } 515 516 INIT_LIST_HEAD(&object->object_list); 517 INIT_LIST_HEAD(&object->gray_list); 518 INIT_HLIST_HEAD(&object->area_list); 519 spin_lock_init(&object->lock); 520 atomic_set(&object->use_count, 1); 521 object->flags = OBJECT_ALLOCATED; 522 object->pointer = ptr; 523 object->size = size; 524 object->min_count = min_count; 525 object->count = 0; /* white color initially */ 526 object->jiffies = jiffies; 527 object->checksum = 0; 528 529 /* task information */ 530 if (in_irq()) { 531 object->pid = 0; 532 strncpy(object->comm, "hardirq", sizeof(object->comm)); 533 } else if (in_softirq()) { 534 object->pid = 0; 535 strncpy(object->comm, "softirq", sizeof(object->comm)); 536 } else { 537 object->pid = current->pid; 538 /* 539 * There is a small chance of a race with set_task_comm(), 540 * however using get_task_comm() here may cause locking 541 * dependency issues with current->alloc_lock. In the worst 542 * case, the command line is not correct. 543 */ 544 strncpy(object->comm, current->comm, sizeof(object->comm)); 545 } 546 547 /* kernel backtrace */ 548 object->trace_len = __save_stack_trace(object->trace); 549 550 INIT_PRIO_TREE_NODE(&object->tree_node); 551 object->tree_node.start = ptr; 552 object->tree_node.last = ptr + size - 1; 553 554 write_lock_irqsave(&kmemleak_lock, flags); 555 556 min_addr = min(min_addr, ptr); 557 max_addr = max(max_addr, ptr + size); 558 node = prio_tree_insert(&object_tree_root, &object->tree_node); 559 /* 560 * The code calling the kernel does not yet have the pointer to the 561 * memory block to be able to free it. However, we still hold the 562 * kmemleak_lock here in case parts of the kernel started freeing 563 * random memory blocks. 564 */ 565 if (node != &object->tree_node) { 566 kmemleak_stop("Cannot insert 0x%lx into the object search tree " 567 "(already existing)\n", ptr); 568 object = lookup_object(ptr, 1); 569 spin_lock(&object->lock); 570 dump_object_info(object); 571 spin_unlock(&object->lock); 572 573 goto out; 574 } 575 list_add_tail_rcu(&object->object_list, &object_list); 576 out: 577 write_unlock_irqrestore(&kmemleak_lock, flags); 578 return object; 579 } 580 581 /* 582 * Remove the metadata (struct kmemleak_object) for a memory block from the 583 * object_list and object_tree_root and decrement its use_count. 584 */ 585 static void __delete_object(struct kmemleak_object *object) 586 { 587 unsigned long flags; 588 589 write_lock_irqsave(&kmemleak_lock, flags); 590 prio_tree_remove(&object_tree_root, &object->tree_node); 591 list_del_rcu(&object->object_list); 592 write_unlock_irqrestore(&kmemleak_lock, flags); 593 594 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 595 WARN_ON(atomic_read(&object->use_count) < 2); 596 597 /* 598 * Locking here also ensures that the corresponding memory block 599 * cannot be freed when it is being scanned. 600 */ 601 spin_lock_irqsave(&object->lock, flags); 602 object->flags &= ~OBJECT_ALLOCATED; 603 spin_unlock_irqrestore(&object->lock, flags); 604 put_object(object); 605 } 606 607 /* 608 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 609 * delete it. 610 */ 611 static void delete_object_full(unsigned long ptr) 612 { 613 struct kmemleak_object *object; 614 615 object = find_and_get_object(ptr, 0); 616 if (!object) { 617 #ifdef DEBUG 618 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 619 ptr); 620 #endif 621 return; 622 } 623 __delete_object(object); 624 put_object(object); 625 } 626 627 /* 628 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 629 * delete it. If the memory block is partially freed, the function may create 630 * additional metadata for the remaining parts of the block. 631 */ 632 static void delete_object_part(unsigned long ptr, size_t size) 633 { 634 struct kmemleak_object *object; 635 unsigned long start, end; 636 637 object = find_and_get_object(ptr, 1); 638 if (!object) { 639 #ifdef DEBUG 640 kmemleak_warn("Partially freeing unknown object at 0x%08lx " 641 "(size %zu)\n", ptr, size); 642 #endif 643 return; 644 } 645 __delete_object(object); 646 647 /* 648 * Create one or two objects that may result from the memory block 649 * split. Note that partial freeing is only done by free_bootmem() and 650 * this happens before kmemleak_init() is called. The path below is 651 * only executed during early log recording in kmemleak_init(), so 652 * GFP_KERNEL is enough. 653 */ 654 start = object->pointer; 655 end = object->pointer + object->size; 656 if (ptr > start) 657 create_object(start, ptr - start, object->min_count, 658 GFP_KERNEL); 659 if (ptr + size < end) 660 create_object(ptr + size, end - ptr - size, object->min_count, 661 GFP_KERNEL); 662 663 put_object(object); 664 } 665 666 static void __paint_it(struct kmemleak_object *object, int color) 667 { 668 object->min_count = color; 669 if (color == KMEMLEAK_BLACK) 670 object->flags |= OBJECT_NO_SCAN; 671 } 672 673 static void paint_it(struct kmemleak_object *object, int color) 674 { 675 unsigned long flags; 676 677 spin_lock_irqsave(&object->lock, flags); 678 __paint_it(object, color); 679 spin_unlock_irqrestore(&object->lock, flags); 680 } 681 682 static void paint_ptr(unsigned long ptr, int color) 683 { 684 struct kmemleak_object *object; 685 686 object = find_and_get_object(ptr, 0); 687 if (!object) { 688 kmemleak_warn("Trying to color unknown object " 689 "at 0x%08lx as %s\n", ptr, 690 (color == KMEMLEAK_GREY) ? "Grey" : 691 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 692 return; 693 } 694 paint_it(object, color); 695 put_object(object); 696 } 697 698 /* 699 * Make a object permanently as gray-colored so that it can no longer be 700 * reported as a leak. This is used in general to mark a false positive. 701 */ 702 static void make_gray_object(unsigned long ptr) 703 { 704 paint_ptr(ptr, KMEMLEAK_GREY); 705 } 706 707 /* 708 * Mark the object as black-colored so that it is ignored from scans and 709 * reporting. 710 */ 711 static void make_black_object(unsigned long ptr) 712 { 713 paint_ptr(ptr, KMEMLEAK_BLACK); 714 } 715 716 /* 717 * Add a scanning area to the object. If at least one such area is added, 718 * kmemleak will only scan these ranges rather than the whole memory block. 719 */ 720 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 721 { 722 unsigned long flags; 723 struct kmemleak_object *object; 724 struct kmemleak_scan_area *area; 725 726 object = find_and_get_object(ptr, 1); 727 if (!object) { 728 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 729 ptr); 730 return; 731 } 732 733 area = kmem_cache_alloc(scan_area_cache, gfp & GFP_KMEMLEAK_MASK); 734 if (!area) { 735 kmemleak_warn("Cannot allocate a scan area\n"); 736 goto out; 737 } 738 739 spin_lock_irqsave(&object->lock, flags); 740 if (ptr + size > object->pointer + object->size) { 741 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 742 dump_object_info(object); 743 kmem_cache_free(scan_area_cache, area); 744 goto out_unlock; 745 } 746 747 INIT_HLIST_NODE(&area->node); 748 area->start = ptr; 749 area->size = size; 750 751 hlist_add_head(&area->node, &object->area_list); 752 out_unlock: 753 spin_unlock_irqrestore(&object->lock, flags); 754 out: 755 put_object(object); 756 } 757 758 /* 759 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 760 * pointer. Such object will not be scanned by kmemleak but references to it 761 * are searched. 762 */ 763 static void object_no_scan(unsigned long ptr) 764 { 765 unsigned long flags; 766 struct kmemleak_object *object; 767 768 object = find_and_get_object(ptr, 0); 769 if (!object) { 770 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 771 return; 772 } 773 774 spin_lock_irqsave(&object->lock, flags); 775 object->flags |= OBJECT_NO_SCAN; 776 spin_unlock_irqrestore(&object->lock, flags); 777 put_object(object); 778 } 779 780 /* 781 * Log an early kmemleak_* call to the early_log buffer. These calls will be 782 * processed later once kmemleak is fully initialized. 783 */ 784 static void __init log_early(int op_type, const void *ptr, size_t size, 785 int min_count) 786 { 787 unsigned long flags; 788 struct early_log *log; 789 790 if (crt_early_log >= ARRAY_SIZE(early_log)) { 791 pr_warning("Early log buffer exceeded, " 792 "please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n"); 793 kmemleak_disable(); 794 return; 795 } 796 797 /* 798 * There is no need for locking since the kernel is still in UP mode 799 * at this stage. Disabling the IRQs is enough. 800 */ 801 local_irq_save(flags); 802 log = &early_log[crt_early_log]; 803 log->op_type = op_type; 804 log->ptr = ptr; 805 log->size = size; 806 log->min_count = min_count; 807 if (op_type == KMEMLEAK_ALLOC) 808 log->trace_len = __save_stack_trace(log->trace); 809 crt_early_log++; 810 local_irq_restore(flags); 811 } 812 813 /* 814 * Log an early allocated block and populate the stack trace. 815 */ 816 static void early_alloc(struct early_log *log) 817 { 818 struct kmemleak_object *object; 819 unsigned long flags; 820 int i; 821 822 if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr)) 823 return; 824 825 /* 826 * RCU locking needed to ensure object is not freed via put_object(). 827 */ 828 rcu_read_lock(); 829 object = create_object((unsigned long)log->ptr, log->size, 830 log->min_count, GFP_ATOMIC); 831 if (!object) 832 goto out; 833 spin_lock_irqsave(&object->lock, flags); 834 for (i = 0; i < log->trace_len; i++) 835 object->trace[i] = log->trace[i]; 836 object->trace_len = log->trace_len; 837 spin_unlock_irqrestore(&object->lock, flags); 838 out: 839 rcu_read_unlock(); 840 } 841 842 /* 843 * Memory allocation function callback. This function is called from the 844 * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc, 845 * vmalloc etc.). 846 */ 847 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 848 gfp_t gfp) 849 { 850 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 851 852 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 853 create_object((unsigned long)ptr, size, min_count, gfp); 854 else if (atomic_read(&kmemleak_early_log)) 855 log_early(KMEMLEAK_ALLOC, ptr, size, min_count); 856 } 857 EXPORT_SYMBOL_GPL(kmemleak_alloc); 858 859 /* 860 * Memory freeing function callback. This function is called from the kernel 861 * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.). 862 */ 863 void __ref kmemleak_free(const void *ptr) 864 { 865 pr_debug("%s(0x%p)\n", __func__, ptr); 866 867 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 868 delete_object_full((unsigned long)ptr); 869 else if (atomic_read(&kmemleak_early_log)) 870 log_early(KMEMLEAK_FREE, ptr, 0, 0); 871 } 872 EXPORT_SYMBOL_GPL(kmemleak_free); 873 874 /* 875 * Partial memory freeing function callback. This function is usually called 876 * from bootmem allocator when (part of) a memory block is freed. 877 */ 878 void __ref kmemleak_free_part(const void *ptr, size_t size) 879 { 880 pr_debug("%s(0x%p)\n", __func__, ptr); 881 882 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 883 delete_object_part((unsigned long)ptr, size); 884 else if (atomic_read(&kmemleak_early_log)) 885 log_early(KMEMLEAK_FREE_PART, ptr, size, 0); 886 } 887 EXPORT_SYMBOL_GPL(kmemleak_free_part); 888 889 /* 890 * Mark an already allocated memory block as a false positive. This will cause 891 * the block to no longer be reported as leak and always be scanned. 892 */ 893 void __ref kmemleak_not_leak(const void *ptr) 894 { 895 pr_debug("%s(0x%p)\n", __func__, ptr); 896 897 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 898 make_gray_object((unsigned long)ptr); 899 else if (atomic_read(&kmemleak_early_log)) 900 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0); 901 } 902 EXPORT_SYMBOL(kmemleak_not_leak); 903 904 /* 905 * Ignore a memory block. This is usually done when it is known that the 906 * corresponding block is not a leak and does not contain any references to 907 * other allocated memory blocks. 908 */ 909 void __ref kmemleak_ignore(const void *ptr) 910 { 911 pr_debug("%s(0x%p)\n", __func__, ptr); 912 913 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 914 make_black_object((unsigned long)ptr); 915 else if (atomic_read(&kmemleak_early_log)) 916 log_early(KMEMLEAK_IGNORE, ptr, 0, 0); 917 } 918 EXPORT_SYMBOL(kmemleak_ignore); 919 920 /* 921 * Limit the range to be scanned in an allocated memory block. 922 */ 923 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 924 { 925 pr_debug("%s(0x%p)\n", __func__, ptr); 926 927 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 928 add_scan_area((unsigned long)ptr, size, gfp); 929 else if (atomic_read(&kmemleak_early_log)) 930 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0); 931 } 932 EXPORT_SYMBOL(kmemleak_scan_area); 933 934 /* 935 * Inform kmemleak not to scan the given memory block. 936 */ 937 void __ref kmemleak_no_scan(const void *ptr) 938 { 939 pr_debug("%s(0x%p)\n", __func__, ptr); 940 941 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 942 object_no_scan((unsigned long)ptr); 943 else if (atomic_read(&kmemleak_early_log)) 944 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0); 945 } 946 EXPORT_SYMBOL(kmemleak_no_scan); 947 948 /* 949 * Update an object's checksum and return true if it was modified. 950 */ 951 static bool update_checksum(struct kmemleak_object *object) 952 { 953 u32 old_csum = object->checksum; 954 955 if (!kmemcheck_is_obj_initialized(object->pointer, object->size)) 956 return false; 957 958 object->checksum = crc32(0, (void *)object->pointer, object->size); 959 return object->checksum != old_csum; 960 } 961 962 /* 963 * Memory scanning is a long process and it needs to be interruptable. This 964 * function checks whether such interrupt condition occured. 965 */ 966 static int scan_should_stop(void) 967 { 968 if (!atomic_read(&kmemleak_enabled)) 969 return 1; 970 971 /* 972 * This function may be called from either process or kthread context, 973 * hence the need to check for both stop conditions. 974 */ 975 if (current->mm) 976 return signal_pending(current); 977 else 978 return kthread_should_stop(); 979 980 return 0; 981 } 982 983 /* 984 * Scan a memory block (exclusive range) for valid pointers and add those 985 * found to the gray list. 986 */ 987 static void scan_block(void *_start, void *_end, 988 struct kmemleak_object *scanned, int allow_resched) 989 { 990 unsigned long *ptr; 991 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 992 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 993 994 for (ptr = start; ptr < end; ptr++) { 995 struct kmemleak_object *object; 996 unsigned long flags; 997 unsigned long pointer; 998 999 if (allow_resched) 1000 cond_resched(); 1001 if (scan_should_stop()) 1002 break; 1003 1004 /* don't scan uninitialized memory */ 1005 if (!kmemcheck_is_obj_initialized((unsigned long)ptr, 1006 BYTES_PER_POINTER)) 1007 continue; 1008 1009 pointer = *ptr; 1010 1011 object = find_and_get_object(pointer, 1); 1012 if (!object) 1013 continue; 1014 if (object == scanned) { 1015 /* self referenced, ignore */ 1016 put_object(object); 1017 continue; 1018 } 1019 1020 /* 1021 * Avoid the lockdep recursive warning on object->lock being 1022 * previously acquired in scan_object(). These locks are 1023 * enclosed by scan_mutex. 1024 */ 1025 spin_lock_irqsave_nested(&object->lock, flags, 1026 SINGLE_DEPTH_NESTING); 1027 if (!color_white(object)) { 1028 /* non-orphan, ignored or new */ 1029 spin_unlock_irqrestore(&object->lock, flags); 1030 put_object(object); 1031 continue; 1032 } 1033 1034 /* 1035 * Increase the object's reference count (number of pointers 1036 * to the memory block). If this count reaches the required 1037 * minimum, the object's color will become gray and it will be 1038 * added to the gray_list. 1039 */ 1040 object->count++; 1041 if (color_gray(object)) { 1042 list_add_tail(&object->gray_list, &gray_list); 1043 spin_unlock_irqrestore(&object->lock, flags); 1044 continue; 1045 } 1046 1047 spin_unlock_irqrestore(&object->lock, flags); 1048 put_object(object); 1049 } 1050 } 1051 1052 /* 1053 * Scan a memory block corresponding to a kmemleak_object. A condition is 1054 * that object->use_count >= 1. 1055 */ 1056 static void scan_object(struct kmemleak_object *object) 1057 { 1058 struct kmemleak_scan_area *area; 1059 struct hlist_node *elem; 1060 unsigned long flags; 1061 1062 /* 1063 * Once the object->lock is acquired, the corresponding memory block 1064 * cannot be freed (the same lock is acquired in delete_object). 1065 */ 1066 spin_lock_irqsave(&object->lock, flags); 1067 if (object->flags & OBJECT_NO_SCAN) 1068 goto out; 1069 if (!(object->flags & OBJECT_ALLOCATED)) 1070 /* already freed object */ 1071 goto out; 1072 if (hlist_empty(&object->area_list)) { 1073 void *start = (void *)object->pointer; 1074 void *end = (void *)(object->pointer + object->size); 1075 1076 while (start < end && (object->flags & OBJECT_ALLOCATED) && 1077 !(object->flags & OBJECT_NO_SCAN)) { 1078 scan_block(start, min(start + MAX_SCAN_SIZE, end), 1079 object, 0); 1080 start += MAX_SCAN_SIZE; 1081 1082 spin_unlock_irqrestore(&object->lock, flags); 1083 cond_resched(); 1084 spin_lock_irqsave(&object->lock, flags); 1085 } 1086 } else 1087 hlist_for_each_entry(area, elem, &object->area_list, node) 1088 scan_block((void *)area->start, 1089 (void *)(area->start + area->size), 1090 object, 0); 1091 out: 1092 spin_unlock_irqrestore(&object->lock, flags); 1093 } 1094 1095 /* 1096 * Scan the objects already referenced (gray objects). More objects will be 1097 * referenced and, if there are no memory leaks, all the objects are scanned. 1098 */ 1099 static void scan_gray_list(void) 1100 { 1101 struct kmemleak_object *object, *tmp; 1102 1103 /* 1104 * The list traversal is safe for both tail additions and removals 1105 * from inside the loop. The kmemleak objects cannot be freed from 1106 * outside the loop because their use_count was incremented. 1107 */ 1108 object = list_entry(gray_list.next, typeof(*object), gray_list); 1109 while (&object->gray_list != &gray_list) { 1110 cond_resched(); 1111 1112 /* may add new objects to the list */ 1113 if (!scan_should_stop()) 1114 scan_object(object); 1115 1116 tmp = list_entry(object->gray_list.next, typeof(*object), 1117 gray_list); 1118 1119 /* remove the object from the list and release it */ 1120 list_del(&object->gray_list); 1121 put_object(object); 1122 1123 object = tmp; 1124 } 1125 WARN_ON(!list_empty(&gray_list)); 1126 } 1127 1128 /* 1129 * Scan data sections and all the referenced memory blocks allocated via the 1130 * kernel's standard allocators. This function must be called with the 1131 * scan_mutex held. 1132 */ 1133 static void kmemleak_scan(void) 1134 { 1135 unsigned long flags; 1136 struct kmemleak_object *object; 1137 int i; 1138 int new_leaks = 0; 1139 1140 jiffies_last_scan = jiffies; 1141 1142 /* prepare the kmemleak_object's */ 1143 rcu_read_lock(); 1144 list_for_each_entry_rcu(object, &object_list, object_list) { 1145 spin_lock_irqsave(&object->lock, flags); 1146 #ifdef DEBUG 1147 /* 1148 * With a few exceptions there should be a maximum of 1149 * 1 reference to any object at this point. 1150 */ 1151 if (atomic_read(&object->use_count) > 1) { 1152 pr_debug("object->use_count = %d\n", 1153 atomic_read(&object->use_count)); 1154 dump_object_info(object); 1155 } 1156 #endif 1157 /* reset the reference count (whiten the object) */ 1158 object->count = 0; 1159 if (color_gray(object) && get_object(object)) 1160 list_add_tail(&object->gray_list, &gray_list); 1161 1162 spin_unlock_irqrestore(&object->lock, flags); 1163 } 1164 rcu_read_unlock(); 1165 1166 /* data/bss scanning */ 1167 scan_block(_sdata, _edata, NULL, 1); 1168 scan_block(__bss_start, __bss_stop, NULL, 1); 1169 1170 #ifdef CONFIG_SMP 1171 /* per-cpu sections scanning */ 1172 for_each_possible_cpu(i) 1173 scan_block(__per_cpu_start + per_cpu_offset(i), 1174 __per_cpu_end + per_cpu_offset(i), NULL, 1); 1175 #endif 1176 1177 /* 1178 * Struct page scanning for each node. The code below is not yet safe 1179 * with MEMORY_HOTPLUG. 1180 */ 1181 for_each_online_node(i) { 1182 pg_data_t *pgdat = NODE_DATA(i); 1183 unsigned long start_pfn = pgdat->node_start_pfn; 1184 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; 1185 unsigned long pfn; 1186 1187 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1188 struct page *page; 1189 1190 if (!pfn_valid(pfn)) 1191 continue; 1192 page = pfn_to_page(pfn); 1193 /* only scan if page is in use */ 1194 if (page_count(page) == 0) 1195 continue; 1196 scan_block(page, page + 1, NULL, 1); 1197 } 1198 } 1199 1200 /* 1201 * Scanning the task stacks (may introduce false negatives). 1202 */ 1203 if (kmemleak_stack_scan) { 1204 struct task_struct *p, *g; 1205 1206 read_lock(&tasklist_lock); 1207 do_each_thread(g, p) { 1208 scan_block(task_stack_page(p), task_stack_page(p) + 1209 THREAD_SIZE, NULL, 0); 1210 } while_each_thread(g, p); 1211 read_unlock(&tasklist_lock); 1212 } 1213 1214 /* 1215 * Scan the objects already referenced from the sections scanned 1216 * above. 1217 */ 1218 scan_gray_list(); 1219 1220 /* 1221 * Check for new or unreferenced objects modified since the previous 1222 * scan and color them gray until the next scan. 1223 */ 1224 rcu_read_lock(); 1225 list_for_each_entry_rcu(object, &object_list, object_list) { 1226 spin_lock_irqsave(&object->lock, flags); 1227 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1228 && update_checksum(object) && get_object(object)) { 1229 /* color it gray temporarily */ 1230 object->count = object->min_count; 1231 list_add_tail(&object->gray_list, &gray_list); 1232 } 1233 spin_unlock_irqrestore(&object->lock, flags); 1234 } 1235 rcu_read_unlock(); 1236 1237 /* 1238 * Re-scan the gray list for modified unreferenced objects. 1239 */ 1240 scan_gray_list(); 1241 1242 /* 1243 * If scanning was stopped do not report any new unreferenced objects. 1244 */ 1245 if (scan_should_stop()) 1246 return; 1247 1248 /* 1249 * Scanning result reporting. 1250 */ 1251 rcu_read_lock(); 1252 list_for_each_entry_rcu(object, &object_list, object_list) { 1253 spin_lock_irqsave(&object->lock, flags); 1254 if (unreferenced_object(object) && 1255 !(object->flags & OBJECT_REPORTED)) { 1256 object->flags |= OBJECT_REPORTED; 1257 new_leaks++; 1258 } 1259 spin_unlock_irqrestore(&object->lock, flags); 1260 } 1261 rcu_read_unlock(); 1262 1263 if (new_leaks) 1264 pr_info("%d new suspected memory leaks (see " 1265 "/sys/kernel/debug/kmemleak)\n", new_leaks); 1266 1267 } 1268 1269 /* 1270 * Thread function performing automatic memory scanning. Unreferenced objects 1271 * at the end of a memory scan are reported but only the first time. 1272 */ 1273 static int kmemleak_scan_thread(void *arg) 1274 { 1275 static int first_run = 1; 1276 1277 pr_info("Automatic memory scanning thread started\n"); 1278 set_user_nice(current, 10); 1279 1280 /* 1281 * Wait before the first scan to allow the system to fully initialize. 1282 */ 1283 if (first_run) { 1284 first_run = 0; 1285 ssleep(SECS_FIRST_SCAN); 1286 } 1287 1288 while (!kthread_should_stop()) { 1289 signed long timeout = jiffies_scan_wait; 1290 1291 mutex_lock(&scan_mutex); 1292 kmemleak_scan(); 1293 mutex_unlock(&scan_mutex); 1294 1295 /* wait before the next scan */ 1296 while (timeout && !kthread_should_stop()) 1297 timeout = schedule_timeout_interruptible(timeout); 1298 } 1299 1300 pr_info("Automatic memory scanning thread ended\n"); 1301 1302 return 0; 1303 } 1304 1305 /* 1306 * Start the automatic memory scanning thread. This function must be called 1307 * with the scan_mutex held. 1308 */ 1309 static void start_scan_thread(void) 1310 { 1311 if (scan_thread) 1312 return; 1313 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1314 if (IS_ERR(scan_thread)) { 1315 pr_warning("Failed to create the scan thread\n"); 1316 scan_thread = NULL; 1317 } 1318 } 1319 1320 /* 1321 * Stop the automatic memory scanning thread. This function must be called 1322 * with the scan_mutex held. 1323 */ 1324 static void stop_scan_thread(void) 1325 { 1326 if (scan_thread) { 1327 kthread_stop(scan_thread); 1328 scan_thread = NULL; 1329 } 1330 } 1331 1332 /* 1333 * Iterate over the object_list and return the first valid object at or after 1334 * the required position with its use_count incremented. The function triggers 1335 * a memory scanning when the pos argument points to the first position. 1336 */ 1337 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1338 { 1339 struct kmemleak_object *object; 1340 loff_t n = *pos; 1341 int err; 1342 1343 err = mutex_lock_interruptible(&scan_mutex); 1344 if (err < 0) 1345 return ERR_PTR(err); 1346 1347 rcu_read_lock(); 1348 list_for_each_entry_rcu(object, &object_list, object_list) { 1349 if (n-- > 0) 1350 continue; 1351 if (get_object(object)) 1352 goto out; 1353 } 1354 object = NULL; 1355 out: 1356 return object; 1357 } 1358 1359 /* 1360 * Return the next object in the object_list. The function decrements the 1361 * use_count of the previous object and increases that of the next one. 1362 */ 1363 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1364 { 1365 struct kmemleak_object *prev_obj = v; 1366 struct kmemleak_object *next_obj = NULL; 1367 struct list_head *n = &prev_obj->object_list; 1368 1369 ++(*pos); 1370 1371 list_for_each_continue_rcu(n, &object_list) { 1372 next_obj = list_entry(n, struct kmemleak_object, object_list); 1373 if (get_object(next_obj)) 1374 break; 1375 } 1376 1377 put_object(prev_obj); 1378 return next_obj; 1379 } 1380 1381 /* 1382 * Decrement the use_count of the last object required, if any. 1383 */ 1384 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1385 { 1386 if (!IS_ERR(v)) { 1387 /* 1388 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1389 * waiting was interrupted, so only release it if !IS_ERR. 1390 */ 1391 rcu_read_unlock(); 1392 mutex_unlock(&scan_mutex); 1393 if (v) 1394 put_object(v); 1395 } 1396 } 1397 1398 /* 1399 * Print the information for an unreferenced object to the seq file. 1400 */ 1401 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1402 { 1403 struct kmemleak_object *object = v; 1404 unsigned long flags; 1405 1406 spin_lock_irqsave(&object->lock, flags); 1407 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1408 print_unreferenced(seq, object); 1409 spin_unlock_irqrestore(&object->lock, flags); 1410 return 0; 1411 } 1412 1413 static const struct seq_operations kmemleak_seq_ops = { 1414 .start = kmemleak_seq_start, 1415 .next = kmemleak_seq_next, 1416 .stop = kmemleak_seq_stop, 1417 .show = kmemleak_seq_show, 1418 }; 1419 1420 static int kmemleak_open(struct inode *inode, struct file *file) 1421 { 1422 if (!atomic_read(&kmemleak_enabled)) 1423 return -EBUSY; 1424 1425 return seq_open(file, &kmemleak_seq_ops); 1426 } 1427 1428 static int kmemleak_release(struct inode *inode, struct file *file) 1429 { 1430 return seq_release(inode, file); 1431 } 1432 1433 static int dump_str_object_info(const char *str) 1434 { 1435 unsigned long flags; 1436 struct kmemleak_object *object; 1437 unsigned long addr; 1438 1439 addr= simple_strtoul(str, NULL, 0); 1440 object = find_and_get_object(addr, 0); 1441 if (!object) { 1442 pr_info("Unknown object at 0x%08lx\n", addr); 1443 return -EINVAL; 1444 } 1445 1446 spin_lock_irqsave(&object->lock, flags); 1447 dump_object_info(object); 1448 spin_unlock_irqrestore(&object->lock, flags); 1449 1450 put_object(object); 1451 return 0; 1452 } 1453 1454 /* 1455 * We use grey instead of black to ensure we can do future scans on the same 1456 * objects. If we did not do future scans these black objects could 1457 * potentially contain references to newly allocated objects in the future and 1458 * we'd end up with false positives. 1459 */ 1460 static void kmemleak_clear(void) 1461 { 1462 struct kmemleak_object *object; 1463 unsigned long flags; 1464 1465 rcu_read_lock(); 1466 list_for_each_entry_rcu(object, &object_list, object_list) { 1467 spin_lock_irqsave(&object->lock, flags); 1468 if ((object->flags & OBJECT_REPORTED) && 1469 unreferenced_object(object)) 1470 __paint_it(object, KMEMLEAK_GREY); 1471 spin_unlock_irqrestore(&object->lock, flags); 1472 } 1473 rcu_read_unlock(); 1474 } 1475 1476 /* 1477 * File write operation to configure kmemleak at run-time. The following 1478 * commands can be written to the /sys/kernel/debug/kmemleak file: 1479 * off - disable kmemleak (irreversible) 1480 * stack=on - enable the task stacks scanning 1481 * stack=off - disable the tasks stacks scanning 1482 * scan=on - start the automatic memory scanning thread 1483 * scan=off - stop the automatic memory scanning thread 1484 * scan=... - set the automatic memory scanning period in seconds (0 to 1485 * disable it) 1486 * scan - trigger a memory scan 1487 * clear - mark all current reported unreferenced kmemleak objects as 1488 * grey to ignore printing them 1489 * dump=... - dump information about the object found at the given address 1490 */ 1491 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1492 size_t size, loff_t *ppos) 1493 { 1494 char buf[64]; 1495 int buf_size; 1496 int ret; 1497 1498 buf_size = min(size, (sizeof(buf) - 1)); 1499 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1500 return -EFAULT; 1501 buf[buf_size] = 0; 1502 1503 ret = mutex_lock_interruptible(&scan_mutex); 1504 if (ret < 0) 1505 return ret; 1506 1507 if (strncmp(buf, "off", 3) == 0) 1508 kmemleak_disable(); 1509 else if (strncmp(buf, "stack=on", 8) == 0) 1510 kmemleak_stack_scan = 1; 1511 else if (strncmp(buf, "stack=off", 9) == 0) 1512 kmemleak_stack_scan = 0; 1513 else if (strncmp(buf, "scan=on", 7) == 0) 1514 start_scan_thread(); 1515 else if (strncmp(buf, "scan=off", 8) == 0) 1516 stop_scan_thread(); 1517 else if (strncmp(buf, "scan=", 5) == 0) { 1518 unsigned long secs; 1519 1520 ret = strict_strtoul(buf + 5, 0, &secs); 1521 if (ret < 0) 1522 goto out; 1523 stop_scan_thread(); 1524 if (secs) { 1525 jiffies_scan_wait = msecs_to_jiffies(secs * 1000); 1526 start_scan_thread(); 1527 } 1528 } else if (strncmp(buf, "scan", 4) == 0) 1529 kmemleak_scan(); 1530 else if (strncmp(buf, "clear", 5) == 0) 1531 kmemleak_clear(); 1532 else if (strncmp(buf, "dump=", 5) == 0) 1533 ret = dump_str_object_info(buf + 5); 1534 else 1535 ret = -EINVAL; 1536 1537 out: 1538 mutex_unlock(&scan_mutex); 1539 if (ret < 0) 1540 return ret; 1541 1542 /* ignore the rest of the buffer, only one command at a time */ 1543 *ppos += size; 1544 return size; 1545 } 1546 1547 static const struct file_operations kmemleak_fops = { 1548 .owner = THIS_MODULE, 1549 .open = kmemleak_open, 1550 .read = seq_read, 1551 .write = kmemleak_write, 1552 .llseek = seq_lseek, 1553 .release = kmemleak_release, 1554 }; 1555 1556 /* 1557 * Perform the freeing of the kmemleak internal objects after waiting for any 1558 * current memory scan to complete. 1559 */ 1560 static void kmemleak_do_cleanup(struct work_struct *work) 1561 { 1562 struct kmemleak_object *object; 1563 1564 mutex_lock(&scan_mutex); 1565 stop_scan_thread(); 1566 1567 rcu_read_lock(); 1568 list_for_each_entry_rcu(object, &object_list, object_list) 1569 delete_object_full(object->pointer); 1570 rcu_read_unlock(); 1571 mutex_unlock(&scan_mutex); 1572 } 1573 1574 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 1575 1576 /* 1577 * Disable kmemleak. No memory allocation/freeing will be traced once this 1578 * function is called. Disabling kmemleak is an irreversible operation. 1579 */ 1580 static void kmemleak_disable(void) 1581 { 1582 /* atomically check whether it was already invoked */ 1583 if (atomic_cmpxchg(&kmemleak_error, 0, 1)) 1584 return; 1585 1586 /* stop any memory operation tracing */ 1587 atomic_set(&kmemleak_early_log, 0); 1588 atomic_set(&kmemleak_enabled, 0); 1589 1590 /* check whether it is too early for a kernel thread */ 1591 if (atomic_read(&kmemleak_initialized)) 1592 schedule_work(&cleanup_work); 1593 1594 pr_info("Kernel memory leak detector disabled\n"); 1595 } 1596 1597 /* 1598 * Allow boot-time kmemleak disabling (enabled by default). 1599 */ 1600 static int kmemleak_boot_config(char *str) 1601 { 1602 if (!str) 1603 return -EINVAL; 1604 if (strcmp(str, "off") == 0) 1605 kmemleak_disable(); 1606 else if (strcmp(str, "on") != 0) 1607 return -EINVAL; 1608 return 0; 1609 } 1610 early_param("kmemleak", kmemleak_boot_config); 1611 1612 /* 1613 * Kmemleak initialization. 1614 */ 1615 void __init kmemleak_init(void) 1616 { 1617 int i; 1618 unsigned long flags; 1619 1620 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 1621 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 1622 1623 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 1624 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 1625 INIT_PRIO_TREE_ROOT(&object_tree_root); 1626 1627 /* the kernel is still in UP mode, so disabling the IRQs is enough */ 1628 local_irq_save(flags); 1629 if (!atomic_read(&kmemleak_error)) { 1630 atomic_set(&kmemleak_enabled, 1); 1631 atomic_set(&kmemleak_early_log, 0); 1632 } 1633 local_irq_restore(flags); 1634 1635 /* 1636 * This is the point where tracking allocations is safe. Automatic 1637 * scanning is started during the late initcall. Add the early logged 1638 * callbacks to the kmemleak infrastructure. 1639 */ 1640 for (i = 0; i < crt_early_log; i++) { 1641 struct early_log *log = &early_log[i]; 1642 1643 switch (log->op_type) { 1644 case KMEMLEAK_ALLOC: 1645 early_alloc(log); 1646 break; 1647 case KMEMLEAK_FREE: 1648 kmemleak_free(log->ptr); 1649 break; 1650 case KMEMLEAK_FREE_PART: 1651 kmemleak_free_part(log->ptr, log->size); 1652 break; 1653 case KMEMLEAK_NOT_LEAK: 1654 kmemleak_not_leak(log->ptr); 1655 break; 1656 case KMEMLEAK_IGNORE: 1657 kmemleak_ignore(log->ptr); 1658 break; 1659 case KMEMLEAK_SCAN_AREA: 1660 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL); 1661 break; 1662 case KMEMLEAK_NO_SCAN: 1663 kmemleak_no_scan(log->ptr); 1664 break; 1665 default: 1666 WARN_ON(1); 1667 } 1668 } 1669 } 1670 1671 /* 1672 * Late initialization function. 1673 */ 1674 static int __init kmemleak_late_init(void) 1675 { 1676 struct dentry *dentry; 1677 1678 atomic_set(&kmemleak_initialized, 1); 1679 1680 if (atomic_read(&kmemleak_error)) { 1681 /* 1682 * Some error occured and kmemleak was disabled. There is a 1683 * small chance that kmemleak_disable() was called immediately 1684 * after setting kmemleak_initialized and we may end up with 1685 * two clean-up threads but serialized by scan_mutex. 1686 */ 1687 schedule_work(&cleanup_work); 1688 return -ENOMEM; 1689 } 1690 1691 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL, 1692 &kmemleak_fops); 1693 if (!dentry) 1694 pr_warning("Failed to create the debugfs kmemleak file\n"); 1695 mutex_lock(&scan_mutex); 1696 start_scan_thread(); 1697 mutex_unlock(&scan_mutex); 1698 1699 pr_info("Kernel memory leak detector initialized\n"); 1700 1701 return 0; 1702 } 1703 late_initcall(kmemleak_late_init); 1704