xref: /openbmc/linux/mm/kmemleak.c (revision b48dbb99)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <catalin.marinas@arm.com>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
17  *   accesses to the object_tree_root. The object_list is the main list
18  *   holding the metadata (struct kmemleak_object) for the allocated memory
19  *   blocks. The object_tree_root is a red black tree used to look-up
20  *   metadata based on a pointer to the corresponding memory block.  The
21  *   kmemleak_object structures are added to the object_list and
22  *   object_tree_root in the create_object() function called from the
23  *   kmemleak_alloc() callback and removed in delete_object() called from the
24  *   kmemleak_free() callback
25  * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
26  *   Accesses to the metadata (e.g. count) are protected by this lock. Note
27  *   that some members of this structure may be protected by other means
28  *   (atomic or kmemleak_lock). This lock is also held when scanning the
29  *   corresponding memory block to avoid the kernel freeing it via the
30  *   kmemleak_free() callback. This is less heavyweight than holding a global
31  *   lock like kmemleak_lock during scanning.
32  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
33  *   unreferenced objects at a time. The gray_list contains the objects which
34  *   are already referenced or marked as false positives and need to be
35  *   scanned. This list is only modified during a scanning episode when the
36  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
37  *   Note that the kmemleak_object.use_count is incremented when an object is
38  *   added to the gray_list and therefore cannot be freed. This mutex also
39  *   prevents multiple users of the "kmemleak" debugfs file together with
40  *   modifications to the memory scanning parameters including the scan_thread
41  *   pointer
42  *
43  * Locks and mutexes are acquired/nested in the following order:
44  *
45  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
46  *
47  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
48  * regions.
49  *
50  * The kmemleak_object structures have a use_count incremented or decremented
51  * using the get_object()/put_object() functions. When the use_count becomes
52  * 0, this count can no longer be incremented and put_object() schedules the
53  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
54  * function must be protected by rcu_read_lock() to avoid accessing a freed
55  * structure.
56  */
57 
58 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59 
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/sched/signal.h>
64 #include <linux/sched/task.h>
65 #include <linux/sched/task_stack.h>
66 #include <linux/jiffies.h>
67 #include <linux/delay.h>
68 #include <linux/export.h>
69 #include <linux/kthread.h>
70 #include <linux/rbtree.h>
71 #include <linux/fs.h>
72 #include <linux/debugfs.h>
73 #include <linux/seq_file.h>
74 #include <linux/cpumask.h>
75 #include <linux/spinlock.h>
76 #include <linux/module.h>
77 #include <linux/mutex.h>
78 #include <linux/rcupdate.h>
79 #include <linux/stacktrace.h>
80 #include <linux/cache.h>
81 #include <linux/percpu.h>
82 #include <linux/memblock.h>
83 #include <linux/pfn.h>
84 #include <linux/mmzone.h>
85 #include <linux/slab.h>
86 #include <linux/thread_info.h>
87 #include <linux/err.h>
88 #include <linux/uaccess.h>
89 #include <linux/string.h>
90 #include <linux/nodemask.h>
91 #include <linux/mm.h>
92 #include <linux/workqueue.h>
93 #include <linux/crc32.h>
94 
95 #include <asm/sections.h>
96 #include <asm/processor.h>
97 #include <linux/atomic.h>
98 
99 #include <linux/kasan.h>
100 #include <linux/kfence.h>
101 #include <linux/kmemleak.h>
102 #include <linux/memory_hotplug.h>
103 
104 /*
105  * Kmemleak configuration and common defines.
106  */
107 #define MAX_TRACE		16	/* stack trace length */
108 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
109 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
110 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
111 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
112 
113 #define BYTES_PER_POINTER	sizeof(void *)
114 
115 /* GFP bitmask for kmemleak internal allocations */
116 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
117 					   __GFP_NOLOCKDEP)) | \
118 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
119 				 __GFP_NOWARN)
120 
121 /* scanning area inside a memory block */
122 struct kmemleak_scan_area {
123 	struct hlist_node node;
124 	unsigned long start;
125 	size_t size;
126 };
127 
128 #define KMEMLEAK_GREY	0
129 #define KMEMLEAK_BLACK	-1
130 
131 /*
132  * Structure holding the metadata for each allocated memory block.
133  * Modifications to such objects should be made while holding the
134  * object->lock. Insertions or deletions from object_list, gray_list or
135  * rb_node are already protected by the corresponding locks or mutex (see
136  * the notes on locking above). These objects are reference-counted
137  * (use_count) and freed using the RCU mechanism.
138  */
139 struct kmemleak_object {
140 	raw_spinlock_t lock;
141 	unsigned int flags;		/* object status flags */
142 	struct list_head object_list;
143 	struct list_head gray_list;
144 	struct rb_node rb_node;
145 	struct rcu_head rcu;		/* object_list lockless traversal */
146 	/* object usage count; object freed when use_count == 0 */
147 	atomic_t use_count;
148 	unsigned long pointer;
149 	size_t size;
150 	/* pass surplus references to this pointer */
151 	unsigned long excess_ref;
152 	/* minimum number of a pointers found before it is considered leak */
153 	int min_count;
154 	/* the total number of pointers found pointing to this object */
155 	int count;
156 	/* checksum for detecting modified objects */
157 	u32 checksum;
158 	/* memory ranges to be scanned inside an object (empty for all) */
159 	struct hlist_head area_list;
160 	unsigned long trace[MAX_TRACE];
161 	unsigned int trace_len;
162 	unsigned long jiffies;		/* creation timestamp */
163 	pid_t pid;			/* pid of the current task */
164 	char comm[TASK_COMM_LEN];	/* executable name */
165 };
166 
167 /* flag representing the memory block allocation status */
168 #define OBJECT_ALLOCATED	(1 << 0)
169 /* flag set after the first reporting of an unreference object */
170 #define OBJECT_REPORTED		(1 << 1)
171 /* flag set to not scan the object */
172 #define OBJECT_NO_SCAN		(1 << 2)
173 /* flag set to fully scan the object when scan_area allocation failed */
174 #define OBJECT_FULL_SCAN	(1 << 3)
175 
176 #define HEX_PREFIX		"    "
177 /* number of bytes to print per line; must be 16 or 32 */
178 #define HEX_ROW_SIZE		16
179 /* number of bytes to print at a time (1, 2, 4, 8) */
180 #define HEX_GROUP_SIZE		1
181 /* include ASCII after the hex output */
182 #define HEX_ASCII		1
183 /* max number of lines to be printed */
184 #define HEX_MAX_LINES		2
185 
186 /* the list of all allocated objects */
187 static LIST_HEAD(object_list);
188 /* the list of gray-colored objects (see color_gray comment below) */
189 static LIST_HEAD(gray_list);
190 /* memory pool allocation */
191 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
192 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
193 static LIST_HEAD(mem_pool_free_list);
194 /* search tree for object boundaries */
195 static struct rb_root object_tree_root = RB_ROOT;
196 /* protecting the access to object_list and object_tree_root */
197 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
198 
199 /* allocation caches for kmemleak internal data */
200 static struct kmem_cache *object_cache;
201 static struct kmem_cache *scan_area_cache;
202 
203 /* set if tracing memory operations is enabled */
204 static int kmemleak_enabled = 1;
205 /* same as above but only for the kmemleak_free() callback */
206 static int kmemleak_free_enabled = 1;
207 /* set in the late_initcall if there were no errors */
208 static int kmemleak_initialized;
209 /* set if a kmemleak warning was issued */
210 static int kmemleak_warning;
211 /* set if a fatal kmemleak error has occurred */
212 static int kmemleak_error;
213 
214 /* minimum and maximum address that may be valid pointers */
215 static unsigned long min_addr = ULONG_MAX;
216 static unsigned long max_addr;
217 
218 static struct task_struct *scan_thread;
219 /* used to avoid reporting of recently allocated objects */
220 static unsigned long jiffies_min_age;
221 static unsigned long jiffies_last_scan;
222 /* delay between automatic memory scannings */
223 static unsigned long jiffies_scan_wait;
224 /* enables or disables the task stacks scanning */
225 static int kmemleak_stack_scan = 1;
226 /* protects the memory scanning, parameters and debug/kmemleak file access */
227 static DEFINE_MUTEX(scan_mutex);
228 /* setting kmemleak=on, will set this var, skipping the disable */
229 static int kmemleak_skip_disable;
230 /* If there are leaks that can be reported */
231 static bool kmemleak_found_leaks;
232 
233 static bool kmemleak_verbose;
234 module_param_named(verbose, kmemleak_verbose, bool, 0600);
235 
236 static void kmemleak_disable(void);
237 
238 /*
239  * Print a warning and dump the stack trace.
240  */
241 #define kmemleak_warn(x...)	do {		\
242 	pr_warn(x);				\
243 	dump_stack();				\
244 	kmemleak_warning = 1;			\
245 } while (0)
246 
247 /*
248  * Macro invoked when a serious kmemleak condition occurred and cannot be
249  * recovered from. Kmemleak will be disabled and further allocation/freeing
250  * tracing no longer available.
251  */
252 #define kmemleak_stop(x...)	do {	\
253 	kmemleak_warn(x);		\
254 	kmemleak_disable();		\
255 } while (0)
256 
257 #define warn_or_seq_printf(seq, fmt, ...)	do {	\
258 	if (seq)					\
259 		seq_printf(seq, fmt, ##__VA_ARGS__);	\
260 	else						\
261 		pr_warn(fmt, ##__VA_ARGS__);		\
262 } while (0)
263 
264 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
265 				 int rowsize, int groupsize, const void *buf,
266 				 size_t len, bool ascii)
267 {
268 	if (seq)
269 		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
270 			     buf, len, ascii);
271 	else
272 		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
273 			       rowsize, groupsize, buf, len, ascii);
274 }
275 
276 /*
277  * Printing of the objects hex dump to the seq file. The number of lines to be
278  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
279  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
280  * with the object->lock held.
281  */
282 static void hex_dump_object(struct seq_file *seq,
283 			    struct kmemleak_object *object)
284 {
285 	const u8 *ptr = (const u8 *)object->pointer;
286 	size_t len;
287 
288 	/* limit the number of lines to HEX_MAX_LINES */
289 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
290 
291 	warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
292 	kasan_disable_current();
293 	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
294 			     HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
295 	kasan_enable_current();
296 }
297 
298 /*
299  * Object colors, encoded with count and min_count:
300  * - white - orphan object, not enough references to it (count < min_count)
301  * - gray  - not orphan, not marked as false positive (min_count == 0) or
302  *		sufficient references to it (count >= min_count)
303  * - black - ignore, it doesn't contain references (e.g. text section)
304  *		(min_count == -1). No function defined for this color.
305  * Newly created objects don't have any color assigned (object->count == -1)
306  * before the next memory scan when they become white.
307  */
308 static bool color_white(const struct kmemleak_object *object)
309 {
310 	return object->count != KMEMLEAK_BLACK &&
311 		object->count < object->min_count;
312 }
313 
314 static bool color_gray(const struct kmemleak_object *object)
315 {
316 	return object->min_count != KMEMLEAK_BLACK &&
317 		object->count >= object->min_count;
318 }
319 
320 /*
321  * Objects are considered unreferenced only if their color is white, they have
322  * not be deleted and have a minimum age to avoid false positives caused by
323  * pointers temporarily stored in CPU registers.
324  */
325 static bool unreferenced_object(struct kmemleak_object *object)
326 {
327 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
328 		time_before_eq(object->jiffies + jiffies_min_age,
329 			       jiffies_last_scan);
330 }
331 
332 /*
333  * Printing of the unreferenced objects information to the seq file. The
334  * print_unreferenced function must be called with the object->lock held.
335  */
336 static void print_unreferenced(struct seq_file *seq,
337 			       struct kmemleak_object *object)
338 {
339 	int i;
340 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
341 
342 	warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
343 		   object->pointer, object->size);
344 	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
345 		   object->comm, object->pid, object->jiffies,
346 		   msecs_age / 1000, msecs_age % 1000);
347 	hex_dump_object(seq, object);
348 	warn_or_seq_printf(seq, "  backtrace:\n");
349 
350 	for (i = 0; i < object->trace_len; i++) {
351 		void *ptr = (void *)object->trace[i];
352 		warn_or_seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
353 	}
354 }
355 
356 /*
357  * Print the kmemleak_object information. This function is used mainly for
358  * debugging special cases when kmemleak operations. It must be called with
359  * the object->lock held.
360  */
361 static void dump_object_info(struct kmemleak_object *object)
362 {
363 	pr_notice("Object 0x%08lx (size %zu):\n",
364 		  object->pointer, object->size);
365 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
366 		  object->comm, object->pid, object->jiffies);
367 	pr_notice("  min_count = %d\n", object->min_count);
368 	pr_notice("  count = %d\n", object->count);
369 	pr_notice("  flags = 0x%x\n", object->flags);
370 	pr_notice("  checksum = %u\n", object->checksum);
371 	pr_notice("  backtrace:\n");
372 	stack_trace_print(object->trace, object->trace_len, 4);
373 }
374 
375 /*
376  * Look-up a memory block metadata (kmemleak_object) in the object search
377  * tree based on a pointer value. If alias is 0, only values pointing to the
378  * beginning of the memory block are allowed. The kmemleak_lock must be held
379  * when calling this function.
380  */
381 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
382 {
383 	struct rb_node *rb = object_tree_root.rb_node;
384 	unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
385 
386 	while (rb) {
387 		struct kmemleak_object *object;
388 		unsigned long untagged_objp;
389 
390 		object = rb_entry(rb, struct kmemleak_object, rb_node);
391 		untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
392 
393 		if (untagged_ptr < untagged_objp)
394 			rb = object->rb_node.rb_left;
395 		else if (untagged_objp + object->size <= untagged_ptr)
396 			rb = object->rb_node.rb_right;
397 		else if (untagged_objp == untagged_ptr || alias)
398 			return object;
399 		else {
400 			kmemleak_warn("Found object by alias at 0x%08lx\n",
401 				      ptr);
402 			dump_object_info(object);
403 			break;
404 		}
405 	}
406 	return NULL;
407 }
408 
409 /*
410  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
411  * that once an object's use_count reached 0, the RCU freeing was already
412  * registered and the object should no longer be used. This function must be
413  * called under the protection of rcu_read_lock().
414  */
415 static int get_object(struct kmemleak_object *object)
416 {
417 	return atomic_inc_not_zero(&object->use_count);
418 }
419 
420 /*
421  * Memory pool allocation and freeing. kmemleak_lock must not be held.
422  */
423 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
424 {
425 	unsigned long flags;
426 	struct kmemleak_object *object;
427 
428 	/* try the slab allocator first */
429 	if (object_cache) {
430 		object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
431 		if (object)
432 			return object;
433 	}
434 
435 	/* slab allocation failed, try the memory pool */
436 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
437 	object = list_first_entry_or_null(&mem_pool_free_list,
438 					  typeof(*object), object_list);
439 	if (object)
440 		list_del(&object->object_list);
441 	else if (mem_pool_free_count)
442 		object = &mem_pool[--mem_pool_free_count];
443 	else
444 		pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
445 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
446 
447 	return object;
448 }
449 
450 /*
451  * Return the object to either the slab allocator or the memory pool.
452  */
453 static void mem_pool_free(struct kmemleak_object *object)
454 {
455 	unsigned long flags;
456 
457 	if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
458 		kmem_cache_free(object_cache, object);
459 		return;
460 	}
461 
462 	/* add the object to the memory pool free list */
463 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
464 	list_add(&object->object_list, &mem_pool_free_list);
465 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
466 }
467 
468 /*
469  * RCU callback to free a kmemleak_object.
470  */
471 static void free_object_rcu(struct rcu_head *rcu)
472 {
473 	struct hlist_node *tmp;
474 	struct kmemleak_scan_area *area;
475 	struct kmemleak_object *object =
476 		container_of(rcu, struct kmemleak_object, rcu);
477 
478 	/*
479 	 * Once use_count is 0 (guaranteed by put_object), there is no other
480 	 * code accessing this object, hence no need for locking.
481 	 */
482 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
483 		hlist_del(&area->node);
484 		kmem_cache_free(scan_area_cache, area);
485 	}
486 	mem_pool_free(object);
487 }
488 
489 /*
490  * Decrement the object use_count. Once the count is 0, free the object using
491  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
492  * delete_object() path, the delayed RCU freeing ensures that there is no
493  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
494  * is also possible.
495  */
496 static void put_object(struct kmemleak_object *object)
497 {
498 	if (!atomic_dec_and_test(&object->use_count))
499 		return;
500 
501 	/* should only get here after delete_object was called */
502 	WARN_ON(object->flags & OBJECT_ALLOCATED);
503 
504 	/*
505 	 * It may be too early for the RCU callbacks, however, there is no
506 	 * concurrent object_list traversal when !object_cache and all objects
507 	 * came from the memory pool. Free the object directly.
508 	 */
509 	if (object_cache)
510 		call_rcu(&object->rcu, free_object_rcu);
511 	else
512 		free_object_rcu(&object->rcu);
513 }
514 
515 /*
516  * Look up an object in the object search tree and increase its use_count.
517  */
518 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
519 {
520 	unsigned long flags;
521 	struct kmemleak_object *object;
522 
523 	rcu_read_lock();
524 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
525 	object = lookup_object(ptr, alias);
526 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
527 
528 	/* check whether the object is still available */
529 	if (object && !get_object(object))
530 		object = NULL;
531 	rcu_read_unlock();
532 
533 	return object;
534 }
535 
536 /*
537  * Remove an object from the object_tree_root and object_list. Must be called
538  * with the kmemleak_lock held _if_ kmemleak is still enabled.
539  */
540 static void __remove_object(struct kmemleak_object *object)
541 {
542 	rb_erase(&object->rb_node, &object_tree_root);
543 	list_del_rcu(&object->object_list);
544 }
545 
546 /*
547  * Look up an object in the object search tree and remove it from both
548  * object_tree_root and object_list. The returned object's use_count should be
549  * at least 1, as initially set by create_object().
550  */
551 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
552 {
553 	unsigned long flags;
554 	struct kmemleak_object *object;
555 
556 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
557 	object = lookup_object(ptr, alias);
558 	if (object)
559 		__remove_object(object);
560 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
561 
562 	return object;
563 }
564 
565 /*
566  * Save stack trace to the given array of MAX_TRACE size.
567  */
568 static int __save_stack_trace(unsigned long *trace)
569 {
570 	return stack_trace_save(trace, MAX_TRACE, 2);
571 }
572 
573 /*
574  * Create the metadata (struct kmemleak_object) corresponding to an allocated
575  * memory block and add it to the object_list and object_tree_root.
576  */
577 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
578 					     int min_count, gfp_t gfp)
579 {
580 	unsigned long flags;
581 	struct kmemleak_object *object, *parent;
582 	struct rb_node **link, *rb_parent;
583 	unsigned long untagged_ptr;
584 	unsigned long untagged_objp;
585 
586 	object = mem_pool_alloc(gfp);
587 	if (!object) {
588 		pr_warn("Cannot allocate a kmemleak_object structure\n");
589 		kmemleak_disable();
590 		return NULL;
591 	}
592 
593 	INIT_LIST_HEAD(&object->object_list);
594 	INIT_LIST_HEAD(&object->gray_list);
595 	INIT_HLIST_HEAD(&object->area_list);
596 	raw_spin_lock_init(&object->lock);
597 	atomic_set(&object->use_count, 1);
598 	object->flags = OBJECT_ALLOCATED;
599 	object->pointer = ptr;
600 	object->size = kfence_ksize((void *)ptr) ?: size;
601 	object->excess_ref = 0;
602 	object->min_count = min_count;
603 	object->count = 0;			/* white color initially */
604 	object->jiffies = jiffies;
605 	object->checksum = 0;
606 
607 	/* task information */
608 	if (in_hardirq()) {
609 		object->pid = 0;
610 		strncpy(object->comm, "hardirq", sizeof(object->comm));
611 	} else if (in_serving_softirq()) {
612 		object->pid = 0;
613 		strncpy(object->comm, "softirq", sizeof(object->comm));
614 	} else {
615 		object->pid = current->pid;
616 		/*
617 		 * There is a small chance of a race with set_task_comm(),
618 		 * however using get_task_comm() here may cause locking
619 		 * dependency issues with current->alloc_lock. In the worst
620 		 * case, the command line is not correct.
621 		 */
622 		strncpy(object->comm, current->comm, sizeof(object->comm));
623 	}
624 
625 	/* kernel backtrace */
626 	object->trace_len = __save_stack_trace(object->trace);
627 
628 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
629 
630 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
631 	min_addr = min(min_addr, untagged_ptr);
632 	max_addr = max(max_addr, untagged_ptr + size);
633 	link = &object_tree_root.rb_node;
634 	rb_parent = NULL;
635 	while (*link) {
636 		rb_parent = *link;
637 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
638 		untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
639 		if (untagged_ptr + size <= untagged_objp)
640 			link = &parent->rb_node.rb_left;
641 		else if (untagged_objp + parent->size <= untagged_ptr)
642 			link = &parent->rb_node.rb_right;
643 		else {
644 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
645 				      ptr);
646 			/*
647 			 * No need for parent->lock here since "parent" cannot
648 			 * be freed while the kmemleak_lock is held.
649 			 */
650 			dump_object_info(parent);
651 			kmem_cache_free(object_cache, object);
652 			object = NULL;
653 			goto out;
654 		}
655 	}
656 	rb_link_node(&object->rb_node, rb_parent, link);
657 	rb_insert_color(&object->rb_node, &object_tree_root);
658 
659 	list_add_tail_rcu(&object->object_list, &object_list);
660 out:
661 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
662 	return object;
663 }
664 
665 /*
666  * Mark the object as not allocated and schedule RCU freeing via put_object().
667  */
668 static void __delete_object(struct kmemleak_object *object)
669 {
670 	unsigned long flags;
671 
672 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
673 	WARN_ON(atomic_read(&object->use_count) < 1);
674 
675 	/*
676 	 * Locking here also ensures that the corresponding memory block
677 	 * cannot be freed when it is being scanned.
678 	 */
679 	raw_spin_lock_irqsave(&object->lock, flags);
680 	object->flags &= ~OBJECT_ALLOCATED;
681 	raw_spin_unlock_irqrestore(&object->lock, flags);
682 	put_object(object);
683 }
684 
685 /*
686  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
687  * delete it.
688  */
689 static void delete_object_full(unsigned long ptr)
690 {
691 	struct kmemleak_object *object;
692 
693 	object = find_and_remove_object(ptr, 0);
694 	if (!object) {
695 #ifdef DEBUG
696 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
697 			      ptr);
698 #endif
699 		return;
700 	}
701 	__delete_object(object);
702 }
703 
704 /*
705  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
706  * delete it. If the memory block is partially freed, the function may create
707  * additional metadata for the remaining parts of the block.
708  */
709 static void delete_object_part(unsigned long ptr, size_t size)
710 {
711 	struct kmemleak_object *object;
712 	unsigned long start, end;
713 
714 	object = find_and_remove_object(ptr, 1);
715 	if (!object) {
716 #ifdef DEBUG
717 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
718 			      ptr, size);
719 #endif
720 		return;
721 	}
722 
723 	/*
724 	 * Create one or two objects that may result from the memory block
725 	 * split. Note that partial freeing is only done by free_bootmem() and
726 	 * this happens before kmemleak_init() is called.
727 	 */
728 	start = object->pointer;
729 	end = object->pointer + object->size;
730 	if (ptr > start)
731 		create_object(start, ptr - start, object->min_count,
732 			      GFP_KERNEL);
733 	if (ptr + size < end)
734 		create_object(ptr + size, end - ptr - size, object->min_count,
735 			      GFP_KERNEL);
736 
737 	__delete_object(object);
738 }
739 
740 static void __paint_it(struct kmemleak_object *object, int color)
741 {
742 	object->min_count = color;
743 	if (color == KMEMLEAK_BLACK)
744 		object->flags |= OBJECT_NO_SCAN;
745 }
746 
747 static void paint_it(struct kmemleak_object *object, int color)
748 {
749 	unsigned long flags;
750 
751 	raw_spin_lock_irqsave(&object->lock, flags);
752 	__paint_it(object, color);
753 	raw_spin_unlock_irqrestore(&object->lock, flags);
754 }
755 
756 static void paint_ptr(unsigned long ptr, int color)
757 {
758 	struct kmemleak_object *object;
759 
760 	object = find_and_get_object(ptr, 0);
761 	if (!object) {
762 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
763 			      ptr,
764 			      (color == KMEMLEAK_GREY) ? "Grey" :
765 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
766 		return;
767 	}
768 	paint_it(object, color);
769 	put_object(object);
770 }
771 
772 /*
773  * Mark an object permanently as gray-colored so that it can no longer be
774  * reported as a leak. This is used in general to mark a false positive.
775  */
776 static void make_gray_object(unsigned long ptr)
777 {
778 	paint_ptr(ptr, KMEMLEAK_GREY);
779 }
780 
781 /*
782  * Mark the object as black-colored so that it is ignored from scans and
783  * reporting.
784  */
785 static void make_black_object(unsigned long ptr)
786 {
787 	paint_ptr(ptr, KMEMLEAK_BLACK);
788 }
789 
790 /*
791  * Add a scanning area to the object. If at least one such area is added,
792  * kmemleak will only scan these ranges rather than the whole memory block.
793  */
794 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
795 {
796 	unsigned long flags;
797 	struct kmemleak_object *object;
798 	struct kmemleak_scan_area *area = NULL;
799 	unsigned long untagged_ptr;
800 	unsigned long untagged_objp;
801 
802 	object = find_and_get_object(ptr, 1);
803 	if (!object) {
804 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
805 			      ptr);
806 		return;
807 	}
808 
809 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
810 	untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
811 
812 	if (scan_area_cache)
813 		area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
814 
815 	raw_spin_lock_irqsave(&object->lock, flags);
816 	if (!area) {
817 		pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
818 		/* mark the object for full scan to avoid false positives */
819 		object->flags |= OBJECT_FULL_SCAN;
820 		goto out_unlock;
821 	}
822 	if (size == SIZE_MAX) {
823 		size = untagged_objp + object->size - untagged_ptr;
824 	} else if (untagged_ptr + size > untagged_objp + object->size) {
825 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
826 		dump_object_info(object);
827 		kmem_cache_free(scan_area_cache, area);
828 		goto out_unlock;
829 	}
830 
831 	INIT_HLIST_NODE(&area->node);
832 	area->start = ptr;
833 	area->size = size;
834 
835 	hlist_add_head(&area->node, &object->area_list);
836 out_unlock:
837 	raw_spin_unlock_irqrestore(&object->lock, flags);
838 	put_object(object);
839 }
840 
841 /*
842  * Any surplus references (object already gray) to 'ptr' are passed to
843  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
844  * vm_struct may be used as an alternative reference to the vmalloc'ed object
845  * (see free_thread_stack()).
846  */
847 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
848 {
849 	unsigned long flags;
850 	struct kmemleak_object *object;
851 
852 	object = find_and_get_object(ptr, 0);
853 	if (!object) {
854 		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
855 			      ptr);
856 		return;
857 	}
858 
859 	raw_spin_lock_irqsave(&object->lock, flags);
860 	object->excess_ref = excess_ref;
861 	raw_spin_unlock_irqrestore(&object->lock, flags);
862 	put_object(object);
863 }
864 
865 /*
866  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
867  * pointer. Such object will not be scanned by kmemleak but references to it
868  * are searched.
869  */
870 static void object_no_scan(unsigned long ptr)
871 {
872 	unsigned long flags;
873 	struct kmemleak_object *object;
874 
875 	object = find_and_get_object(ptr, 0);
876 	if (!object) {
877 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
878 		return;
879 	}
880 
881 	raw_spin_lock_irqsave(&object->lock, flags);
882 	object->flags |= OBJECT_NO_SCAN;
883 	raw_spin_unlock_irqrestore(&object->lock, flags);
884 	put_object(object);
885 }
886 
887 /**
888  * kmemleak_alloc - register a newly allocated object
889  * @ptr:	pointer to beginning of the object
890  * @size:	size of the object
891  * @min_count:	minimum number of references to this object. If during memory
892  *		scanning a number of references less than @min_count is found,
893  *		the object is reported as a memory leak. If @min_count is 0,
894  *		the object is never reported as a leak. If @min_count is -1,
895  *		the object is ignored (not scanned and not reported as a leak)
896  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
897  *
898  * This function is called from the kernel allocators when a new object
899  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
900  */
901 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
902 			  gfp_t gfp)
903 {
904 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
905 
906 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
907 		create_object((unsigned long)ptr, size, min_count, gfp);
908 }
909 EXPORT_SYMBOL_GPL(kmemleak_alloc);
910 
911 /**
912  * kmemleak_alloc_percpu - register a newly allocated __percpu object
913  * @ptr:	__percpu pointer to beginning of the object
914  * @size:	size of the object
915  * @gfp:	flags used for kmemleak internal memory allocations
916  *
917  * This function is called from the kernel percpu allocator when a new object
918  * (memory block) is allocated (alloc_percpu).
919  */
920 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
921 				 gfp_t gfp)
922 {
923 	unsigned int cpu;
924 
925 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
926 
927 	/*
928 	 * Percpu allocations are only scanned and not reported as leaks
929 	 * (min_count is set to 0).
930 	 */
931 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
932 		for_each_possible_cpu(cpu)
933 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
934 				      size, 0, gfp);
935 }
936 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
937 
938 /**
939  * kmemleak_vmalloc - register a newly vmalloc'ed object
940  * @area:	pointer to vm_struct
941  * @size:	size of the object
942  * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
943  *
944  * This function is called from the vmalloc() kernel allocator when a new
945  * object (memory block) is allocated.
946  */
947 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
948 {
949 	pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
950 
951 	/*
952 	 * A min_count = 2 is needed because vm_struct contains a reference to
953 	 * the virtual address of the vmalloc'ed block.
954 	 */
955 	if (kmemleak_enabled) {
956 		create_object((unsigned long)area->addr, size, 2, gfp);
957 		object_set_excess_ref((unsigned long)area,
958 				      (unsigned long)area->addr);
959 	}
960 }
961 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
962 
963 /**
964  * kmemleak_free - unregister a previously registered object
965  * @ptr:	pointer to beginning of the object
966  *
967  * This function is called from the kernel allocators when an object (memory
968  * block) is freed (kmem_cache_free, kfree, vfree etc.).
969  */
970 void __ref kmemleak_free(const void *ptr)
971 {
972 	pr_debug("%s(0x%p)\n", __func__, ptr);
973 
974 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
975 		delete_object_full((unsigned long)ptr);
976 }
977 EXPORT_SYMBOL_GPL(kmemleak_free);
978 
979 /**
980  * kmemleak_free_part - partially unregister a previously registered object
981  * @ptr:	pointer to the beginning or inside the object. This also
982  *		represents the start of the range to be freed
983  * @size:	size to be unregistered
984  *
985  * This function is called when only a part of a memory block is freed
986  * (usually from the bootmem allocator).
987  */
988 void __ref kmemleak_free_part(const void *ptr, size_t size)
989 {
990 	pr_debug("%s(0x%p)\n", __func__, ptr);
991 
992 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
993 		delete_object_part((unsigned long)ptr, size);
994 }
995 EXPORT_SYMBOL_GPL(kmemleak_free_part);
996 
997 /**
998  * kmemleak_free_percpu - unregister a previously registered __percpu object
999  * @ptr:	__percpu pointer to beginning of the object
1000  *
1001  * This function is called from the kernel percpu allocator when an object
1002  * (memory block) is freed (free_percpu).
1003  */
1004 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1005 {
1006 	unsigned int cpu;
1007 
1008 	pr_debug("%s(0x%p)\n", __func__, ptr);
1009 
1010 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1011 		for_each_possible_cpu(cpu)
1012 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
1013 								      cpu));
1014 }
1015 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1016 
1017 /**
1018  * kmemleak_update_trace - update object allocation stack trace
1019  * @ptr:	pointer to beginning of the object
1020  *
1021  * Override the object allocation stack trace for cases where the actual
1022  * allocation place is not always useful.
1023  */
1024 void __ref kmemleak_update_trace(const void *ptr)
1025 {
1026 	struct kmemleak_object *object;
1027 	unsigned long flags;
1028 
1029 	pr_debug("%s(0x%p)\n", __func__, ptr);
1030 
1031 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1032 		return;
1033 
1034 	object = find_and_get_object((unsigned long)ptr, 1);
1035 	if (!object) {
1036 #ifdef DEBUG
1037 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1038 			      ptr);
1039 #endif
1040 		return;
1041 	}
1042 
1043 	raw_spin_lock_irqsave(&object->lock, flags);
1044 	object->trace_len = __save_stack_trace(object->trace);
1045 	raw_spin_unlock_irqrestore(&object->lock, flags);
1046 
1047 	put_object(object);
1048 }
1049 EXPORT_SYMBOL(kmemleak_update_trace);
1050 
1051 /**
1052  * kmemleak_not_leak - mark an allocated object as false positive
1053  * @ptr:	pointer to beginning of the object
1054  *
1055  * Calling this function on an object will cause the memory block to no longer
1056  * be reported as leak and always be scanned.
1057  */
1058 void __ref kmemleak_not_leak(const void *ptr)
1059 {
1060 	pr_debug("%s(0x%p)\n", __func__, ptr);
1061 
1062 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1063 		make_gray_object((unsigned long)ptr);
1064 }
1065 EXPORT_SYMBOL(kmemleak_not_leak);
1066 
1067 /**
1068  * kmemleak_ignore - ignore an allocated object
1069  * @ptr:	pointer to beginning of the object
1070  *
1071  * Calling this function on an object will cause the memory block to be
1072  * ignored (not scanned and not reported as a leak). This is usually done when
1073  * it is known that the corresponding block is not a leak and does not contain
1074  * any references to other allocated memory blocks.
1075  */
1076 void __ref kmemleak_ignore(const void *ptr)
1077 {
1078 	pr_debug("%s(0x%p)\n", __func__, ptr);
1079 
1080 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1081 		make_black_object((unsigned long)ptr);
1082 }
1083 EXPORT_SYMBOL(kmemleak_ignore);
1084 
1085 /**
1086  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1087  * @ptr:	pointer to beginning or inside the object. This also
1088  *		represents the start of the scan area
1089  * @size:	size of the scan area
1090  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1091  *
1092  * This function is used when it is known that only certain parts of an object
1093  * contain references to other objects. Kmemleak will only scan these areas
1094  * reducing the number false negatives.
1095  */
1096 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1097 {
1098 	pr_debug("%s(0x%p)\n", __func__, ptr);
1099 
1100 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1101 		add_scan_area((unsigned long)ptr, size, gfp);
1102 }
1103 EXPORT_SYMBOL(kmemleak_scan_area);
1104 
1105 /**
1106  * kmemleak_no_scan - do not scan an allocated object
1107  * @ptr:	pointer to beginning of the object
1108  *
1109  * This function notifies kmemleak not to scan the given memory block. Useful
1110  * in situations where it is known that the given object does not contain any
1111  * references to other objects. Kmemleak will not scan such objects reducing
1112  * the number of false negatives.
1113  */
1114 void __ref kmemleak_no_scan(const void *ptr)
1115 {
1116 	pr_debug("%s(0x%p)\n", __func__, ptr);
1117 
1118 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1119 		object_no_scan((unsigned long)ptr);
1120 }
1121 EXPORT_SYMBOL(kmemleak_no_scan);
1122 
1123 /**
1124  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1125  *			 address argument
1126  * @phys:	physical address of the object
1127  * @size:	size of the object
1128  * @min_count:	minimum number of references to this object.
1129  *              See kmemleak_alloc()
1130  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1131  */
1132 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1133 			       gfp_t gfp)
1134 {
1135 	if (PHYS_PFN(phys) >= min_low_pfn && PHYS_PFN(phys) < max_low_pfn)
1136 		kmemleak_alloc(__va(phys), size, min_count, gfp);
1137 }
1138 EXPORT_SYMBOL(kmemleak_alloc_phys);
1139 
1140 /**
1141  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1142  *			     physical address argument
1143  * @phys:	physical address if the beginning or inside an object. This
1144  *		also represents the start of the range to be freed
1145  * @size:	size to be unregistered
1146  */
1147 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1148 {
1149 	if (PHYS_PFN(phys) >= min_low_pfn && PHYS_PFN(phys) < max_low_pfn)
1150 		kmemleak_free_part(__va(phys), size);
1151 }
1152 EXPORT_SYMBOL(kmemleak_free_part_phys);
1153 
1154 /**
1155  * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1156  *			    address argument
1157  * @phys:	physical address of the object
1158  */
1159 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1160 {
1161 	if (PHYS_PFN(phys) >= min_low_pfn && PHYS_PFN(phys) < max_low_pfn)
1162 		kmemleak_not_leak(__va(phys));
1163 }
1164 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1165 
1166 /**
1167  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1168  *			  address argument
1169  * @phys:	physical address of the object
1170  */
1171 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1172 {
1173 	if (PHYS_PFN(phys) >= min_low_pfn && PHYS_PFN(phys) < max_low_pfn)
1174 		kmemleak_ignore(__va(phys));
1175 }
1176 EXPORT_SYMBOL(kmemleak_ignore_phys);
1177 
1178 /*
1179  * Update an object's checksum and return true if it was modified.
1180  */
1181 static bool update_checksum(struct kmemleak_object *object)
1182 {
1183 	u32 old_csum = object->checksum;
1184 
1185 	kasan_disable_current();
1186 	kcsan_disable_current();
1187 	object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1188 	kasan_enable_current();
1189 	kcsan_enable_current();
1190 
1191 	return object->checksum != old_csum;
1192 }
1193 
1194 /*
1195  * Update an object's references. object->lock must be held by the caller.
1196  */
1197 static void update_refs(struct kmemleak_object *object)
1198 {
1199 	if (!color_white(object)) {
1200 		/* non-orphan, ignored or new */
1201 		return;
1202 	}
1203 
1204 	/*
1205 	 * Increase the object's reference count (number of pointers to the
1206 	 * memory block). If this count reaches the required minimum, the
1207 	 * object's color will become gray and it will be added to the
1208 	 * gray_list.
1209 	 */
1210 	object->count++;
1211 	if (color_gray(object)) {
1212 		/* put_object() called when removing from gray_list */
1213 		WARN_ON(!get_object(object));
1214 		list_add_tail(&object->gray_list, &gray_list);
1215 	}
1216 }
1217 
1218 /*
1219  * Memory scanning is a long process and it needs to be interruptible. This
1220  * function checks whether such interrupt condition occurred.
1221  */
1222 static int scan_should_stop(void)
1223 {
1224 	if (!kmemleak_enabled)
1225 		return 1;
1226 
1227 	/*
1228 	 * This function may be called from either process or kthread context,
1229 	 * hence the need to check for both stop conditions.
1230 	 */
1231 	if (current->mm)
1232 		return signal_pending(current);
1233 	else
1234 		return kthread_should_stop();
1235 
1236 	return 0;
1237 }
1238 
1239 /*
1240  * Scan a memory block (exclusive range) for valid pointers and add those
1241  * found to the gray list.
1242  */
1243 static void scan_block(void *_start, void *_end,
1244 		       struct kmemleak_object *scanned)
1245 {
1246 	unsigned long *ptr;
1247 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1248 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1249 	unsigned long flags;
1250 	unsigned long untagged_ptr;
1251 
1252 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
1253 	for (ptr = start; ptr < end; ptr++) {
1254 		struct kmemleak_object *object;
1255 		unsigned long pointer;
1256 		unsigned long excess_ref;
1257 
1258 		if (scan_should_stop())
1259 			break;
1260 
1261 		kasan_disable_current();
1262 		pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1263 		kasan_enable_current();
1264 
1265 		untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1266 		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1267 			continue;
1268 
1269 		/*
1270 		 * No need for get_object() here since we hold kmemleak_lock.
1271 		 * object->use_count cannot be dropped to 0 while the object
1272 		 * is still present in object_tree_root and object_list
1273 		 * (with updates protected by kmemleak_lock).
1274 		 */
1275 		object = lookup_object(pointer, 1);
1276 		if (!object)
1277 			continue;
1278 		if (object == scanned)
1279 			/* self referenced, ignore */
1280 			continue;
1281 
1282 		/*
1283 		 * Avoid the lockdep recursive warning on object->lock being
1284 		 * previously acquired in scan_object(). These locks are
1285 		 * enclosed by scan_mutex.
1286 		 */
1287 		raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1288 		/* only pass surplus references (object already gray) */
1289 		if (color_gray(object)) {
1290 			excess_ref = object->excess_ref;
1291 			/* no need for update_refs() if object already gray */
1292 		} else {
1293 			excess_ref = 0;
1294 			update_refs(object);
1295 		}
1296 		raw_spin_unlock(&object->lock);
1297 
1298 		if (excess_ref) {
1299 			object = lookup_object(excess_ref, 0);
1300 			if (!object)
1301 				continue;
1302 			if (object == scanned)
1303 				/* circular reference, ignore */
1304 				continue;
1305 			raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1306 			update_refs(object);
1307 			raw_spin_unlock(&object->lock);
1308 		}
1309 	}
1310 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1311 }
1312 
1313 /*
1314  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1315  */
1316 #ifdef CONFIG_SMP
1317 static void scan_large_block(void *start, void *end)
1318 {
1319 	void *next;
1320 
1321 	while (start < end) {
1322 		next = min(start + MAX_SCAN_SIZE, end);
1323 		scan_block(start, next, NULL);
1324 		start = next;
1325 		cond_resched();
1326 	}
1327 }
1328 #endif
1329 
1330 /*
1331  * Scan a memory block corresponding to a kmemleak_object. A condition is
1332  * that object->use_count >= 1.
1333  */
1334 static void scan_object(struct kmemleak_object *object)
1335 {
1336 	struct kmemleak_scan_area *area;
1337 	unsigned long flags;
1338 
1339 	/*
1340 	 * Once the object->lock is acquired, the corresponding memory block
1341 	 * cannot be freed (the same lock is acquired in delete_object).
1342 	 */
1343 	raw_spin_lock_irqsave(&object->lock, flags);
1344 	if (object->flags & OBJECT_NO_SCAN)
1345 		goto out;
1346 	if (!(object->flags & OBJECT_ALLOCATED))
1347 		/* already freed object */
1348 		goto out;
1349 	if (hlist_empty(&object->area_list) ||
1350 	    object->flags & OBJECT_FULL_SCAN) {
1351 		void *start = (void *)object->pointer;
1352 		void *end = (void *)(object->pointer + object->size);
1353 		void *next;
1354 
1355 		do {
1356 			next = min(start + MAX_SCAN_SIZE, end);
1357 			scan_block(start, next, object);
1358 
1359 			start = next;
1360 			if (start >= end)
1361 				break;
1362 
1363 			raw_spin_unlock_irqrestore(&object->lock, flags);
1364 			cond_resched();
1365 			raw_spin_lock_irqsave(&object->lock, flags);
1366 		} while (object->flags & OBJECT_ALLOCATED);
1367 	} else
1368 		hlist_for_each_entry(area, &object->area_list, node)
1369 			scan_block((void *)area->start,
1370 				   (void *)(area->start + area->size),
1371 				   object);
1372 out:
1373 	raw_spin_unlock_irqrestore(&object->lock, flags);
1374 }
1375 
1376 /*
1377  * Scan the objects already referenced (gray objects). More objects will be
1378  * referenced and, if there are no memory leaks, all the objects are scanned.
1379  */
1380 static void scan_gray_list(void)
1381 {
1382 	struct kmemleak_object *object, *tmp;
1383 
1384 	/*
1385 	 * The list traversal is safe for both tail additions and removals
1386 	 * from inside the loop. The kmemleak objects cannot be freed from
1387 	 * outside the loop because their use_count was incremented.
1388 	 */
1389 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1390 	while (&object->gray_list != &gray_list) {
1391 		cond_resched();
1392 
1393 		/* may add new objects to the list */
1394 		if (!scan_should_stop())
1395 			scan_object(object);
1396 
1397 		tmp = list_entry(object->gray_list.next, typeof(*object),
1398 				 gray_list);
1399 
1400 		/* remove the object from the list and release it */
1401 		list_del(&object->gray_list);
1402 		put_object(object);
1403 
1404 		object = tmp;
1405 	}
1406 	WARN_ON(!list_empty(&gray_list));
1407 }
1408 
1409 /*
1410  * Scan data sections and all the referenced memory blocks allocated via the
1411  * kernel's standard allocators. This function must be called with the
1412  * scan_mutex held.
1413  */
1414 static void kmemleak_scan(void)
1415 {
1416 	unsigned long flags;
1417 	struct kmemleak_object *object;
1418 	struct zone *zone;
1419 	int __maybe_unused i;
1420 	int new_leaks = 0;
1421 
1422 	jiffies_last_scan = jiffies;
1423 
1424 	/* prepare the kmemleak_object's */
1425 	rcu_read_lock();
1426 	list_for_each_entry_rcu(object, &object_list, object_list) {
1427 		raw_spin_lock_irqsave(&object->lock, flags);
1428 #ifdef DEBUG
1429 		/*
1430 		 * With a few exceptions there should be a maximum of
1431 		 * 1 reference to any object at this point.
1432 		 */
1433 		if (atomic_read(&object->use_count) > 1) {
1434 			pr_debug("object->use_count = %d\n",
1435 				 atomic_read(&object->use_count));
1436 			dump_object_info(object);
1437 		}
1438 #endif
1439 		/* reset the reference count (whiten the object) */
1440 		object->count = 0;
1441 		if (color_gray(object) && get_object(object))
1442 			list_add_tail(&object->gray_list, &gray_list);
1443 
1444 		raw_spin_unlock_irqrestore(&object->lock, flags);
1445 	}
1446 	rcu_read_unlock();
1447 
1448 #ifdef CONFIG_SMP
1449 	/* per-cpu sections scanning */
1450 	for_each_possible_cpu(i)
1451 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1452 				 __per_cpu_end + per_cpu_offset(i));
1453 #endif
1454 
1455 	/*
1456 	 * Struct page scanning for each node.
1457 	 */
1458 	get_online_mems();
1459 	for_each_populated_zone(zone) {
1460 		unsigned long start_pfn = zone->zone_start_pfn;
1461 		unsigned long end_pfn = zone_end_pfn(zone);
1462 		unsigned long pfn;
1463 
1464 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1465 			struct page *page = pfn_to_online_page(pfn);
1466 
1467 			if (!page)
1468 				continue;
1469 
1470 			/* only scan pages belonging to this zone */
1471 			if (page_zone(page) != zone)
1472 				continue;
1473 			/* only scan if page is in use */
1474 			if (page_count(page) == 0)
1475 				continue;
1476 			scan_block(page, page + 1, NULL);
1477 			if (!(pfn & 63))
1478 				cond_resched();
1479 		}
1480 	}
1481 	put_online_mems();
1482 
1483 	/*
1484 	 * Scanning the task stacks (may introduce false negatives).
1485 	 */
1486 	if (kmemleak_stack_scan) {
1487 		struct task_struct *p, *g;
1488 
1489 		rcu_read_lock();
1490 		for_each_process_thread(g, p) {
1491 			void *stack = try_get_task_stack(p);
1492 			if (stack) {
1493 				scan_block(stack, stack + THREAD_SIZE, NULL);
1494 				put_task_stack(p);
1495 			}
1496 		}
1497 		rcu_read_unlock();
1498 	}
1499 
1500 	/*
1501 	 * Scan the objects already referenced from the sections scanned
1502 	 * above.
1503 	 */
1504 	scan_gray_list();
1505 
1506 	/*
1507 	 * Check for new or unreferenced objects modified since the previous
1508 	 * scan and color them gray until the next scan.
1509 	 */
1510 	rcu_read_lock();
1511 	list_for_each_entry_rcu(object, &object_list, object_list) {
1512 		raw_spin_lock_irqsave(&object->lock, flags);
1513 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1514 		    && update_checksum(object) && get_object(object)) {
1515 			/* color it gray temporarily */
1516 			object->count = object->min_count;
1517 			list_add_tail(&object->gray_list, &gray_list);
1518 		}
1519 		raw_spin_unlock_irqrestore(&object->lock, flags);
1520 	}
1521 	rcu_read_unlock();
1522 
1523 	/*
1524 	 * Re-scan the gray list for modified unreferenced objects.
1525 	 */
1526 	scan_gray_list();
1527 
1528 	/*
1529 	 * If scanning was stopped do not report any new unreferenced objects.
1530 	 */
1531 	if (scan_should_stop())
1532 		return;
1533 
1534 	/*
1535 	 * Scanning result reporting.
1536 	 */
1537 	rcu_read_lock();
1538 	list_for_each_entry_rcu(object, &object_list, object_list) {
1539 		raw_spin_lock_irqsave(&object->lock, flags);
1540 		if (unreferenced_object(object) &&
1541 		    !(object->flags & OBJECT_REPORTED)) {
1542 			object->flags |= OBJECT_REPORTED;
1543 
1544 			if (kmemleak_verbose)
1545 				print_unreferenced(NULL, object);
1546 
1547 			new_leaks++;
1548 		}
1549 		raw_spin_unlock_irqrestore(&object->lock, flags);
1550 	}
1551 	rcu_read_unlock();
1552 
1553 	if (new_leaks) {
1554 		kmemleak_found_leaks = true;
1555 
1556 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1557 			new_leaks);
1558 	}
1559 
1560 }
1561 
1562 /*
1563  * Thread function performing automatic memory scanning. Unreferenced objects
1564  * at the end of a memory scan are reported but only the first time.
1565  */
1566 static int kmemleak_scan_thread(void *arg)
1567 {
1568 	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1569 
1570 	pr_info("Automatic memory scanning thread started\n");
1571 	set_user_nice(current, 10);
1572 
1573 	/*
1574 	 * Wait before the first scan to allow the system to fully initialize.
1575 	 */
1576 	if (first_run) {
1577 		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1578 		first_run = 0;
1579 		while (timeout && !kthread_should_stop())
1580 			timeout = schedule_timeout_interruptible(timeout);
1581 	}
1582 
1583 	while (!kthread_should_stop()) {
1584 		signed long timeout = READ_ONCE(jiffies_scan_wait);
1585 
1586 		mutex_lock(&scan_mutex);
1587 		kmemleak_scan();
1588 		mutex_unlock(&scan_mutex);
1589 
1590 		/* wait before the next scan */
1591 		while (timeout && !kthread_should_stop())
1592 			timeout = schedule_timeout_interruptible(timeout);
1593 	}
1594 
1595 	pr_info("Automatic memory scanning thread ended\n");
1596 
1597 	return 0;
1598 }
1599 
1600 /*
1601  * Start the automatic memory scanning thread. This function must be called
1602  * with the scan_mutex held.
1603  */
1604 static void start_scan_thread(void)
1605 {
1606 	if (scan_thread)
1607 		return;
1608 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1609 	if (IS_ERR(scan_thread)) {
1610 		pr_warn("Failed to create the scan thread\n");
1611 		scan_thread = NULL;
1612 	}
1613 }
1614 
1615 /*
1616  * Stop the automatic memory scanning thread.
1617  */
1618 static void stop_scan_thread(void)
1619 {
1620 	if (scan_thread) {
1621 		kthread_stop(scan_thread);
1622 		scan_thread = NULL;
1623 	}
1624 }
1625 
1626 /*
1627  * Iterate over the object_list and return the first valid object at or after
1628  * the required position with its use_count incremented. The function triggers
1629  * a memory scanning when the pos argument points to the first position.
1630  */
1631 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1632 {
1633 	struct kmemleak_object *object;
1634 	loff_t n = *pos;
1635 	int err;
1636 
1637 	err = mutex_lock_interruptible(&scan_mutex);
1638 	if (err < 0)
1639 		return ERR_PTR(err);
1640 
1641 	rcu_read_lock();
1642 	list_for_each_entry_rcu(object, &object_list, object_list) {
1643 		if (n-- > 0)
1644 			continue;
1645 		if (get_object(object))
1646 			goto out;
1647 	}
1648 	object = NULL;
1649 out:
1650 	return object;
1651 }
1652 
1653 /*
1654  * Return the next object in the object_list. The function decrements the
1655  * use_count of the previous object and increases that of the next one.
1656  */
1657 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1658 {
1659 	struct kmemleak_object *prev_obj = v;
1660 	struct kmemleak_object *next_obj = NULL;
1661 	struct kmemleak_object *obj = prev_obj;
1662 
1663 	++(*pos);
1664 
1665 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1666 		if (get_object(obj)) {
1667 			next_obj = obj;
1668 			break;
1669 		}
1670 	}
1671 
1672 	put_object(prev_obj);
1673 	return next_obj;
1674 }
1675 
1676 /*
1677  * Decrement the use_count of the last object required, if any.
1678  */
1679 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1680 {
1681 	if (!IS_ERR(v)) {
1682 		/*
1683 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1684 		 * waiting was interrupted, so only release it if !IS_ERR.
1685 		 */
1686 		rcu_read_unlock();
1687 		mutex_unlock(&scan_mutex);
1688 		if (v)
1689 			put_object(v);
1690 	}
1691 }
1692 
1693 /*
1694  * Print the information for an unreferenced object to the seq file.
1695  */
1696 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1697 {
1698 	struct kmemleak_object *object = v;
1699 	unsigned long flags;
1700 
1701 	raw_spin_lock_irqsave(&object->lock, flags);
1702 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1703 		print_unreferenced(seq, object);
1704 	raw_spin_unlock_irqrestore(&object->lock, flags);
1705 	return 0;
1706 }
1707 
1708 static const struct seq_operations kmemleak_seq_ops = {
1709 	.start = kmemleak_seq_start,
1710 	.next  = kmemleak_seq_next,
1711 	.stop  = kmemleak_seq_stop,
1712 	.show  = kmemleak_seq_show,
1713 };
1714 
1715 static int kmemleak_open(struct inode *inode, struct file *file)
1716 {
1717 	return seq_open(file, &kmemleak_seq_ops);
1718 }
1719 
1720 static int dump_str_object_info(const char *str)
1721 {
1722 	unsigned long flags;
1723 	struct kmemleak_object *object;
1724 	unsigned long addr;
1725 
1726 	if (kstrtoul(str, 0, &addr))
1727 		return -EINVAL;
1728 	object = find_and_get_object(addr, 0);
1729 	if (!object) {
1730 		pr_info("Unknown object at 0x%08lx\n", addr);
1731 		return -EINVAL;
1732 	}
1733 
1734 	raw_spin_lock_irqsave(&object->lock, flags);
1735 	dump_object_info(object);
1736 	raw_spin_unlock_irqrestore(&object->lock, flags);
1737 
1738 	put_object(object);
1739 	return 0;
1740 }
1741 
1742 /*
1743  * We use grey instead of black to ensure we can do future scans on the same
1744  * objects. If we did not do future scans these black objects could
1745  * potentially contain references to newly allocated objects in the future and
1746  * we'd end up with false positives.
1747  */
1748 static void kmemleak_clear(void)
1749 {
1750 	struct kmemleak_object *object;
1751 	unsigned long flags;
1752 
1753 	rcu_read_lock();
1754 	list_for_each_entry_rcu(object, &object_list, object_list) {
1755 		raw_spin_lock_irqsave(&object->lock, flags);
1756 		if ((object->flags & OBJECT_REPORTED) &&
1757 		    unreferenced_object(object))
1758 			__paint_it(object, KMEMLEAK_GREY);
1759 		raw_spin_unlock_irqrestore(&object->lock, flags);
1760 	}
1761 	rcu_read_unlock();
1762 
1763 	kmemleak_found_leaks = false;
1764 }
1765 
1766 static void __kmemleak_do_cleanup(void);
1767 
1768 /*
1769  * File write operation to configure kmemleak at run-time. The following
1770  * commands can be written to the /sys/kernel/debug/kmemleak file:
1771  *   off	- disable kmemleak (irreversible)
1772  *   stack=on	- enable the task stacks scanning
1773  *   stack=off	- disable the tasks stacks scanning
1774  *   scan=on	- start the automatic memory scanning thread
1775  *   scan=off	- stop the automatic memory scanning thread
1776  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1777  *		  disable it)
1778  *   scan	- trigger a memory scan
1779  *   clear	- mark all current reported unreferenced kmemleak objects as
1780  *		  grey to ignore printing them, or free all kmemleak objects
1781  *		  if kmemleak has been disabled.
1782  *   dump=...	- dump information about the object found at the given address
1783  */
1784 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1785 			      size_t size, loff_t *ppos)
1786 {
1787 	char buf[64];
1788 	int buf_size;
1789 	int ret;
1790 
1791 	buf_size = min(size, (sizeof(buf) - 1));
1792 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1793 		return -EFAULT;
1794 	buf[buf_size] = 0;
1795 
1796 	ret = mutex_lock_interruptible(&scan_mutex);
1797 	if (ret < 0)
1798 		return ret;
1799 
1800 	if (strncmp(buf, "clear", 5) == 0) {
1801 		if (kmemleak_enabled)
1802 			kmemleak_clear();
1803 		else
1804 			__kmemleak_do_cleanup();
1805 		goto out;
1806 	}
1807 
1808 	if (!kmemleak_enabled) {
1809 		ret = -EPERM;
1810 		goto out;
1811 	}
1812 
1813 	if (strncmp(buf, "off", 3) == 0)
1814 		kmemleak_disable();
1815 	else if (strncmp(buf, "stack=on", 8) == 0)
1816 		kmemleak_stack_scan = 1;
1817 	else if (strncmp(buf, "stack=off", 9) == 0)
1818 		kmemleak_stack_scan = 0;
1819 	else if (strncmp(buf, "scan=on", 7) == 0)
1820 		start_scan_thread();
1821 	else if (strncmp(buf, "scan=off", 8) == 0)
1822 		stop_scan_thread();
1823 	else if (strncmp(buf, "scan=", 5) == 0) {
1824 		unsigned secs;
1825 		unsigned long msecs;
1826 
1827 		ret = kstrtouint(buf + 5, 0, &secs);
1828 		if (ret < 0)
1829 			goto out;
1830 
1831 		msecs = secs * MSEC_PER_SEC;
1832 		if (msecs > UINT_MAX)
1833 			msecs = UINT_MAX;
1834 
1835 		stop_scan_thread();
1836 		if (msecs) {
1837 			WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
1838 			start_scan_thread();
1839 		}
1840 	} else if (strncmp(buf, "scan", 4) == 0)
1841 		kmemleak_scan();
1842 	else if (strncmp(buf, "dump=", 5) == 0)
1843 		ret = dump_str_object_info(buf + 5);
1844 	else
1845 		ret = -EINVAL;
1846 
1847 out:
1848 	mutex_unlock(&scan_mutex);
1849 	if (ret < 0)
1850 		return ret;
1851 
1852 	/* ignore the rest of the buffer, only one command at a time */
1853 	*ppos += size;
1854 	return size;
1855 }
1856 
1857 static const struct file_operations kmemleak_fops = {
1858 	.owner		= THIS_MODULE,
1859 	.open		= kmemleak_open,
1860 	.read		= seq_read,
1861 	.write		= kmemleak_write,
1862 	.llseek		= seq_lseek,
1863 	.release	= seq_release,
1864 };
1865 
1866 static void __kmemleak_do_cleanup(void)
1867 {
1868 	struct kmemleak_object *object, *tmp;
1869 
1870 	/*
1871 	 * Kmemleak has already been disabled, no need for RCU list traversal
1872 	 * or kmemleak_lock held.
1873 	 */
1874 	list_for_each_entry_safe(object, tmp, &object_list, object_list) {
1875 		__remove_object(object);
1876 		__delete_object(object);
1877 	}
1878 }
1879 
1880 /*
1881  * Stop the memory scanning thread and free the kmemleak internal objects if
1882  * no previous scan thread (otherwise, kmemleak may still have some useful
1883  * information on memory leaks).
1884  */
1885 static void kmemleak_do_cleanup(struct work_struct *work)
1886 {
1887 	stop_scan_thread();
1888 
1889 	mutex_lock(&scan_mutex);
1890 	/*
1891 	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1892 	 * longer track object freeing. Ordering of the scan thread stopping and
1893 	 * the memory accesses below is guaranteed by the kthread_stop()
1894 	 * function.
1895 	 */
1896 	kmemleak_free_enabled = 0;
1897 	mutex_unlock(&scan_mutex);
1898 
1899 	if (!kmemleak_found_leaks)
1900 		__kmemleak_do_cleanup();
1901 	else
1902 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1903 }
1904 
1905 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1906 
1907 /*
1908  * Disable kmemleak. No memory allocation/freeing will be traced once this
1909  * function is called. Disabling kmemleak is an irreversible operation.
1910  */
1911 static void kmemleak_disable(void)
1912 {
1913 	/* atomically check whether it was already invoked */
1914 	if (cmpxchg(&kmemleak_error, 0, 1))
1915 		return;
1916 
1917 	/* stop any memory operation tracing */
1918 	kmemleak_enabled = 0;
1919 
1920 	/* check whether it is too early for a kernel thread */
1921 	if (kmemleak_initialized)
1922 		schedule_work(&cleanup_work);
1923 	else
1924 		kmemleak_free_enabled = 0;
1925 
1926 	pr_info("Kernel memory leak detector disabled\n");
1927 }
1928 
1929 /*
1930  * Allow boot-time kmemleak disabling (enabled by default).
1931  */
1932 static int __init kmemleak_boot_config(char *str)
1933 {
1934 	if (!str)
1935 		return -EINVAL;
1936 	if (strcmp(str, "off") == 0)
1937 		kmemleak_disable();
1938 	else if (strcmp(str, "on") == 0)
1939 		kmemleak_skip_disable = 1;
1940 	else
1941 		return -EINVAL;
1942 	return 0;
1943 }
1944 early_param("kmemleak", kmemleak_boot_config);
1945 
1946 /*
1947  * Kmemleak initialization.
1948  */
1949 void __init kmemleak_init(void)
1950 {
1951 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1952 	if (!kmemleak_skip_disable) {
1953 		kmemleak_disable();
1954 		return;
1955 	}
1956 #endif
1957 
1958 	if (kmemleak_error)
1959 		return;
1960 
1961 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1962 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1963 
1964 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1965 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1966 
1967 	/* register the data/bss sections */
1968 	create_object((unsigned long)_sdata, _edata - _sdata,
1969 		      KMEMLEAK_GREY, GFP_ATOMIC);
1970 	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
1971 		      KMEMLEAK_GREY, GFP_ATOMIC);
1972 	/* only register .data..ro_after_init if not within .data */
1973 	if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
1974 		create_object((unsigned long)__start_ro_after_init,
1975 			      __end_ro_after_init - __start_ro_after_init,
1976 			      KMEMLEAK_GREY, GFP_ATOMIC);
1977 }
1978 
1979 /*
1980  * Late initialization function.
1981  */
1982 static int __init kmemleak_late_init(void)
1983 {
1984 	kmemleak_initialized = 1;
1985 
1986 	debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
1987 
1988 	if (kmemleak_error) {
1989 		/*
1990 		 * Some error occurred and kmemleak was disabled. There is a
1991 		 * small chance that kmemleak_disable() was called immediately
1992 		 * after setting kmemleak_initialized and we may end up with
1993 		 * two clean-up threads but serialized by scan_mutex.
1994 		 */
1995 		schedule_work(&cleanup_work);
1996 		return -ENOMEM;
1997 	}
1998 
1999 	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2000 		mutex_lock(&scan_mutex);
2001 		start_scan_thread();
2002 		mutex_unlock(&scan_mutex);
2003 	}
2004 
2005 	pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2006 		mem_pool_free_count);
2007 
2008 	return 0;
2009 }
2010 late_initcall(kmemleak_late_init);
2011