1 /* 2 * mm/kmemleak.c 3 * 4 * Copyright (C) 2008 ARM Limited 5 * Written by Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 * 21 * For more information on the algorithm and kmemleak usage, please see 22 * Documentation/kmemleak.txt. 23 * 24 * Notes on locking 25 * ---------------- 26 * 27 * The following locks and mutexes are used by kmemleak: 28 * 29 * - kmemleak_lock (rwlock): protects the object_list modifications and 30 * accesses to the object_tree_root. The object_list is the main list 31 * holding the metadata (struct kmemleak_object) for the allocated memory 32 * blocks. The object_tree_root is a red black tree used to look-up 33 * metadata based on a pointer to the corresponding memory block. The 34 * kmemleak_object structures are added to the object_list and 35 * object_tree_root in the create_object() function called from the 36 * kmemleak_alloc() callback and removed in delete_object() called from the 37 * kmemleak_free() callback 38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to 39 * the metadata (e.g. count) are protected by this lock. Note that some 40 * members of this structure may be protected by other means (atomic or 41 * kmemleak_lock). This lock is also held when scanning the corresponding 42 * memory block to avoid the kernel freeing it via the kmemleak_free() 43 * callback. This is less heavyweight than holding a global lock like 44 * kmemleak_lock during scanning 45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 46 * unreferenced objects at a time. The gray_list contains the objects which 47 * are already referenced or marked as false positives and need to be 48 * scanned. This list is only modified during a scanning episode when the 49 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 50 * Note that the kmemleak_object.use_count is incremented when an object is 51 * added to the gray_list and therefore cannot be freed. This mutex also 52 * prevents multiple users of the "kmemleak" debugfs file together with 53 * modifications to the memory scanning parameters including the scan_thread 54 * pointer 55 * 56 * The kmemleak_object structures have a use_count incremented or decremented 57 * using the get_object()/put_object() functions. When the use_count becomes 58 * 0, this count can no longer be incremented and put_object() schedules the 59 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 60 * function must be protected by rcu_read_lock() to avoid accessing a freed 61 * structure. 62 */ 63 64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 65 66 #include <linux/init.h> 67 #include <linux/kernel.h> 68 #include <linux/list.h> 69 #include <linux/sched.h> 70 #include <linux/jiffies.h> 71 #include <linux/delay.h> 72 #include <linux/export.h> 73 #include <linux/kthread.h> 74 #include <linux/rbtree.h> 75 #include <linux/fs.h> 76 #include <linux/debugfs.h> 77 #include <linux/seq_file.h> 78 #include <linux/cpumask.h> 79 #include <linux/spinlock.h> 80 #include <linux/mutex.h> 81 #include <linux/rcupdate.h> 82 #include <linux/stacktrace.h> 83 #include <linux/cache.h> 84 #include <linux/percpu.h> 85 #include <linux/hardirq.h> 86 #include <linux/mmzone.h> 87 #include <linux/slab.h> 88 #include <linux/thread_info.h> 89 #include <linux/err.h> 90 #include <linux/uaccess.h> 91 #include <linux/string.h> 92 #include <linux/nodemask.h> 93 #include <linux/mm.h> 94 #include <linux/workqueue.h> 95 #include <linux/crc32.h> 96 97 #include <asm/sections.h> 98 #include <asm/processor.h> 99 #include <linux/atomic.h> 100 101 #include <linux/kmemcheck.h> 102 #include <linux/kmemleak.h> 103 #include <linux/memory_hotplug.h> 104 105 /* 106 * Kmemleak configuration and common defines. 107 */ 108 #define MAX_TRACE 16 /* stack trace length */ 109 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 110 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 111 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 112 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 113 114 #define BYTES_PER_POINTER sizeof(void *) 115 116 /* GFP bitmask for kmemleak internal allocations */ 117 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \ 118 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 119 __GFP_NOWARN) 120 121 /* scanning area inside a memory block */ 122 struct kmemleak_scan_area { 123 struct hlist_node node; 124 unsigned long start; 125 size_t size; 126 }; 127 128 #define KMEMLEAK_GREY 0 129 #define KMEMLEAK_BLACK -1 130 131 /* 132 * Structure holding the metadata for each allocated memory block. 133 * Modifications to such objects should be made while holding the 134 * object->lock. Insertions or deletions from object_list, gray_list or 135 * rb_node are already protected by the corresponding locks or mutex (see 136 * the notes on locking above). These objects are reference-counted 137 * (use_count) and freed using the RCU mechanism. 138 */ 139 struct kmemleak_object { 140 spinlock_t lock; 141 unsigned long flags; /* object status flags */ 142 struct list_head object_list; 143 struct list_head gray_list; 144 struct rb_node rb_node; 145 struct rcu_head rcu; /* object_list lockless traversal */ 146 /* object usage count; object freed when use_count == 0 */ 147 atomic_t use_count; 148 unsigned long pointer; 149 size_t size; 150 /* minimum number of a pointers found before it is considered leak */ 151 int min_count; 152 /* the total number of pointers found pointing to this object */ 153 int count; 154 /* checksum for detecting modified objects */ 155 u32 checksum; 156 /* memory ranges to be scanned inside an object (empty for all) */ 157 struct hlist_head area_list; 158 unsigned long trace[MAX_TRACE]; 159 unsigned int trace_len; 160 unsigned long jiffies; /* creation timestamp */ 161 pid_t pid; /* pid of the current task */ 162 char comm[TASK_COMM_LEN]; /* executable name */ 163 }; 164 165 /* flag representing the memory block allocation status */ 166 #define OBJECT_ALLOCATED (1 << 0) 167 /* flag set after the first reporting of an unreference object */ 168 #define OBJECT_REPORTED (1 << 1) 169 /* flag set to not scan the object */ 170 #define OBJECT_NO_SCAN (1 << 2) 171 172 /* number of bytes to print per line; must be 16 or 32 */ 173 #define HEX_ROW_SIZE 16 174 /* number of bytes to print at a time (1, 2, 4, 8) */ 175 #define HEX_GROUP_SIZE 1 176 /* include ASCII after the hex output */ 177 #define HEX_ASCII 1 178 /* max number of lines to be printed */ 179 #define HEX_MAX_LINES 2 180 181 /* the list of all allocated objects */ 182 static LIST_HEAD(object_list); 183 /* the list of gray-colored objects (see color_gray comment below) */ 184 static LIST_HEAD(gray_list); 185 /* search tree for object boundaries */ 186 static struct rb_root object_tree_root = RB_ROOT; 187 /* rw_lock protecting the access to object_list and object_tree_root */ 188 static DEFINE_RWLOCK(kmemleak_lock); 189 190 /* allocation caches for kmemleak internal data */ 191 static struct kmem_cache *object_cache; 192 static struct kmem_cache *scan_area_cache; 193 194 /* set if tracing memory operations is enabled */ 195 static atomic_t kmemleak_enabled = ATOMIC_INIT(0); 196 /* set in the late_initcall if there were no errors */ 197 static atomic_t kmemleak_initialized = ATOMIC_INIT(0); 198 /* enables or disables early logging of the memory operations */ 199 static atomic_t kmemleak_early_log = ATOMIC_INIT(1); 200 /* set if a kmemleak warning was issued */ 201 static atomic_t kmemleak_warning = ATOMIC_INIT(0); 202 /* set if a fatal kmemleak error has occurred */ 203 static atomic_t kmemleak_error = ATOMIC_INIT(0); 204 205 /* minimum and maximum address that may be valid pointers */ 206 static unsigned long min_addr = ULONG_MAX; 207 static unsigned long max_addr; 208 209 static struct task_struct *scan_thread; 210 /* used to avoid reporting of recently allocated objects */ 211 static unsigned long jiffies_min_age; 212 static unsigned long jiffies_last_scan; 213 /* delay between automatic memory scannings */ 214 static signed long jiffies_scan_wait; 215 /* enables or disables the task stacks scanning */ 216 static int kmemleak_stack_scan = 1; 217 /* protects the memory scanning, parameters and debug/kmemleak file access */ 218 static DEFINE_MUTEX(scan_mutex); 219 /* setting kmemleak=on, will set this var, skipping the disable */ 220 static int kmemleak_skip_disable; 221 222 223 /* 224 * Early object allocation/freeing logging. Kmemleak is initialized after the 225 * kernel allocator. However, both the kernel allocator and kmemleak may 226 * allocate memory blocks which need to be tracked. Kmemleak defines an 227 * arbitrary buffer to hold the allocation/freeing information before it is 228 * fully initialized. 229 */ 230 231 /* kmemleak operation type for early logging */ 232 enum { 233 KMEMLEAK_ALLOC, 234 KMEMLEAK_ALLOC_PERCPU, 235 KMEMLEAK_FREE, 236 KMEMLEAK_FREE_PART, 237 KMEMLEAK_FREE_PERCPU, 238 KMEMLEAK_NOT_LEAK, 239 KMEMLEAK_IGNORE, 240 KMEMLEAK_SCAN_AREA, 241 KMEMLEAK_NO_SCAN 242 }; 243 244 /* 245 * Structure holding the information passed to kmemleak callbacks during the 246 * early logging. 247 */ 248 struct early_log { 249 int op_type; /* kmemleak operation type */ 250 const void *ptr; /* allocated/freed memory block */ 251 size_t size; /* memory block size */ 252 int min_count; /* minimum reference count */ 253 unsigned long trace[MAX_TRACE]; /* stack trace */ 254 unsigned int trace_len; /* stack trace length */ 255 }; 256 257 /* early logging buffer and current position */ 258 static struct early_log 259 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata; 260 static int crt_early_log __initdata; 261 262 static void kmemleak_disable(void); 263 264 /* 265 * Print a warning and dump the stack trace. 266 */ 267 #define kmemleak_warn(x...) do { \ 268 pr_warning(x); \ 269 dump_stack(); \ 270 atomic_set(&kmemleak_warning, 1); \ 271 } while (0) 272 273 /* 274 * Macro invoked when a serious kmemleak condition occurred and cannot be 275 * recovered from. Kmemleak will be disabled and further allocation/freeing 276 * tracing no longer available. 277 */ 278 #define kmemleak_stop(x...) do { \ 279 kmemleak_warn(x); \ 280 kmemleak_disable(); \ 281 } while (0) 282 283 /* 284 * Printing of the objects hex dump to the seq file. The number of lines to be 285 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 286 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 287 * with the object->lock held. 288 */ 289 static void hex_dump_object(struct seq_file *seq, 290 struct kmemleak_object *object) 291 { 292 const u8 *ptr = (const u8 *)object->pointer; 293 int i, len, remaining; 294 unsigned char linebuf[HEX_ROW_SIZE * 5]; 295 296 /* limit the number of lines to HEX_MAX_LINES */ 297 remaining = len = 298 min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE)); 299 300 seq_printf(seq, " hex dump (first %d bytes):\n", len); 301 for (i = 0; i < len; i += HEX_ROW_SIZE) { 302 int linelen = min(remaining, HEX_ROW_SIZE); 303 304 remaining -= HEX_ROW_SIZE; 305 hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE, 306 HEX_GROUP_SIZE, linebuf, sizeof(linebuf), 307 HEX_ASCII); 308 seq_printf(seq, " %s\n", linebuf); 309 } 310 } 311 312 /* 313 * Object colors, encoded with count and min_count: 314 * - white - orphan object, not enough references to it (count < min_count) 315 * - gray - not orphan, not marked as false positive (min_count == 0) or 316 * sufficient references to it (count >= min_count) 317 * - black - ignore, it doesn't contain references (e.g. text section) 318 * (min_count == -1). No function defined for this color. 319 * Newly created objects don't have any color assigned (object->count == -1) 320 * before the next memory scan when they become white. 321 */ 322 static bool color_white(const struct kmemleak_object *object) 323 { 324 return object->count != KMEMLEAK_BLACK && 325 object->count < object->min_count; 326 } 327 328 static bool color_gray(const struct kmemleak_object *object) 329 { 330 return object->min_count != KMEMLEAK_BLACK && 331 object->count >= object->min_count; 332 } 333 334 /* 335 * Objects are considered unreferenced only if their color is white, they have 336 * not be deleted and have a minimum age to avoid false positives caused by 337 * pointers temporarily stored in CPU registers. 338 */ 339 static bool unreferenced_object(struct kmemleak_object *object) 340 { 341 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 342 time_before_eq(object->jiffies + jiffies_min_age, 343 jiffies_last_scan); 344 } 345 346 /* 347 * Printing of the unreferenced objects information to the seq file. The 348 * print_unreferenced function must be called with the object->lock held. 349 */ 350 static void print_unreferenced(struct seq_file *seq, 351 struct kmemleak_object *object) 352 { 353 int i; 354 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 355 356 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 357 object->pointer, object->size); 358 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 359 object->comm, object->pid, object->jiffies, 360 msecs_age / 1000, msecs_age % 1000); 361 hex_dump_object(seq, object); 362 seq_printf(seq, " backtrace:\n"); 363 364 for (i = 0; i < object->trace_len; i++) { 365 void *ptr = (void *)object->trace[i]; 366 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); 367 } 368 } 369 370 /* 371 * Print the kmemleak_object information. This function is used mainly for 372 * debugging special cases when kmemleak operations. It must be called with 373 * the object->lock held. 374 */ 375 static void dump_object_info(struct kmemleak_object *object) 376 { 377 struct stack_trace trace; 378 379 trace.nr_entries = object->trace_len; 380 trace.entries = object->trace; 381 382 pr_notice("Object 0x%08lx (size %zu):\n", 383 object->pointer, object->size); 384 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 385 object->comm, object->pid, object->jiffies); 386 pr_notice(" min_count = %d\n", object->min_count); 387 pr_notice(" count = %d\n", object->count); 388 pr_notice(" flags = 0x%lx\n", object->flags); 389 pr_notice(" checksum = %d\n", object->checksum); 390 pr_notice(" backtrace:\n"); 391 print_stack_trace(&trace, 4); 392 } 393 394 /* 395 * Look-up a memory block metadata (kmemleak_object) in the object search 396 * tree based on a pointer value. If alias is 0, only values pointing to the 397 * beginning of the memory block are allowed. The kmemleak_lock must be held 398 * when calling this function. 399 */ 400 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 401 { 402 struct rb_node *rb = object_tree_root.rb_node; 403 404 while (rb) { 405 struct kmemleak_object *object = 406 rb_entry(rb, struct kmemleak_object, rb_node); 407 if (ptr < object->pointer) 408 rb = object->rb_node.rb_left; 409 else if (object->pointer + object->size <= ptr) 410 rb = object->rb_node.rb_right; 411 else if (object->pointer == ptr || alias) 412 return object; 413 else { 414 kmemleak_warn("Found object by alias at 0x%08lx\n", 415 ptr); 416 dump_object_info(object); 417 break; 418 } 419 } 420 return NULL; 421 } 422 423 /* 424 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 425 * that once an object's use_count reached 0, the RCU freeing was already 426 * registered and the object should no longer be used. This function must be 427 * called under the protection of rcu_read_lock(). 428 */ 429 static int get_object(struct kmemleak_object *object) 430 { 431 return atomic_inc_not_zero(&object->use_count); 432 } 433 434 /* 435 * RCU callback to free a kmemleak_object. 436 */ 437 static void free_object_rcu(struct rcu_head *rcu) 438 { 439 struct hlist_node *tmp; 440 struct kmemleak_scan_area *area; 441 struct kmemleak_object *object = 442 container_of(rcu, struct kmemleak_object, rcu); 443 444 /* 445 * Once use_count is 0 (guaranteed by put_object), there is no other 446 * code accessing this object, hence no need for locking. 447 */ 448 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 449 hlist_del(&area->node); 450 kmem_cache_free(scan_area_cache, area); 451 } 452 kmem_cache_free(object_cache, object); 453 } 454 455 /* 456 * Decrement the object use_count. Once the count is 0, free the object using 457 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 458 * delete_object() path, the delayed RCU freeing ensures that there is no 459 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 460 * is also possible. 461 */ 462 static void put_object(struct kmemleak_object *object) 463 { 464 if (!atomic_dec_and_test(&object->use_count)) 465 return; 466 467 /* should only get here after delete_object was called */ 468 WARN_ON(object->flags & OBJECT_ALLOCATED); 469 470 call_rcu(&object->rcu, free_object_rcu); 471 } 472 473 /* 474 * Look up an object in the object search tree and increase its use_count. 475 */ 476 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 477 { 478 unsigned long flags; 479 struct kmemleak_object *object = NULL; 480 481 rcu_read_lock(); 482 read_lock_irqsave(&kmemleak_lock, flags); 483 if (ptr >= min_addr && ptr < max_addr) 484 object = lookup_object(ptr, alias); 485 read_unlock_irqrestore(&kmemleak_lock, flags); 486 487 /* check whether the object is still available */ 488 if (object && !get_object(object)) 489 object = NULL; 490 rcu_read_unlock(); 491 492 return object; 493 } 494 495 /* 496 * Save stack trace to the given array of MAX_TRACE size. 497 */ 498 static int __save_stack_trace(unsigned long *trace) 499 { 500 struct stack_trace stack_trace; 501 502 stack_trace.max_entries = MAX_TRACE; 503 stack_trace.nr_entries = 0; 504 stack_trace.entries = trace; 505 stack_trace.skip = 2; 506 save_stack_trace(&stack_trace); 507 508 return stack_trace.nr_entries; 509 } 510 511 /* 512 * Create the metadata (struct kmemleak_object) corresponding to an allocated 513 * memory block and add it to the object_list and object_tree_root. 514 */ 515 static struct kmemleak_object *create_object(unsigned long ptr, size_t size, 516 int min_count, gfp_t gfp) 517 { 518 unsigned long flags; 519 struct kmemleak_object *object, *parent; 520 struct rb_node **link, *rb_parent; 521 522 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 523 if (!object) { 524 pr_warning("Cannot allocate a kmemleak_object structure\n"); 525 kmemleak_disable(); 526 return NULL; 527 } 528 529 INIT_LIST_HEAD(&object->object_list); 530 INIT_LIST_HEAD(&object->gray_list); 531 INIT_HLIST_HEAD(&object->area_list); 532 spin_lock_init(&object->lock); 533 atomic_set(&object->use_count, 1); 534 object->flags = OBJECT_ALLOCATED; 535 object->pointer = ptr; 536 object->size = size; 537 object->min_count = min_count; 538 object->count = 0; /* white color initially */ 539 object->jiffies = jiffies; 540 object->checksum = 0; 541 542 /* task information */ 543 if (in_irq()) { 544 object->pid = 0; 545 strncpy(object->comm, "hardirq", sizeof(object->comm)); 546 } else if (in_softirq()) { 547 object->pid = 0; 548 strncpy(object->comm, "softirq", sizeof(object->comm)); 549 } else { 550 object->pid = current->pid; 551 /* 552 * There is a small chance of a race with set_task_comm(), 553 * however using get_task_comm() here may cause locking 554 * dependency issues with current->alloc_lock. In the worst 555 * case, the command line is not correct. 556 */ 557 strncpy(object->comm, current->comm, sizeof(object->comm)); 558 } 559 560 /* kernel backtrace */ 561 object->trace_len = __save_stack_trace(object->trace); 562 563 write_lock_irqsave(&kmemleak_lock, flags); 564 565 min_addr = min(min_addr, ptr); 566 max_addr = max(max_addr, ptr + size); 567 link = &object_tree_root.rb_node; 568 rb_parent = NULL; 569 while (*link) { 570 rb_parent = *link; 571 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 572 if (ptr + size <= parent->pointer) 573 link = &parent->rb_node.rb_left; 574 else if (parent->pointer + parent->size <= ptr) 575 link = &parent->rb_node.rb_right; 576 else { 577 kmemleak_stop("Cannot insert 0x%lx into the object " 578 "search tree (overlaps existing)\n", 579 ptr); 580 kmem_cache_free(object_cache, object); 581 object = parent; 582 spin_lock(&object->lock); 583 dump_object_info(object); 584 spin_unlock(&object->lock); 585 goto out; 586 } 587 } 588 rb_link_node(&object->rb_node, rb_parent, link); 589 rb_insert_color(&object->rb_node, &object_tree_root); 590 591 list_add_tail_rcu(&object->object_list, &object_list); 592 out: 593 write_unlock_irqrestore(&kmemleak_lock, flags); 594 return object; 595 } 596 597 /* 598 * Remove the metadata (struct kmemleak_object) for a memory block from the 599 * object_list and object_tree_root and decrement its use_count. 600 */ 601 static void __delete_object(struct kmemleak_object *object) 602 { 603 unsigned long flags; 604 605 write_lock_irqsave(&kmemleak_lock, flags); 606 rb_erase(&object->rb_node, &object_tree_root); 607 list_del_rcu(&object->object_list); 608 write_unlock_irqrestore(&kmemleak_lock, flags); 609 610 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 611 WARN_ON(atomic_read(&object->use_count) < 2); 612 613 /* 614 * Locking here also ensures that the corresponding memory block 615 * cannot be freed when it is being scanned. 616 */ 617 spin_lock_irqsave(&object->lock, flags); 618 object->flags &= ~OBJECT_ALLOCATED; 619 spin_unlock_irqrestore(&object->lock, flags); 620 put_object(object); 621 } 622 623 /* 624 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 625 * delete it. 626 */ 627 static void delete_object_full(unsigned long ptr) 628 { 629 struct kmemleak_object *object; 630 631 object = find_and_get_object(ptr, 0); 632 if (!object) { 633 #ifdef DEBUG 634 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 635 ptr); 636 #endif 637 return; 638 } 639 __delete_object(object); 640 put_object(object); 641 } 642 643 /* 644 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 645 * delete it. If the memory block is partially freed, the function may create 646 * additional metadata for the remaining parts of the block. 647 */ 648 static void delete_object_part(unsigned long ptr, size_t size) 649 { 650 struct kmemleak_object *object; 651 unsigned long start, end; 652 653 object = find_and_get_object(ptr, 1); 654 if (!object) { 655 #ifdef DEBUG 656 kmemleak_warn("Partially freeing unknown object at 0x%08lx " 657 "(size %zu)\n", ptr, size); 658 #endif 659 return; 660 } 661 __delete_object(object); 662 663 /* 664 * Create one or two objects that may result from the memory block 665 * split. Note that partial freeing is only done by free_bootmem() and 666 * this happens before kmemleak_init() is called. The path below is 667 * only executed during early log recording in kmemleak_init(), so 668 * GFP_KERNEL is enough. 669 */ 670 start = object->pointer; 671 end = object->pointer + object->size; 672 if (ptr > start) 673 create_object(start, ptr - start, object->min_count, 674 GFP_KERNEL); 675 if (ptr + size < end) 676 create_object(ptr + size, end - ptr - size, object->min_count, 677 GFP_KERNEL); 678 679 put_object(object); 680 } 681 682 static void __paint_it(struct kmemleak_object *object, int color) 683 { 684 object->min_count = color; 685 if (color == KMEMLEAK_BLACK) 686 object->flags |= OBJECT_NO_SCAN; 687 } 688 689 static void paint_it(struct kmemleak_object *object, int color) 690 { 691 unsigned long flags; 692 693 spin_lock_irqsave(&object->lock, flags); 694 __paint_it(object, color); 695 spin_unlock_irqrestore(&object->lock, flags); 696 } 697 698 static void paint_ptr(unsigned long ptr, int color) 699 { 700 struct kmemleak_object *object; 701 702 object = find_and_get_object(ptr, 0); 703 if (!object) { 704 kmemleak_warn("Trying to color unknown object " 705 "at 0x%08lx as %s\n", ptr, 706 (color == KMEMLEAK_GREY) ? "Grey" : 707 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 708 return; 709 } 710 paint_it(object, color); 711 put_object(object); 712 } 713 714 /* 715 * Mark an object permanently as gray-colored so that it can no longer be 716 * reported as a leak. This is used in general to mark a false positive. 717 */ 718 static void make_gray_object(unsigned long ptr) 719 { 720 paint_ptr(ptr, KMEMLEAK_GREY); 721 } 722 723 /* 724 * Mark the object as black-colored so that it is ignored from scans and 725 * reporting. 726 */ 727 static void make_black_object(unsigned long ptr) 728 { 729 paint_ptr(ptr, KMEMLEAK_BLACK); 730 } 731 732 /* 733 * Add a scanning area to the object. If at least one such area is added, 734 * kmemleak will only scan these ranges rather than the whole memory block. 735 */ 736 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 737 { 738 unsigned long flags; 739 struct kmemleak_object *object; 740 struct kmemleak_scan_area *area; 741 742 object = find_and_get_object(ptr, 1); 743 if (!object) { 744 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 745 ptr); 746 return; 747 } 748 749 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 750 if (!area) { 751 pr_warning("Cannot allocate a scan area\n"); 752 goto out; 753 } 754 755 spin_lock_irqsave(&object->lock, flags); 756 if (size == SIZE_MAX) { 757 size = object->pointer + object->size - ptr; 758 } else if (ptr + size > object->pointer + object->size) { 759 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 760 dump_object_info(object); 761 kmem_cache_free(scan_area_cache, area); 762 goto out_unlock; 763 } 764 765 INIT_HLIST_NODE(&area->node); 766 area->start = ptr; 767 area->size = size; 768 769 hlist_add_head(&area->node, &object->area_list); 770 out_unlock: 771 spin_unlock_irqrestore(&object->lock, flags); 772 out: 773 put_object(object); 774 } 775 776 /* 777 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 778 * pointer. Such object will not be scanned by kmemleak but references to it 779 * are searched. 780 */ 781 static void object_no_scan(unsigned long ptr) 782 { 783 unsigned long flags; 784 struct kmemleak_object *object; 785 786 object = find_and_get_object(ptr, 0); 787 if (!object) { 788 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 789 return; 790 } 791 792 spin_lock_irqsave(&object->lock, flags); 793 object->flags |= OBJECT_NO_SCAN; 794 spin_unlock_irqrestore(&object->lock, flags); 795 put_object(object); 796 } 797 798 /* 799 * Log an early kmemleak_* call to the early_log buffer. These calls will be 800 * processed later once kmemleak is fully initialized. 801 */ 802 static void __init log_early(int op_type, const void *ptr, size_t size, 803 int min_count) 804 { 805 unsigned long flags; 806 struct early_log *log; 807 808 if (atomic_read(&kmemleak_error)) { 809 /* kmemleak stopped recording, just count the requests */ 810 crt_early_log++; 811 return; 812 } 813 814 if (crt_early_log >= ARRAY_SIZE(early_log)) { 815 kmemleak_disable(); 816 return; 817 } 818 819 /* 820 * There is no need for locking since the kernel is still in UP mode 821 * at this stage. Disabling the IRQs is enough. 822 */ 823 local_irq_save(flags); 824 log = &early_log[crt_early_log]; 825 log->op_type = op_type; 826 log->ptr = ptr; 827 log->size = size; 828 log->min_count = min_count; 829 log->trace_len = __save_stack_trace(log->trace); 830 crt_early_log++; 831 local_irq_restore(flags); 832 } 833 834 /* 835 * Log an early allocated block and populate the stack trace. 836 */ 837 static void early_alloc(struct early_log *log) 838 { 839 struct kmemleak_object *object; 840 unsigned long flags; 841 int i; 842 843 if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr)) 844 return; 845 846 /* 847 * RCU locking needed to ensure object is not freed via put_object(). 848 */ 849 rcu_read_lock(); 850 object = create_object((unsigned long)log->ptr, log->size, 851 log->min_count, GFP_ATOMIC); 852 if (!object) 853 goto out; 854 spin_lock_irqsave(&object->lock, flags); 855 for (i = 0; i < log->trace_len; i++) 856 object->trace[i] = log->trace[i]; 857 object->trace_len = log->trace_len; 858 spin_unlock_irqrestore(&object->lock, flags); 859 out: 860 rcu_read_unlock(); 861 } 862 863 /* 864 * Log an early allocated block and populate the stack trace. 865 */ 866 static void early_alloc_percpu(struct early_log *log) 867 { 868 unsigned int cpu; 869 const void __percpu *ptr = log->ptr; 870 871 for_each_possible_cpu(cpu) { 872 log->ptr = per_cpu_ptr(ptr, cpu); 873 early_alloc(log); 874 } 875 } 876 877 /** 878 * kmemleak_alloc - register a newly allocated object 879 * @ptr: pointer to beginning of the object 880 * @size: size of the object 881 * @min_count: minimum number of references to this object. If during memory 882 * scanning a number of references less than @min_count is found, 883 * the object is reported as a memory leak. If @min_count is 0, 884 * the object is never reported as a leak. If @min_count is -1, 885 * the object is ignored (not scanned and not reported as a leak) 886 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 887 * 888 * This function is called from the kernel allocators when a new object 889 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.). 890 */ 891 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 892 gfp_t gfp) 893 { 894 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 895 896 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 897 create_object((unsigned long)ptr, size, min_count, gfp); 898 else if (atomic_read(&kmemleak_early_log)) 899 log_early(KMEMLEAK_ALLOC, ptr, size, min_count); 900 } 901 EXPORT_SYMBOL_GPL(kmemleak_alloc); 902 903 /** 904 * kmemleak_alloc_percpu - register a newly allocated __percpu object 905 * @ptr: __percpu pointer to beginning of the object 906 * @size: size of the object 907 * 908 * This function is called from the kernel percpu allocator when a new object 909 * (memory block) is allocated (alloc_percpu). It assumes GFP_KERNEL 910 * allocation. 911 */ 912 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size) 913 { 914 unsigned int cpu; 915 916 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); 917 918 /* 919 * Percpu allocations are only scanned and not reported as leaks 920 * (min_count is set to 0). 921 */ 922 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 923 for_each_possible_cpu(cpu) 924 create_object((unsigned long)per_cpu_ptr(ptr, cpu), 925 size, 0, GFP_KERNEL); 926 else if (atomic_read(&kmemleak_early_log)) 927 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0); 928 } 929 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 930 931 /** 932 * kmemleak_free - unregister a previously registered object 933 * @ptr: pointer to beginning of the object 934 * 935 * This function is called from the kernel allocators when an object (memory 936 * block) is freed (kmem_cache_free, kfree, vfree etc.). 937 */ 938 void __ref kmemleak_free(const void *ptr) 939 { 940 pr_debug("%s(0x%p)\n", __func__, ptr); 941 942 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 943 delete_object_full((unsigned long)ptr); 944 else if (atomic_read(&kmemleak_early_log)) 945 log_early(KMEMLEAK_FREE, ptr, 0, 0); 946 } 947 EXPORT_SYMBOL_GPL(kmemleak_free); 948 949 /** 950 * kmemleak_free_part - partially unregister a previously registered object 951 * @ptr: pointer to the beginning or inside the object. This also 952 * represents the start of the range to be freed 953 * @size: size to be unregistered 954 * 955 * This function is called when only a part of a memory block is freed 956 * (usually from the bootmem allocator). 957 */ 958 void __ref kmemleak_free_part(const void *ptr, size_t size) 959 { 960 pr_debug("%s(0x%p)\n", __func__, ptr); 961 962 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 963 delete_object_part((unsigned long)ptr, size); 964 else if (atomic_read(&kmemleak_early_log)) 965 log_early(KMEMLEAK_FREE_PART, ptr, size, 0); 966 } 967 EXPORT_SYMBOL_GPL(kmemleak_free_part); 968 969 /** 970 * kmemleak_free_percpu - unregister a previously registered __percpu object 971 * @ptr: __percpu pointer to beginning of the object 972 * 973 * This function is called from the kernel percpu allocator when an object 974 * (memory block) is freed (free_percpu). 975 */ 976 void __ref kmemleak_free_percpu(const void __percpu *ptr) 977 { 978 unsigned int cpu; 979 980 pr_debug("%s(0x%p)\n", __func__, ptr); 981 982 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 983 for_each_possible_cpu(cpu) 984 delete_object_full((unsigned long)per_cpu_ptr(ptr, 985 cpu)); 986 else if (atomic_read(&kmemleak_early_log)) 987 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0); 988 } 989 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 990 991 /** 992 * kmemleak_not_leak - mark an allocated object as false positive 993 * @ptr: pointer to beginning of the object 994 * 995 * Calling this function on an object will cause the memory block to no longer 996 * be reported as leak and always be scanned. 997 */ 998 void __ref kmemleak_not_leak(const void *ptr) 999 { 1000 pr_debug("%s(0x%p)\n", __func__, ptr); 1001 1002 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 1003 make_gray_object((unsigned long)ptr); 1004 else if (atomic_read(&kmemleak_early_log)) 1005 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0); 1006 } 1007 EXPORT_SYMBOL(kmemleak_not_leak); 1008 1009 /** 1010 * kmemleak_ignore - ignore an allocated object 1011 * @ptr: pointer to beginning of the object 1012 * 1013 * Calling this function on an object will cause the memory block to be 1014 * ignored (not scanned and not reported as a leak). This is usually done when 1015 * it is known that the corresponding block is not a leak and does not contain 1016 * any references to other allocated memory blocks. 1017 */ 1018 void __ref kmemleak_ignore(const void *ptr) 1019 { 1020 pr_debug("%s(0x%p)\n", __func__, ptr); 1021 1022 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 1023 make_black_object((unsigned long)ptr); 1024 else if (atomic_read(&kmemleak_early_log)) 1025 log_early(KMEMLEAK_IGNORE, ptr, 0, 0); 1026 } 1027 EXPORT_SYMBOL(kmemleak_ignore); 1028 1029 /** 1030 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1031 * @ptr: pointer to beginning or inside the object. This also 1032 * represents the start of the scan area 1033 * @size: size of the scan area 1034 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1035 * 1036 * This function is used when it is known that only certain parts of an object 1037 * contain references to other objects. Kmemleak will only scan these areas 1038 * reducing the number false negatives. 1039 */ 1040 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1041 { 1042 pr_debug("%s(0x%p)\n", __func__, ptr); 1043 1044 if (atomic_read(&kmemleak_enabled) && ptr && size && !IS_ERR(ptr)) 1045 add_scan_area((unsigned long)ptr, size, gfp); 1046 else if (atomic_read(&kmemleak_early_log)) 1047 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0); 1048 } 1049 EXPORT_SYMBOL(kmemleak_scan_area); 1050 1051 /** 1052 * kmemleak_no_scan - do not scan an allocated object 1053 * @ptr: pointer to beginning of the object 1054 * 1055 * This function notifies kmemleak not to scan the given memory block. Useful 1056 * in situations where it is known that the given object does not contain any 1057 * references to other objects. Kmemleak will not scan such objects reducing 1058 * the number of false negatives. 1059 */ 1060 void __ref kmemleak_no_scan(const void *ptr) 1061 { 1062 pr_debug("%s(0x%p)\n", __func__, ptr); 1063 1064 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr)) 1065 object_no_scan((unsigned long)ptr); 1066 else if (atomic_read(&kmemleak_early_log)) 1067 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0); 1068 } 1069 EXPORT_SYMBOL(kmemleak_no_scan); 1070 1071 /* 1072 * Update an object's checksum and return true if it was modified. 1073 */ 1074 static bool update_checksum(struct kmemleak_object *object) 1075 { 1076 u32 old_csum = object->checksum; 1077 1078 if (!kmemcheck_is_obj_initialized(object->pointer, object->size)) 1079 return false; 1080 1081 object->checksum = crc32(0, (void *)object->pointer, object->size); 1082 return object->checksum != old_csum; 1083 } 1084 1085 /* 1086 * Memory scanning is a long process and it needs to be interruptable. This 1087 * function checks whether such interrupt condition occurred. 1088 */ 1089 static int scan_should_stop(void) 1090 { 1091 if (!atomic_read(&kmemleak_enabled)) 1092 return 1; 1093 1094 /* 1095 * This function may be called from either process or kthread context, 1096 * hence the need to check for both stop conditions. 1097 */ 1098 if (current->mm) 1099 return signal_pending(current); 1100 else 1101 return kthread_should_stop(); 1102 1103 return 0; 1104 } 1105 1106 /* 1107 * Scan a memory block (exclusive range) for valid pointers and add those 1108 * found to the gray list. 1109 */ 1110 static void scan_block(void *_start, void *_end, 1111 struct kmemleak_object *scanned, int allow_resched) 1112 { 1113 unsigned long *ptr; 1114 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1115 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1116 1117 for (ptr = start; ptr < end; ptr++) { 1118 struct kmemleak_object *object; 1119 unsigned long flags; 1120 unsigned long pointer; 1121 1122 if (allow_resched) 1123 cond_resched(); 1124 if (scan_should_stop()) 1125 break; 1126 1127 /* don't scan uninitialized memory */ 1128 if (!kmemcheck_is_obj_initialized((unsigned long)ptr, 1129 BYTES_PER_POINTER)) 1130 continue; 1131 1132 pointer = *ptr; 1133 1134 object = find_and_get_object(pointer, 1); 1135 if (!object) 1136 continue; 1137 if (object == scanned) { 1138 /* self referenced, ignore */ 1139 put_object(object); 1140 continue; 1141 } 1142 1143 /* 1144 * Avoid the lockdep recursive warning on object->lock being 1145 * previously acquired in scan_object(). These locks are 1146 * enclosed by scan_mutex. 1147 */ 1148 spin_lock_irqsave_nested(&object->lock, flags, 1149 SINGLE_DEPTH_NESTING); 1150 if (!color_white(object)) { 1151 /* non-orphan, ignored or new */ 1152 spin_unlock_irqrestore(&object->lock, flags); 1153 put_object(object); 1154 continue; 1155 } 1156 1157 /* 1158 * Increase the object's reference count (number of pointers 1159 * to the memory block). If this count reaches the required 1160 * minimum, the object's color will become gray and it will be 1161 * added to the gray_list. 1162 */ 1163 object->count++; 1164 if (color_gray(object)) { 1165 list_add_tail(&object->gray_list, &gray_list); 1166 spin_unlock_irqrestore(&object->lock, flags); 1167 continue; 1168 } 1169 1170 spin_unlock_irqrestore(&object->lock, flags); 1171 put_object(object); 1172 } 1173 } 1174 1175 /* 1176 * Scan a memory block corresponding to a kmemleak_object. A condition is 1177 * that object->use_count >= 1. 1178 */ 1179 static void scan_object(struct kmemleak_object *object) 1180 { 1181 struct kmemleak_scan_area *area; 1182 unsigned long flags; 1183 1184 /* 1185 * Once the object->lock is acquired, the corresponding memory block 1186 * cannot be freed (the same lock is acquired in delete_object). 1187 */ 1188 spin_lock_irqsave(&object->lock, flags); 1189 if (object->flags & OBJECT_NO_SCAN) 1190 goto out; 1191 if (!(object->flags & OBJECT_ALLOCATED)) 1192 /* already freed object */ 1193 goto out; 1194 if (hlist_empty(&object->area_list)) { 1195 void *start = (void *)object->pointer; 1196 void *end = (void *)(object->pointer + object->size); 1197 1198 while (start < end && (object->flags & OBJECT_ALLOCATED) && 1199 !(object->flags & OBJECT_NO_SCAN)) { 1200 scan_block(start, min(start + MAX_SCAN_SIZE, end), 1201 object, 0); 1202 start += MAX_SCAN_SIZE; 1203 1204 spin_unlock_irqrestore(&object->lock, flags); 1205 cond_resched(); 1206 spin_lock_irqsave(&object->lock, flags); 1207 } 1208 } else 1209 hlist_for_each_entry(area, &object->area_list, node) 1210 scan_block((void *)area->start, 1211 (void *)(area->start + area->size), 1212 object, 0); 1213 out: 1214 spin_unlock_irqrestore(&object->lock, flags); 1215 } 1216 1217 /* 1218 * Scan the objects already referenced (gray objects). More objects will be 1219 * referenced and, if there are no memory leaks, all the objects are scanned. 1220 */ 1221 static void scan_gray_list(void) 1222 { 1223 struct kmemleak_object *object, *tmp; 1224 1225 /* 1226 * The list traversal is safe for both tail additions and removals 1227 * from inside the loop. The kmemleak objects cannot be freed from 1228 * outside the loop because their use_count was incremented. 1229 */ 1230 object = list_entry(gray_list.next, typeof(*object), gray_list); 1231 while (&object->gray_list != &gray_list) { 1232 cond_resched(); 1233 1234 /* may add new objects to the list */ 1235 if (!scan_should_stop()) 1236 scan_object(object); 1237 1238 tmp = list_entry(object->gray_list.next, typeof(*object), 1239 gray_list); 1240 1241 /* remove the object from the list and release it */ 1242 list_del(&object->gray_list); 1243 put_object(object); 1244 1245 object = tmp; 1246 } 1247 WARN_ON(!list_empty(&gray_list)); 1248 } 1249 1250 /* 1251 * Scan data sections and all the referenced memory blocks allocated via the 1252 * kernel's standard allocators. This function must be called with the 1253 * scan_mutex held. 1254 */ 1255 static void kmemleak_scan(void) 1256 { 1257 unsigned long flags; 1258 struct kmemleak_object *object; 1259 int i; 1260 int new_leaks = 0; 1261 1262 jiffies_last_scan = jiffies; 1263 1264 /* prepare the kmemleak_object's */ 1265 rcu_read_lock(); 1266 list_for_each_entry_rcu(object, &object_list, object_list) { 1267 spin_lock_irqsave(&object->lock, flags); 1268 #ifdef DEBUG 1269 /* 1270 * With a few exceptions there should be a maximum of 1271 * 1 reference to any object at this point. 1272 */ 1273 if (atomic_read(&object->use_count) > 1) { 1274 pr_debug("object->use_count = %d\n", 1275 atomic_read(&object->use_count)); 1276 dump_object_info(object); 1277 } 1278 #endif 1279 /* reset the reference count (whiten the object) */ 1280 object->count = 0; 1281 if (color_gray(object) && get_object(object)) 1282 list_add_tail(&object->gray_list, &gray_list); 1283 1284 spin_unlock_irqrestore(&object->lock, flags); 1285 } 1286 rcu_read_unlock(); 1287 1288 /* data/bss scanning */ 1289 scan_block(_sdata, _edata, NULL, 1); 1290 scan_block(__bss_start, __bss_stop, NULL, 1); 1291 1292 #ifdef CONFIG_SMP 1293 /* per-cpu sections scanning */ 1294 for_each_possible_cpu(i) 1295 scan_block(__per_cpu_start + per_cpu_offset(i), 1296 __per_cpu_end + per_cpu_offset(i), NULL, 1); 1297 #endif 1298 1299 /* 1300 * Struct page scanning for each node. 1301 */ 1302 lock_memory_hotplug(); 1303 for_each_online_node(i) { 1304 unsigned long start_pfn = node_start_pfn(i); 1305 unsigned long end_pfn = node_end_pfn(i); 1306 unsigned long pfn; 1307 1308 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1309 struct page *page; 1310 1311 if (!pfn_valid(pfn)) 1312 continue; 1313 page = pfn_to_page(pfn); 1314 /* only scan if page is in use */ 1315 if (page_count(page) == 0) 1316 continue; 1317 scan_block(page, page + 1, NULL, 1); 1318 } 1319 } 1320 unlock_memory_hotplug(); 1321 1322 /* 1323 * Scanning the task stacks (may introduce false negatives). 1324 */ 1325 if (kmemleak_stack_scan) { 1326 struct task_struct *p, *g; 1327 1328 read_lock(&tasklist_lock); 1329 do_each_thread(g, p) { 1330 scan_block(task_stack_page(p), task_stack_page(p) + 1331 THREAD_SIZE, NULL, 0); 1332 } while_each_thread(g, p); 1333 read_unlock(&tasklist_lock); 1334 } 1335 1336 /* 1337 * Scan the objects already referenced from the sections scanned 1338 * above. 1339 */ 1340 scan_gray_list(); 1341 1342 /* 1343 * Check for new or unreferenced objects modified since the previous 1344 * scan and color them gray until the next scan. 1345 */ 1346 rcu_read_lock(); 1347 list_for_each_entry_rcu(object, &object_list, object_list) { 1348 spin_lock_irqsave(&object->lock, flags); 1349 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1350 && update_checksum(object) && get_object(object)) { 1351 /* color it gray temporarily */ 1352 object->count = object->min_count; 1353 list_add_tail(&object->gray_list, &gray_list); 1354 } 1355 spin_unlock_irqrestore(&object->lock, flags); 1356 } 1357 rcu_read_unlock(); 1358 1359 /* 1360 * Re-scan the gray list for modified unreferenced objects. 1361 */ 1362 scan_gray_list(); 1363 1364 /* 1365 * If scanning was stopped do not report any new unreferenced objects. 1366 */ 1367 if (scan_should_stop()) 1368 return; 1369 1370 /* 1371 * Scanning result reporting. 1372 */ 1373 rcu_read_lock(); 1374 list_for_each_entry_rcu(object, &object_list, object_list) { 1375 spin_lock_irqsave(&object->lock, flags); 1376 if (unreferenced_object(object) && 1377 !(object->flags & OBJECT_REPORTED)) { 1378 object->flags |= OBJECT_REPORTED; 1379 new_leaks++; 1380 } 1381 spin_unlock_irqrestore(&object->lock, flags); 1382 } 1383 rcu_read_unlock(); 1384 1385 if (new_leaks) 1386 pr_info("%d new suspected memory leaks (see " 1387 "/sys/kernel/debug/kmemleak)\n", new_leaks); 1388 1389 } 1390 1391 /* 1392 * Thread function performing automatic memory scanning. Unreferenced objects 1393 * at the end of a memory scan are reported but only the first time. 1394 */ 1395 static int kmemleak_scan_thread(void *arg) 1396 { 1397 static int first_run = 1; 1398 1399 pr_info("Automatic memory scanning thread started\n"); 1400 set_user_nice(current, 10); 1401 1402 /* 1403 * Wait before the first scan to allow the system to fully initialize. 1404 */ 1405 if (first_run) { 1406 first_run = 0; 1407 ssleep(SECS_FIRST_SCAN); 1408 } 1409 1410 while (!kthread_should_stop()) { 1411 signed long timeout = jiffies_scan_wait; 1412 1413 mutex_lock(&scan_mutex); 1414 kmemleak_scan(); 1415 mutex_unlock(&scan_mutex); 1416 1417 /* wait before the next scan */ 1418 while (timeout && !kthread_should_stop()) 1419 timeout = schedule_timeout_interruptible(timeout); 1420 } 1421 1422 pr_info("Automatic memory scanning thread ended\n"); 1423 1424 return 0; 1425 } 1426 1427 /* 1428 * Start the automatic memory scanning thread. This function must be called 1429 * with the scan_mutex held. 1430 */ 1431 static void start_scan_thread(void) 1432 { 1433 if (scan_thread) 1434 return; 1435 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1436 if (IS_ERR(scan_thread)) { 1437 pr_warning("Failed to create the scan thread\n"); 1438 scan_thread = NULL; 1439 } 1440 } 1441 1442 /* 1443 * Stop the automatic memory scanning thread. This function must be called 1444 * with the scan_mutex held. 1445 */ 1446 static void stop_scan_thread(void) 1447 { 1448 if (scan_thread) { 1449 kthread_stop(scan_thread); 1450 scan_thread = NULL; 1451 } 1452 } 1453 1454 /* 1455 * Iterate over the object_list and return the first valid object at or after 1456 * the required position with its use_count incremented. The function triggers 1457 * a memory scanning when the pos argument points to the first position. 1458 */ 1459 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1460 { 1461 struct kmemleak_object *object; 1462 loff_t n = *pos; 1463 int err; 1464 1465 err = mutex_lock_interruptible(&scan_mutex); 1466 if (err < 0) 1467 return ERR_PTR(err); 1468 1469 rcu_read_lock(); 1470 list_for_each_entry_rcu(object, &object_list, object_list) { 1471 if (n-- > 0) 1472 continue; 1473 if (get_object(object)) 1474 goto out; 1475 } 1476 object = NULL; 1477 out: 1478 return object; 1479 } 1480 1481 /* 1482 * Return the next object in the object_list. The function decrements the 1483 * use_count of the previous object and increases that of the next one. 1484 */ 1485 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1486 { 1487 struct kmemleak_object *prev_obj = v; 1488 struct kmemleak_object *next_obj = NULL; 1489 struct kmemleak_object *obj = prev_obj; 1490 1491 ++(*pos); 1492 1493 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1494 if (get_object(obj)) { 1495 next_obj = obj; 1496 break; 1497 } 1498 } 1499 1500 put_object(prev_obj); 1501 return next_obj; 1502 } 1503 1504 /* 1505 * Decrement the use_count of the last object required, if any. 1506 */ 1507 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1508 { 1509 if (!IS_ERR(v)) { 1510 /* 1511 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1512 * waiting was interrupted, so only release it if !IS_ERR. 1513 */ 1514 rcu_read_unlock(); 1515 mutex_unlock(&scan_mutex); 1516 if (v) 1517 put_object(v); 1518 } 1519 } 1520 1521 /* 1522 * Print the information for an unreferenced object to the seq file. 1523 */ 1524 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1525 { 1526 struct kmemleak_object *object = v; 1527 unsigned long flags; 1528 1529 spin_lock_irqsave(&object->lock, flags); 1530 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1531 print_unreferenced(seq, object); 1532 spin_unlock_irqrestore(&object->lock, flags); 1533 return 0; 1534 } 1535 1536 static const struct seq_operations kmemleak_seq_ops = { 1537 .start = kmemleak_seq_start, 1538 .next = kmemleak_seq_next, 1539 .stop = kmemleak_seq_stop, 1540 .show = kmemleak_seq_show, 1541 }; 1542 1543 static int kmemleak_open(struct inode *inode, struct file *file) 1544 { 1545 return seq_open(file, &kmemleak_seq_ops); 1546 } 1547 1548 static int kmemleak_release(struct inode *inode, struct file *file) 1549 { 1550 return seq_release(inode, file); 1551 } 1552 1553 static int dump_str_object_info(const char *str) 1554 { 1555 unsigned long flags; 1556 struct kmemleak_object *object; 1557 unsigned long addr; 1558 1559 if (kstrtoul(str, 0, &addr)) 1560 return -EINVAL; 1561 object = find_and_get_object(addr, 0); 1562 if (!object) { 1563 pr_info("Unknown object at 0x%08lx\n", addr); 1564 return -EINVAL; 1565 } 1566 1567 spin_lock_irqsave(&object->lock, flags); 1568 dump_object_info(object); 1569 spin_unlock_irqrestore(&object->lock, flags); 1570 1571 put_object(object); 1572 return 0; 1573 } 1574 1575 /* 1576 * We use grey instead of black to ensure we can do future scans on the same 1577 * objects. If we did not do future scans these black objects could 1578 * potentially contain references to newly allocated objects in the future and 1579 * we'd end up with false positives. 1580 */ 1581 static void kmemleak_clear(void) 1582 { 1583 struct kmemleak_object *object; 1584 unsigned long flags; 1585 1586 rcu_read_lock(); 1587 list_for_each_entry_rcu(object, &object_list, object_list) { 1588 spin_lock_irqsave(&object->lock, flags); 1589 if ((object->flags & OBJECT_REPORTED) && 1590 unreferenced_object(object)) 1591 __paint_it(object, KMEMLEAK_GREY); 1592 spin_unlock_irqrestore(&object->lock, flags); 1593 } 1594 rcu_read_unlock(); 1595 } 1596 1597 /* 1598 * File write operation to configure kmemleak at run-time. The following 1599 * commands can be written to the /sys/kernel/debug/kmemleak file: 1600 * off - disable kmemleak (irreversible) 1601 * stack=on - enable the task stacks scanning 1602 * stack=off - disable the tasks stacks scanning 1603 * scan=on - start the automatic memory scanning thread 1604 * scan=off - stop the automatic memory scanning thread 1605 * scan=... - set the automatic memory scanning period in seconds (0 to 1606 * disable it) 1607 * scan - trigger a memory scan 1608 * clear - mark all current reported unreferenced kmemleak objects as 1609 * grey to ignore printing them 1610 * dump=... - dump information about the object found at the given address 1611 */ 1612 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1613 size_t size, loff_t *ppos) 1614 { 1615 char buf[64]; 1616 int buf_size; 1617 int ret; 1618 1619 if (!atomic_read(&kmemleak_enabled)) 1620 return -EBUSY; 1621 1622 buf_size = min(size, (sizeof(buf) - 1)); 1623 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1624 return -EFAULT; 1625 buf[buf_size] = 0; 1626 1627 ret = mutex_lock_interruptible(&scan_mutex); 1628 if (ret < 0) 1629 return ret; 1630 1631 if (strncmp(buf, "off", 3) == 0) 1632 kmemleak_disable(); 1633 else if (strncmp(buf, "stack=on", 8) == 0) 1634 kmemleak_stack_scan = 1; 1635 else if (strncmp(buf, "stack=off", 9) == 0) 1636 kmemleak_stack_scan = 0; 1637 else if (strncmp(buf, "scan=on", 7) == 0) 1638 start_scan_thread(); 1639 else if (strncmp(buf, "scan=off", 8) == 0) 1640 stop_scan_thread(); 1641 else if (strncmp(buf, "scan=", 5) == 0) { 1642 unsigned long secs; 1643 1644 ret = kstrtoul(buf + 5, 0, &secs); 1645 if (ret < 0) 1646 goto out; 1647 stop_scan_thread(); 1648 if (secs) { 1649 jiffies_scan_wait = msecs_to_jiffies(secs * 1000); 1650 start_scan_thread(); 1651 } 1652 } else if (strncmp(buf, "scan", 4) == 0) 1653 kmemleak_scan(); 1654 else if (strncmp(buf, "clear", 5) == 0) 1655 kmemleak_clear(); 1656 else if (strncmp(buf, "dump=", 5) == 0) 1657 ret = dump_str_object_info(buf + 5); 1658 else 1659 ret = -EINVAL; 1660 1661 out: 1662 mutex_unlock(&scan_mutex); 1663 if (ret < 0) 1664 return ret; 1665 1666 /* ignore the rest of the buffer, only one command at a time */ 1667 *ppos += size; 1668 return size; 1669 } 1670 1671 static const struct file_operations kmemleak_fops = { 1672 .owner = THIS_MODULE, 1673 .open = kmemleak_open, 1674 .read = seq_read, 1675 .write = kmemleak_write, 1676 .llseek = seq_lseek, 1677 .release = kmemleak_release, 1678 }; 1679 1680 /* 1681 * Stop the memory scanning thread and free the kmemleak internal objects if 1682 * no previous scan thread (otherwise, kmemleak may still have some useful 1683 * information on memory leaks). 1684 */ 1685 static void kmemleak_do_cleanup(struct work_struct *work) 1686 { 1687 struct kmemleak_object *object; 1688 bool cleanup = scan_thread == NULL; 1689 1690 mutex_lock(&scan_mutex); 1691 stop_scan_thread(); 1692 1693 if (cleanup) { 1694 rcu_read_lock(); 1695 list_for_each_entry_rcu(object, &object_list, object_list) 1696 delete_object_full(object->pointer); 1697 rcu_read_unlock(); 1698 } 1699 mutex_unlock(&scan_mutex); 1700 } 1701 1702 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 1703 1704 /* 1705 * Disable kmemleak. No memory allocation/freeing will be traced once this 1706 * function is called. Disabling kmemleak is an irreversible operation. 1707 */ 1708 static void kmemleak_disable(void) 1709 { 1710 /* atomically check whether it was already invoked */ 1711 if (atomic_cmpxchg(&kmemleak_error, 0, 1)) 1712 return; 1713 1714 /* stop any memory operation tracing */ 1715 atomic_set(&kmemleak_enabled, 0); 1716 1717 /* check whether it is too early for a kernel thread */ 1718 if (atomic_read(&kmemleak_initialized)) 1719 schedule_work(&cleanup_work); 1720 1721 pr_info("Kernel memory leak detector disabled\n"); 1722 } 1723 1724 /* 1725 * Allow boot-time kmemleak disabling (enabled by default). 1726 */ 1727 static int kmemleak_boot_config(char *str) 1728 { 1729 if (!str) 1730 return -EINVAL; 1731 if (strcmp(str, "off") == 0) 1732 kmemleak_disable(); 1733 else if (strcmp(str, "on") == 0) 1734 kmemleak_skip_disable = 1; 1735 else 1736 return -EINVAL; 1737 return 0; 1738 } 1739 early_param("kmemleak", kmemleak_boot_config); 1740 1741 static void __init print_log_trace(struct early_log *log) 1742 { 1743 struct stack_trace trace; 1744 1745 trace.nr_entries = log->trace_len; 1746 trace.entries = log->trace; 1747 1748 pr_notice("Early log backtrace:\n"); 1749 print_stack_trace(&trace, 2); 1750 } 1751 1752 /* 1753 * Kmemleak initialization. 1754 */ 1755 void __init kmemleak_init(void) 1756 { 1757 int i; 1758 unsigned long flags; 1759 1760 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 1761 if (!kmemleak_skip_disable) { 1762 atomic_set(&kmemleak_early_log, 0); 1763 kmemleak_disable(); 1764 return; 1765 } 1766 #endif 1767 1768 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 1769 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 1770 1771 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 1772 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 1773 1774 if (crt_early_log >= ARRAY_SIZE(early_log)) 1775 pr_warning("Early log buffer exceeded (%d), please increase " 1776 "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log); 1777 1778 /* the kernel is still in UP mode, so disabling the IRQs is enough */ 1779 local_irq_save(flags); 1780 atomic_set(&kmemleak_early_log, 0); 1781 if (atomic_read(&kmemleak_error)) { 1782 local_irq_restore(flags); 1783 return; 1784 } else 1785 atomic_set(&kmemleak_enabled, 1); 1786 local_irq_restore(flags); 1787 1788 /* 1789 * This is the point where tracking allocations is safe. Automatic 1790 * scanning is started during the late initcall. Add the early logged 1791 * callbacks to the kmemleak infrastructure. 1792 */ 1793 for (i = 0; i < crt_early_log; i++) { 1794 struct early_log *log = &early_log[i]; 1795 1796 switch (log->op_type) { 1797 case KMEMLEAK_ALLOC: 1798 early_alloc(log); 1799 break; 1800 case KMEMLEAK_ALLOC_PERCPU: 1801 early_alloc_percpu(log); 1802 break; 1803 case KMEMLEAK_FREE: 1804 kmemleak_free(log->ptr); 1805 break; 1806 case KMEMLEAK_FREE_PART: 1807 kmemleak_free_part(log->ptr, log->size); 1808 break; 1809 case KMEMLEAK_FREE_PERCPU: 1810 kmemleak_free_percpu(log->ptr); 1811 break; 1812 case KMEMLEAK_NOT_LEAK: 1813 kmemleak_not_leak(log->ptr); 1814 break; 1815 case KMEMLEAK_IGNORE: 1816 kmemleak_ignore(log->ptr); 1817 break; 1818 case KMEMLEAK_SCAN_AREA: 1819 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL); 1820 break; 1821 case KMEMLEAK_NO_SCAN: 1822 kmemleak_no_scan(log->ptr); 1823 break; 1824 default: 1825 kmemleak_warn("Unknown early log operation: %d\n", 1826 log->op_type); 1827 } 1828 1829 if (atomic_read(&kmemleak_warning)) { 1830 print_log_trace(log); 1831 atomic_set(&kmemleak_warning, 0); 1832 } 1833 } 1834 } 1835 1836 /* 1837 * Late initialization function. 1838 */ 1839 static int __init kmemleak_late_init(void) 1840 { 1841 struct dentry *dentry; 1842 1843 atomic_set(&kmemleak_initialized, 1); 1844 1845 if (atomic_read(&kmemleak_error)) { 1846 /* 1847 * Some error occurred and kmemleak was disabled. There is a 1848 * small chance that kmemleak_disable() was called immediately 1849 * after setting kmemleak_initialized and we may end up with 1850 * two clean-up threads but serialized by scan_mutex. 1851 */ 1852 schedule_work(&cleanup_work); 1853 return -ENOMEM; 1854 } 1855 1856 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL, 1857 &kmemleak_fops); 1858 if (!dentry) 1859 pr_warning("Failed to create the debugfs kmemleak file\n"); 1860 mutex_lock(&scan_mutex); 1861 start_scan_thread(); 1862 mutex_unlock(&scan_mutex); 1863 1864 pr_info("Kernel memory leak detector initialized\n"); 1865 1866 return 0; 1867 } 1868 late_initcall(kmemleak_late_init); 1869