xref: /openbmc/linux/mm/kmemleak.c (revision aac5987a)
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/dev-tools/kmemleak.rst.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a red black tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * Locks and mutexes are acquired/nested in the following order:
57  *
58  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59  *
60  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61  * regions.
62  *
63  * The kmemleak_object structures have a use_count incremented or decremented
64  * using the get_object()/put_object() functions. When the use_count becomes
65  * 0, this count can no longer be incremented and put_object() schedules the
66  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67  * function must be protected by rcu_read_lock() to avoid accessing a freed
68  * structure.
69  */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/init.h>
74 #include <linux/kernel.h>
75 #include <linux/list.h>
76 #include <linux/sched/signal.h>
77 #include <linux/sched/task.h>
78 #include <linux/sched/task_stack.h>
79 #include <linux/jiffies.h>
80 #include <linux/delay.h>
81 #include <linux/export.h>
82 #include <linux/kthread.h>
83 #include <linux/rbtree.h>
84 #include <linux/fs.h>
85 #include <linux/debugfs.h>
86 #include <linux/seq_file.h>
87 #include <linux/cpumask.h>
88 #include <linux/spinlock.h>
89 #include <linux/mutex.h>
90 #include <linux/rcupdate.h>
91 #include <linux/stacktrace.h>
92 #include <linux/cache.h>
93 #include <linux/percpu.h>
94 #include <linux/hardirq.h>
95 #include <linux/bootmem.h>
96 #include <linux/pfn.h>
97 #include <linux/mmzone.h>
98 #include <linux/slab.h>
99 #include <linux/thread_info.h>
100 #include <linux/err.h>
101 #include <linux/uaccess.h>
102 #include <linux/string.h>
103 #include <linux/nodemask.h>
104 #include <linux/mm.h>
105 #include <linux/workqueue.h>
106 #include <linux/crc32.h>
107 
108 #include <asm/sections.h>
109 #include <asm/processor.h>
110 #include <linux/atomic.h>
111 
112 #include <linux/kasan.h>
113 #include <linux/kmemcheck.h>
114 #include <linux/kmemleak.h>
115 #include <linux/memory_hotplug.h>
116 
117 /*
118  * Kmemleak configuration and common defines.
119  */
120 #define MAX_TRACE		16	/* stack trace length */
121 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
122 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
123 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
124 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
125 
126 #define BYTES_PER_POINTER	sizeof(void *)
127 
128 /* GFP bitmask for kmemleak internal allocations */
129 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
130 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
131 				 __GFP_NOWARN)
132 
133 /* scanning area inside a memory block */
134 struct kmemleak_scan_area {
135 	struct hlist_node node;
136 	unsigned long start;
137 	size_t size;
138 };
139 
140 #define KMEMLEAK_GREY	0
141 #define KMEMLEAK_BLACK	-1
142 
143 /*
144  * Structure holding the metadata for each allocated memory block.
145  * Modifications to such objects should be made while holding the
146  * object->lock. Insertions or deletions from object_list, gray_list or
147  * rb_node are already protected by the corresponding locks or mutex (see
148  * the notes on locking above). These objects are reference-counted
149  * (use_count) and freed using the RCU mechanism.
150  */
151 struct kmemleak_object {
152 	spinlock_t lock;
153 	unsigned long flags;		/* object status flags */
154 	struct list_head object_list;
155 	struct list_head gray_list;
156 	struct rb_node rb_node;
157 	struct rcu_head rcu;		/* object_list lockless traversal */
158 	/* object usage count; object freed when use_count == 0 */
159 	atomic_t use_count;
160 	unsigned long pointer;
161 	size_t size;
162 	/* minimum number of a pointers found before it is considered leak */
163 	int min_count;
164 	/* the total number of pointers found pointing to this object */
165 	int count;
166 	/* checksum for detecting modified objects */
167 	u32 checksum;
168 	/* memory ranges to be scanned inside an object (empty for all) */
169 	struct hlist_head area_list;
170 	unsigned long trace[MAX_TRACE];
171 	unsigned int trace_len;
172 	unsigned long jiffies;		/* creation timestamp */
173 	pid_t pid;			/* pid of the current task */
174 	char comm[TASK_COMM_LEN];	/* executable name */
175 };
176 
177 /* flag representing the memory block allocation status */
178 #define OBJECT_ALLOCATED	(1 << 0)
179 /* flag set after the first reporting of an unreference object */
180 #define OBJECT_REPORTED		(1 << 1)
181 /* flag set to not scan the object */
182 #define OBJECT_NO_SCAN		(1 << 2)
183 
184 /* number of bytes to print per line; must be 16 or 32 */
185 #define HEX_ROW_SIZE		16
186 /* number of bytes to print at a time (1, 2, 4, 8) */
187 #define HEX_GROUP_SIZE		1
188 /* include ASCII after the hex output */
189 #define HEX_ASCII		1
190 /* max number of lines to be printed */
191 #define HEX_MAX_LINES		2
192 
193 /* the list of all allocated objects */
194 static LIST_HEAD(object_list);
195 /* the list of gray-colored objects (see color_gray comment below) */
196 static LIST_HEAD(gray_list);
197 /* search tree for object boundaries */
198 static struct rb_root object_tree_root = RB_ROOT;
199 /* rw_lock protecting the access to object_list and object_tree_root */
200 static DEFINE_RWLOCK(kmemleak_lock);
201 
202 /* allocation caches for kmemleak internal data */
203 static struct kmem_cache *object_cache;
204 static struct kmem_cache *scan_area_cache;
205 
206 /* set if tracing memory operations is enabled */
207 static int kmemleak_enabled;
208 /* same as above but only for the kmemleak_free() callback */
209 static int kmemleak_free_enabled;
210 /* set in the late_initcall if there were no errors */
211 static int kmemleak_initialized;
212 /* enables or disables early logging of the memory operations */
213 static int kmemleak_early_log = 1;
214 /* set if a kmemleak warning was issued */
215 static int kmemleak_warning;
216 /* set if a fatal kmemleak error has occurred */
217 static int kmemleak_error;
218 
219 /* minimum and maximum address that may be valid pointers */
220 static unsigned long min_addr = ULONG_MAX;
221 static unsigned long max_addr;
222 
223 static struct task_struct *scan_thread;
224 /* used to avoid reporting of recently allocated objects */
225 static unsigned long jiffies_min_age;
226 static unsigned long jiffies_last_scan;
227 /* delay between automatic memory scannings */
228 static signed long jiffies_scan_wait;
229 /* enables or disables the task stacks scanning */
230 static int kmemleak_stack_scan = 1;
231 /* protects the memory scanning, parameters and debug/kmemleak file access */
232 static DEFINE_MUTEX(scan_mutex);
233 /* setting kmemleak=on, will set this var, skipping the disable */
234 static int kmemleak_skip_disable;
235 /* If there are leaks that can be reported */
236 static bool kmemleak_found_leaks;
237 
238 /*
239  * Early object allocation/freeing logging. Kmemleak is initialized after the
240  * kernel allocator. However, both the kernel allocator and kmemleak may
241  * allocate memory blocks which need to be tracked. Kmemleak defines an
242  * arbitrary buffer to hold the allocation/freeing information before it is
243  * fully initialized.
244  */
245 
246 /* kmemleak operation type for early logging */
247 enum {
248 	KMEMLEAK_ALLOC,
249 	KMEMLEAK_ALLOC_PERCPU,
250 	KMEMLEAK_FREE,
251 	KMEMLEAK_FREE_PART,
252 	KMEMLEAK_FREE_PERCPU,
253 	KMEMLEAK_NOT_LEAK,
254 	KMEMLEAK_IGNORE,
255 	KMEMLEAK_SCAN_AREA,
256 	KMEMLEAK_NO_SCAN
257 };
258 
259 /*
260  * Structure holding the information passed to kmemleak callbacks during the
261  * early logging.
262  */
263 struct early_log {
264 	int op_type;			/* kmemleak operation type */
265 	const void *ptr;		/* allocated/freed memory block */
266 	size_t size;			/* memory block size */
267 	int min_count;			/* minimum reference count */
268 	unsigned long trace[MAX_TRACE];	/* stack trace */
269 	unsigned int trace_len;		/* stack trace length */
270 };
271 
272 /* early logging buffer and current position */
273 static struct early_log
274 	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
275 static int crt_early_log __initdata;
276 
277 static void kmemleak_disable(void);
278 
279 /*
280  * Print a warning and dump the stack trace.
281  */
282 #define kmemleak_warn(x...)	do {		\
283 	pr_warn(x);				\
284 	dump_stack();				\
285 	kmemleak_warning = 1;			\
286 } while (0)
287 
288 /*
289  * Macro invoked when a serious kmemleak condition occurred and cannot be
290  * recovered from. Kmemleak will be disabled and further allocation/freeing
291  * tracing no longer available.
292  */
293 #define kmemleak_stop(x...)	do {	\
294 	kmemleak_warn(x);		\
295 	kmemleak_disable();		\
296 } while (0)
297 
298 /*
299  * Printing of the objects hex dump to the seq file. The number of lines to be
300  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
301  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
302  * with the object->lock held.
303  */
304 static void hex_dump_object(struct seq_file *seq,
305 			    struct kmemleak_object *object)
306 {
307 	const u8 *ptr = (const u8 *)object->pointer;
308 	size_t len;
309 
310 	/* limit the number of lines to HEX_MAX_LINES */
311 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
312 
313 	seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
314 	kasan_disable_current();
315 	seq_hex_dump(seq, "    ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
316 		     HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
317 	kasan_enable_current();
318 }
319 
320 /*
321  * Object colors, encoded with count and min_count:
322  * - white - orphan object, not enough references to it (count < min_count)
323  * - gray  - not orphan, not marked as false positive (min_count == 0) or
324  *		sufficient references to it (count >= min_count)
325  * - black - ignore, it doesn't contain references (e.g. text section)
326  *		(min_count == -1). No function defined for this color.
327  * Newly created objects don't have any color assigned (object->count == -1)
328  * before the next memory scan when they become white.
329  */
330 static bool color_white(const struct kmemleak_object *object)
331 {
332 	return object->count != KMEMLEAK_BLACK &&
333 		object->count < object->min_count;
334 }
335 
336 static bool color_gray(const struct kmemleak_object *object)
337 {
338 	return object->min_count != KMEMLEAK_BLACK &&
339 		object->count >= object->min_count;
340 }
341 
342 /*
343  * Objects are considered unreferenced only if their color is white, they have
344  * not be deleted and have a minimum age to avoid false positives caused by
345  * pointers temporarily stored in CPU registers.
346  */
347 static bool unreferenced_object(struct kmemleak_object *object)
348 {
349 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
350 		time_before_eq(object->jiffies + jiffies_min_age,
351 			       jiffies_last_scan);
352 }
353 
354 /*
355  * Printing of the unreferenced objects information to the seq file. The
356  * print_unreferenced function must be called with the object->lock held.
357  */
358 static void print_unreferenced(struct seq_file *seq,
359 			       struct kmemleak_object *object)
360 {
361 	int i;
362 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
363 
364 	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
365 		   object->pointer, object->size);
366 	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
367 		   object->comm, object->pid, object->jiffies,
368 		   msecs_age / 1000, msecs_age % 1000);
369 	hex_dump_object(seq, object);
370 	seq_printf(seq, "  backtrace:\n");
371 
372 	for (i = 0; i < object->trace_len; i++) {
373 		void *ptr = (void *)object->trace[i];
374 		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
375 	}
376 }
377 
378 /*
379  * Print the kmemleak_object information. This function is used mainly for
380  * debugging special cases when kmemleak operations. It must be called with
381  * the object->lock held.
382  */
383 static void dump_object_info(struct kmemleak_object *object)
384 {
385 	struct stack_trace trace;
386 
387 	trace.nr_entries = object->trace_len;
388 	trace.entries = object->trace;
389 
390 	pr_notice("Object 0x%08lx (size %zu):\n",
391 		  object->pointer, object->size);
392 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
393 		  object->comm, object->pid, object->jiffies);
394 	pr_notice("  min_count = %d\n", object->min_count);
395 	pr_notice("  count = %d\n", object->count);
396 	pr_notice("  flags = 0x%lx\n", object->flags);
397 	pr_notice("  checksum = %u\n", object->checksum);
398 	pr_notice("  backtrace:\n");
399 	print_stack_trace(&trace, 4);
400 }
401 
402 /*
403  * Look-up a memory block metadata (kmemleak_object) in the object search
404  * tree based on a pointer value. If alias is 0, only values pointing to the
405  * beginning of the memory block are allowed. The kmemleak_lock must be held
406  * when calling this function.
407  */
408 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
409 {
410 	struct rb_node *rb = object_tree_root.rb_node;
411 
412 	while (rb) {
413 		struct kmemleak_object *object =
414 			rb_entry(rb, struct kmemleak_object, rb_node);
415 		if (ptr < object->pointer)
416 			rb = object->rb_node.rb_left;
417 		else if (object->pointer + object->size <= ptr)
418 			rb = object->rb_node.rb_right;
419 		else if (object->pointer == ptr || alias)
420 			return object;
421 		else {
422 			kmemleak_warn("Found object by alias at 0x%08lx\n",
423 				      ptr);
424 			dump_object_info(object);
425 			break;
426 		}
427 	}
428 	return NULL;
429 }
430 
431 /*
432  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
433  * that once an object's use_count reached 0, the RCU freeing was already
434  * registered and the object should no longer be used. This function must be
435  * called under the protection of rcu_read_lock().
436  */
437 static int get_object(struct kmemleak_object *object)
438 {
439 	return atomic_inc_not_zero(&object->use_count);
440 }
441 
442 /*
443  * RCU callback to free a kmemleak_object.
444  */
445 static void free_object_rcu(struct rcu_head *rcu)
446 {
447 	struct hlist_node *tmp;
448 	struct kmemleak_scan_area *area;
449 	struct kmemleak_object *object =
450 		container_of(rcu, struct kmemleak_object, rcu);
451 
452 	/*
453 	 * Once use_count is 0 (guaranteed by put_object), there is no other
454 	 * code accessing this object, hence no need for locking.
455 	 */
456 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
457 		hlist_del(&area->node);
458 		kmem_cache_free(scan_area_cache, area);
459 	}
460 	kmem_cache_free(object_cache, object);
461 }
462 
463 /*
464  * Decrement the object use_count. Once the count is 0, free the object using
465  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
466  * delete_object() path, the delayed RCU freeing ensures that there is no
467  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
468  * is also possible.
469  */
470 static void put_object(struct kmemleak_object *object)
471 {
472 	if (!atomic_dec_and_test(&object->use_count))
473 		return;
474 
475 	/* should only get here after delete_object was called */
476 	WARN_ON(object->flags & OBJECT_ALLOCATED);
477 
478 	call_rcu(&object->rcu, free_object_rcu);
479 }
480 
481 /*
482  * Look up an object in the object search tree and increase its use_count.
483  */
484 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
485 {
486 	unsigned long flags;
487 	struct kmemleak_object *object;
488 
489 	rcu_read_lock();
490 	read_lock_irqsave(&kmemleak_lock, flags);
491 	object = lookup_object(ptr, alias);
492 	read_unlock_irqrestore(&kmemleak_lock, flags);
493 
494 	/* check whether the object is still available */
495 	if (object && !get_object(object))
496 		object = NULL;
497 	rcu_read_unlock();
498 
499 	return object;
500 }
501 
502 /*
503  * Look up an object in the object search tree and remove it from both
504  * object_tree_root and object_list. The returned object's use_count should be
505  * at least 1, as initially set by create_object().
506  */
507 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
508 {
509 	unsigned long flags;
510 	struct kmemleak_object *object;
511 
512 	write_lock_irqsave(&kmemleak_lock, flags);
513 	object = lookup_object(ptr, alias);
514 	if (object) {
515 		rb_erase(&object->rb_node, &object_tree_root);
516 		list_del_rcu(&object->object_list);
517 	}
518 	write_unlock_irqrestore(&kmemleak_lock, flags);
519 
520 	return object;
521 }
522 
523 /*
524  * Save stack trace to the given array of MAX_TRACE size.
525  */
526 static int __save_stack_trace(unsigned long *trace)
527 {
528 	struct stack_trace stack_trace;
529 
530 	stack_trace.max_entries = MAX_TRACE;
531 	stack_trace.nr_entries = 0;
532 	stack_trace.entries = trace;
533 	stack_trace.skip = 2;
534 	save_stack_trace(&stack_trace);
535 
536 	return stack_trace.nr_entries;
537 }
538 
539 /*
540  * Create the metadata (struct kmemleak_object) corresponding to an allocated
541  * memory block and add it to the object_list and object_tree_root.
542  */
543 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
544 					     int min_count, gfp_t gfp)
545 {
546 	unsigned long flags;
547 	struct kmemleak_object *object, *parent;
548 	struct rb_node **link, *rb_parent;
549 
550 	object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
551 	if (!object) {
552 		pr_warn("Cannot allocate a kmemleak_object structure\n");
553 		kmemleak_disable();
554 		return NULL;
555 	}
556 
557 	INIT_LIST_HEAD(&object->object_list);
558 	INIT_LIST_HEAD(&object->gray_list);
559 	INIT_HLIST_HEAD(&object->area_list);
560 	spin_lock_init(&object->lock);
561 	atomic_set(&object->use_count, 1);
562 	object->flags = OBJECT_ALLOCATED;
563 	object->pointer = ptr;
564 	object->size = size;
565 	object->min_count = min_count;
566 	object->count = 0;			/* white color initially */
567 	object->jiffies = jiffies;
568 	object->checksum = 0;
569 
570 	/* task information */
571 	if (in_irq()) {
572 		object->pid = 0;
573 		strncpy(object->comm, "hardirq", sizeof(object->comm));
574 	} else if (in_softirq()) {
575 		object->pid = 0;
576 		strncpy(object->comm, "softirq", sizeof(object->comm));
577 	} else {
578 		object->pid = current->pid;
579 		/*
580 		 * There is a small chance of a race with set_task_comm(),
581 		 * however using get_task_comm() here may cause locking
582 		 * dependency issues with current->alloc_lock. In the worst
583 		 * case, the command line is not correct.
584 		 */
585 		strncpy(object->comm, current->comm, sizeof(object->comm));
586 	}
587 
588 	/* kernel backtrace */
589 	object->trace_len = __save_stack_trace(object->trace);
590 
591 	write_lock_irqsave(&kmemleak_lock, flags);
592 
593 	min_addr = min(min_addr, ptr);
594 	max_addr = max(max_addr, ptr + size);
595 	link = &object_tree_root.rb_node;
596 	rb_parent = NULL;
597 	while (*link) {
598 		rb_parent = *link;
599 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
600 		if (ptr + size <= parent->pointer)
601 			link = &parent->rb_node.rb_left;
602 		else if (parent->pointer + parent->size <= ptr)
603 			link = &parent->rb_node.rb_right;
604 		else {
605 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
606 				      ptr);
607 			/*
608 			 * No need for parent->lock here since "parent" cannot
609 			 * be freed while the kmemleak_lock is held.
610 			 */
611 			dump_object_info(parent);
612 			kmem_cache_free(object_cache, object);
613 			object = NULL;
614 			goto out;
615 		}
616 	}
617 	rb_link_node(&object->rb_node, rb_parent, link);
618 	rb_insert_color(&object->rb_node, &object_tree_root);
619 
620 	list_add_tail_rcu(&object->object_list, &object_list);
621 out:
622 	write_unlock_irqrestore(&kmemleak_lock, flags);
623 	return object;
624 }
625 
626 /*
627  * Mark the object as not allocated and schedule RCU freeing via put_object().
628  */
629 static void __delete_object(struct kmemleak_object *object)
630 {
631 	unsigned long flags;
632 
633 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
634 	WARN_ON(atomic_read(&object->use_count) < 1);
635 
636 	/*
637 	 * Locking here also ensures that the corresponding memory block
638 	 * cannot be freed when it is being scanned.
639 	 */
640 	spin_lock_irqsave(&object->lock, flags);
641 	object->flags &= ~OBJECT_ALLOCATED;
642 	spin_unlock_irqrestore(&object->lock, flags);
643 	put_object(object);
644 }
645 
646 /*
647  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
648  * delete it.
649  */
650 static void delete_object_full(unsigned long ptr)
651 {
652 	struct kmemleak_object *object;
653 
654 	object = find_and_remove_object(ptr, 0);
655 	if (!object) {
656 #ifdef DEBUG
657 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
658 			      ptr);
659 #endif
660 		return;
661 	}
662 	__delete_object(object);
663 }
664 
665 /*
666  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
667  * delete it. If the memory block is partially freed, the function may create
668  * additional metadata for the remaining parts of the block.
669  */
670 static void delete_object_part(unsigned long ptr, size_t size)
671 {
672 	struct kmemleak_object *object;
673 	unsigned long start, end;
674 
675 	object = find_and_remove_object(ptr, 1);
676 	if (!object) {
677 #ifdef DEBUG
678 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
679 			      ptr, size);
680 #endif
681 		return;
682 	}
683 
684 	/*
685 	 * Create one or two objects that may result from the memory block
686 	 * split. Note that partial freeing is only done by free_bootmem() and
687 	 * this happens before kmemleak_init() is called. The path below is
688 	 * only executed during early log recording in kmemleak_init(), so
689 	 * GFP_KERNEL is enough.
690 	 */
691 	start = object->pointer;
692 	end = object->pointer + object->size;
693 	if (ptr > start)
694 		create_object(start, ptr - start, object->min_count,
695 			      GFP_KERNEL);
696 	if (ptr + size < end)
697 		create_object(ptr + size, end - ptr - size, object->min_count,
698 			      GFP_KERNEL);
699 
700 	__delete_object(object);
701 }
702 
703 static void __paint_it(struct kmemleak_object *object, int color)
704 {
705 	object->min_count = color;
706 	if (color == KMEMLEAK_BLACK)
707 		object->flags |= OBJECT_NO_SCAN;
708 }
709 
710 static void paint_it(struct kmemleak_object *object, int color)
711 {
712 	unsigned long flags;
713 
714 	spin_lock_irqsave(&object->lock, flags);
715 	__paint_it(object, color);
716 	spin_unlock_irqrestore(&object->lock, flags);
717 }
718 
719 static void paint_ptr(unsigned long ptr, int color)
720 {
721 	struct kmemleak_object *object;
722 
723 	object = find_and_get_object(ptr, 0);
724 	if (!object) {
725 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
726 			      ptr,
727 			      (color == KMEMLEAK_GREY) ? "Grey" :
728 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
729 		return;
730 	}
731 	paint_it(object, color);
732 	put_object(object);
733 }
734 
735 /*
736  * Mark an object permanently as gray-colored so that it can no longer be
737  * reported as a leak. This is used in general to mark a false positive.
738  */
739 static void make_gray_object(unsigned long ptr)
740 {
741 	paint_ptr(ptr, KMEMLEAK_GREY);
742 }
743 
744 /*
745  * Mark the object as black-colored so that it is ignored from scans and
746  * reporting.
747  */
748 static void make_black_object(unsigned long ptr)
749 {
750 	paint_ptr(ptr, KMEMLEAK_BLACK);
751 }
752 
753 /*
754  * Add a scanning area to the object. If at least one such area is added,
755  * kmemleak will only scan these ranges rather than the whole memory block.
756  */
757 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
758 {
759 	unsigned long flags;
760 	struct kmemleak_object *object;
761 	struct kmemleak_scan_area *area;
762 
763 	object = find_and_get_object(ptr, 1);
764 	if (!object) {
765 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
766 			      ptr);
767 		return;
768 	}
769 
770 	area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
771 	if (!area) {
772 		pr_warn("Cannot allocate a scan area\n");
773 		goto out;
774 	}
775 
776 	spin_lock_irqsave(&object->lock, flags);
777 	if (size == SIZE_MAX) {
778 		size = object->pointer + object->size - ptr;
779 	} else if (ptr + size > object->pointer + object->size) {
780 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
781 		dump_object_info(object);
782 		kmem_cache_free(scan_area_cache, area);
783 		goto out_unlock;
784 	}
785 
786 	INIT_HLIST_NODE(&area->node);
787 	area->start = ptr;
788 	area->size = size;
789 
790 	hlist_add_head(&area->node, &object->area_list);
791 out_unlock:
792 	spin_unlock_irqrestore(&object->lock, flags);
793 out:
794 	put_object(object);
795 }
796 
797 /*
798  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
799  * pointer. Such object will not be scanned by kmemleak but references to it
800  * are searched.
801  */
802 static void object_no_scan(unsigned long ptr)
803 {
804 	unsigned long flags;
805 	struct kmemleak_object *object;
806 
807 	object = find_and_get_object(ptr, 0);
808 	if (!object) {
809 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
810 		return;
811 	}
812 
813 	spin_lock_irqsave(&object->lock, flags);
814 	object->flags |= OBJECT_NO_SCAN;
815 	spin_unlock_irqrestore(&object->lock, flags);
816 	put_object(object);
817 }
818 
819 /*
820  * Log an early kmemleak_* call to the early_log buffer. These calls will be
821  * processed later once kmemleak is fully initialized.
822  */
823 static void __init log_early(int op_type, const void *ptr, size_t size,
824 			     int min_count)
825 {
826 	unsigned long flags;
827 	struct early_log *log;
828 
829 	if (kmemleak_error) {
830 		/* kmemleak stopped recording, just count the requests */
831 		crt_early_log++;
832 		return;
833 	}
834 
835 	if (crt_early_log >= ARRAY_SIZE(early_log)) {
836 		crt_early_log++;
837 		kmemleak_disable();
838 		return;
839 	}
840 
841 	/*
842 	 * There is no need for locking since the kernel is still in UP mode
843 	 * at this stage. Disabling the IRQs is enough.
844 	 */
845 	local_irq_save(flags);
846 	log = &early_log[crt_early_log];
847 	log->op_type = op_type;
848 	log->ptr = ptr;
849 	log->size = size;
850 	log->min_count = min_count;
851 	log->trace_len = __save_stack_trace(log->trace);
852 	crt_early_log++;
853 	local_irq_restore(flags);
854 }
855 
856 /*
857  * Log an early allocated block and populate the stack trace.
858  */
859 static void early_alloc(struct early_log *log)
860 {
861 	struct kmemleak_object *object;
862 	unsigned long flags;
863 	int i;
864 
865 	if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
866 		return;
867 
868 	/*
869 	 * RCU locking needed to ensure object is not freed via put_object().
870 	 */
871 	rcu_read_lock();
872 	object = create_object((unsigned long)log->ptr, log->size,
873 			       log->min_count, GFP_ATOMIC);
874 	if (!object)
875 		goto out;
876 	spin_lock_irqsave(&object->lock, flags);
877 	for (i = 0; i < log->trace_len; i++)
878 		object->trace[i] = log->trace[i];
879 	object->trace_len = log->trace_len;
880 	spin_unlock_irqrestore(&object->lock, flags);
881 out:
882 	rcu_read_unlock();
883 }
884 
885 /*
886  * Log an early allocated block and populate the stack trace.
887  */
888 static void early_alloc_percpu(struct early_log *log)
889 {
890 	unsigned int cpu;
891 	const void __percpu *ptr = log->ptr;
892 
893 	for_each_possible_cpu(cpu) {
894 		log->ptr = per_cpu_ptr(ptr, cpu);
895 		early_alloc(log);
896 	}
897 }
898 
899 /**
900  * kmemleak_alloc - register a newly allocated object
901  * @ptr:	pointer to beginning of the object
902  * @size:	size of the object
903  * @min_count:	minimum number of references to this object. If during memory
904  *		scanning a number of references less than @min_count is found,
905  *		the object is reported as a memory leak. If @min_count is 0,
906  *		the object is never reported as a leak. If @min_count is -1,
907  *		the object is ignored (not scanned and not reported as a leak)
908  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
909  *
910  * This function is called from the kernel allocators when a new object
911  * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
912  */
913 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
914 			  gfp_t gfp)
915 {
916 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
917 
918 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
919 		create_object((unsigned long)ptr, size, min_count, gfp);
920 	else if (kmemleak_early_log)
921 		log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
922 }
923 EXPORT_SYMBOL_GPL(kmemleak_alloc);
924 
925 /**
926  * kmemleak_alloc_percpu - register a newly allocated __percpu object
927  * @ptr:	__percpu pointer to beginning of the object
928  * @size:	size of the object
929  * @gfp:	flags used for kmemleak internal memory allocations
930  *
931  * This function is called from the kernel percpu allocator when a new object
932  * (memory block) is allocated (alloc_percpu).
933  */
934 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
935 				 gfp_t gfp)
936 {
937 	unsigned int cpu;
938 
939 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
940 
941 	/*
942 	 * Percpu allocations are only scanned and not reported as leaks
943 	 * (min_count is set to 0).
944 	 */
945 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
946 		for_each_possible_cpu(cpu)
947 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
948 				      size, 0, gfp);
949 	else if (kmemleak_early_log)
950 		log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
951 }
952 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
953 
954 /**
955  * kmemleak_free - unregister a previously registered object
956  * @ptr:	pointer to beginning of the object
957  *
958  * This function is called from the kernel allocators when an object (memory
959  * block) is freed (kmem_cache_free, kfree, vfree etc.).
960  */
961 void __ref kmemleak_free(const void *ptr)
962 {
963 	pr_debug("%s(0x%p)\n", __func__, ptr);
964 
965 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
966 		delete_object_full((unsigned long)ptr);
967 	else if (kmemleak_early_log)
968 		log_early(KMEMLEAK_FREE, ptr, 0, 0);
969 }
970 EXPORT_SYMBOL_GPL(kmemleak_free);
971 
972 /**
973  * kmemleak_free_part - partially unregister a previously registered object
974  * @ptr:	pointer to the beginning or inside the object. This also
975  *		represents the start of the range to be freed
976  * @size:	size to be unregistered
977  *
978  * This function is called when only a part of a memory block is freed
979  * (usually from the bootmem allocator).
980  */
981 void __ref kmemleak_free_part(const void *ptr, size_t size)
982 {
983 	pr_debug("%s(0x%p)\n", __func__, ptr);
984 
985 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
986 		delete_object_part((unsigned long)ptr, size);
987 	else if (kmemleak_early_log)
988 		log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
989 }
990 EXPORT_SYMBOL_GPL(kmemleak_free_part);
991 
992 /**
993  * kmemleak_free_percpu - unregister a previously registered __percpu object
994  * @ptr:	__percpu pointer to beginning of the object
995  *
996  * This function is called from the kernel percpu allocator when an object
997  * (memory block) is freed (free_percpu).
998  */
999 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1000 {
1001 	unsigned int cpu;
1002 
1003 	pr_debug("%s(0x%p)\n", __func__, ptr);
1004 
1005 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1006 		for_each_possible_cpu(cpu)
1007 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
1008 								      cpu));
1009 	else if (kmemleak_early_log)
1010 		log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1011 }
1012 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1013 
1014 /**
1015  * kmemleak_update_trace - update object allocation stack trace
1016  * @ptr:	pointer to beginning of the object
1017  *
1018  * Override the object allocation stack trace for cases where the actual
1019  * allocation place is not always useful.
1020  */
1021 void __ref kmemleak_update_trace(const void *ptr)
1022 {
1023 	struct kmemleak_object *object;
1024 	unsigned long flags;
1025 
1026 	pr_debug("%s(0x%p)\n", __func__, ptr);
1027 
1028 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1029 		return;
1030 
1031 	object = find_and_get_object((unsigned long)ptr, 1);
1032 	if (!object) {
1033 #ifdef DEBUG
1034 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1035 			      ptr);
1036 #endif
1037 		return;
1038 	}
1039 
1040 	spin_lock_irqsave(&object->lock, flags);
1041 	object->trace_len = __save_stack_trace(object->trace);
1042 	spin_unlock_irqrestore(&object->lock, flags);
1043 
1044 	put_object(object);
1045 }
1046 EXPORT_SYMBOL(kmemleak_update_trace);
1047 
1048 /**
1049  * kmemleak_not_leak - mark an allocated object as false positive
1050  * @ptr:	pointer to beginning of the object
1051  *
1052  * Calling this function on an object will cause the memory block to no longer
1053  * be reported as leak and always be scanned.
1054  */
1055 void __ref kmemleak_not_leak(const void *ptr)
1056 {
1057 	pr_debug("%s(0x%p)\n", __func__, ptr);
1058 
1059 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1060 		make_gray_object((unsigned long)ptr);
1061 	else if (kmemleak_early_log)
1062 		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1063 }
1064 EXPORT_SYMBOL(kmemleak_not_leak);
1065 
1066 /**
1067  * kmemleak_ignore - ignore an allocated object
1068  * @ptr:	pointer to beginning of the object
1069  *
1070  * Calling this function on an object will cause the memory block to be
1071  * ignored (not scanned and not reported as a leak). This is usually done when
1072  * it is known that the corresponding block is not a leak and does not contain
1073  * any references to other allocated memory blocks.
1074  */
1075 void __ref kmemleak_ignore(const void *ptr)
1076 {
1077 	pr_debug("%s(0x%p)\n", __func__, ptr);
1078 
1079 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1080 		make_black_object((unsigned long)ptr);
1081 	else if (kmemleak_early_log)
1082 		log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1083 }
1084 EXPORT_SYMBOL(kmemleak_ignore);
1085 
1086 /**
1087  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1088  * @ptr:	pointer to beginning or inside the object. This also
1089  *		represents the start of the scan area
1090  * @size:	size of the scan area
1091  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1092  *
1093  * This function is used when it is known that only certain parts of an object
1094  * contain references to other objects. Kmemleak will only scan these areas
1095  * reducing the number false negatives.
1096  */
1097 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1098 {
1099 	pr_debug("%s(0x%p)\n", __func__, ptr);
1100 
1101 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1102 		add_scan_area((unsigned long)ptr, size, gfp);
1103 	else if (kmemleak_early_log)
1104 		log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1105 }
1106 EXPORT_SYMBOL(kmemleak_scan_area);
1107 
1108 /**
1109  * kmemleak_no_scan - do not scan an allocated object
1110  * @ptr:	pointer to beginning of the object
1111  *
1112  * This function notifies kmemleak not to scan the given memory block. Useful
1113  * in situations where it is known that the given object does not contain any
1114  * references to other objects. Kmemleak will not scan such objects reducing
1115  * the number of false negatives.
1116  */
1117 void __ref kmemleak_no_scan(const void *ptr)
1118 {
1119 	pr_debug("%s(0x%p)\n", __func__, ptr);
1120 
1121 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1122 		object_no_scan((unsigned long)ptr);
1123 	else if (kmemleak_early_log)
1124 		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1125 }
1126 EXPORT_SYMBOL(kmemleak_no_scan);
1127 
1128 /**
1129  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1130  *			 address argument
1131  */
1132 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1133 			       gfp_t gfp)
1134 {
1135 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1136 		kmemleak_alloc(__va(phys), size, min_count, gfp);
1137 }
1138 EXPORT_SYMBOL(kmemleak_alloc_phys);
1139 
1140 /**
1141  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1142  *			     physical address argument
1143  */
1144 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1145 {
1146 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1147 		kmemleak_free_part(__va(phys), size);
1148 }
1149 EXPORT_SYMBOL(kmemleak_free_part_phys);
1150 
1151 /**
1152  * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1153  *			    address argument
1154  */
1155 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1156 {
1157 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1158 		kmemleak_not_leak(__va(phys));
1159 }
1160 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1161 
1162 /**
1163  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1164  *			  address argument
1165  */
1166 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1167 {
1168 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1169 		kmemleak_ignore(__va(phys));
1170 }
1171 EXPORT_SYMBOL(kmemleak_ignore_phys);
1172 
1173 /*
1174  * Update an object's checksum and return true if it was modified.
1175  */
1176 static bool update_checksum(struct kmemleak_object *object)
1177 {
1178 	u32 old_csum = object->checksum;
1179 
1180 	if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1181 		return false;
1182 
1183 	kasan_disable_current();
1184 	object->checksum = crc32(0, (void *)object->pointer, object->size);
1185 	kasan_enable_current();
1186 
1187 	return object->checksum != old_csum;
1188 }
1189 
1190 /*
1191  * Memory scanning is a long process and it needs to be interruptable. This
1192  * function checks whether such interrupt condition occurred.
1193  */
1194 static int scan_should_stop(void)
1195 {
1196 	if (!kmemleak_enabled)
1197 		return 1;
1198 
1199 	/*
1200 	 * This function may be called from either process or kthread context,
1201 	 * hence the need to check for both stop conditions.
1202 	 */
1203 	if (current->mm)
1204 		return signal_pending(current);
1205 	else
1206 		return kthread_should_stop();
1207 
1208 	return 0;
1209 }
1210 
1211 /*
1212  * Scan a memory block (exclusive range) for valid pointers and add those
1213  * found to the gray list.
1214  */
1215 static void scan_block(void *_start, void *_end,
1216 		       struct kmemleak_object *scanned)
1217 {
1218 	unsigned long *ptr;
1219 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1220 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1221 	unsigned long flags;
1222 
1223 	read_lock_irqsave(&kmemleak_lock, flags);
1224 	for (ptr = start; ptr < end; ptr++) {
1225 		struct kmemleak_object *object;
1226 		unsigned long pointer;
1227 
1228 		if (scan_should_stop())
1229 			break;
1230 
1231 		/* don't scan uninitialized memory */
1232 		if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1233 						  BYTES_PER_POINTER))
1234 			continue;
1235 
1236 		kasan_disable_current();
1237 		pointer = *ptr;
1238 		kasan_enable_current();
1239 
1240 		if (pointer < min_addr || pointer >= max_addr)
1241 			continue;
1242 
1243 		/*
1244 		 * No need for get_object() here since we hold kmemleak_lock.
1245 		 * object->use_count cannot be dropped to 0 while the object
1246 		 * is still present in object_tree_root and object_list
1247 		 * (with updates protected by kmemleak_lock).
1248 		 */
1249 		object = lookup_object(pointer, 1);
1250 		if (!object)
1251 			continue;
1252 		if (object == scanned)
1253 			/* self referenced, ignore */
1254 			continue;
1255 
1256 		/*
1257 		 * Avoid the lockdep recursive warning on object->lock being
1258 		 * previously acquired in scan_object(). These locks are
1259 		 * enclosed by scan_mutex.
1260 		 */
1261 		spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1262 		if (!color_white(object)) {
1263 			/* non-orphan, ignored or new */
1264 			spin_unlock(&object->lock);
1265 			continue;
1266 		}
1267 
1268 		/*
1269 		 * Increase the object's reference count (number of pointers
1270 		 * to the memory block). If this count reaches the required
1271 		 * minimum, the object's color will become gray and it will be
1272 		 * added to the gray_list.
1273 		 */
1274 		object->count++;
1275 		if (color_gray(object)) {
1276 			/* put_object() called when removing from gray_list */
1277 			WARN_ON(!get_object(object));
1278 			list_add_tail(&object->gray_list, &gray_list);
1279 		}
1280 		spin_unlock(&object->lock);
1281 	}
1282 	read_unlock_irqrestore(&kmemleak_lock, flags);
1283 }
1284 
1285 /*
1286  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1287  */
1288 static void scan_large_block(void *start, void *end)
1289 {
1290 	void *next;
1291 
1292 	while (start < end) {
1293 		next = min(start + MAX_SCAN_SIZE, end);
1294 		scan_block(start, next, NULL);
1295 		start = next;
1296 		cond_resched();
1297 	}
1298 }
1299 
1300 /*
1301  * Scan a memory block corresponding to a kmemleak_object. A condition is
1302  * that object->use_count >= 1.
1303  */
1304 static void scan_object(struct kmemleak_object *object)
1305 {
1306 	struct kmemleak_scan_area *area;
1307 	unsigned long flags;
1308 
1309 	/*
1310 	 * Once the object->lock is acquired, the corresponding memory block
1311 	 * cannot be freed (the same lock is acquired in delete_object).
1312 	 */
1313 	spin_lock_irqsave(&object->lock, flags);
1314 	if (object->flags & OBJECT_NO_SCAN)
1315 		goto out;
1316 	if (!(object->flags & OBJECT_ALLOCATED))
1317 		/* already freed object */
1318 		goto out;
1319 	if (hlist_empty(&object->area_list)) {
1320 		void *start = (void *)object->pointer;
1321 		void *end = (void *)(object->pointer + object->size);
1322 		void *next;
1323 
1324 		do {
1325 			next = min(start + MAX_SCAN_SIZE, end);
1326 			scan_block(start, next, object);
1327 
1328 			start = next;
1329 			if (start >= end)
1330 				break;
1331 
1332 			spin_unlock_irqrestore(&object->lock, flags);
1333 			cond_resched();
1334 			spin_lock_irqsave(&object->lock, flags);
1335 		} while (object->flags & OBJECT_ALLOCATED);
1336 	} else
1337 		hlist_for_each_entry(area, &object->area_list, node)
1338 			scan_block((void *)area->start,
1339 				   (void *)(area->start + area->size),
1340 				   object);
1341 out:
1342 	spin_unlock_irqrestore(&object->lock, flags);
1343 }
1344 
1345 /*
1346  * Scan the objects already referenced (gray objects). More objects will be
1347  * referenced and, if there are no memory leaks, all the objects are scanned.
1348  */
1349 static void scan_gray_list(void)
1350 {
1351 	struct kmemleak_object *object, *tmp;
1352 
1353 	/*
1354 	 * The list traversal is safe for both tail additions and removals
1355 	 * from inside the loop. The kmemleak objects cannot be freed from
1356 	 * outside the loop because their use_count was incremented.
1357 	 */
1358 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1359 	while (&object->gray_list != &gray_list) {
1360 		cond_resched();
1361 
1362 		/* may add new objects to the list */
1363 		if (!scan_should_stop())
1364 			scan_object(object);
1365 
1366 		tmp = list_entry(object->gray_list.next, typeof(*object),
1367 				 gray_list);
1368 
1369 		/* remove the object from the list and release it */
1370 		list_del(&object->gray_list);
1371 		put_object(object);
1372 
1373 		object = tmp;
1374 	}
1375 	WARN_ON(!list_empty(&gray_list));
1376 }
1377 
1378 /*
1379  * Scan data sections and all the referenced memory blocks allocated via the
1380  * kernel's standard allocators. This function must be called with the
1381  * scan_mutex held.
1382  */
1383 static void kmemleak_scan(void)
1384 {
1385 	unsigned long flags;
1386 	struct kmemleak_object *object;
1387 	int i;
1388 	int new_leaks = 0;
1389 
1390 	jiffies_last_scan = jiffies;
1391 
1392 	/* prepare the kmemleak_object's */
1393 	rcu_read_lock();
1394 	list_for_each_entry_rcu(object, &object_list, object_list) {
1395 		spin_lock_irqsave(&object->lock, flags);
1396 #ifdef DEBUG
1397 		/*
1398 		 * With a few exceptions there should be a maximum of
1399 		 * 1 reference to any object at this point.
1400 		 */
1401 		if (atomic_read(&object->use_count) > 1) {
1402 			pr_debug("object->use_count = %d\n",
1403 				 atomic_read(&object->use_count));
1404 			dump_object_info(object);
1405 		}
1406 #endif
1407 		/* reset the reference count (whiten the object) */
1408 		object->count = 0;
1409 		if (color_gray(object) && get_object(object))
1410 			list_add_tail(&object->gray_list, &gray_list);
1411 
1412 		spin_unlock_irqrestore(&object->lock, flags);
1413 	}
1414 	rcu_read_unlock();
1415 
1416 	/* data/bss scanning */
1417 	scan_large_block(_sdata, _edata);
1418 	scan_large_block(__bss_start, __bss_stop);
1419 	scan_large_block(__start_data_ro_after_init, __end_data_ro_after_init);
1420 
1421 #ifdef CONFIG_SMP
1422 	/* per-cpu sections scanning */
1423 	for_each_possible_cpu(i)
1424 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1425 				 __per_cpu_end + per_cpu_offset(i));
1426 #endif
1427 
1428 	/*
1429 	 * Struct page scanning for each node.
1430 	 */
1431 	get_online_mems();
1432 	for_each_online_node(i) {
1433 		unsigned long start_pfn = node_start_pfn(i);
1434 		unsigned long end_pfn = node_end_pfn(i);
1435 		unsigned long pfn;
1436 
1437 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1438 			struct page *page;
1439 
1440 			if (!pfn_valid(pfn))
1441 				continue;
1442 			page = pfn_to_page(pfn);
1443 			/* only scan if page is in use */
1444 			if (page_count(page) == 0)
1445 				continue;
1446 			scan_block(page, page + 1, NULL);
1447 		}
1448 	}
1449 	put_online_mems();
1450 
1451 	/*
1452 	 * Scanning the task stacks (may introduce false negatives).
1453 	 */
1454 	if (kmemleak_stack_scan) {
1455 		struct task_struct *p, *g;
1456 
1457 		read_lock(&tasklist_lock);
1458 		do_each_thread(g, p) {
1459 			void *stack = try_get_task_stack(p);
1460 			if (stack) {
1461 				scan_block(stack, stack + THREAD_SIZE, NULL);
1462 				put_task_stack(p);
1463 			}
1464 		} while_each_thread(g, p);
1465 		read_unlock(&tasklist_lock);
1466 	}
1467 
1468 	/*
1469 	 * Scan the objects already referenced from the sections scanned
1470 	 * above.
1471 	 */
1472 	scan_gray_list();
1473 
1474 	/*
1475 	 * Check for new or unreferenced objects modified since the previous
1476 	 * scan and color them gray until the next scan.
1477 	 */
1478 	rcu_read_lock();
1479 	list_for_each_entry_rcu(object, &object_list, object_list) {
1480 		spin_lock_irqsave(&object->lock, flags);
1481 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1482 		    && update_checksum(object) && get_object(object)) {
1483 			/* color it gray temporarily */
1484 			object->count = object->min_count;
1485 			list_add_tail(&object->gray_list, &gray_list);
1486 		}
1487 		spin_unlock_irqrestore(&object->lock, flags);
1488 	}
1489 	rcu_read_unlock();
1490 
1491 	/*
1492 	 * Re-scan the gray list for modified unreferenced objects.
1493 	 */
1494 	scan_gray_list();
1495 
1496 	/*
1497 	 * If scanning was stopped do not report any new unreferenced objects.
1498 	 */
1499 	if (scan_should_stop())
1500 		return;
1501 
1502 	/*
1503 	 * Scanning result reporting.
1504 	 */
1505 	rcu_read_lock();
1506 	list_for_each_entry_rcu(object, &object_list, object_list) {
1507 		spin_lock_irqsave(&object->lock, flags);
1508 		if (unreferenced_object(object) &&
1509 		    !(object->flags & OBJECT_REPORTED)) {
1510 			object->flags |= OBJECT_REPORTED;
1511 			new_leaks++;
1512 		}
1513 		spin_unlock_irqrestore(&object->lock, flags);
1514 	}
1515 	rcu_read_unlock();
1516 
1517 	if (new_leaks) {
1518 		kmemleak_found_leaks = true;
1519 
1520 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1521 			new_leaks);
1522 	}
1523 
1524 }
1525 
1526 /*
1527  * Thread function performing automatic memory scanning. Unreferenced objects
1528  * at the end of a memory scan are reported but only the first time.
1529  */
1530 static int kmemleak_scan_thread(void *arg)
1531 {
1532 	static int first_run = 1;
1533 
1534 	pr_info("Automatic memory scanning thread started\n");
1535 	set_user_nice(current, 10);
1536 
1537 	/*
1538 	 * Wait before the first scan to allow the system to fully initialize.
1539 	 */
1540 	if (first_run) {
1541 		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1542 		first_run = 0;
1543 		while (timeout && !kthread_should_stop())
1544 			timeout = schedule_timeout_interruptible(timeout);
1545 	}
1546 
1547 	while (!kthread_should_stop()) {
1548 		signed long timeout = jiffies_scan_wait;
1549 
1550 		mutex_lock(&scan_mutex);
1551 		kmemleak_scan();
1552 		mutex_unlock(&scan_mutex);
1553 
1554 		/* wait before the next scan */
1555 		while (timeout && !kthread_should_stop())
1556 			timeout = schedule_timeout_interruptible(timeout);
1557 	}
1558 
1559 	pr_info("Automatic memory scanning thread ended\n");
1560 
1561 	return 0;
1562 }
1563 
1564 /*
1565  * Start the automatic memory scanning thread. This function must be called
1566  * with the scan_mutex held.
1567  */
1568 static void start_scan_thread(void)
1569 {
1570 	if (scan_thread)
1571 		return;
1572 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1573 	if (IS_ERR(scan_thread)) {
1574 		pr_warn("Failed to create the scan thread\n");
1575 		scan_thread = NULL;
1576 	}
1577 }
1578 
1579 /*
1580  * Stop the automatic memory scanning thread. This function must be called
1581  * with the scan_mutex held.
1582  */
1583 static void stop_scan_thread(void)
1584 {
1585 	if (scan_thread) {
1586 		kthread_stop(scan_thread);
1587 		scan_thread = NULL;
1588 	}
1589 }
1590 
1591 /*
1592  * Iterate over the object_list and return the first valid object at or after
1593  * the required position with its use_count incremented. The function triggers
1594  * a memory scanning when the pos argument points to the first position.
1595  */
1596 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1597 {
1598 	struct kmemleak_object *object;
1599 	loff_t n = *pos;
1600 	int err;
1601 
1602 	err = mutex_lock_interruptible(&scan_mutex);
1603 	if (err < 0)
1604 		return ERR_PTR(err);
1605 
1606 	rcu_read_lock();
1607 	list_for_each_entry_rcu(object, &object_list, object_list) {
1608 		if (n-- > 0)
1609 			continue;
1610 		if (get_object(object))
1611 			goto out;
1612 	}
1613 	object = NULL;
1614 out:
1615 	return object;
1616 }
1617 
1618 /*
1619  * Return the next object in the object_list. The function decrements the
1620  * use_count of the previous object and increases that of the next one.
1621  */
1622 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1623 {
1624 	struct kmemleak_object *prev_obj = v;
1625 	struct kmemleak_object *next_obj = NULL;
1626 	struct kmemleak_object *obj = prev_obj;
1627 
1628 	++(*pos);
1629 
1630 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1631 		if (get_object(obj)) {
1632 			next_obj = obj;
1633 			break;
1634 		}
1635 	}
1636 
1637 	put_object(prev_obj);
1638 	return next_obj;
1639 }
1640 
1641 /*
1642  * Decrement the use_count of the last object required, if any.
1643  */
1644 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1645 {
1646 	if (!IS_ERR(v)) {
1647 		/*
1648 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1649 		 * waiting was interrupted, so only release it if !IS_ERR.
1650 		 */
1651 		rcu_read_unlock();
1652 		mutex_unlock(&scan_mutex);
1653 		if (v)
1654 			put_object(v);
1655 	}
1656 }
1657 
1658 /*
1659  * Print the information for an unreferenced object to the seq file.
1660  */
1661 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1662 {
1663 	struct kmemleak_object *object = v;
1664 	unsigned long flags;
1665 
1666 	spin_lock_irqsave(&object->lock, flags);
1667 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1668 		print_unreferenced(seq, object);
1669 	spin_unlock_irqrestore(&object->lock, flags);
1670 	return 0;
1671 }
1672 
1673 static const struct seq_operations kmemleak_seq_ops = {
1674 	.start = kmemleak_seq_start,
1675 	.next  = kmemleak_seq_next,
1676 	.stop  = kmemleak_seq_stop,
1677 	.show  = kmemleak_seq_show,
1678 };
1679 
1680 static int kmemleak_open(struct inode *inode, struct file *file)
1681 {
1682 	return seq_open(file, &kmemleak_seq_ops);
1683 }
1684 
1685 static int dump_str_object_info(const char *str)
1686 {
1687 	unsigned long flags;
1688 	struct kmemleak_object *object;
1689 	unsigned long addr;
1690 
1691 	if (kstrtoul(str, 0, &addr))
1692 		return -EINVAL;
1693 	object = find_and_get_object(addr, 0);
1694 	if (!object) {
1695 		pr_info("Unknown object at 0x%08lx\n", addr);
1696 		return -EINVAL;
1697 	}
1698 
1699 	spin_lock_irqsave(&object->lock, flags);
1700 	dump_object_info(object);
1701 	spin_unlock_irqrestore(&object->lock, flags);
1702 
1703 	put_object(object);
1704 	return 0;
1705 }
1706 
1707 /*
1708  * We use grey instead of black to ensure we can do future scans on the same
1709  * objects. If we did not do future scans these black objects could
1710  * potentially contain references to newly allocated objects in the future and
1711  * we'd end up with false positives.
1712  */
1713 static void kmemleak_clear(void)
1714 {
1715 	struct kmemleak_object *object;
1716 	unsigned long flags;
1717 
1718 	rcu_read_lock();
1719 	list_for_each_entry_rcu(object, &object_list, object_list) {
1720 		spin_lock_irqsave(&object->lock, flags);
1721 		if ((object->flags & OBJECT_REPORTED) &&
1722 		    unreferenced_object(object))
1723 			__paint_it(object, KMEMLEAK_GREY);
1724 		spin_unlock_irqrestore(&object->lock, flags);
1725 	}
1726 	rcu_read_unlock();
1727 
1728 	kmemleak_found_leaks = false;
1729 }
1730 
1731 static void __kmemleak_do_cleanup(void);
1732 
1733 /*
1734  * File write operation to configure kmemleak at run-time. The following
1735  * commands can be written to the /sys/kernel/debug/kmemleak file:
1736  *   off	- disable kmemleak (irreversible)
1737  *   stack=on	- enable the task stacks scanning
1738  *   stack=off	- disable the tasks stacks scanning
1739  *   scan=on	- start the automatic memory scanning thread
1740  *   scan=off	- stop the automatic memory scanning thread
1741  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1742  *		  disable it)
1743  *   scan	- trigger a memory scan
1744  *   clear	- mark all current reported unreferenced kmemleak objects as
1745  *		  grey to ignore printing them, or free all kmemleak objects
1746  *		  if kmemleak has been disabled.
1747  *   dump=...	- dump information about the object found at the given address
1748  */
1749 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1750 			      size_t size, loff_t *ppos)
1751 {
1752 	char buf[64];
1753 	int buf_size;
1754 	int ret;
1755 
1756 	buf_size = min(size, (sizeof(buf) - 1));
1757 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1758 		return -EFAULT;
1759 	buf[buf_size] = 0;
1760 
1761 	ret = mutex_lock_interruptible(&scan_mutex);
1762 	if (ret < 0)
1763 		return ret;
1764 
1765 	if (strncmp(buf, "clear", 5) == 0) {
1766 		if (kmemleak_enabled)
1767 			kmemleak_clear();
1768 		else
1769 			__kmemleak_do_cleanup();
1770 		goto out;
1771 	}
1772 
1773 	if (!kmemleak_enabled) {
1774 		ret = -EBUSY;
1775 		goto out;
1776 	}
1777 
1778 	if (strncmp(buf, "off", 3) == 0)
1779 		kmemleak_disable();
1780 	else if (strncmp(buf, "stack=on", 8) == 0)
1781 		kmemleak_stack_scan = 1;
1782 	else if (strncmp(buf, "stack=off", 9) == 0)
1783 		kmemleak_stack_scan = 0;
1784 	else if (strncmp(buf, "scan=on", 7) == 0)
1785 		start_scan_thread();
1786 	else if (strncmp(buf, "scan=off", 8) == 0)
1787 		stop_scan_thread();
1788 	else if (strncmp(buf, "scan=", 5) == 0) {
1789 		unsigned long secs;
1790 
1791 		ret = kstrtoul(buf + 5, 0, &secs);
1792 		if (ret < 0)
1793 			goto out;
1794 		stop_scan_thread();
1795 		if (secs) {
1796 			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1797 			start_scan_thread();
1798 		}
1799 	} else if (strncmp(buf, "scan", 4) == 0)
1800 		kmemleak_scan();
1801 	else if (strncmp(buf, "dump=", 5) == 0)
1802 		ret = dump_str_object_info(buf + 5);
1803 	else
1804 		ret = -EINVAL;
1805 
1806 out:
1807 	mutex_unlock(&scan_mutex);
1808 	if (ret < 0)
1809 		return ret;
1810 
1811 	/* ignore the rest of the buffer, only one command at a time */
1812 	*ppos += size;
1813 	return size;
1814 }
1815 
1816 static const struct file_operations kmemleak_fops = {
1817 	.owner		= THIS_MODULE,
1818 	.open		= kmemleak_open,
1819 	.read		= seq_read,
1820 	.write		= kmemleak_write,
1821 	.llseek		= seq_lseek,
1822 	.release	= seq_release,
1823 };
1824 
1825 static void __kmemleak_do_cleanup(void)
1826 {
1827 	struct kmemleak_object *object;
1828 
1829 	rcu_read_lock();
1830 	list_for_each_entry_rcu(object, &object_list, object_list)
1831 		delete_object_full(object->pointer);
1832 	rcu_read_unlock();
1833 }
1834 
1835 /*
1836  * Stop the memory scanning thread and free the kmemleak internal objects if
1837  * no previous scan thread (otherwise, kmemleak may still have some useful
1838  * information on memory leaks).
1839  */
1840 static void kmemleak_do_cleanup(struct work_struct *work)
1841 {
1842 	stop_scan_thread();
1843 
1844 	/*
1845 	 * Once the scan thread has stopped, it is safe to no longer track
1846 	 * object freeing. Ordering of the scan thread stopping and the memory
1847 	 * accesses below is guaranteed by the kthread_stop() function.
1848 	 */
1849 	kmemleak_free_enabled = 0;
1850 
1851 	if (!kmemleak_found_leaks)
1852 		__kmemleak_do_cleanup();
1853 	else
1854 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1855 }
1856 
1857 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1858 
1859 /*
1860  * Disable kmemleak. No memory allocation/freeing will be traced once this
1861  * function is called. Disabling kmemleak is an irreversible operation.
1862  */
1863 static void kmemleak_disable(void)
1864 {
1865 	/* atomically check whether it was already invoked */
1866 	if (cmpxchg(&kmemleak_error, 0, 1))
1867 		return;
1868 
1869 	/* stop any memory operation tracing */
1870 	kmemleak_enabled = 0;
1871 
1872 	/* check whether it is too early for a kernel thread */
1873 	if (kmemleak_initialized)
1874 		schedule_work(&cleanup_work);
1875 	else
1876 		kmemleak_free_enabled = 0;
1877 
1878 	pr_info("Kernel memory leak detector disabled\n");
1879 }
1880 
1881 /*
1882  * Allow boot-time kmemleak disabling (enabled by default).
1883  */
1884 static int kmemleak_boot_config(char *str)
1885 {
1886 	if (!str)
1887 		return -EINVAL;
1888 	if (strcmp(str, "off") == 0)
1889 		kmemleak_disable();
1890 	else if (strcmp(str, "on") == 0)
1891 		kmemleak_skip_disable = 1;
1892 	else
1893 		return -EINVAL;
1894 	return 0;
1895 }
1896 early_param("kmemleak", kmemleak_boot_config);
1897 
1898 static void __init print_log_trace(struct early_log *log)
1899 {
1900 	struct stack_trace trace;
1901 
1902 	trace.nr_entries = log->trace_len;
1903 	trace.entries = log->trace;
1904 
1905 	pr_notice("Early log backtrace:\n");
1906 	print_stack_trace(&trace, 2);
1907 }
1908 
1909 /*
1910  * Kmemleak initialization.
1911  */
1912 void __init kmemleak_init(void)
1913 {
1914 	int i;
1915 	unsigned long flags;
1916 
1917 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1918 	if (!kmemleak_skip_disable) {
1919 		kmemleak_early_log = 0;
1920 		kmemleak_disable();
1921 		return;
1922 	}
1923 #endif
1924 
1925 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1926 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1927 
1928 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1929 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1930 
1931 	if (crt_early_log > ARRAY_SIZE(early_log))
1932 		pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
1933 			crt_early_log);
1934 
1935 	/* the kernel is still in UP mode, so disabling the IRQs is enough */
1936 	local_irq_save(flags);
1937 	kmemleak_early_log = 0;
1938 	if (kmemleak_error) {
1939 		local_irq_restore(flags);
1940 		return;
1941 	} else {
1942 		kmemleak_enabled = 1;
1943 		kmemleak_free_enabled = 1;
1944 	}
1945 	local_irq_restore(flags);
1946 
1947 	/*
1948 	 * This is the point where tracking allocations is safe. Automatic
1949 	 * scanning is started during the late initcall. Add the early logged
1950 	 * callbacks to the kmemleak infrastructure.
1951 	 */
1952 	for (i = 0; i < crt_early_log; i++) {
1953 		struct early_log *log = &early_log[i];
1954 
1955 		switch (log->op_type) {
1956 		case KMEMLEAK_ALLOC:
1957 			early_alloc(log);
1958 			break;
1959 		case KMEMLEAK_ALLOC_PERCPU:
1960 			early_alloc_percpu(log);
1961 			break;
1962 		case KMEMLEAK_FREE:
1963 			kmemleak_free(log->ptr);
1964 			break;
1965 		case KMEMLEAK_FREE_PART:
1966 			kmemleak_free_part(log->ptr, log->size);
1967 			break;
1968 		case KMEMLEAK_FREE_PERCPU:
1969 			kmemleak_free_percpu(log->ptr);
1970 			break;
1971 		case KMEMLEAK_NOT_LEAK:
1972 			kmemleak_not_leak(log->ptr);
1973 			break;
1974 		case KMEMLEAK_IGNORE:
1975 			kmemleak_ignore(log->ptr);
1976 			break;
1977 		case KMEMLEAK_SCAN_AREA:
1978 			kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1979 			break;
1980 		case KMEMLEAK_NO_SCAN:
1981 			kmemleak_no_scan(log->ptr);
1982 			break;
1983 		default:
1984 			kmemleak_warn("Unknown early log operation: %d\n",
1985 				      log->op_type);
1986 		}
1987 
1988 		if (kmemleak_warning) {
1989 			print_log_trace(log);
1990 			kmemleak_warning = 0;
1991 		}
1992 	}
1993 }
1994 
1995 /*
1996  * Late initialization function.
1997  */
1998 static int __init kmemleak_late_init(void)
1999 {
2000 	struct dentry *dentry;
2001 
2002 	kmemleak_initialized = 1;
2003 
2004 	if (kmemleak_error) {
2005 		/*
2006 		 * Some error occurred and kmemleak was disabled. There is a
2007 		 * small chance that kmemleak_disable() was called immediately
2008 		 * after setting kmemleak_initialized and we may end up with
2009 		 * two clean-up threads but serialized by scan_mutex.
2010 		 */
2011 		schedule_work(&cleanup_work);
2012 		return -ENOMEM;
2013 	}
2014 
2015 	dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
2016 				     &kmemleak_fops);
2017 	if (!dentry)
2018 		pr_warn("Failed to create the debugfs kmemleak file\n");
2019 	mutex_lock(&scan_mutex);
2020 	start_scan_thread();
2021 	mutex_unlock(&scan_mutex);
2022 
2023 	pr_info("Kernel memory leak detector initialized\n");
2024 
2025 	return 0;
2026 }
2027 late_initcall(kmemleak_late_init);
2028