1 /* 2 * mm/kmemleak.c 3 * 4 * Copyright (C) 2008 ARM Limited 5 * Written by Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 * 21 * For more information on the algorithm and kmemleak usage, please see 22 * Documentation/kmemleak.txt. 23 * 24 * Notes on locking 25 * ---------------- 26 * 27 * The following locks and mutexes are used by kmemleak: 28 * 29 * - kmemleak_lock (rwlock): protects the object_list modifications and 30 * accesses to the object_tree_root. The object_list is the main list 31 * holding the metadata (struct kmemleak_object) for the allocated memory 32 * blocks. The object_tree_root is a priority search tree used to look-up 33 * metadata based on a pointer to the corresponding memory block. The 34 * kmemleak_object structures are added to the object_list and 35 * object_tree_root in the create_object() function called from the 36 * kmemleak_alloc() callback and removed in delete_object() called from the 37 * kmemleak_free() callback 38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to 39 * the metadata (e.g. count) are protected by this lock. Note that some 40 * members of this structure may be protected by other means (atomic or 41 * kmemleak_lock). This lock is also held when scanning the corresponding 42 * memory block to avoid the kernel freeing it via the kmemleak_free() 43 * callback. This is less heavyweight than holding a global lock like 44 * kmemleak_lock during scanning 45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 46 * unreferenced objects at a time. The gray_list contains the objects which 47 * are already referenced or marked as false positives and need to be 48 * scanned. This list is only modified during a scanning episode when the 49 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 50 * Note that the kmemleak_object.use_count is incremented when an object is 51 * added to the gray_list and therefore cannot be freed. This mutex also 52 * prevents multiple users of the "kmemleak" debugfs file together with 53 * modifications to the memory scanning parameters including the scan_thread 54 * pointer 55 * 56 * The kmemleak_object structures have a use_count incremented or decremented 57 * using the get_object()/put_object() functions. When the use_count becomes 58 * 0, this count can no longer be incremented and put_object() schedules the 59 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 60 * function must be protected by rcu_read_lock() to avoid accessing a freed 61 * structure. 62 */ 63 64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 65 66 #include <linux/init.h> 67 #include <linux/kernel.h> 68 #include <linux/list.h> 69 #include <linux/sched.h> 70 #include <linux/jiffies.h> 71 #include <linux/delay.h> 72 #include <linux/export.h> 73 #include <linux/kthread.h> 74 #include <linux/prio_tree.h> 75 #include <linux/fs.h> 76 #include <linux/debugfs.h> 77 #include <linux/seq_file.h> 78 #include <linux/cpumask.h> 79 #include <linux/spinlock.h> 80 #include <linux/mutex.h> 81 #include <linux/rcupdate.h> 82 #include <linux/stacktrace.h> 83 #include <linux/cache.h> 84 #include <linux/percpu.h> 85 #include <linux/hardirq.h> 86 #include <linux/mmzone.h> 87 #include <linux/slab.h> 88 #include <linux/thread_info.h> 89 #include <linux/err.h> 90 #include <linux/uaccess.h> 91 #include <linux/string.h> 92 #include <linux/nodemask.h> 93 #include <linux/mm.h> 94 #include <linux/workqueue.h> 95 #include <linux/crc32.h> 96 97 #include <asm/sections.h> 98 #include <asm/processor.h> 99 #include <linux/atomic.h> 100 101 #include <linux/kmemcheck.h> 102 #include <linux/kmemleak.h> 103 #include <linux/memory_hotplug.h> 104 105 /* 106 * Kmemleak configuration and common defines. 107 */ 108 #define MAX_TRACE 16 /* stack trace length */ 109 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 110 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 111 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 112 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 113 114 #define BYTES_PER_POINTER sizeof(void *) 115 116 /* GFP bitmask for kmemleak internal allocations */ 117 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \ 118 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 119 __GFP_NOWARN) 120 121 /* scanning area inside a memory block */ 122 struct kmemleak_scan_area { 123 struct hlist_node node; 124 unsigned long start; 125 size_t size; 126 }; 127 128 #define KMEMLEAK_GREY 0 129 #define KMEMLEAK_BLACK -1 130 131 /* 132 * Structure holding the metadata for each allocated memory block. 133 * Modifications to such objects should be made while holding the 134 * object->lock. Insertions or deletions from object_list, gray_list or 135 * tree_node are already protected by the corresponding locks or mutex (see 136 * the notes on locking above). These objects are reference-counted 137 * (use_count) and freed using the RCU mechanism. 138 */ 139 struct kmemleak_object { 140 spinlock_t lock; 141 unsigned long flags; /* object status flags */ 142 struct list_head object_list; 143 struct list_head gray_list; 144 struct prio_tree_node tree_node; 145 struct rcu_head rcu; /* object_list lockless traversal */ 146 /* object usage count; object freed when use_count == 0 */ 147 atomic_t use_count; 148 unsigned long pointer; 149 size_t size; 150 /* minimum number of a pointers found before it is considered leak */ 151 int min_count; 152 /* the total number of pointers found pointing to this object */ 153 int count; 154 /* checksum for detecting modified objects */ 155 u32 checksum; 156 /* memory ranges to be scanned inside an object (empty for all) */ 157 struct hlist_head area_list; 158 unsigned long trace[MAX_TRACE]; 159 unsigned int trace_len; 160 unsigned long jiffies; /* creation timestamp */ 161 pid_t pid; /* pid of the current task */ 162 char comm[TASK_COMM_LEN]; /* executable name */ 163 }; 164 165 /* flag representing the memory block allocation status */ 166 #define OBJECT_ALLOCATED (1 << 0) 167 /* flag set after the first reporting of an unreference object */ 168 #define OBJECT_REPORTED (1 << 1) 169 /* flag set to not scan the object */ 170 #define OBJECT_NO_SCAN (1 << 2) 171 172 /* number of bytes to print per line; must be 16 or 32 */ 173 #define HEX_ROW_SIZE 16 174 /* number of bytes to print at a time (1, 2, 4, 8) */ 175 #define HEX_GROUP_SIZE 1 176 /* include ASCII after the hex output */ 177 #define HEX_ASCII 1 178 /* max number of lines to be printed */ 179 #define HEX_MAX_LINES 2 180 181 /* the list of all allocated objects */ 182 static LIST_HEAD(object_list); 183 /* the list of gray-colored objects (see color_gray comment below) */ 184 static LIST_HEAD(gray_list); 185 /* prio search tree for object boundaries */ 186 static struct prio_tree_root object_tree_root; 187 /* rw_lock protecting the access to object_list and prio_tree_root */ 188 static DEFINE_RWLOCK(kmemleak_lock); 189 190 /* allocation caches for kmemleak internal data */ 191 static struct kmem_cache *object_cache; 192 static struct kmem_cache *scan_area_cache; 193 194 /* set if tracing memory operations is enabled */ 195 static atomic_t kmemleak_enabled = ATOMIC_INIT(0); 196 /* set in the late_initcall if there were no errors */ 197 static atomic_t kmemleak_initialized = ATOMIC_INIT(0); 198 /* enables or disables early logging of the memory operations */ 199 static atomic_t kmemleak_early_log = ATOMIC_INIT(1); 200 /* set if a kmemleak warning was issued */ 201 static atomic_t kmemleak_warning = ATOMIC_INIT(0); 202 /* set if a fatal kmemleak error has occurred */ 203 static atomic_t kmemleak_error = ATOMIC_INIT(0); 204 205 /* minimum and maximum address that may be valid pointers */ 206 static unsigned long min_addr = ULONG_MAX; 207 static unsigned long max_addr; 208 209 static struct task_struct *scan_thread; 210 /* used to avoid reporting of recently allocated objects */ 211 static unsigned long jiffies_min_age; 212 static unsigned long jiffies_last_scan; 213 /* delay between automatic memory scannings */ 214 static signed long jiffies_scan_wait; 215 /* enables or disables the task stacks scanning */ 216 static int kmemleak_stack_scan = 1; 217 /* protects the memory scanning, parameters and debug/kmemleak file access */ 218 static DEFINE_MUTEX(scan_mutex); 219 /* setting kmemleak=on, will set this var, skipping the disable */ 220 static int kmemleak_skip_disable; 221 222 223 /* 224 * Early object allocation/freeing logging. Kmemleak is initialized after the 225 * kernel allocator. However, both the kernel allocator and kmemleak may 226 * allocate memory blocks which need to be tracked. Kmemleak defines an 227 * arbitrary buffer to hold the allocation/freeing information before it is 228 * fully initialized. 229 */ 230 231 /* kmemleak operation type for early logging */ 232 enum { 233 KMEMLEAK_ALLOC, 234 KMEMLEAK_ALLOC_PERCPU, 235 KMEMLEAK_FREE, 236 KMEMLEAK_FREE_PART, 237 KMEMLEAK_FREE_PERCPU, 238 KMEMLEAK_NOT_LEAK, 239 KMEMLEAK_IGNORE, 240 KMEMLEAK_SCAN_AREA, 241 KMEMLEAK_NO_SCAN 242 }; 243 244 /* 245 * Structure holding the information passed to kmemleak callbacks during the 246 * early logging. 247 */ 248 struct early_log { 249 int op_type; /* kmemleak operation type */ 250 const void *ptr; /* allocated/freed memory block */ 251 size_t size; /* memory block size */ 252 int min_count; /* minimum reference count */ 253 unsigned long trace[MAX_TRACE]; /* stack trace */ 254 unsigned int trace_len; /* stack trace length */ 255 }; 256 257 /* early logging buffer and current position */ 258 static struct early_log 259 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata; 260 static int crt_early_log __initdata; 261 262 static void kmemleak_disable(void); 263 264 /* 265 * Print a warning and dump the stack trace. 266 */ 267 #define kmemleak_warn(x...) do { \ 268 pr_warning(x); \ 269 dump_stack(); \ 270 atomic_set(&kmemleak_warning, 1); \ 271 } while (0) 272 273 /* 274 * Macro invoked when a serious kmemleak condition occurred and cannot be 275 * recovered from. Kmemleak will be disabled and further allocation/freeing 276 * tracing no longer available. 277 */ 278 #define kmemleak_stop(x...) do { \ 279 kmemleak_warn(x); \ 280 kmemleak_disable(); \ 281 } while (0) 282 283 /* 284 * Printing of the objects hex dump to the seq file. The number of lines to be 285 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 286 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 287 * with the object->lock held. 288 */ 289 static void hex_dump_object(struct seq_file *seq, 290 struct kmemleak_object *object) 291 { 292 const u8 *ptr = (const u8 *)object->pointer; 293 int i, len, remaining; 294 unsigned char linebuf[HEX_ROW_SIZE * 5]; 295 296 /* limit the number of lines to HEX_MAX_LINES */ 297 remaining = len = 298 min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE)); 299 300 seq_printf(seq, " hex dump (first %d bytes):\n", len); 301 for (i = 0; i < len; i += HEX_ROW_SIZE) { 302 int linelen = min(remaining, HEX_ROW_SIZE); 303 304 remaining -= HEX_ROW_SIZE; 305 hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE, 306 HEX_GROUP_SIZE, linebuf, sizeof(linebuf), 307 HEX_ASCII); 308 seq_printf(seq, " %s\n", linebuf); 309 } 310 } 311 312 /* 313 * Object colors, encoded with count and min_count: 314 * - white - orphan object, not enough references to it (count < min_count) 315 * - gray - not orphan, not marked as false positive (min_count == 0) or 316 * sufficient references to it (count >= min_count) 317 * - black - ignore, it doesn't contain references (e.g. text section) 318 * (min_count == -1). No function defined for this color. 319 * Newly created objects don't have any color assigned (object->count == -1) 320 * before the next memory scan when they become white. 321 */ 322 static bool color_white(const struct kmemleak_object *object) 323 { 324 return object->count != KMEMLEAK_BLACK && 325 object->count < object->min_count; 326 } 327 328 static bool color_gray(const struct kmemleak_object *object) 329 { 330 return object->min_count != KMEMLEAK_BLACK && 331 object->count >= object->min_count; 332 } 333 334 /* 335 * Objects are considered unreferenced only if their color is white, they have 336 * not be deleted and have a minimum age to avoid false positives caused by 337 * pointers temporarily stored in CPU registers. 338 */ 339 static bool unreferenced_object(struct kmemleak_object *object) 340 { 341 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 342 time_before_eq(object->jiffies + jiffies_min_age, 343 jiffies_last_scan); 344 } 345 346 /* 347 * Printing of the unreferenced objects information to the seq file. The 348 * print_unreferenced function must be called with the object->lock held. 349 */ 350 static void print_unreferenced(struct seq_file *seq, 351 struct kmemleak_object *object) 352 { 353 int i; 354 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 355 356 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 357 object->pointer, object->size); 358 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 359 object->comm, object->pid, object->jiffies, 360 msecs_age / 1000, msecs_age % 1000); 361 hex_dump_object(seq, object); 362 seq_printf(seq, " backtrace:\n"); 363 364 for (i = 0; i < object->trace_len; i++) { 365 void *ptr = (void *)object->trace[i]; 366 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); 367 } 368 } 369 370 /* 371 * Print the kmemleak_object information. This function is used mainly for 372 * debugging special cases when kmemleak operations. It must be called with 373 * the object->lock held. 374 */ 375 static void dump_object_info(struct kmemleak_object *object) 376 { 377 struct stack_trace trace; 378 379 trace.nr_entries = object->trace_len; 380 trace.entries = object->trace; 381 382 pr_notice("Object 0x%08lx (size %zu):\n", 383 object->tree_node.start, object->size); 384 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 385 object->comm, object->pid, object->jiffies); 386 pr_notice(" min_count = %d\n", object->min_count); 387 pr_notice(" count = %d\n", object->count); 388 pr_notice(" flags = 0x%lx\n", object->flags); 389 pr_notice(" checksum = %d\n", object->checksum); 390 pr_notice(" backtrace:\n"); 391 print_stack_trace(&trace, 4); 392 } 393 394 /* 395 * Look-up a memory block metadata (kmemleak_object) in the priority search 396 * tree based on a pointer value. If alias is 0, only values pointing to the 397 * beginning of the memory block are allowed. The kmemleak_lock must be held 398 * when calling this function. 399 */ 400 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 401 { 402 struct prio_tree_node *node; 403 struct prio_tree_iter iter; 404 struct kmemleak_object *object; 405 406 prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr); 407 node = prio_tree_next(&iter); 408 if (node) { 409 object = prio_tree_entry(node, struct kmemleak_object, 410 tree_node); 411 if (!alias && object->pointer != ptr) { 412 kmemleak_warn("Found object by alias at 0x%08lx\n", 413 ptr); 414 dump_object_info(object); 415 object = NULL; 416 } 417 } else 418 object = NULL; 419 420 return object; 421 } 422 423 /* 424 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 425 * that once an object's use_count reached 0, the RCU freeing was already 426 * registered and the object should no longer be used. This function must be 427 * called under the protection of rcu_read_lock(). 428 */ 429 static int get_object(struct kmemleak_object *object) 430 { 431 return atomic_inc_not_zero(&object->use_count); 432 } 433 434 /* 435 * RCU callback to free a kmemleak_object. 436 */ 437 static void free_object_rcu(struct rcu_head *rcu) 438 { 439 struct hlist_node *elem, *tmp; 440 struct kmemleak_scan_area *area; 441 struct kmemleak_object *object = 442 container_of(rcu, struct kmemleak_object, rcu); 443 444 /* 445 * Once use_count is 0 (guaranteed by put_object), there is no other 446 * code accessing this object, hence no need for locking. 447 */ 448 hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) { 449 hlist_del(elem); 450 kmem_cache_free(scan_area_cache, area); 451 } 452 kmem_cache_free(object_cache, object); 453 } 454 455 /* 456 * Decrement the object use_count. Once the count is 0, free the object using 457 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 458 * delete_object() path, the delayed RCU freeing ensures that there is no 459 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 460 * is also possible. 461 */ 462 static void put_object(struct kmemleak_object *object) 463 { 464 if (!atomic_dec_and_test(&object->use_count)) 465 return; 466 467 /* should only get here after delete_object was called */ 468 WARN_ON(object->flags & OBJECT_ALLOCATED); 469 470 call_rcu(&object->rcu, free_object_rcu); 471 } 472 473 /* 474 * Look up an object in the prio search tree and increase its use_count. 475 */ 476 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 477 { 478 unsigned long flags; 479 struct kmemleak_object *object = NULL; 480 481 rcu_read_lock(); 482 read_lock_irqsave(&kmemleak_lock, flags); 483 if (ptr >= min_addr && ptr < max_addr) 484 object = lookup_object(ptr, alias); 485 read_unlock_irqrestore(&kmemleak_lock, flags); 486 487 /* check whether the object is still available */ 488 if (object && !get_object(object)) 489 object = NULL; 490 rcu_read_unlock(); 491 492 return object; 493 } 494 495 /* 496 * Save stack trace to the given array of MAX_TRACE size. 497 */ 498 static int __save_stack_trace(unsigned long *trace) 499 { 500 struct stack_trace stack_trace; 501 502 stack_trace.max_entries = MAX_TRACE; 503 stack_trace.nr_entries = 0; 504 stack_trace.entries = trace; 505 stack_trace.skip = 2; 506 save_stack_trace(&stack_trace); 507 508 return stack_trace.nr_entries; 509 } 510 511 /* 512 * Create the metadata (struct kmemleak_object) corresponding to an allocated 513 * memory block and add it to the object_list and object_tree_root. 514 */ 515 static struct kmemleak_object *create_object(unsigned long ptr, size_t size, 516 int min_count, gfp_t gfp) 517 { 518 unsigned long flags; 519 struct kmemleak_object *object; 520 struct prio_tree_node *node; 521 522 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 523 if (!object) { 524 pr_warning("Cannot allocate a kmemleak_object structure\n"); 525 kmemleak_disable(); 526 return NULL; 527 } 528 529 INIT_LIST_HEAD(&object->object_list); 530 INIT_LIST_HEAD(&object->gray_list); 531 INIT_HLIST_HEAD(&object->area_list); 532 spin_lock_init(&object->lock); 533 atomic_set(&object->use_count, 1); 534 object->flags = OBJECT_ALLOCATED; 535 object->pointer = ptr; 536 object->size = size; 537 object->min_count = min_count; 538 object->count = 0; /* white color initially */ 539 object->jiffies = jiffies; 540 object->checksum = 0; 541 542 /* task information */ 543 if (in_irq()) { 544 object->pid = 0; 545 strncpy(object->comm, "hardirq", sizeof(object->comm)); 546 } else if (in_softirq()) { 547 object->pid = 0; 548 strncpy(object->comm, "softirq", sizeof(object->comm)); 549 } else { 550 object->pid = current->pid; 551 /* 552 * There is a small chance of a race with set_task_comm(), 553 * however using get_task_comm() here may cause locking 554 * dependency issues with current->alloc_lock. In the worst 555 * case, the command line is not correct. 556 */ 557 strncpy(object->comm, current->comm, sizeof(object->comm)); 558 } 559 560 /* kernel backtrace */ 561 object->trace_len = __save_stack_trace(object->trace); 562 563 INIT_PRIO_TREE_NODE(&object->tree_node); 564 object->tree_node.start = ptr; 565 object->tree_node.last = ptr + size - 1; 566 567 write_lock_irqsave(&kmemleak_lock, flags); 568 569 min_addr = min(min_addr, ptr); 570 max_addr = max(max_addr, ptr + size); 571 node = prio_tree_insert(&object_tree_root, &object->tree_node); 572 /* 573 * The code calling the kernel does not yet have the pointer to the 574 * memory block to be able to free it. However, we still hold the 575 * kmemleak_lock here in case parts of the kernel started freeing 576 * random memory blocks. 577 */ 578 if (node != &object->tree_node) { 579 kmemleak_stop("Cannot insert 0x%lx into the object search tree " 580 "(already existing)\n", ptr); 581 object = lookup_object(ptr, 1); 582 spin_lock(&object->lock); 583 dump_object_info(object); 584 spin_unlock(&object->lock); 585 586 goto out; 587 } 588 list_add_tail_rcu(&object->object_list, &object_list); 589 out: 590 write_unlock_irqrestore(&kmemleak_lock, flags); 591 return object; 592 } 593 594 /* 595 * Remove the metadata (struct kmemleak_object) for a memory block from the 596 * object_list and object_tree_root and decrement its use_count. 597 */ 598 static void __delete_object(struct kmemleak_object *object) 599 { 600 unsigned long flags; 601 602 write_lock_irqsave(&kmemleak_lock, flags); 603 prio_tree_remove(&object_tree_root, &object->tree_node); 604 list_del_rcu(&object->object_list); 605 write_unlock_irqrestore(&kmemleak_lock, flags); 606 607 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 608 WARN_ON(atomic_read(&object->use_count) < 2); 609 610 /* 611 * Locking here also ensures that the corresponding memory block 612 * cannot be freed when it is being scanned. 613 */ 614 spin_lock_irqsave(&object->lock, flags); 615 object->flags &= ~OBJECT_ALLOCATED; 616 spin_unlock_irqrestore(&object->lock, flags); 617 put_object(object); 618 } 619 620 /* 621 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 622 * delete it. 623 */ 624 static void delete_object_full(unsigned long ptr) 625 { 626 struct kmemleak_object *object; 627 628 object = find_and_get_object(ptr, 0); 629 if (!object) { 630 #ifdef DEBUG 631 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 632 ptr); 633 #endif 634 return; 635 } 636 __delete_object(object); 637 put_object(object); 638 } 639 640 /* 641 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 642 * delete it. If the memory block is partially freed, the function may create 643 * additional metadata for the remaining parts of the block. 644 */ 645 static void delete_object_part(unsigned long ptr, size_t size) 646 { 647 struct kmemleak_object *object; 648 unsigned long start, end; 649 650 object = find_and_get_object(ptr, 1); 651 if (!object) { 652 #ifdef DEBUG 653 kmemleak_warn("Partially freeing unknown object at 0x%08lx " 654 "(size %zu)\n", ptr, size); 655 #endif 656 return; 657 } 658 __delete_object(object); 659 660 /* 661 * Create one or two objects that may result from the memory block 662 * split. Note that partial freeing is only done by free_bootmem() and 663 * this happens before kmemleak_init() is called. The path below is 664 * only executed during early log recording in kmemleak_init(), so 665 * GFP_KERNEL is enough. 666 */ 667 start = object->pointer; 668 end = object->pointer + object->size; 669 if (ptr > start) 670 create_object(start, ptr - start, object->min_count, 671 GFP_KERNEL); 672 if (ptr + size < end) 673 create_object(ptr + size, end - ptr - size, object->min_count, 674 GFP_KERNEL); 675 676 put_object(object); 677 } 678 679 static void __paint_it(struct kmemleak_object *object, int color) 680 { 681 object->min_count = color; 682 if (color == KMEMLEAK_BLACK) 683 object->flags |= OBJECT_NO_SCAN; 684 } 685 686 static void paint_it(struct kmemleak_object *object, int color) 687 { 688 unsigned long flags; 689 690 spin_lock_irqsave(&object->lock, flags); 691 __paint_it(object, color); 692 spin_unlock_irqrestore(&object->lock, flags); 693 } 694 695 static void paint_ptr(unsigned long ptr, int color) 696 { 697 struct kmemleak_object *object; 698 699 object = find_and_get_object(ptr, 0); 700 if (!object) { 701 kmemleak_warn("Trying to color unknown object " 702 "at 0x%08lx as %s\n", ptr, 703 (color == KMEMLEAK_GREY) ? "Grey" : 704 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 705 return; 706 } 707 paint_it(object, color); 708 put_object(object); 709 } 710 711 /* 712 * Mark an object permanently as gray-colored so that it can no longer be 713 * reported as a leak. This is used in general to mark a false positive. 714 */ 715 static void make_gray_object(unsigned long ptr) 716 { 717 paint_ptr(ptr, KMEMLEAK_GREY); 718 } 719 720 /* 721 * Mark the object as black-colored so that it is ignored from scans and 722 * reporting. 723 */ 724 static void make_black_object(unsigned long ptr) 725 { 726 paint_ptr(ptr, KMEMLEAK_BLACK); 727 } 728 729 /* 730 * Add a scanning area to the object. If at least one such area is added, 731 * kmemleak will only scan these ranges rather than the whole memory block. 732 */ 733 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 734 { 735 unsigned long flags; 736 struct kmemleak_object *object; 737 struct kmemleak_scan_area *area; 738 739 object = find_and_get_object(ptr, 1); 740 if (!object) { 741 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 742 ptr); 743 return; 744 } 745 746 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 747 if (!area) { 748 pr_warning("Cannot allocate a scan area\n"); 749 goto out; 750 } 751 752 spin_lock_irqsave(&object->lock, flags); 753 if (ptr + size > object->pointer + object->size) { 754 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 755 dump_object_info(object); 756 kmem_cache_free(scan_area_cache, area); 757 goto out_unlock; 758 } 759 760 INIT_HLIST_NODE(&area->node); 761 area->start = ptr; 762 area->size = size; 763 764 hlist_add_head(&area->node, &object->area_list); 765 out_unlock: 766 spin_unlock_irqrestore(&object->lock, flags); 767 out: 768 put_object(object); 769 } 770 771 /* 772 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 773 * pointer. Such object will not be scanned by kmemleak but references to it 774 * are searched. 775 */ 776 static void object_no_scan(unsigned long ptr) 777 { 778 unsigned long flags; 779 struct kmemleak_object *object; 780 781 object = find_and_get_object(ptr, 0); 782 if (!object) { 783 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 784 return; 785 } 786 787 spin_lock_irqsave(&object->lock, flags); 788 object->flags |= OBJECT_NO_SCAN; 789 spin_unlock_irqrestore(&object->lock, flags); 790 put_object(object); 791 } 792 793 /* 794 * Log an early kmemleak_* call to the early_log buffer. These calls will be 795 * processed later once kmemleak is fully initialized. 796 */ 797 static void __init log_early(int op_type, const void *ptr, size_t size, 798 int min_count) 799 { 800 unsigned long flags; 801 struct early_log *log; 802 803 if (atomic_read(&kmemleak_error)) { 804 /* kmemleak stopped recording, just count the requests */ 805 crt_early_log++; 806 return; 807 } 808 809 if (crt_early_log >= ARRAY_SIZE(early_log)) { 810 kmemleak_disable(); 811 return; 812 } 813 814 /* 815 * There is no need for locking since the kernel is still in UP mode 816 * at this stage. Disabling the IRQs is enough. 817 */ 818 local_irq_save(flags); 819 log = &early_log[crt_early_log]; 820 log->op_type = op_type; 821 log->ptr = ptr; 822 log->size = size; 823 log->min_count = min_count; 824 log->trace_len = __save_stack_trace(log->trace); 825 crt_early_log++; 826 local_irq_restore(flags); 827 } 828 829 /* 830 * Log an early allocated block and populate the stack trace. 831 */ 832 static void early_alloc(struct early_log *log) 833 { 834 struct kmemleak_object *object; 835 unsigned long flags; 836 int i; 837 838 if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr)) 839 return; 840 841 /* 842 * RCU locking needed to ensure object is not freed via put_object(). 843 */ 844 rcu_read_lock(); 845 object = create_object((unsigned long)log->ptr, log->size, 846 log->min_count, GFP_ATOMIC); 847 if (!object) 848 goto out; 849 spin_lock_irqsave(&object->lock, flags); 850 for (i = 0; i < log->trace_len; i++) 851 object->trace[i] = log->trace[i]; 852 object->trace_len = log->trace_len; 853 spin_unlock_irqrestore(&object->lock, flags); 854 out: 855 rcu_read_unlock(); 856 } 857 858 /* 859 * Log an early allocated block and populate the stack trace. 860 */ 861 static void early_alloc_percpu(struct early_log *log) 862 { 863 unsigned int cpu; 864 const void __percpu *ptr = log->ptr; 865 866 for_each_possible_cpu(cpu) { 867 log->ptr = per_cpu_ptr(ptr, cpu); 868 early_alloc(log); 869 } 870 } 871 872 /** 873 * kmemleak_alloc - register a newly allocated object 874 * @ptr: pointer to beginning of the object 875 * @size: size of the object 876 * @min_count: minimum number of references to this object. If during memory 877 * scanning a number of references less than @min_count is found, 878 * the object is reported as a memory leak. If @min_count is 0, 879 * the object is never reported as a leak. If @min_count is -1, 880 * the object is ignored (not scanned and not reported as a leak) 881 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 882 * 883 * This function is called from the kernel allocators when a new object 884 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.). 885 */ 886 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 887 gfp_t gfp) 888 { 889 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 890 891 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 892 create_object((unsigned long)ptr, size, min_count, gfp); 893 else if (atomic_read(&kmemleak_early_log)) 894 log_early(KMEMLEAK_ALLOC, ptr, size, min_count); 895 } 896 EXPORT_SYMBOL_GPL(kmemleak_alloc); 897 898 /** 899 * kmemleak_alloc_percpu - register a newly allocated __percpu object 900 * @ptr: __percpu pointer to beginning of the object 901 * @size: size of the object 902 * 903 * This function is called from the kernel percpu allocator when a new object 904 * (memory block) is allocated (alloc_percpu). It assumes GFP_KERNEL 905 * allocation. 906 */ 907 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size) 908 { 909 unsigned int cpu; 910 911 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); 912 913 /* 914 * Percpu allocations are only scanned and not reported as leaks 915 * (min_count is set to 0). 916 */ 917 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 918 for_each_possible_cpu(cpu) 919 create_object((unsigned long)per_cpu_ptr(ptr, cpu), 920 size, 0, GFP_KERNEL); 921 else if (atomic_read(&kmemleak_early_log)) 922 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0); 923 } 924 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 925 926 /** 927 * kmemleak_free - unregister a previously registered object 928 * @ptr: pointer to beginning of the object 929 * 930 * This function is called from the kernel allocators when an object (memory 931 * block) is freed (kmem_cache_free, kfree, vfree etc.). 932 */ 933 void __ref kmemleak_free(const void *ptr) 934 { 935 pr_debug("%s(0x%p)\n", __func__, ptr); 936 937 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 938 delete_object_full((unsigned long)ptr); 939 else if (atomic_read(&kmemleak_early_log)) 940 log_early(KMEMLEAK_FREE, ptr, 0, 0); 941 } 942 EXPORT_SYMBOL_GPL(kmemleak_free); 943 944 /** 945 * kmemleak_free_part - partially unregister a previously registered object 946 * @ptr: pointer to the beginning or inside the object. This also 947 * represents the start of the range to be freed 948 * @size: size to be unregistered 949 * 950 * This function is called when only a part of a memory block is freed 951 * (usually from the bootmem allocator). 952 */ 953 void __ref kmemleak_free_part(const void *ptr, size_t size) 954 { 955 pr_debug("%s(0x%p)\n", __func__, ptr); 956 957 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 958 delete_object_part((unsigned long)ptr, size); 959 else if (atomic_read(&kmemleak_early_log)) 960 log_early(KMEMLEAK_FREE_PART, ptr, size, 0); 961 } 962 EXPORT_SYMBOL_GPL(kmemleak_free_part); 963 964 /** 965 * kmemleak_free_percpu - unregister a previously registered __percpu object 966 * @ptr: __percpu pointer to beginning of the object 967 * 968 * This function is called from the kernel percpu allocator when an object 969 * (memory block) is freed (free_percpu). 970 */ 971 void __ref kmemleak_free_percpu(const void __percpu *ptr) 972 { 973 unsigned int cpu; 974 975 pr_debug("%s(0x%p)\n", __func__, ptr); 976 977 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 978 for_each_possible_cpu(cpu) 979 delete_object_full((unsigned long)per_cpu_ptr(ptr, 980 cpu)); 981 else if (atomic_read(&kmemleak_early_log)) 982 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0); 983 } 984 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 985 986 /** 987 * kmemleak_not_leak - mark an allocated object as false positive 988 * @ptr: pointer to beginning of the object 989 * 990 * Calling this function on an object will cause the memory block to no longer 991 * be reported as leak and always be scanned. 992 */ 993 void __ref kmemleak_not_leak(const void *ptr) 994 { 995 pr_debug("%s(0x%p)\n", __func__, ptr); 996 997 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 998 make_gray_object((unsigned long)ptr); 999 else if (atomic_read(&kmemleak_early_log)) 1000 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0); 1001 } 1002 EXPORT_SYMBOL(kmemleak_not_leak); 1003 1004 /** 1005 * kmemleak_ignore - ignore an allocated object 1006 * @ptr: pointer to beginning of the object 1007 * 1008 * Calling this function on an object will cause the memory block to be 1009 * ignored (not scanned and not reported as a leak). This is usually done when 1010 * it is known that the corresponding block is not a leak and does not contain 1011 * any references to other allocated memory blocks. 1012 */ 1013 void __ref kmemleak_ignore(const void *ptr) 1014 { 1015 pr_debug("%s(0x%p)\n", __func__, ptr); 1016 1017 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 1018 make_black_object((unsigned long)ptr); 1019 else if (atomic_read(&kmemleak_early_log)) 1020 log_early(KMEMLEAK_IGNORE, ptr, 0, 0); 1021 } 1022 EXPORT_SYMBOL(kmemleak_ignore); 1023 1024 /** 1025 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1026 * @ptr: pointer to beginning or inside the object. This also 1027 * represents the start of the scan area 1028 * @size: size of the scan area 1029 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1030 * 1031 * This function is used when it is known that only certain parts of an object 1032 * contain references to other objects. Kmemleak will only scan these areas 1033 * reducing the number false negatives. 1034 */ 1035 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1036 { 1037 pr_debug("%s(0x%p)\n", __func__, ptr); 1038 1039 if (atomic_read(&kmemleak_enabled) && ptr && size && !IS_ERR(ptr)) 1040 add_scan_area((unsigned long)ptr, size, gfp); 1041 else if (atomic_read(&kmemleak_early_log)) 1042 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0); 1043 } 1044 EXPORT_SYMBOL(kmemleak_scan_area); 1045 1046 /** 1047 * kmemleak_no_scan - do not scan an allocated object 1048 * @ptr: pointer to beginning of the object 1049 * 1050 * This function notifies kmemleak not to scan the given memory block. Useful 1051 * in situations where it is known that the given object does not contain any 1052 * references to other objects. Kmemleak will not scan such objects reducing 1053 * the number of false negatives. 1054 */ 1055 void __ref kmemleak_no_scan(const void *ptr) 1056 { 1057 pr_debug("%s(0x%p)\n", __func__, ptr); 1058 1059 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 1060 object_no_scan((unsigned long)ptr); 1061 else if (atomic_read(&kmemleak_early_log)) 1062 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0); 1063 } 1064 EXPORT_SYMBOL(kmemleak_no_scan); 1065 1066 /* 1067 * Update an object's checksum and return true if it was modified. 1068 */ 1069 static bool update_checksum(struct kmemleak_object *object) 1070 { 1071 u32 old_csum = object->checksum; 1072 1073 if (!kmemcheck_is_obj_initialized(object->pointer, object->size)) 1074 return false; 1075 1076 object->checksum = crc32(0, (void *)object->pointer, object->size); 1077 return object->checksum != old_csum; 1078 } 1079 1080 /* 1081 * Memory scanning is a long process and it needs to be interruptable. This 1082 * function checks whether such interrupt condition occurred. 1083 */ 1084 static int scan_should_stop(void) 1085 { 1086 if (!atomic_read(&kmemleak_enabled)) 1087 return 1; 1088 1089 /* 1090 * This function may be called from either process or kthread context, 1091 * hence the need to check for both stop conditions. 1092 */ 1093 if (current->mm) 1094 return signal_pending(current); 1095 else 1096 return kthread_should_stop(); 1097 1098 return 0; 1099 } 1100 1101 /* 1102 * Scan a memory block (exclusive range) for valid pointers and add those 1103 * found to the gray list. 1104 */ 1105 static void scan_block(void *_start, void *_end, 1106 struct kmemleak_object *scanned, int allow_resched) 1107 { 1108 unsigned long *ptr; 1109 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1110 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1111 1112 for (ptr = start; ptr < end; ptr++) { 1113 struct kmemleak_object *object; 1114 unsigned long flags; 1115 unsigned long pointer; 1116 1117 if (allow_resched) 1118 cond_resched(); 1119 if (scan_should_stop()) 1120 break; 1121 1122 /* don't scan uninitialized memory */ 1123 if (!kmemcheck_is_obj_initialized((unsigned long)ptr, 1124 BYTES_PER_POINTER)) 1125 continue; 1126 1127 pointer = *ptr; 1128 1129 object = find_and_get_object(pointer, 1); 1130 if (!object) 1131 continue; 1132 if (object == scanned) { 1133 /* self referenced, ignore */ 1134 put_object(object); 1135 continue; 1136 } 1137 1138 /* 1139 * Avoid the lockdep recursive warning on object->lock being 1140 * previously acquired in scan_object(). These locks are 1141 * enclosed by scan_mutex. 1142 */ 1143 spin_lock_irqsave_nested(&object->lock, flags, 1144 SINGLE_DEPTH_NESTING); 1145 if (!color_white(object)) { 1146 /* non-orphan, ignored or new */ 1147 spin_unlock_irqrestore(&object->lock, flags); 1148 put_object(object); 1149 continue; 1150 } 1151 1152 /* 1153 * Increase the object's reference count (number of pointers 1154 * to the memory block). If this count reaches the required 1155 * minimum, the object's color will become gray and it will be 1156 * added to the gray_list. 1157 */ 1158 object->count++; 1159 if (color_gray(object)) { 1160 list_add_tail(&object->gray_list, &gray_list); 1161 spin_unlock_irqrestore(&object->lock, flags); 1162 continue; 1163 } 1164 1165 spin_unlock_irqrestore(&object->lock, flags); 1166 put_object(object); 1167 } 1168 } 1169 1170 /* 1171 * Scan a memory block corresponding to a kmemleak_object. A condition is 1172 * that object->use_count >= 1. 1173 */ 1174 static void scan_object(struct kmemleak_object *object) 1175 { 1176 struct kmemleak_scan_area *area; 1177 struct hlist_node *elem; 1178 unsigned long flags; 1179 1180 /* 1181 * Once the object->lock is acquired, the corresponding memory block 1182 * cannot be freed (the same lock is acquired in delete_object). 1183 */ 1184 spin_lock_irqsave(&object->lock, flags); 1185 if (object->flags & OBJECT_NO_SCAN) 1186 goto out; 1187 if (!(object->flags & OBJECT_ALLOCATED)) 1188 /* already freed object */ 1189 goto out; 1190 if (hlist_empty(&object->area_list)) { 1191 void *start = (void *)object->pointer; 1192 void *end = (void *)(object->pointer + object->size); 1193 1194 while (start < end && (object->flags & OBJECT_ALLOCATED) && 1195 !(object->flags & OBJECT_NO_SCAN)) { 1196 scan_block(start, min(start + MAX_SCAN_SIZE, end), 1197 object, 0); 1198 start += MAX_SCAN_SIZE; 1199 1200 spin_unlock_irqrestore(&object->lock, flags); 1201 cond_resched(); 1202 spin_lock_irqsave(&object->lock, flags); 1203 } 1204 } else 1205 hlist_for_each_entry(area, elem, &object->area_list, node) 1206 scan_block((void *)area->start, 1207 (void *)(area->start + area->size), 1208 object, 0); 1209 out: 1210 spin_unlock_irqrestore(&object->lock, flags); 1211 } 1212 1213 /* 1214 * Scan the objects already referenced (gray objects). More objects will be 1215 * referenced and, if there are no memory leaks, all the objects are scanned. 1216 */ 1217 static void scan_gray_list(void) 1218 { 1219 struct kmemleak_object *object, *tmp; 1220 1221 /* 1222 * The list traversal is safe for both tail additions and removals 1223 * from inside the loop. The kmemleak objects cannot be freed from 1224 * outside the loop because their use_count was incremented. 1225 */ 1226 object = list_entry(gray_list.next, typeof(*object), gray_list); 1227 while (&object->gray_list != &gray_list) { 1228 cond_resched(); 1229 1230 /* may add new objects to the list */ 1231 if (!scan_should_stop()) 1232 scan_object(object); 1233 1234 tmp = list_entry(object->gray_list.next, typeof(*object), 1235 gray_list); 1236 1237 /* remove the object from the list and release it */ 1238 list_del(&object->gray_list); 1239 put_object(object); 1240 1241 object = tmp; 1242 } 1243 WARN_ON(!list_empty(&gray_list)); 1244 } 1245 1246 /* 1247 * Scan data sections and all the referenced memory blocks allocated via the 1248 * kernel's standard allocators. This function must be called with the 1249 * scan_mutex held. 1250 */ 1251 static void kmemleak_scan(void) 1252 { 1253 unsigned long flags; 1254 struct kmemleak_object *object; 1255 int i; 1256 int new_leaks = 0; 1257 1258 jiffies_last_scan = jiffies; 1259 1260 /* prepare the kmemleak_object's */ 1261 rcu_read_lock(); 1262 list_for_each_entry_rcu(object, &object_list, object_list) { 1263 spin_lock_irqsave(&object->lock, flags); 1264 #ifdef DEBUG 1265 /* 1266 * With a few exceptions there should be a maximum of 1267 * 1 reference to any object at this point. 1268 */ 1269 if (atomic_read(&object->use_count) > 1) { 1270 pr_debug("object->use_count = %d\n", 1271 atomic_read(&object->use_count)); 1272 dump_object_info(object); 1273 } 1274 #endif 1275 /* reset the reference count (whiten the object) */ 1276 object->count = 0; 1277 if (color_gray(object) && get_object(object)) 1278 list_add_tail(&object->gray_list, &gray_list); 1279 1280 spin_unlock_irqrestore(&object->lock, flags); 1281 } 1282 rcu_read_unlock(); 1283 1284 /* data/bss scanning */ 1285 scan_block(_sdata, _edata, NULL, 1); 1286 scan_block(__bss_start, __bss_stop, NULL, 1); 1287 1288 #ifdef CONFIG_SMP 1289 /* per-cpu sections scanning */ 1290 for_each_possible_cpu(i) 1291 scan_block(__per_cpu_start + per_cpu_offset(i), 1292 __per_cpu_end + per_cpu_offset(i), NULL, 1); 1293 #endif 1294 1295 /* 1296 * Struct page scanning for each node. 1297 */ 1298 lock_memory_hotplug(); 1299 for_each_online_node(i) { 1300 pg_data_t *pgdat = NODE_DATA(i); 1301 unsigned long start_pfn = pgdat->node_start_pfn; 1302 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; 1303 unsigned long pfn; 1304 1305 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1306 struct page *page; 1307 1308 if (!pfn_valid(pfn)) 1309 continue; 1310 page = pfn_to_page(pfn); 1311 /* only scan if page is in use */ 1312 if (page_count(page) == 0) 1313 continue; 1314 scan_block(page, page + 1, NULL, 1); 1315 } 1316 } 1317 unlock_memory_hotplug(); 1318 1319 /* 1320 * Scanning the task stacks (may introduce false negatives). 1321 */ 1322 if (kmemleak_stack_scan) { 1323 struct task_struct *p, *g; 1324 1325 read_lock(&tasklist_lock); 1326 do_each_thread(g, p) { 1327 scan_block(task_stack_page(p), task_stack_page(p) + 1328 THREAD_SIZE, NULL, 0); 1329 } while_each_thread(g, p); 1330 read_unlock(&tasklist_lock); 1331 } 1332 1333 /* 1334 * Scan the objects already referenced from the sections scanned 1335 * above. 1336 */ 1337 scan_gray_list(); 1338 1339 /* 1340 * Check for new or unreferenced objects modified since the previous 1341 * scan and color them gray until the next scan. 1342 */ 1343 rcu_read_lock(); 1344 list_for_each_entry_rcu(object, &object_list, object_list) { 1345 spin_lock_irqsave(&object->lock, flags); 1346 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1347 && update_checksum(object) && get_object(object)) { 1348 /* color it gray temporarily */ 1349 object->count = object->min_count; 1350 list_add_tail(&object->gray_list, &gray_list); 1351 } 1352 spin_unlock_irqrestore(&object->lock, flags); 1353 } 1354 rcu_read_unlock(); 1355 1356 /* 1357 * Re-scan the gray list for modified unreferenced objects. 1358 */ 1359 scan_gray_list(); 1360 1361 /* 1362 * If scanning was stopped do not report any new unreferenced objects. 1363 */ 1364 if (scan_should_stop()) 1365 return; 1366 1367 /* 1368 * Scanning result reporting. 1369 */ 1370 rcu_read_lock(); 1371 list_for_each_entry_rcu(object, &object_list, object_list) { 1372 spin_lock_irqsave(&object->lock, flags); 1373 if (unreferenced_object(object) && 1374 !(object->flags & OBJECT_REPORTED)) { 1375 object->flags |= OBJECT_REPORTED; 1376 new_leaks++; 1377 } 1378 spin_unlock_irqrestore(&object->lock, flags); 1379 } 1380 rcu_read_unlock(); 1381 1382 if (new_leaks) 1383 pr_info("%d new suspected memory leaks (see " 1384 "/sys/kernel/debug/kmemleak)\n", new_leaks); 1385 1386 } 1387 1388 /* 1389 * Thread function performing automatic memory scanning. Unreferenced objects 1390 * at the end of a memory scan are reported but only the first time. 1391 */ 1392 static int kmemleak_scan_thread(void *arg) 1393 { 1394 static int first_run = 1; 1395 1396 pr_info("Automatic memory scanning thread started\n"); 1397 set_user_nice(current, 10); 1398 1399 /* 1400 * Wait before the first scan to allow the system to fully initialize. 1401 */ 1402 if (first_run) { 1403 first_run = 0; 1404 ssleep(SECS_FIRST_SCAN); 1405 } 1406 1407 while (!kthread_should_stop()) { 1408 signed long timeout = jiffies_scan_wait; 1409 1410 mutex_lock(&scan_mutex); 1411 kmemleak_scan(); 1412 mutex_unlock(&scan_mutex); 1413 1414 /* wait before the next scan */ 1415 while (timeout && !kthread_should_stop()) 1416 timeout = schedule_timeout_interruptible(timeout); 1417 } 1418 1419 pr_info("Automatic memory scanning thread ended\n"); 1420 1421 return 0; 1422 } 1423 1424 /* 1425 * Start the automatic memory scanning thread. This function must be called 1426 * with the scan_mutex held. 1427 */ 1428 static void start_scan_thread(void) 1429 { 1430 if (scan_thread) 1431 return; 1432 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1433 if (IS_ERR(scan_thread)) { 1434 pr_warning("Failed to create the scan thread\n"); 1435 scan_thread = NULL; 1436 } 1437 } 1438 1439 /* 1440 * Stop the automatic memory scanning thread. This function must be called 1441 * with the scan_mutex held. 1442 */ 1443 static void stop_scan_thread(void) 1444 { 1445 if (scan_thread) { 1446 kthread_stop(scan_thread); 1447 scan_thread = NULL; 1448 } 1449 } 1450 1451 /* 1452 * Iterate over the object_list and return the first valid object at or after 1453 * the required position with its use_count incremented. The function triggers 1454 * a memory scanning when the pos argument points to the first position. 1455 */ 1456 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1457 { 1458 struct kmemleak_object *object; 1459 loff_t n = *pos; 1460 int err; 1461 1462 err = mutex_lock_interruptible(&scan_mutex); 1463 if (err < 0) 1464 return ERR_PTR(err); 1465 1466 rcu_read_lock(); 1467 list_for_each_entry_rcu(object, &object_list, object_list) { 1468 if (n-- > 0) 1469 continue; 1470 if (get_object(object)) 1471 goto out; 1472 } 1473 object = NULL; 1474 out: 1475 return object; 1476 } 1477 1478 /* 1479 * Return the next object in the object_list. The function decrements the 1480 * use_count of the previous object and increases that of the next one. 1481 */ 1482 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1483 { 1484 struct kmemleak_object *prev_obj = v; 1485 struct kmemleak_object *next_obj = NULL; 1486 struct list_head *n = &prev_obj->object_list; 1487 1488 ++(*pos); 1489 1490 list_for_each_continue_rcu(n, &object_list) { 1491 struct kmemleak_object *obj = 1492 list_entry(n, struct kmemleak_object, object_list); 1493 if (get_object(obj)) { 1494 next_obj = obj; 1495 break; 1496 } 1497 } 1498 1499 put_object(prev_obj); 1500 return next_obj; 1501 } 1502 1503 /* 1504 * Decrement the use_count of the last object required, if any. 1505 */ 1506 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1507 { 1508 if (!IS_ERR(v)) { 1509 /* 1510 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1511 * waiting was interrupted, so only release it if !IS_ERR. 1512 */ 1513 rcu_read_unlock(); 1514 mutex_unlock(&scan_mutex); 1515 if (v) 1516 put_object(v); 1517 } 1518 } 1519 1520 /* 1521 * Print the information for an unreferenced object to the seq file. 1522 */ 1523 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1524 { 1525 struct kmemleak_object *object = v; 1526 unsigned long flags; 1527 1528 spin_lock_irqsave(&object->lock, flags); 1529 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1530 print_unreferenced(seq, object); 1531 spin_unlock_irqrestore(&object->lock, flags); 1532 return 0; 1533 } 1534 1535 static const struct seq_operations kmemleak_seq_ops = { 1536 .start = kmemleak_seq_start, 1537 .next = kmemleak_seq_next, 1538 .stop = kmemleak_seq_stop, 1539 .show = kmemleak_seq_show, 1540 }; 1541 1542 static int kmemleak_open(struct inode *inode, struct file *file) 1543 { 1544 return seq_open(file, &kmemleak_seq_ops); 1545 } 1546 1547 static int kmemleak_release(struct inode *inode, struct file *file) 1548 { 1549 return seq_release(inode, file); 1550 } 1551 1552 static int dump_str_object_info(const char *str) 1553 { 1554 unsigned long flags; 1555 struct kmemleak_object *object; 1556 unsigned long addr; 1557 1558 addr= simple_strtoul(str, NULL, 0); 1559 object = find_and_get_object(addr, 0); 1560 if (!object) { 1561 pr_info("Unknown object at 0x%08lx\n", addr); 1562 return -EINVAL; 1563 } 1564 1565 spin_lock_irqsave(&object->lock, flags); 1566 dump_object_info(object); 1567 spin_unlock_irqrestore(&object->lock, flags); 1568 1569 put_object(object); 1570 return 0; 1571 } 1572 1573 /* 1574 * We use grey instead of black to ensure we can do future scans on the same 1575 * objects. If we did not do future scans these black objects could 1576 * potentially contain references to newly allocated objects in the future and 1577 * we'd end up with false positives. 1578 */ 1579 static void kmemleak_clear(void) 1580 { 1581 struct kmemleak_object *object; 1582 unsigned long flags; 1583 1584 rcu_read_lock(); 1585 list_for_each_entry_rcu(object, &object_list, object_list) { 1586 spin_lock_irqsave(&object->lock, flags); 1587 if ((object->flags & OBJECT_REPORTED) && 1588 unreferenced_object(object)) 1589 __paint_it(object, KMEMLEAK_GREY); 1590 spin_unlock_irqrestore(&object->lock, flags); 1591 } 1592 rcu_read_unlock(); 1593 } 1594 1595 /* 1596 * File write operation to configure kmemleak at run-time. The following 1597 * commands can be written to the /sys/kernel/debug/kmemleak file: 1598 * off - disable kmemleak (irreversible) 1599 * stack=on - enable the task stacks scanning 1600 * stack=off - disable the tasks stacks scanning 1601 * scan=on - start the automatic memory scanning thread 1602 * scan=off - stop the automatic memory scanning thread 1603 * scan=... - set the automatic memory scanning period in seconds (0 to 1604 * disable it) 1605 * scan - trigger a memory scan 1606 * clear - mark all current reported unreferenced kmemleak objects as 1607 * grey to ignore printing them 1608 * dump=... - dump information about the object found at the given address 1609 */ 1610 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1611 size_t size, loff_t *ppos) 1612 { 1613 char buf[64]; 1614 int buf_size; 1615 int ret; 1616 1617 if (!atomic_read(&kmemleak_enabled)) 1618 return -EBUSY; 1619 1620 buf_size = min(size, (sizeof(buf) - 1)); 1621 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1622 return -EFAULT; 1623 buf[buf_size] = 0; 1624 1625 ret = mutex_lock_interruptible(&scan_mutex); 1626 if (ret < 0) 1627 return ret; 1628 1629 if (strncmp(buf, "off", 3) == 0) 1630 kmemleak_disable(); 1631 else if (strncmp(buf, "stack=on", 8) == 0) 1632 kmemleak_stack_scan = 1; 1633 else if (strncmp(buf, "stack=off", 9) == 0) 1634 kmemleak_stack_scan = 0; 1635 else if (strncmp(buf, "scan=on", 7) == 0) 1636 start_scan_thread(); 1637 else if (strncmp(buf, "scan=off", 8) == 0) 1638 stop_scan_thread(); 1639 else if (strncmp(buf, "scan=", 5) == 0) { 1640 unsigned long secs; 1641 1642 ret = strict_strtoul(buf + 5, 0, &secs); 1643 if (ret < 0) 1644 goto out; 1645 stop_scan_thread(); 1646 if (secs) { 1647 jiffies_scan_wait = msecs_to_jiffies(secs * 1000); 1648 start_scan_thread(); 1649 } 1650 } else if (strncmp(buf, "scan", 4) == 0) 1651 kmemleak_scan(); 1652 else if (strncmp(buf, "clear", 5) == 0) 1653 kmemleak_clear(); 1654 else if (strncmp(buf, "dump=", 5) == 0) 1655 ret = dump_str_object_info(buf + 5); 1656 else 1657 ret = -EINVAL; 1658 1659 out: 1660 mutex_unlock(&scan_mutex); 1661 if (ret < 0) 1662 return ret; 1663 1664 /* ignore the rest of the buffer, only one command at a time */ 1665 *ppos += size; 1666 return size; 1667 } 1668 1669 static const struct file_operations kmemleak_fops = { 1670 .owner = THIS_MODULE, 1671 .open = kmemleak_open, 1672 .read = seq_read, 1673 .write = kmemleak_write, 1674 .llseek = seq_lseek, 1675 .release = kmemleak_release, 1676 }; 1677 1678 /* 1679 * Stop the memory scanning thread and free the kmemleak internal objects if 1680 * no previous scan thread (otherwise, kmemleak may still have some useful 1681 * information on memory leaks). 1682 */ 1683 static void kmemleak_do_cleanup(struct work_struct *work) 1684 { 1685 struct kmemleak_object *object; 1686 bool cleanup = scan_thread == NULL; 1687 1688 mutex_lock(&scan_mutex); 1689 stop_scan_thread(); 1690 1691 if (cleanup) { 1692 rcu_read_lock(); 1693 list_for_each_entry_rcu(object, &object_list, object_list) 1694 delete_object_full(object->pointer); 1695 rcu_read_unlock(); 1696 } 1697 mutex_unlock(&scan_mutex); 1698 } 1699 1700 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 1701 1702 /* 1703 * Disable kmemleak. No memory allocation/freeing will be traced once this 1704 * function is called. Disabling kmemleak is an irreversible operation. 1705 */ 1706 static void kmemleak_disable(void) 1707 { 1708 /* atomically check whether it was already invoked */ 1709 if (atomic_cmpxchg(&kmemleak_error, 0, 1)) 1710 return; 1711 1712 /* stop any memory operation tracing */ 1713 atomic_set(&kmemleak_enabled, 0); 1714 1715 /* check whether it is too early for a kernel thread */ 1716 if (atomic_read(&kmemleak_initialized)) 1717 schedule_work(&cleanup_work); 1718 1719 pr_info("Kernel memory leak detector disabled\n"); 1720 } 1721 1722 /* 1723 * Allow boot-time kmemleak disabling (enabled by default). 1724 */ 1725 static int kmemleak_boot_config(char *str) 1726 { 1727 if (!str) 1728 return -EINVAL; 1729 if (strcmp(str, "off") == 0) 1730 kmemleak_disable(); 1731 else if (strcmp(str, "on") == 0) 1732 kmemleak_skip_disable = 1; 1733 else 1734 return -EINVAL; 1735 return 0; 1736 } 1737 early_param("kmemleak", kmemleak_boot_config); 1738 1739 static void __init print_log_trace(struct early_log *log) 1740 { 1741 struct stack_trace trace; 1742 1743 trace.nr_entries = log->trace_len; 1744 trace.entries = log->trace; 1745 1746 pr_notice("Early log backtrace:\n"); 1747 print_stack_trace(&trace, 2); 1748 } 1749 1750 /* 1751 * Kmemleak initialization. 1752 */ 1753 void __init kmemleak_init(void) 1754 { 1755 int i; 1756 unsigned long flags; 1757 1758 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 1759 if (!kmemleak_skip_disable) { 1760 atomic_set(&kmemleak_early_log, 0); 1761 kmemleak_disable(); 1762 return; 1763 } 1764 #endif 1765 1766 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 1767 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 1768 1769 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 1770 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 1771 INIT_PRIO_TREE_ROOT(&object_tree_root); 1772 1773 if (crt_early_log >= ARRAY_SIZE(early_log)) 1774 pr_warning("Early log buffer exceeded (%d), please increase " 1775 "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log); 1776 1777 /* the kernel is still in UP mode, so disabling the IRQs is enough */ 1778 local_irq_save(flags); 1779 atomic_set(&kmemleak_early_log, 0); 1780 if (atomic_read(&kmemleak_error)) { 1781 local_irq_restore(flags); 1782 return; 1783 } else 1784 atomic_set(&kmemleak_enabled, 1); 1785 local_irq_restore(flags); 1786 1787 /* 1788 * This is the point where tracking allocations is safe. Automatic 1789 * scanning is started during the late initcall. Add the early logged 1790 * callbacks to the kmemleak infrastructure. 1791 */ 1792 for (i = 0; i < crt_early_log; i++) { 1793 struct early_log *log = &early_log[i]; 1794 1795 switch (log->op_type) { 1796 case KMEMLEAK_ALLOC: 1797 early_alloc(log); 1798 break; 1799 case KMEMLEAK_ALLOC_PERCPU: 1800 early_alloc_percpu(log); 1801 break; 1802 case KMEMLEAK_FREE: 1803 kmemleak_free(log->ptr); 1804 break; 1805 case KMEMLEAK_FREE_PART: 1806 kmemleak_free_part(log->ptr, log->size); 1807 break; 1808 case KMEMLEAK_FREE_PERCPU: 1809 kmemleak_free_percpu(log->ptr); 1810 break; 1811 case KMEMLEAK_NOT_LEAK: 1812 kmemleak_not_leak(log->ptr); 1813 break; 1814 case KMEMLEAK_IGNORE: 1815 kmemleak_ignore(log->ptr); 1816 break; 1817 case KMEMLEAK_SCAN_AREA: 1818 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL); 1819 break; 1820 case KMEMLEAK_NO_SCAN: 1821 kmemleak_no_scan(log->ptr); 1822 break; 1823 default: 1824 kmemleak_warn("Unknown early log operation: %d\n", 1825 log->op_type); 1826 } 1827 1828 if (atomic_read(&kmemleak_warning)) { 1829 print_log_trace(log); 1830 atomic_set(&kmemleak_warning, 0); 1831 } 1832 } 1833 } 1834 1835 /* 1836 * Late initialization function. 1837 */ 1838 static int __init kmemleak_late_init(void) 1839 { 1840 struct dentry *dentry; 1841 1842 atomic_set(&kmemleak_initialized, 1); 1843 1844 if (atomic_read(&kmemleak_error)) { 1845 /* 1846 * Some error occurred and kmemleak was disabled. There is a 1847 * small chance that kmemleak_disable() was called immediately 1848 * after setting kmemleak_initialized and we may end up with 1849 * two clean-up threads but serialized by scan_mutex. 1850 */ 1851 schedule_work(&cleanup_work); 1852 return -ENOMEM; 1853 } 1854 1855 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL, 1856 &kmemleak_fops); 1857 if (!dentry) 1858 pr_warning("Failed to create the debugfs kmemleak file\n"); 1859 mutex_lock(&scan_mutex); 1860 start_scan_thread(); 1861 mutex_unlock(&scan_mutex); 1862 1863 pr_info("Kernel memory leak detector initialized\n"); 1864 1865 return 0; 1866 } 1867 late_initcall(kmemleak_late_init); 1868