xref: /openbmc/linux/mm/kmemleak.c (revision 9ffc93f2)
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/kmemleak.txt.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a priority search tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * The kmemleak_object structures have a use_count incremented or decremented
57  * using the get_object()/put_object() functions. When the use_count becomes
58  * 0, this count can no longer be incremented and put_object() schedules the
59  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60  * function must be protected by rcu_read_lock() to avoid accessing a freed
61  * structure.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 
66 #include <linux/init.h>
67 #include <linux/kernel.h>
68 #include <linux/list.h>
69 #include <linux/sched.h>
70 #include <linux/jiffies.h>
71 #include <linux/delay.h>
72 #include <linux/export.h>
73 #include <linux/kthread.h>
74 #include <linux/prio_tree.h>
75 #include <linux/fs.h>
76 #include <linux/debugfs.h>
77 #include <linux/seq_file.h>
78 #include <linux/cpumask.h>
79 #include <linux/spinlock.h>
80 #include <linux/mutex.h>
81 #include <linux/rcupdate.h>
82 #include <linux/stacktrace.h>
83 #include <linux/cache.h>
84 #include <linux/percpu.h>
85 #include <linux/hardirq.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96 
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
100 
101 #include <linux/kmemcheck.h>
102 #include <linux/kmemleak.h>
103 #include <linux/memory_hotplug.h>
104 
105 /*
106  * Kmemleak configuration and common defines.
107  */
108 #define MAX_TRACE		16	/* stack trace length */
109 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
110 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
111 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
112 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
113 
114 #define BYTES_PER_POINTER	sizeof(void *)
115 
116 /* GFP bitmask for kmemleak internal allocations */
117 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
118 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
119 				 __GFP_NOWARN)
120 
121 /* scanning area inside a memory block */
122 struct kmemleak_scan_area {
123 	struct hlist_node node;
124 	unsigned long start;
125 	size_t size;
126 };
127 
128 #define KMEMLEAK_GREY	0
129 #define KMEMLEAK_BLACK	-1
130 
131 /*
132  * Structure holding the metadata for each allocated memory block.
133  * Modifications to such objects should be made while holding the
134  * object->lock. Insertions or deletions from object_list, gray_list or
135  * tree_node are already protected by the corresponding locks or mutex (see
136  * the notes on locking above). These objects are reference-counted
137  * (use_count) and freed using the RCU mechanism.
138  */
139 struct kmemleak_object {
140 	spinlock_t lock;
141 	unsigned long flags;		/* object status flags */
142 	struct list_head object_list;
143 	struct list_head gray_list;
144 	struct prio_tree_node tree_node;
145 	struct rcu_head rcu;		/* object_list lockless traversal */
146 	/* object usage count; object freed when use_count == 0 */
147 	atomic_t use_count;
148 	unsigned long pointer;
149 	size_t size;
150 	/* minimum number of a pointers found before it is considered leak */
151 	int min_count;
152 	/* the total number of pointers found pointing to this object */
153 	int count;
154 	/* checksum for detecting modified objects */
155 	u32 checksum;
156 	/* memory ranges to be scanned inside an object (empty for all) */
157 	struct hlist_head area_list;
158 	unsigned long trace[MAX_TRACE];
159 	unsigned int trace_len;
160 	unsigned long jiffies;		/* creation timestamp */
161 	pid_t pid;			/* pid of the current task */
162 	char comm[TASK_COMM_LEN];	/* executable name */
163 };
164 
165 /* flag representing the memory block allocation status */
166 #define OBJECT_ALLOCATED	(1 << 0)
167 /* flag set after the first reporting of an unreference object */
168 #define OBJECT_REPORTED		(1 << 1)
169 /* flag set to not scan the object */
170 #define OBJECT_NO_SCAN		(1 << 2)
171 
172 /* number of bytes to print per line; must be 16 or 32 */
173 #define HEX_ROW_SIZE		16
174 /* number of bytes to print at a time (1, 2, 4, 8) */
175 #define HEX_GROUP_SIZE		1
176 /* include ASCII after the hex output */
177 #define HEX_ASCII		1
178 /* max number of lines to be printed */
179 #define HEX_MAX_LINES		2
180 
181 /* the list of all allocated objects */
182 static LIST_HEAD(object_list);
183 /* the list of gray-colored objects (see color_gray comment below) */
184 static LIST_HEAD(gray_list);
185 /* prio search tree for object boundaries */
186 static struct prio_tree_root object_tree_root;
187 /* rw_lock protecting the access to object_list and prio_tree_root */
188 static DEFINE_RWLOCK(kmemleak_lock);
189 
190 /* allocation caches for kmemleak internal data */
191 static struct kmem_cache *object_cache;
192 static struct kmem_cache *scan_area_cache;
193 
194 /* set if tracing memory operations is enabled */
195 static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
196 /* set in the late_initcall if there were no errors */
197 static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
198 /* enables or disables early logging of the memory operations */
199 static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
200 /* set if a kmemleak warning was issued */
201 static atomic_t kmemleak_warning = ATOMIC_INIT(0);
202 /* set if a fatal kmemleak error has occurred */
203 static atomic_t kmemleak_error = ATOMIC_INIT(0);
204 
205 /* minimum and maximum address that may be valid pointers */
206 static unsigned long min_addr = ULONG_MAX;
207 static unsigned long max_addr;
208 
209 static struct task_struct *scan_thread;
210 /* used to avoid reporting of recently allocated objects */
211 static unsigned long jiffies_min_age;
212 static unsigned long jiffies_last_scan;
213 /* delay between automatic memory scannings */
214 static signed long jiffies_scan_wait;
215 /* enables or disables the task stacks scanning */
216 static int kmemleak_stack_scan = 1;
217 /* protects the memory scanning, parameters and debug/kmemleak file access */
218 static DEFINE_MUTEX(scan_mutex);
219 /* setting kmemleak=on, will set this var, skipping the disable */
220 static int kmemleak_skip_disable;
221 
222 
223 /*
224  * Early object allocation/freeing logging. Kmemleak is initialized after the
225  * kernel allocator. However, both the kernel allocator and kmemleak may
226  * allocate memory blocks which need to be tracked. Kmemleak defines an
227  * arbitrary buffer to hold the allocation/freeing information before it is
228  * fully initialized.
229  */
230 
231 /* kmemleak operation type for early logging */
232 enum {
233 	KMEMLEAK_ALLOC,
234 	KMEMLEAK_ALLOC_PERCPU,
235 	KMEMLEAK_FREE,
236 	KMEMLEAK_FREE_PART,
237 	KMEMLEAK_FREE_PERCPU,
238 	KMEMLEAK_NOT_LEAK,
239 	KMEMLEAK_IGNORE,
240 	KMEMLEAK_SCAN_AREA,
241 	KMEMLEAK_NO_SCAN
242 };
243 
244 /*
245  * Structure holding the information passed to kmemleak callbacks during the
246  * early logging.
247  */
248 struct early_log {
249 	int op_type;			/* kmemleak operation type */
250 	const void *ptr;		/* allocated/freed memory block */
251 	size_t size;			/* memory block size */
252 	int min_count;			/* minimum reference count */
253 	unsigned long trace[MAX_TRACE];	/* stack trace */
254 	unsigned int trace_len;		/* stack trace length */
255 };
256 
257 /* early logging buffer and current position */
258 static struct early_log
259 	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
260 static int crt_early_log __initdata;
261 
262 static void kmemleak_disable(void);
263 
264 /*
265  * Print a warning and dump the stack trace.
266  */
267 #define kmemleak_warn(x...)	do {		\
268 	pr_warning(x);				\
269 	dump_stack();				\
270 	atomic_set(&kmemleak_warning, 1);	\
271 } while (0)
272 
273 /*
274  * Macro invoked when a serious kmemleak condition occurred and cannot be
275  * recovered from. Kmemleak will be disabled and further allocation/freeing
276  * tracing no longer available.
277  */
278 #define kmemleak_stop(x...)	do {	\
279 	kmemleak_warn(x);		\
280 	kmemleak_disable();		\
281 } while (0)
282 
283 /*
284  * Printing of the objects hex dump to the seq file. The number of lines to be
285  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
286  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
287  * with the object->lock held.
288  */
289 static void hex_dump_object(struct seq_file *seq,
290 			    struct kmemleak_object *object)
291 {
292 	const u8 *ptr = (const u8 *)object->pointer;
293 	int i, len, remaining;
294 	unsigned char linebuf[HEX_ROW_SIZE * 5];
295 
296 	/* limit the number of lines to HEX_MAX_LINES */
297 	remaining = len =
298 		min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
299 
300 	seq_printf(seq, "  hex dump (first %d bytes):\n", len);
301 	for (i = 0; i < len; i += HEX_ROW_SIZE) {
302 		int linelen = min(remaining, HEX_ROW_SIZE);
303 
304 		remaining -= HEX_ROW_SIZE;
305 		hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
306 				   HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
307 				   HEX_ASCII);
308 		seq_printf(seq, "    %s\n", linebuf);
309 	}
310 }
311 
312 /*
313  * Object colors, encoded with count and min_count:
314  * - white - orphan object, not enough references to it (count < min_count)
315  * - gray  - not orphan, not marked as false positive (min_count == 0) or
316  *		sufficient references to it (count >= min_count)
317  * - black - ignore, it doesn't contain references (e.g. text section)
318  *		(min_count == -1). No function defined for this color.
319  * Newly created objects don't have any color assigned (object->count == -1)
320  * before the next memory scan when they become white.
321  */
322 static bool color_white(const struct kmemleak_object *object)
323 {
324 	return object->count != KMEMLEAK_BLACK &&
325 		object->count < object->min_count;
326 }
327 
328 static bool color_gray(const struct kmemleak_object *object)
329 {
330 	return object->min_count != KMEMLEAK_BLACK &&
331 		object->count >= object->min_count;
332 }
333 
334 /*
335  * Objects are considered unreferenced only if their color is white, they have
336  * not be deleted and have a minimum age to avoid false positives caused by
337  * pointers temporarily stored in CPU registers.
338  */
339 static bool unreferenced_object(struct kmemleak_object *object)
340 {
341 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
342 		time_before_eq(object->jiffies + jiffies_min_age,
343 			       jiffies_last_scan);
344 }
345 
346 /*
347  * Printing of the unreferenced objects information to the seq file. The
348  * print_unreferenced function must be called with the object->lock held.
349  */
350 static void print_unreferenced(struct seq_file *seq,
351 			       struct kmemleak_object *object)
352 {
353 	int i;
354 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
355 
356 	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
357 		   object->pointer, object->size);
358 	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
359 		   object->comm, object->pid, object->jiffies,
360 		   msecs_age / 1000, msecs_age % 1000);
361 	hex_dump_object(seq, object);
362 	seq_printf(seq, "  backtrace:\n");
363 
364 	for (i = 0; i < object->trace_len; i++) {
365 		void *ptr = (void *)object->trace[i];
366 		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
367 	}
368 }
369 
370 /*
371  * Print the kmemleak_object information. This function is used mainly for
372  * debugging special cases when kmemleak operations. It must be called with
373  * the object->lock held.
374  */
375 static void dump_object_info(struct kmemleak_object *object)
376 {
377 	struct stack_trace trace;
378 
379 	trace.nr_entries = object->trace_len;
380 	trace.entries = object->trace;
381 
382 	pr_notice("Object 0x%08lx (size %zu):\n",
383 		  object->tree_node.start, object->size);
384 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
385 		  object->comm, object->pid, object->jiffies);
386 	pr_notice("  min_count = %d\n", object->min_count);
387 	pr_notice("  count = %d\n", object->count);
388 	pr_notice("  flags = 0x%lx\n", object->flags);
389 	pr_notice("  checksum = %d\n", object->checksum);
390 	pr_notice("  backtrace:\n");
391 	print_stack_trace(&trace, 4);
392 }
393 
394 /*
395  * Look-up a memory block metadata (kmemleak_object) in the priority search
396  * tree based on a pointer value. If alias is 0, only values pointing to the
397  * beginning of the memory block are allowed. The kmemleak_lock must be held
398  * when calling this function.
399  */
400 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
401 {
402 	struct prio_tree_node *node;
403 	struct prio_tree_iter iter;
404 	struct kmemleak_object *object;
405 
406 	prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
407 	node = prio_tree_next(&iter);
408 	if (node) {
409 		object = prio_tree_entry(node, struct kmemleak_object,
410 					 tree_node);
411 		if (!alias && object->pointer != ptr) {
412 			kmemleak_warn("Found object by alias at 0x%08lx\n",
413 				      ptr);
414 			dump_object_info(object);
415 			object = NULL;
416 		}
417 	} else
418 		object = NULL;
419 
420 	return object;
421 }
422 
423 /*
424  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
425  * that once an object's use_count reached 0, the RCU freeing was already
426  * registered and the object should no longer be used. This function must be
427  * called under the protection of rcu_read_lock().
428  */
429 static int get_object(struct kmemleak_object *object)
430 {
431 	return atomic_inc_not_zero(&object->use_count);
432 }
433 
434 /*
435  * RCU callback to free a kmemleak_object.
436  */
437 static void free_object_rcu(struct rcu_head *rcu)
438 {
439 	struct hlist_node *elem, *tmp;
440 	struct kmemleak_scan_area *area;
441 	struct kmemleak_object *object =
442 		container_of(rcu, struct kmemleak_object, rcu);
443 
444 	/*
445 	 * Once use_count is 0 (guaranteed by put_object), there is no other
446 	 * code accessing this object, hence no need for locking.
447 	 */
448 	hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
449 		hlist_del(elem);
450 		kmem_cache_free(scan_area_cache, area);
451 	}
452 	kmem_cache_free(object_cache, object);
453 }
454 
455 /*
456  * Decrement the object use_count. Once the count is 0, free the object using
457  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
458  * delete_object() path, the delayed RCU freeing ensures that there is no
459  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
460  * is also possible.
461  */
462 static void put_object(struct kmemleak_object *object)
463 {
464 	if (!atomic_dec_and_test(&object->use_count))
465 		return;
466 
467 	/* should only get here after delete_object was called */
468 	WARN_ON(object->flags & OBJECT_ALLOCATED);
469 
470 	call_rcu(&object->rcu, free_object_rcu);
471 }
472 
473 /*
474  * Look up an object in the prio search tree and increase its use_count.
475  */
476 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
477 {
478 	unsigned long flags;
479 	struct kmemleak_object *object = NULL;
480 
481 	rcu_read_lock();
482 	read_lock_irqsave(&kmemleak_lock, flags);
483 	if (ptr >= min_addr && ptr < max_addr)
484 		object = lookup_object(ptr, alias);
485 	read_unlock_irqrestore(&kmemleak_lock, flags);
486 
487 	/* check whether the object is still available */
488 	if (object && !get_object(object))
489 		object = NULL;
490 	rcu_read_unlock();
491 
492 	return object;
493 }
494 
495 /*
496  * Save stack trace to the given array of MAX_TRACE size.
497  */
498 static int __save_stack_trace(unsigned long *trace)
499 {
500 	struct stack_trace stack_trace;
501 
502 	stack_trace.max_entries = MAX_TRACE;
503 	stack_trace.nr_entries = 0;
504 	stack_trace.entries = trace;
505 	stack_trace.skip = 2;
506 	save_stack_trace(&stack_trace);
507 
508 	return stack_trace.nr_entries;
509 }
510 
511 /*
512  * Create the metadata (struct kmemleak_object) corresponding to an allocated
513  * memory block and add it to the object_list and object_tree_root.
514  */
515 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
516 					     int min_count, gfp_t gfp)
517 {
518 	unsigned long flags;
519 	struct kmemleak_object *object;
520 	struct prio_tree_node *node;
521 
522 	object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
523 	if (!object) {
524 		pr_warning("Cannot allocate a kmemleak_object structure\n");
525 		kmemleak_disable();
526 		return NULL;
527 	}
528 
529 	INIT_LIST_HEAD(&object->object_list);
530 	INIT_LIST_HEAD(&object->gray_list);
531 	INIT_HLIST_HEAD(&object->area_list);
532 	spin_lock_init(&object->lock);
533 	atomic_set(&object->use_count, 1);
534 	object->flags = OBJECT_ALLOCATED;
535 	object->pointer = ptr;
536 	object->size = size;
537 	object->min_count = min_count;
538 	object->count = 0;			/* white color initially */
539 	object->jiffies = jiffies;
540 	object->checksum = 0;
541 
542 	/* task information */
543 	if (in_irq()) {
544 		object->pid = 0;
545 		strncpy(object->comm, "hardirq", sizeof(object->comm));
546 	} else if (in_softirq()) {
547 		object->pid = 0;
548 		strncpy(object->comm, "softirq", sizeof(object->comm));
549 	} else {
550 		object->pid = current->pid;
551 		/*
552 		 * There is a small chance of a race with set_task_comm(),
553 		 * however using get_task_comm() here may cause locking
554 		 * dependency issues with current->alloc_lock. In the worst
555 		 * case, the command line is not correct.
556 		 */
557 		strncpy(object->comm, current->comm, sizeof(object->comm));
558 	}
559 
560 	/* kernel backtrace */
561 	object->trace_len = __save_stack_trace(object->trace);
562 
563 	INIT_PRIO_TREE_NODE(&object->tree_node);
564 	object->tree_node.start = ptr;
565 	object->tree_node.last = ptr + size - 1;
566 
567 	write_lock_irqsave(&kmemleak_lock, flags);
568 
569 	min_addr = min(min_addr, ptr);
570 	max_addr = max(max_addr, ptr + size);
571 	node = prio_tree_insert(&object_tree_root, &object->tree_node);
572 	/*
573 	 * The code calling the kernel does not yet have the pointer to the
574 	 * memory block to be able to free it.  However, we still hold the
575 	 * kmemleak_lock here in case parts of the kernel started freeing
576 	 * random memory blocks.
577 	 */
578 	if (node != &object->tree_node) {
579 		kmemleak_stop("Cannot insert 0x%lx into the object search tree "
580 			      "(already existing)\n", ptr);
581 		object = lookup_object(ptr, 1);
582 		spin_lock(&object->lock);
583 		dump_object_info(object);
584 		spin_unlock(&object->lock);
585 
586 		goto out;
587 	}
588 	list_add_tail_rcu(&object->object_list, &object_list);
589 out:
590 	write_unlock_irqrestore(&kmemleak_lock, flags);
591 	return object;
592 }
593 
594 /*
595  * Remove the metadata (struct kmemleak_object) for a memory block from the
596  * object_list and object_tree_root and decrement its use_count.
597  */
598 static void __delete_object(struct kmemleak_object *object)
599 {
600 	unsigned long flags;
601 
602 	write_lock_irqsave(&kmemleak_lock, flags);
603 	prio_tree_remove(&object_tree_root, &object->tree_node);
604 	list_del_rcu(&object->object_list);
605 	write_unlock_irqrestore(&kmemleak_lock, flags);
606 
607 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
608 	WARN_ON(atomic_read(&object->use_count) < 2);
609 
610 	/*
611 	 * Locking here also ensures that the corresponding memory block
612 	 * cannot be freed when it is being scanned.
613 	 */
614 	spin_lock_irqsave(&object->lock, flags);
615 	object->flags &= ~OBJECT_ALLOCATED;
616 	spin_unlock_irqrestore(&object->lock, flags);
617 	put_object(object);
618 }
619 
620 /*
621  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
622  * delete it.
623  */
624 static void delete_object_full(unsigned long ptr)
625 {
626 	struct kmemleak_object *object;
627 
628 	object = find_and_get_object(ptr, 0);
629 	if (!object) {
630 #ifdef DEBUG
631 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
632 			      ptr);
633 #endif
634 		return;
635 	}
636 	__delete_object(object);
637 	put_object(object);
638 }
639 
640 /*
641  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
642  * delete it. If the memory block is partially freed, the function may create
643  * additional metadata for the remaining parts of the block.
644  */
645 static void delete_object_part(unsigned long ptr, size_t size)
646 {
647 	struct kmemleak_object *object;
648 	unsigned long start, end;
649 
650 	object = find_and_get_object(ptr, 1);
651 	if (!object) {
652 #ifdef DEBUG
653 		kmemleak_warn("Partially freeing unknown object at 0x%08lx "
654 			      "(size %zu)\n", ptr, size);
655 #endif
656 		return;
657 	}
658 	__delete_object(object);
659 
660 	/*
661 	 * Create one or two objects that may result from the memory block
662 	 * split. Note that partial freeing is only done by free_bootmem() and
663 	 * this happens before kmemleak_init() is called. The path below is
664 	 * only executed during early log recording in kmemleak_init(), so
665 	 * GFP_KERNEL is enough.
666 	 */
667 	start = object->pointer;
668 	end = object->pointer + object->size;
669 	if (ptr > start)
670 		create_object(start, ptr - start, object->min_count,
671 			      GFP_KERNEL);
672 	if (ptr + size < end)
673 		create_object(ptr + size, end - ptr - size, object->min_count,
674 			      GFP_KERNEL);
675 
676 	put_object(object);
677 }
678 
679 static void __paint_it(struct kmemleak_object *object, int color)
680 {
681 	object->min_count = color;
682 	if (color == KMEMLEAK_BLACK)
683 		object->flags |= OBJECT_NO_SCAN;
684 }
685 
686 static void paint_it(struct kmemleak_object *object, int color)
687 {
688 	unsigned long flags;
689 
690 	spin_lock_irqsave(&object->lock, flags);
691 	__paint_it(object, color);
692 	spin_unlock_irqrestore(&object->lock, flags);
693 }
694 
695 static void paint_ptr(unsigned long ptr, int color)
696 {
697 	struct kmemleak_object *object;
698 
699 	object = find_and_get_object(ptr, 0);
700 	if (!object) {
701 		kmemleak_warn("Trying to color unknown object "
702 			      "at 0x%08lx as %s\n", ptr,
703 			      (color == KMEMLEAK_GREY) ? "Grey" :
704 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
705 		return;
706 	}
707 	paint_it(object, color);
708 	put_object(object);
709 }
710 
711 /*
712  * Mark an object permanently as gray-colored so that it can no longer be
713  * reported as a leak. This is used in general to mark a false positive.
714  */
715 static void make_gray_object(unsigned long ptr)
716 {
717 	paint_ptr(ptr, KMEMLEAK_GREY);
718 }
719 
720 /*
721  * Mark the object as black-colored so that it is ignored from scans and
722  * reporting.
723  */
724 static void make_black_object(unsigned long ptr)
725 {
726 	paint_ptr(ptr, KMEMLEAK_BLACK);
727 }
728 
729 /*
730  * Add a scanning area to the object. If at least one such area is added,
731  * kmemleak will only scan these ranges rather than the whole memory block.
732  */
733 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
734 {
735 	unsigned long flags;
736 	struct kmemleak_object *object;
737 	struct kmemleak_scan_area *area;
738 
739 	object = find_and_get_object(ptr, 1);
740 	if (!object) {
741 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
742 			      ptr);
743 		return;
744 	}
745 
746 	area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
747 	if (!area) {
748 		pr_warning("Cannot allocate a scan area\n");
749 		goto out;
750 	}
751 
752 	spin_lock_irqsave(&object->lock, flags);
753 	if (ptr + size > object->pointer + object->size) {
754 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
755 		dump_object_info(object);
756 		kmem_cache_free(scan_area_cache, area);
757 		goto out_unlock;
758 	}
759 
760 	INIT_HLIST_NODE(&area->node);
761 	area->start = ptr;
762 	area->size = size;
763 
764 	hlist_add_head(&area->node, &object->area_list);
765 out_unlock:
766 	spin_unlock_irqrestore(&object->lock, flags);
767 out:
768 	put_object(object);
769 }
770 
771 /*
772  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
773  * pointer. Such object will not be scanned by kmemleak but references to it
774  * are searched.
775  */
776 static void object_no_scan(unsigned long ptr)
777 {
778 	unsigned long flags;
779 	struct kmemleak_object *object;
780 
781 	object = find_and_get_object(ptr, 0);
782 	if (!object) {
783 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
784 		return;
785 	}
786 
787 	spin_lock_irqsave(&object->lock, flags);
788 	object->flags |= OBJECT_NO_SCAN;
789 	spin_unlock_irqrestore(&object->lock, flags);
790 	put_object(object);
791 }
792 
793 /*
794  * Log an early kmemleak_* call to the early_log buffer. These calls will be
795  * processed later once kmemleak is fully initialized.
796  */
797 static void __init log_early(int op_type, const void *ptr, size_t size,
798 			     int min_count)
799 {
800 	unsigned long flags;
801 	struct early_log *log;
802 
803 	if (atomic_read(&kmemleak_error)) {
804 		/* kmemleak stopped recording, just count the requests */
805 		crt_early_log++;
806 		return;
807 	}
808 
809 	if (crt_early_log >= ARRAY_SIZE(early_log)) {
810 		kmemleak_disable();
811 		return;
812 	}
813 
814 	/*
815 	 * There is no need for locking since the kernel is still in UP mode
816 	 * at this stage. Disabling the IRQs is enough.
817 	 */
818 	local_irq_save(flags);
819 	log = &early_log[crt_early_log];
820 	log->op_type = op_type;
821 	log->ptr = ptr;
822 	log->size = size;
823 	log->min_count = min_count;
824 	log->trace_len = __save_stack_trace(log->trace);
825 	crt_early_log++;
826 	local_irq_restore(flags);
827 }
828 
829 /*
830  * Log an early allocated block and populate the stack trace.
831  */
832 static void early_alloc(struct early_log *log)
833 {
834 	struct kmemleak_object *object;
835 	unsigned long flags;
836 	int i;
837 
838 	if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
839 		return;
840 
841 	/*
842 	 * RCU locking needed to ensure object is not freed via put_object().
843 	 */
844 	rcu_read_lock();
845 	object = create_object((unsigned long)log->ptr, log->size,
846 			       log->min_count, GFP_ATOMIC);
847 	if (!object)
848 		goto out;
849 	spin_lock_irqsave(&object->lock, flags);
850 	for (i = 0; i < log->trace_len; i++)
851 		object->trace[i] = log->trace[i];
852 	object->trace_len = log->trace_len;
853 	spin_unlock_irqrestore(&object->lock, flags);
854 out:
855 	rcu_read_unlock();
856 }
857 
858 /*
859  * Log an early allocated block and populate the stack trace.
860  */
861 static void early_alloc_percpu(struct early_log *log)
862 {
863 	unsigned int cpu;
864 	const void __percpu *ptr = log->ptr;
865 
866 	for_each_possible_cpu(cpu) {
867 		log->ptr = per_cpu_ptr(ptr, cpu);
868 		early_alloc(log);
869 	}
870 }
871 
872 /**
873  * kmemleak_alloc - register a newly allocated object
874  * @ptr:	pointer to beginning of the object
875  * @size:	size of the object
876  * @min_count:	minimum number of references to this object. If during memory
877  *		scanning a number of references less than @min_count is found,
878  *		the object is reported as a memory leak. If @min_count is 0,
879  *		the object is never reported as a leak. If @min_count is -1,
880  *		the object is ignored (not scanned and not reported as a leak)
881  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
882  *
883  * This function is called from the kernel allocators when a new object
884  * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
885  */
886 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
887 			  gfp_t gfp)
888 {
889 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
890 
891 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
892 		create_object((unsigned long)ptr, size, min_count, gfp);
893 	else if (atomic_read(&kmemleak_early_log))
894 		log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
895 }
896 EXPORT_SYMBOL_GPL(kmemleak_alloc);
897 
898 /**
899  * kmemleak_alloc_percpu - register a newly allocated __percpu object
900  * @ptr:	__percpu pointer to beginning of the object
901  * @size:	size of the object
902  *
903  * This function is called from the kernel percpu allocator when a new object
904  * (memory block) is allocated (alloc_percpu). It assumes GFP_KERNEL
905  * allocation.
906  */
907 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size)
908 {
909 	unsigned int cpu;
910 
911 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
912 
913 	/*
914 	 * Percpu allocations are only scanned and not reported as leaks
915 	 * (min_count is set to 0).
916 	 */
917 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
918 		for_each_possible_cpu(cpu)
919 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
920 				      size, 0, GFP_KERNEL);
921 	else if (atomic_read(&kmemleak_early_log))
922 		log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
923 }
924 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
925 
926 /**
927  * kmemleak_free - unregister a previously registered object
928  * @ptr:	pointer to beginning of the object
929  *
930  * This function is called from the kernel allocators when an object (memory
931  * block) is freed (kmem_cache_free, kfree, vfree etc.).
932  */
933 void __ref kmemleak_free(const void *ptr)
934 {
935 	pr_debug("%s(0x%p)\n", __func__, ptr);
936 
937 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
938 		delete_object_full((unsigned long)ptr);
939 	else if (atomic_read(&kmemleak_early_log))
940 		log_early(KMEMLEAK_FREE, ptr, 0, 0);
941 }
942 EXPORT_SYMBOL_GPL(kmemleak_free);
943 
944 /**
945  * kmemleak_free_part - partially unregister a previously registered object
946  * @ptr:	pointer to the beginning or inside the object. This also
947  *		represents the start of the range to be freed
948  * @size:	size to be unregistered
949  *
950  * This function is called when only a part of a memory block is freed
951  * (usually from the bootmem allocator).
952  */
953 void __ref kmemleak_free_part(const void *ptr, size_t size)
954 {
955 	pr_debug("%s(0x%p)\n", __func__, ptr);
956 
957 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
958 		delete_object_part((unsigned long)ptr, size);
959 	else if (atomic_read(&kmemleak_early_log))
960 		log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
961 }
962 EXPORT_SYMBOL_GPL(kmemleak_free_part);
963 
964 /**
965  * kmemleak_free_percpu - unregister a previously registered __percpu object
966  * @ptr:	__percpu pointer to beginning of the object
967  *
968  * This function is called from the kernel percpu allocator when an object
969  * (memory block) is freed (free_percpu).
970  */
971 void __ref kmemleak_free_percpu(const void __percpu *ptr)
972 {
973 	unsigned int cpu;
974 
975 	pr_debug("%s(0x%p)\n", __func__, ptr);
976 
977 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
978 		for_each_possible_cpu(cpu)
979 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
980 								      cpu));
981 	else if (atomic_read(&kmemleak_early_log))
982 		log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
983 }
984 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
985 
986 /**
987  * kmemleak_not_leak - mark an allocated object as false positive
988  * @ptr:	pointer to beginning of the object
989  *
990  * Calling this function on an object will cause the memory block to no longer
991  * be reported as leak and always be scanned.
992  */
993 void __ref kmemleak_not_leak(const void *ptr)
994 {
995 	pr_debug("%s(0x%p)\n", __func__, ptr);
996 
997 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
998 		make_gray_object((unsigned long)ptr);
999 	else if (atomic_read(&kmemleak_early_log))
1000 		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1001 }
1002 EXPORT_SYMBOL(kmemleak_not_leak);
1003 
1004 /**
1005  * kmemleak_ignore - ignore an allocated object
1006  * @ptr:	pointer to beginning of the object
1007  *
1008  * Calling this function on an object will cause the memory block to be
1009  * ignored (not scanned and not reported as a leak). This is usually done when
1010  * it is known that the corresponding block is not a leak and does not contain
1011  * any references to other allocated memory blocks.
1012  */
1013 void __ref kmemleak_ignore(const void *ptr)
1014 {
1015 	pr_debug("%s(0x%p)\n", __func__, ptr);
1016 
1017 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
1018 		make_black_object((unsigned long)ptr);
1019 	else if (atomic_read(&kmemleak_early_log))
1020 		log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1021 }
1022 EXPORT_SYMBOL(kmemleak_ignore);
1023 
1024 /**
1025  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1026  * @ptr:	pointer to beginning or inside the object. This also
1027  *		represents the start of the scan area
1028  * @size:	size of the scan area
1029  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1030  *
1031  * This function is used when it is known that only certain parts of an object
1032  * contain references to other objects. Kmemleak will only scan these areas
1033  * reducing the number false negatives.
1034  */
1035 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1036 {
1037 	pr_debug("%s(0x%p)\n", __func__, ptr);
1038 
1039 	if (atomic_read(&kmemleak_enabled) && ptr && size && !IS_ERR(ptr))
1040 		add_scan_area((unsigned long)ptr, size, gfp);
1041 	else if (atomic_read(&kmemleak_early_log))
1042 		log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1043 }
1044 EXPORT_SYMBOL(kmemleak_scan_area);
1045 
1046 /**
1047  * kmemleak_no_scan - do not scan an allocated object
1048  * @ptr:	pointer to beginning of the object
1049  *
1050  * This function notifies kmemleak not to scan the given memory block. Useful
1051  * in situations where it is known that the given object does not contain any
1052  * references to other objects. Kmemleak will not scan such objects reducing
1053  * the number of false negatives.
1054  */
1055 void __ref kmemleak_no_scan(const void *ptr)
1056 {
1057 	pr_debug("%s(0x%p)\n", __func__, ptr);
1058 
1059 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
1060 		object_no_scan((unsigned long)ptr);
1061 	else if (atomic_read(&kmemleak_early_log))
1062 		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1063 }
1064 EXPORT_SYMBOL(kmemleak_no_scan);
1065 
1066 /*
1067  * Update an object's checksum and return true if it was modified.
1068  */
1069 static bool update_checksum(struct kmemleak_object *object)
1070 {
1071 	u32 old_csum = object->checksum;
1072 
1073 	if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1074 		return false;
1075 
1076 	object->checksum = crc32(0, (void *)object->pointer, object->size);
1077 	return object->checksum != old_csum;
1078 }
1079 
1080 /*
1081  * Memory scanning is a long process and it needs to be interruptable. This
1082  * function checks whether such interrupt condition occurred.
1083  */
1084 static int scan_should_stop(void)
1085 {
1086 	if (!atomic_read(&kmemleak_enabled))
1087 		return 1;
1088 
1089 	/*
1090 	 * This function may be called from either process or kthread context,
1091 	 * hence the need to check for both stop conditions.
1092 	 */
1093 	if (current->mm)
1094 		return signal_pending(current);
1095 	else
1096 		return kthread_should_stop();
1097 
1098 	return 0;
1099 }
1100 
1101 /*
1102  * Scan a memory block (exclusive range) for valid pointers and add those
1103  * found to the gray list.
1104  */
1105 static void scan_block(void *_start, void *_end,
1106 		       struct kmemleak_object *scanned, int allow_resched)
1107 {
1108 	unsigned long *ptr;
1109 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1110 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1111 
1112 	for (ptr = start; ptr < end; ptr++) {
1113 		struct kmemleak_object *object;
1114 		unsigned long flags;
1115 		unsigned long pointer;
1116 
1117 		if (allow_resched)
1118 			cond_resched();
1119 		if (scan_should_stop())
1120 			break;
1121 
1122 		/* don't scan uninitialized memory */
1123 		if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1124 						  BYTES_PER_POINTER))
1125 			continue;
1126 
1127 		pointer = *ptr;
1128 
1129 		object = find_and_get_object(pointer, 1);
1130 		if (!object)
1131 			continue;
1132 		if (object == scanned) {
1133 			/* self referenced, ignore */
1134 			put_object(object);
1135 			continue;
1136 		}
1137 
1138 		/*
1139 		 * Avoid the lockdep recursive warning on object->lock being
1140 		 * previously acquired in scan_object(). These locks are
1141 		 * enclosed by scan_mutex.
1142 		 */
1143 		spin_lock_irqsave_nested(&object->lock, flags,
1144 					 SINGLE_DEPTH_NESTING);
1145 		if (!color_white(object)) {
1146 			/* non-orphan, ignored or new */
1147 			spin_unlock_irqrestore(&object->lock, flags);
1148 			put_object(object);
1149 			continue;
1150 		}
1151 
1152 		/*
1153 		 * Increase the object's reference count (number of pointers
1154 		 * to the memory block). If this count reaches the required
1155 		 * minimum, the object's color will become gray and it will be
1156 		 * added to the gray_list.
1157 		 */
1158 		object->count++;
1159 		if (color_gray(object)) {
1160 			list_add_tail(&object->gray_list, &gray_list);
1161 			spin_unlock_irqrestore(&object->lock, flags);
1162 			continue;
1163 		}
1164 
1165 		spin_unlock_irqrestore(&object->lock, flags);
1166 		put_object(object);
1167 	}
1168 }
1169 
1170 /*
1171  * Scan a memory block corresponding to a kmemleak_object. A condition is
1172  * that object->use_count >= 1.
1173  */
1174 static void scan_object(struct kmemleak_object *object)
1175 {
1176 	struct kmemleak_scan_area *area;
1177 	struct hlist_node *elem;
1178 	unsigned long flags;
1179 
1180 	/*
1181 	 * Once the object->lock is acquired, the corresponding memory block
1182 	 * cannot be freed (the same lock is acquired in delete_object).
1183 	 */
1184 	spin_lock_irqsave(&object->lock, flags);
1185 	if (object->flags & OBJECT_NO_SCAN)
1186 		goto out;
1187 	if (!(object->flags & OBJECT_ALLOCATED))
1188 		/* already freed object */
1189 		goto out;
1190 	if (hlist_empty(&object->area_list)) {
1191 		void *start = (void *)object->pointer;
1192 		void *end = (void *)(object->pointer + object->size);
1193 
1194 		while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1195 		       !(object->flags & OBJECT_NO_SCAN)) {
1196 			scan_block(start, min(start + MAX_SCAN_SIZE, end),
1197 				   object, 0);
1198 			start += MAX_SCAN_SIZE;
1199 
1200 			spin_unlock_irqrestore(&object->lock, flags);
1201 			cond_resched();
1202 			spin_lock_irqsave(&object->lock, flags);
1203 		}
1204 	} else
1205 		hlist_for_each_entry(area, elem, &object->area_list, node)
1206 			scan_block((void *)area->start,
1207 				   (void *)(area->start + area->size),
1208 				   object, 0);
1209 out:
1210 	spin_unlock_irqrestore(&object->lock, flags);
1211 }
1212 
1213 /*
1214  * Scan the objects already referenced (gray objects). More objects will be
1215  * referenced and, if there are no memory leaks, all the objects are scanned.
1216  */
1217 static void scan_gray_list(void)
1218 {
1219 	struct kmemleak_object *object, *tmp;
1220 
1221 	/*
1222 	 * The list traversal is safe for both tail additions and removals
1223 	 * from inside the loop. The kmemleak objects cannot be freed from
1224 	 * outside the loop because their use_count was incremented.
1225 	 */
1226 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1227 	while (&object->gray_list != &gray_list) {
1228 		cond_resched();
1229 
1230 		/* may add new objects to the list */
1231 		if (!scan_should_stop())
1232 			scan_object(object);
1233 
1234 		tmp = list_entry(object->gray_list.next, typeof(*object),
1235 				 gray_list);
1236 
1237 		/* remove the object from the list and release it */
1238 		list_del(&object->gray_list);
1239 		put_object(object);
1240 
1241 		object = tmp;
1242 	}
1243 	WARN_ON(!list_empty(&gray_list));
1244 }
1245 
1246 /*
1247  * Scan data sections and all the referenced memory blocks allocated via the
1248  * kernel's standard allocators. This function must be called with the
1249  * scan_mutex held.
1250  */
1251 static void kmemleak_scan(void)
1252 {
1253 	unsigned long flags;
1254 	struct kmemleak_object *object;
1255 	int i;
1256 	int new_leaks = 0;
1257 
1258 	jiffies_last_scan = jiffies;
1259 
1260 	/* prepare the kmemleak_object's */
1261 	rcu_read_lock();
1262 	list_for_each_entry_rcu(object, &object_list, object_list) {
1263 		spin_lock_irqsave(&object->lock, flags);
1264 #ifdef DEBUG
1265 		/*
1266 		 * With a few exceptions there should be a maximum of
1267 		 * 1 reference to any object at this point.
1268 		 */
1269 		if (atomic_read(&object->use_count) > 1) {
1270 			pr_debug("object->use_count = %d\n",
1271 				 atomic_read(&object->use_count));
1272 			dump_object_info(object);
1273 		}
1274 #endif
1275 		/* reset the reference count (whiten the object) */
1276 		object->count = 0;
1277 		if (color_gray(object) && get_object(object))
1278 			list_add_tail(&object->gray_list, &gray_list);
1279 
1280 		spin_unlock_irqrestore(&object->lock, flags);
1281 	}
1282 	rcu_read_unlock();
1283 
1284 	/* data/bss scanning */
1285 	scan_block(_sdata, _edata, NULL, 1);
1286 	scan_block(__bss_start, __bss_stop, NULL, 1);
1287 
1288 #ifdef CONFIG_SMP
1289 	/* per-cpu sections scanning */
1290 	for_each_possible_cpu(i)
1291 		scan_block(__per_cpu_start + per_cpu_offset(i),
1292 			   __per_cpu_end + per_cpu_offset(i), NULL, 1);
1293 #endif
1294 
1295 	/*
1296 	 * Struct page scanning for each node.
1297 	 */
1298 	lock_memory_hotplug();
1299 	for_each_online_node(i) {
1300 		pg_data_t *pgdat = NODE_DATA(i);
1301 		unsigned long start_pfn = pgdat->node_start_pfn;
1302 		unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1303 		unsigned long pfn;
1304 
1305 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1306 			struct page *page;
1307 
1308 			if (!pfn_valid(pfn))
1309 				continue;
1310 			page = pfn_to_page(pfn);
1311 			/* only scan if page is in use */
1312 			if (page_count(page) == 0)
1313 				continue;
1314 			scan_block(page, page + 1, NULL, 1);
1315 		}
1316 	}
1317 	unlock_memory_hotplug();
1318 
1319 	/*
1320 	 * Scanning the task stacks (may introduce false negatives).
1321 	 */
1322 	if (kmemleak_stack_scan) {
1323 		struct task_struct *p, *g;
1324 
1325 		read_lock(&tasklist_lock);
1326 		do_each_thread(g, p) {
1327 			scan_block(task_stack_page(p), task_stack_page(p) +
1328 				   THREAD_SIZE, NULL, 0);
1329 		} while_each_thread(g, p);
1330 		read_unlock(&tasklist_lock);
1331 	}
1332 
1333 	/*
1334 	 * Scan the objects already referenced from the sections scanned
1335 	 * above.
1336 	 */
1337 	scan_gray_list();
1338 
1339 	/*
1340 	 * Check for new or unreferenced objects modified since the previous
1341 	 * scan and color them gray until the next scan.
1342 	 */
1343 	rcu_read_lock();
1344 	list_for_each_entry_rcu(object, &object_list, object_list) {
1345 		spin_lock_irqsave(&object->lock, flags);
1346 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1347 		    && update_checksum(object) && get_object(object)) {
1348 			/* color it gray temporarily */
1349 			object->count = object->min_count;
1350 			list_add_tail(&object->gray_list, &gray_list);
1351 		}
1352 		spin_unlock_irqrestore(&object->lock, flags);
1353 	}
1354 	rcu_read_unlock();
1355 
1356 	/*
1357 	 * Re-scan the gray list for modified unreferenced objects.
1358 	 */
1359 	scan_gray_list();
1360 
1361 	/*
1362 	 * If scanning was stopped do not report any new unreferenced objects.
1363 	 */
1364 	if (scan_should_stop())
1365 		return;
1366 
1367 	/*
1368 	 * Scanning result reporting.
1369 	 */
1370 	rcu_read_lock();
1371 	list_for_each_entry_rcu(object, &object_list, object_list) {
1372 		spin_lock_irqsave(&object->lock, flags);
1373 		if (unreferenced_object(object) &&
1374 		    !(object->flags & OBJECT_REPORTED)) {
1375 			object->flags |= OBJECT_REPORTED;
1376 			new_leaks++;
1377 		}
1378 		spin_unlock_irqrestore(&object->lock, flags);
1379 	}
1380 	rcu_read_unlock();
1381 
1382 	if (new_leaks)
1383 		pr_info("%d new suspected memory leaks (see "
1384 			"/sys/kernel/debug/kmemleak)\n", new_leaks);
1385 
1386 }
1387 
1388 /*
1389  * Thread function performing automatic memory scanning. Unreferenced objects
1390  * at the end of a memory scan are reported but only the first time.
1391  */
1392 static int kmemleak_scan_thread(void *arg)
1393 {
1394 	static int first_run = 1;
1395 
1396 	pr_info("Automatic memory scanning thread started\n");
1397 	set_user_nice(current, 10);
1398 
1399 	/*
1400 	 * Wait before the first scan to allow the system to fully initialize.
1401 	 */
1402 	if (first_run) {
1403 		first_run = 0;
1404 		ssleep(SECS_FIRST_SCAN);
1405 	}
1406 
1407 	while (!kthread_should_stop()) {
1408 		signed long timeout = jiffies_scan_wait;
1409 
1410 		mutex_lock(&scan_mutex);
1411 		kmemleak_scan();
1412 		mutex_unlock(&scan_mutex);
1413 
1414 		/* wait before the next scan */
1415 		while (timeout && !kthread_should_stop())
1416 			timeout = schedule_timeout_interruptible(timeout);
1417 	}
1418 
1419 	pr_info("Automatic memory scanning thread ended\n");
1420 
1421 	return 0;
1422 }
1423 
1424 /*
1425  * Start the automatic memory scanning thread. This function must be called
1426  * with the scan_mutex held.
1427  */
1428 static void start_scan_thread(void)
1429 {
1430 	if (scan_thread)
1431 		return;
1432 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1433 	if (IS_ERR(scan_thread)) {
1434 		pr_warning("Failed to create the scan thread\n");
1435 		scan_thread = NULL;
1436 	}
1437 }
1438 
1439 /*
1440  * Stop the automatic memory scanning thread. This function must be called
1441  * with the scan_mutex held.
1442  */
1443 static void stop_scan_thread(void)
1444 {
1445 	if (scan_thread) {
1446 		kthread_stop(scan_thread);
1447 		scan_thread = NULL;
1448 	}
1449 }
1450 
1451 /*
1452  * Iterate over the object_list and return the first valid object at or after
1453  * the required position with its use_count incremented. The function triggers
1454  * a memory scanning when the pos argument points to the first position.
1455  */
1456 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1457 {
1458 	struct kmemleak_object *object;
1459 	loff_t n = *pos;
1460 	int err;
1461 
1462 	err = mutex_lock_interruptible(&scan_mutex);
1463 	if (err < 0)
1464 		return ERR_PTR(err);
1465 
1466 	rcu_read_lock();
1467 	list_for_each_entry_rcu(object, &object_list, object_list) {
1468 		if (n-- > 0)
1469 			continue;
1470 		if (get_object(object))
1471 			goto out;
1472 	}
1473 	object = NULL;
1474 out:
1475 	return object;
1476 }
1477 
1478 /*
1479  * Return the next object in the object_list. The function decrements the
1480  * use_count of the previous object and increases that of the next one.
1481  */
1482 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1483 {
1484 	struct kmemleak_object *prev_obj = v;
1485 	struct kmemleak_object *next_obj = NULL;
1486 	struct list_head *n = &prev_obj->object_list;
1487 
1488 	++(*pos);
1489 
1490 	list_for_each_continue_rcu(n, &object_list) {
1491 		struct kmemleak_object *obj =
1492 			list_entry(n, struct kmemleak_object, object_list);
1493 		if (get_object(obj)) {
1494 			next_obj = obj;
1495 			break;
1496 		}
1497 	}
1498 
1499 	put_object(prev_obj);
1500 	return next_obj;
1501 }
1502 
1503 /*
1504  * Decrement the use_count of the last object required, if any.
1505  */
1506 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1507 {
1508 	if (!IS_ERR(v)) {
1509 		/*
1510 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1511 		 * waiting was interrupted, so only release it if !IS_ERR.
1512 		 */
1513 		rcu_read_unlock();
1514 		mutex_unlock(&scan_mutex);
1515 		if (v)
1516 			put_object(v);
1517 	}
1518 }
1519 
1520 /*
1521  * Print the information for an unreferenced object to the seq file.
1522  */
1523 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1524 {
1525 	struct kmemleak_object *object = v;
1526 	unsigned long flags;
1527 
1528 	spin_lock_irqsave(&object->lock, flags);
1529 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1530 		print_unreferenced(seq, object);
1531 	spin_unlock_irqrestore(&object->lock, flags);
1532 	return 0;
1533 }
1534 
1535 static const struct seq_operations kmemleak_seq_ops = {
1536 	.start = kmemleak_seq_start,
1537 	.next  = kmemleak_seq_next,
1538 	.stop  = kmemleak_seq_stop,
1539 	.show  = kmemleak_seq_show,
1540 };
1541 
1542 static int kmemleak_open(struct inode *inode, struct file *file)
1543 {
1544 	return seq_open(file, &kmemleak_seq_ops);
1545 }
1546 
1547 static int kmemleak_release(struct inode *inode, struct file *file)
1548 {
1549 	return seq_release(inode, file);
1550 }
1551 
1552 static int dump_str_object_info(const char *str)
1553 {
1554 	unsigned long flags;
1555 	struct kmemleak_object *object;
1556 	unsigned long addr;
1557 
1558 	addr= simple_strtoul(str, NULL, 0);
1559 	object = find_and_get_object(addr, 0);
1560 	if (!object) {
1561 		pr_info("Unknown object at 0x%08lx\n", addr);
1562 		return -EINVAL;
1563 	}
1564 
1565 	spin_lock_irqsave(&object->lock, flags);
1566 	dump_object_info(object);
1567 	spin_unlock_irqrestore(&object->lock, flags);
1568 
1569 	put_object(object);
1570 	return 0;
1571 }
1572 
1573 /*
1574  * We use grey instead of black to ensure we can do future scans on the same
1575  * objects. If we did not do future scans these black objects could
1576  * potentially contain references to newly allocated objects in the future and
1577  * we'd end up with false positives.
1578  */
1579 static void kmemleak_clear(void)
1580 {
1581 	struct kmemleak_object *object;
1582 	unsigned long flags;
1583 
1584 	rcu_read_lock();
1585 	list_for_each_entry_rcu(object, &object_list, object_list) {
1586 		spin_lock_irqsave(&object->lock, flags);
1587 		if ((object->flags & OBJECT_REPORTED) &&
1588 		    unreferenced_object(object))
1589 			__paint_it(object, KMEMLEAK_GREY);
1590 		spin_unlock_irqrestore(&object->lock, flags);
1591 	}
1592 	rcu_read_unlock();
1593 }
1594 
1595 /*
1596  * File write operation to configure kmemleak at run-time. The following
1597  * commands can be written to the /sys/kernel/debug/kmemleak file:
1598  *   off	- disable kmemleak (irreversible)
1599  *   stack=on	- enable the task stacks scanning
1600  *   stack=off	- disable the tasks stacks scanning
1601  *   scan=on	- start the automatic memory scanning thread
1602  *   scan=off	- stop the automatic memory scanning thread
1603  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1604  *		  disable it)
1605  *   scan	- trigger a memory scan
1606  *   clear	- mark all current reported unreferenced kmemleak objects as
1607  *		  grey to ignore printing them
1608  *   dump=...	- dump information about the object found at the given address
1609  */
1610 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1611 			      size_t size, loff_t *ppos)
1612 {
1613 	char buf[64];
1614 	int buf_size;
1615 	int ret;
1616 
1617 	if (!atomic_read(&kmemleak_enabled))
1618 		return -EBUSY;
1619 
1620 	buf_size = min(size, (sizeof(buf) - 1));
1621 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1622 		return -EFAULT;
1623 	buf[buf_size] = 0;
1624 
1625 	ret = mutex_lock_interruptible(&scan_mutex);
1626 	if (ret < 0)
1627 		return ret;
1628 
1629 	if (strncmp(buf, "off", 3) == 0)
1630 		kmemleak_disable();
1631 	else if (strncmp(buf, "stack=on", 8) == 0)
1632 		kmemleak_stack_scan = 1;
1633 	else if (strncmp(buf, "stack=off", 9) == 0)
1634 		kmemleak_stack_scan = 0;
1635 	else if (strncmp(buf, "scan=on", 7) == 0)
1636 		start_scan_thread();
1637 	else if (strncmp(buf, "scan=off", 8) == 0)
1638 		stop_scan_thread();
1639 	else if (strncmp(buf, "scan=", 5) == 0) {
1640 		unsigned long secs;
1641 
1642 		ret = strict_strtoul(buf + 5, 0, &secs);
1643 		if (ret < 0)
1644 			goto out;
1645 		stop_scan_thread();
1646 		if (secs) {
1647 			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1648 			start_scan_thread();
1649 		}
1650 	} else if (strncmp(buf, "scan", 4) == 0)
1651 		kmemleak_scan();
1652 	else if (strncmp(buf, "clear", 5) == 0)
1653 		kmemleak_clear();
1654 	else if (strncmp(buf, "dump=", 5) == 0)
1655 		ret = dump_str_object_info(buf + 5);
1656 	else
1657 		ret = -EINVAL;
1658 
1659 out:
1660 	mutex_unlock(&scan_mutex);
1661 	if (ret < 0)
1662 		return ret;
1663 
1664 	/* ignore the rest of the buffer, only one command at a time */
1665 	*ppos += size;
1666 	return size;
1667 }
1668 
1669 static const struct file_operations kmemleak_fops = {
1670 	.owner		= THIS_MODULE,
1671 	.open		= kmemleak_open,
1672 	.read		= seq_read,
1673 	.write		= kmemleak_write,
1674 	.llseek		= seq_lseek,
1675 	.release	= kmemleak_release,
1676 };
1677 
1678 /*
1679  * Stop the memory scanning thread and free the kmemleak internal objects if
1680  * no previous scan thread (otherwise, kmemleak may still have some useful
1681  * information on memory leaks).
1682  */
1683 static void kmemleak_do_cleanup(struct work_struct *work)
1684 {
1685 	struct kmemleak_object *object;
1686 	bool cleanup = scan_thread == NULL;
1687 
1688 	mutex_lock(&scan_mutex);
1689 	stop_scan_thread();
1690 
1691 	if (cleanup) {
1692 		rcu_read_lock();
1693 		list_for_each_entry_rcu(object, &object_list, object_list)
1694 			delete_object_full(object->pointer);
1695 		rcu_read_unlock();
1696 	}
1697 	mutex_unlock(&scan_mutex);
1698 }
1699 
1700 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1701 
1702 /*
1703  * Disable kmemleak. No memory allocation/freeing will be traced once this
1704  * function is called. Disabling kmemleak is an irreversible operation.
1705  */
1706 static void kmemleak_disable(void)
1707 {
1708 	/* atomically check whether it was already invoked */
1709 	if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1710 		return;
1711 
1712 	/* stop any memory operation tracing */
1713 	atomic_set(&kmemleak_enabled, 0);
1714 
1715 	/* check whether it is too early for a kernel thread */
1716 	if (atomic_read(&kmemleak_initialized))
1717 		schedule_work(&cleanup_work);
1718 
1719 	pr_info("Kernel memory leak detector disabled\n");
1720 }
1721 
1722 /*
1723  * Allow boot-time kmemleak disabling (enabled by default).
1724  */
1725 static int kmemleak_boot_config(char *str)
1726 {
1727 	if (!str)
1728 		return -EINVAL;
1729 	if (strcmp(str, "off") == 0)
1730 		kmemleak_disable();
1731 	else if (strcmp(str, "on") == 0)
1732 		kmemleak_skip_disable = 1;
1733 	else
1734 		return -EINVAL;
1735 	return 0;
1736 }
1737 early_param("kmemleak", kmemleak_boot_config);
1738 
1739 static void __init print_log_trace(struct early_log *log)
1740 {
1741 	struct stack_trace trace;
1742 
1743 	trace.nr_entries = log->trace_len;
1744 	trace.entries = log->trace;
1745 
1746 	pr_notice("Early log backtrace:\n");
1747 	print_stack_trace(&trace, 2);
1748 }
1749 
1750 /*
1751  * Kmemleak initialization.
1752  */
1753 void __init kmemleak_init(void)
1754 {
1755 	int i;
1756 	unsigned long flags;
1757 
1758 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1759 	if (!kmemleak_skip_disable) {
1760 		atomic_set(&kmemleak_early_log, 0);
1761 		kmemleak_disable();
1762 		return;
1763 	}
1764 #endif
1765 
1766 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1767 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1768 
1769 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1770 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1771 	INIT_PRIO_TREE_ROOT(&object_tree_root);
1772 
1773 	if (crt_early_log >= ARRAY_SIZE(early_log))
1774 		pr_warning("Early log buffer exceeded (%d), please increase "
1775 			   "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
1776 
1777 	/* the kernel is still in UP mode, so disabling the IRQs is enough */
1778 	local_irq_save(flags);
1779 	atomic_set(&kmemleak_early_log, 0);
1780 	if (atomic_read(&kmemleak_error)) {
1781 		local_irq_restore(flags);
1782 		return;
1783 	} else
1784 		atomic_set(&kmemleak_enabled, 1);
1785 	local_irq_restore(flags);
1786 
1787 	/*
1788 	 * This is the point where tracking allocations is safe. Automatic
1789 	 * scanning is started during the late initcall. Add the early logged
1790 	 * callbacks to the kmemleak infrastructure.
1791 	 */
1792 	for (i = 0; i < crt_early_log; i++) {
1793 		struct early_log *log = &early_log[i];
1794 
1795 		switch (log->op_type) {
1796 		case KMEMLEAK_ALLOC:
1797 			early_alloc(log);
1798 			break;
1799 		case KMEMLEAK_ALLOC_PERCPU:
1800 			early_alloc_percpu(log);
1801 			break;
1802 		case KMEMLEAK_FREE:
1803 			kmemleak_free(log->ptr);
1804 			break;
1805 		case KMEMLEAK_FREE_PART:
1806 			kmemleak_free_part(log->ptr, log->size);
1807 			break;
1808 		case KMEMLEAK_FREE_PERCPU:
1809 			kmemleak_free_percpu(log->ptr);
1810 			break;
1811 		case KMEMLEAK_NOT_LEAK:
1812 			kmemleak_not_leak(log->ptr);
1813 			break;
1814 		case KMEMLEAK_IGNORE:
1815 			kmemleak_ignore(log->ptr);
1816 			break;
1817 		case KMEMLEAK_SCAN_AREA:
1818 			kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1819 			break;
1820 		case KMEMLEAK_NO_SCAN:
1821 			kmemleak_no_scan(log->ptr);
1822 			break;
1823 		default:
1824 			kmemleak_warn("Unknown early log operation: %d\n",
1825 				      log->op_type);
1826 		}
1827 
1828 		if (atomic_read(&kmemleak_warning)) {
1829 			print_log_trace(log);
1830 			atomic_set(&kmemleak_warning, 0);
1831 		}
1832 	}
1833 }
1834 
1835 /*
1836  * Late initialization function.
1837  */
1838 static int __init kmemleak_late_init(void)
1839 {
1840 	struct dentry *dentry;
1841 
1842 	atomic_set(&kmemleak_initialized, 1);
1843 
1844 	if (atomic_read(&kmemleak_error)) {
1845 		/*
1846 		 * Some error occurred and kmemleak was disabled. There is a
1847 		 * small chance that kmemleak_disable() was called immediately
1848 		 * after setting kmemleak_initialized and we may end up with
1849 		 * two clean-up threads but serialized by scan_mutex.
1850 		 */
1851 		schedule_work(&cleanup_work);
1852 		return -ENOMEM;
1853 	}
1854 
1855 	dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1856 				     &kmemleak_fops);
1857 	if (!dentry)
1858 		pr_warning("Failed to create the debugfs kmemleak file\n");
1859 	mutex_lock(&scan_mutex);
1860 	start_scan_thread();
1861 	mutex_unlock(&scan_mutex);
1862 
1863 	pr_info("Kernel memory leak detector initialized\n");
1864 
1865 	return 0;
1866 }
1867 late_initcall(kmemleak_late_init);
1868