1 /* 2 * mm/kmemleak.c 3 * 4 * Copyright (C) 2008 ARM Limited 5 * Written by Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 * 21 * For more information on the algorithm and kmemleak usage, please see 22 * Documentation/dev-tools/kmemleak.rst. 23 * 24 * Notes on locking 25 * ---------------- 26 * 27 * The following locks and mutexes are used by kmemleak: 28 * 29 * - kmemleak_lock (rwlock): protects the object_list modifications and 30 * accesses to the object_tree_root. The object_list is the main list 31 * holding the metadata (struct kmemleak_object) for the allocated memory 32 * blocks. The object_tree_root is a red black tree used to look-up 33 * metadata based on a pointer to the corresponding memory block. The 34 * kmemleak_object structures are added to the object_list and 35 * object_tree_root in the create_object() function called from the 36 * kmemleak_alloc() callback and removed in delete_object() called from the 37 * kmemleak_free() callback 38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to 39 * the metadata (e.g. count) are protected by this lock. Note that some 40 * members of this structure may be protected by other means (atomic or 41 * kmemleak_lock). This lock is also held when scanning the corresponding 42 * memory block to avoid the kernel freeing it via the kmemleak_free() 43 * callback. This is less heavyweight than holding a global lock like 44 * kmemleak_lock during scanning 45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 46 * unreferenced objects at a time. The gray_list contains the objects which 47 * are already referenced or marked as false positives and need to be 48 * scanned. This list is only modified during a scanning episode when the 49 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 50 * Note that the kmemleak_object.use_count is incremented when an object is 51 * added to the gray_list and therefore cannot be freed. This mutex also 52 * prevents multiple users of the "kmemleak" debugfs file together with 53 * modifications to the memory scanning parameters including the scan_thread 54 * pointer 55 * 56 * Locks and mutexes are acquired/nested in the following order: 57 * 58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 59 * 60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 61 * regions. 62 * 63 * The kmemleak_object structures have a use_count incremented or decremented 64 * using the get_object()/put_object() functions. When the use_count becomes 65 * 0, this count can no longer be incremented and put_object() schedules the 66 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 67 * function must be protected by rcu_read_lock() to avoid accessing a freed 68 * structure. 69 */ 70 71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 72 73 #include <linux/init.h> 74 #include <linux/kernel.h> 75 #include <linux/list.h> 76 #include <linux/sched/signal.h> 77 #include <linux/sched/task.h> 78 #include <linux/sched/task_stack.h> 79 #include <linux/jiffies.h> 80 #include <linux/delay.h> 81 #include <linux/export.h> 82 #include <linux/kthread.h> 83 #include <linux/rbtree.h> 84 #include <linux/fs.h> 85 #include <linux/debugfs.h> 86 #include <linux/seq_file.h> 87 #include <linux/cpumask.h> 88 #include <linux/spinlock.h> 89 #include <linux/mutex.h> 90 #include <linux/rcupdate.h> 91 #include <linux/stacktrace.h> 92 #include <linux/cache.h> 93 #include <linux/percpu.h> 94 #include <linux/bootmem.h> 95 #include <linux/pfn.h> 96 #include <linux/mmzone.h> 97 #include <linux/slab.h> 98 #include <linux/thread_info.h> 99 #include <linux/err.h> 100 #include <linux/uaccess.h> 101 #include <linux/string.h> 102 #include <linux/nodemask.h> 103 #include <linux/mm.h> 104 #include <linux/workqueue.h> 105 #include <linux/crc32.h> 106 107 #include <asm/sections.h> 108 #include <asm/processor.h> 109 #include <linux/atomic.h> 110 111 #include <linux/kasan.h> 112 #include <linux/kmemleak.h> 113 #include <linux/memory_hotplug.h> 114 115 /* 116 * Kmemleak configuration and common defines. 117 */ 118 #define MAX_TRACE 16 /* stack trace length */ 119 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 120 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 121 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 122 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 123 124 #define BYTES_PER_POINTER sizeof(void *) 125 126 /* GFP bitmask for kmemleak internal allocations */ 127 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \ 128 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 129 __GFP_NOWARN | __GFP_NOFAIL) 130 131 /* scanning area inside a memory block */ 132 struct kmemleak_scan_area { 133 struct hlist_node node; 134 unsigned long start; 135 size_t size; 136 }; 137 138 #define KMEMLEAK_GREY 0 139 #define KMEMLEAK_BLACK -1 140 141 /* 142 * Structure holding the metadata for each allocated memory block. 143 * Modifications to such objects should be made while holding the 144 * object->lock. Insertions or deletions from object_list, gray_list or 145 * rb_node are already protected by the corresponding locks or mutex (see 146 * the notes on locking above). These objects are reference-counted 147 * (use_count) and freed using the RCU mechanism. 148 */ 149 struct kmemleak_object { 150 spinlock_t lock; 151 unsigned int flags; /* object status flags */ 152 struct list_head object_list; 153 struct list_head gray_list; 154 struct rb_node rb_node; 155 struct rcu_head rcu; /* object_list lockless traversal */ 156 /* object usage count; object freed when use_count == 0 */ 157 atomic_t use_count; 158 unsigned long pointer; 159 size_t size; 160 /* pass surplus references to this pointer */ 161 unsigned long excess_ref; 162 /* minimum number of a pointers found before it is considered leak */ 163 int min_count; 164 /* the total number of pointers found pointing to this object */ 165 int count; 166 /* checksum for detecting modified objects */ 167 u32 checksum; 168 /* memory ranges to be scanned inside an object (empty for all) */ 169 struct hlist_head area_list; 170 unsigned long trace[MAX_TRACE]; 171 unsigned int trace_len; 172 unsigned long jiffies; /* creation timestamp */ 173 pid_t pid; /* pid of the current task */ 174 char comm[TASK_COMM_LEN]; /* executable name */ 175 }; 176 177 /* flag representing the memory block allocation status */ 178 #define OBJECT_ALLOCATED (1 << 0) 179 /* flag set after the first reporting of an unreference object */ 180 #define OBJECT_REPORTED (1 << 1) 181 /* flag set to not scan the object */ 182 #define OBJECT_NO_SCAN (1 << 2) 183 184 /* number of bytes to print per line; must be 16 or 32 */ 185 #define HEX_ROW_SIZE 16 186 /* number of bytes to print at a time (1, 2, 4, 8) */ 187 #define HEX_GROUP_SIZE 1 188 /* include ASCII after the hex output */ 189 #define HEX_ASCII 1 190 /* max number of lines to be printed */ 191 #define HEX_MAX_LINES 2 192 193 /* the list of all allocated objects */ 194 static LIST_HEAD(object_list); 195 /* the list of gray-colored objects (see color_gray comment below) */ 196 static LIST_HEAD(gray_list); 197 /* search tree for object boundaries */ 198 static struct rb_root object_tree_root = RB_ROOT; 199 /* rw_lock protecting the access to object_list and object_tree_root */ 200 static DEFINE_RWLOCK(kmemleak_lock); 201 202 /* allocation caches for kmemleak internal data */ 203 static struct kmem_cache *object_cache; 204 static struct kmem_cache *scan_area_cache; 205 206 /* set if tracing memory operations is enabled */ 207 static int kmemleak_enabled; 208 /* same as above but only for the kmemleak_free() callback */ 209 static int kmemleak_free_enabled; 210 /* set in the late_initcall if there were no errors */ 211 static int kmemleak_initialized; 212 /* enables or disables early logging of the memory operations */ 213 static int kmemleak_early_log = 1; 214 /* set if a kmemleak warning was issued */ 215 static int kmemleak_warning; 216 /* set if a fatal kmemleak error has occurred */ 217 static int kmemleak_error; 218 219 /* minimum and maximum address that may be valid pointers */ 220 static unsigned long min_addr = ULONG_MAX; 221 static unsigned long max_addr; 222 223 static struct task_struct *scan_thread; 224 /* used to avoid reporting of recently allocated objects */ 225 static unsigned long jiffies_min_age; 226 static unsigned long jiffies_last_scan; 227 /* delay between automatic memory scannings */ 228 static signed long jiffies_scan_wait; 229 /* enables or disables the task stacks scanning */ 230 static int kmemleak_stack_scan = 1; 231 /* protects the memory scanning, parameters and debug/kmemleak file access */ 232 static DEFINE_MUTEX(scan_mutex); 233 /* setting kmemleak=on, will set this var, skipping the disable */ 234 static int kmemleak_skip_disable; 235 /* If there are leaks that can be reported */ 236 static bool kmemleak_found_leaks; 237 238 /* 239 * Early object allocation/freeing logging. Kmemleak is initialized after the 240 * kernel allocator. However, both the kernel allocator and kmemleak may 241 * allocate memory blocks which need to be tracked. Kmemleak defines an 242 * arbitrary buffer to hold the allocation/freeing information before it is 243 * fully initialized. 244 */ 245 246 /* kmemleak operation type for early logging */ 247 enum { 248 KMEMLEAK_ALLOC, 249 KMEMLEAK_ALLOC_PERCPU, 250 KMEMLEAK_FREE, 251 KMEMLEAK_FREE_PART, 252 KMEMLEAK_FREE_PERCPU, 253 KMEMLEAK_NOT_LEAK, 254 KMEMLEAK_IGNORE, 255 KMEMLEAK_SCAN_AREA, 256 KMEMLEAK_NO_SCAN, 257 KMEMLEAK_SET_EXCESS_REF 258 }; 259 260 /* 261 * Structure holding the information passed to kmemleak callbacks during the 262 * early logging. 263 */ 264 struct early_log { 265 int op_type; /* kmemleak operation type */ 266 int min_count; /* minimum reference count */ 267 const void *ptr; /* allocated/freed memory block */ 268 union { 269 size_t size; /* memory block size */ 270 unsigned long excess_ref; /* surplus reference passing */ 271 }; 272 unsigned long trace[MAX_TRACE]; /* stack trace */ 273 unsigned int trace_len; /* stack trace length */ 274 }; 275 276 /* early logging buffer and current position */ 277 static struct early_log 278 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata; 279 static int crt_early_log __initdata; 280 281 static void kmemleak_disable(void); 282 283 /* 284 * Print a warning and dump the stack trace. 285 */ 286 #define kmemleak_warn(x...) do { \ 287 pr_warn(x); \ 288 dump_stack(); \ 289 kmemleak_warning = 1; \ 290 } while (0) 291 292 /* 293 * Macro invoked when a serious kmemleak condition occurred and cannot be 294 * recovered from. Kmemleak will be disabled and further allocation/freeing 295 * tracing no longer available. 296 */ 297 #define kmemleak_stop(x...) do { \ 298 kmemleak_warn(x); \ 299 kmemleak_disable(); \ 300 } while (0) 301 302 /* 303 * Printing of the objects hex dump to the seq file. The number of lines to be 304 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 305 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 306 * with the object->lock held. 307 */ 308 static void hex_dump_object(struct seq_file *seq, 309 struct kmemleak_object *object) 310 { 311 const u8 *ptr = (const u8 *)object->pointer; 312 size_t len; 313 314 /* limit the number of lines to HEX_MAX_LINES */ 315 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 316 317 seq_printf(seq, " hex dump (first %zu bytes):\n", len); 318 kasan_disable_current(); 319 seq_hex_dump(seq, " ", DUMP_PREFIX_NONE, HEX_ROW_SIZE, 320 HEX_GROUP_SIZE, ptr, len, HEX_ASCII); 321 kasan_enable_current(); 322 } 323 324 /* 325 * Object colors, encoded with count and min_count: 326 * - white - orphan object, not enough references to it (count < min_count) 327 * - gray - not orphan, not marked as false positive (min_count == 0) or 328 * sufficient references to it (count >= min_count) 329 * - black - ignore, it doesn't contain references (e.g. text section) 330 * (min_count == -1). No function defined for this color. 331 * Newly created objects don't have any color assigned (object->count == -1) 332 * before the next memory scan when they become white. 333 */ 334 static bool color_white(const struct kmemleak_object *object) 335 { 336 return object->count != KMEMLEAK_BLACK && 337 object->count < object->min_count; 338 } 339 340 static bool color_gray(const struct kmemleak_object *object) 341 { 342 return object->min_count != KMEMLEAK_BLACK && 343 object->count >= object->min_count; 344 } 345 346 /* 347 * Objects are considered unreferenced only if their color is white, they have 348 * not be deleted and have a minimum age to avoid false positives caused by 349 * pointers temporarily stored in CPU registers. 350 */ 351 static bool unreferenced_object(struct kmemleak_object *object) 352 { 353 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 354 time_before_eq(object->jiffies + jiffies_min_age, 355 jiffies_last_scan); 356 } 357 358 /* 359 * Printing of the unreferenced objects information to the seq file. The 360 * print_unreferenced function must be called with the object->lock held. 361 */ 362 static void print_unreferenced(struct seq_file *seq, 363 struct kmemleak_object *object) 364 { 365 int i; 366 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 367 368 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 369 object->pointer, object->size); 370 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 371 object->comm, object->pid, object->jiffies, 372 msecs_age / 1000, msecs_age % 1000); 373 hex_dump_object(seq, object); 374 seq_printf(seq, " backtrace:\n"); 375 376 for (i = 0; i < object->trace_len; i++) { 377 void *ptr = (void *)object->trace[i]; 378 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); 379 } 380 } 381 382 /* 383 * Print the kmemleak_object information. This function is used mainly for 384 * debugging special cases when kmemleak operations. It must be called with 385 * the object->lock held. 386 */ 387 static void dump_object_info(struct kmemleak_object *object) 388 { 389 struct stack_trace trace; 390 391 trace.nr_entries = object->trace_len; 392 trace.entries = object->trace; 393 394 pr_notice("Object 0x%08lx (size %zu):\n", 395 object->pointer, object->size); 396 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 397 object->comm, object->pid, object->jiffies); 398 pr_notice(" min_count = %d\n", object->min_count); 399 pr_notice(" count = %d\n", object->count); 400 pr_notice(" flags = 0x%x\n", object->flags); 401 pr_notice(" checksum = %u\n", object->checksum); 402 pr_notice(" backtrace:\n"); 403 print_stack_trace(&trace, 4); 404 } 405 406 /* 407 * Look-up a memory block metadata (kmemleak_object) in the object search 408 * tree based on a pointer value. If alias is 0, only values pointing to the 409 * beginning of the memory block are allowed. The kmemleak_lock must be held 410 * when calling this function. 411 */ 412 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 413 { 414 struct rb_node *rb = object_tree_root.rb_node; 415 416 while (rb) { 417 struct kmemleak_object *object = 418 rb_entry(rb, struct kmemleak_object, rb_node); 419 if (ptr < object->pointer) 420 rb = object->rb_node.rb_left; 421 else if (object->pointer + object->size <= ptr) 422 rb = object->rb_node.rb_right; 423 else if (object->pointer == ptr || alias) 424 return object; 425 else { 426 kmemleak_warn("Found object by alias at 0x%08lx\n", 427 ptr); 428 dump_object_info(object); 429 break; 430 } 431 } 432 return NULL; 433 } 434 435 /* 436 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 437 * that once an object's use_count reached 0, the RCU freeing was already 438 * registered and the object should no longer be used. This function must be 439 * called under the protection of rcu_read_lock(). 440 */ 441 static int get_object(struct kmemleak_object *object) 442 { 443 return atomic_inc_not_zero(&object->use_count); 444 } 445 446 /* 447 * RCU callback to free a kmemleak_object. 448 */ 449 static void free_object_rcu(struct rcu_head *rcu) 450 { 451 struct hlist_node *tmp; 452 struct kmemleak_scan_area *area; 453 struct kmemleak_object *object = 454 container_of(rcu, struct kmemleak_object, rcu); 455 456 /* 457 * Once use_count is 0 (guaranteed by put_object), there is no other 458 * code accessing this object, hence no need for locking. 459 */ 460 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 461 hlist_del(&area->node); 462 kmem_cache_free(scan_area_cache, area); 463 } 464 kmem_cache_free(object_cache, object); 465 } 466 467 /* 468 * Decrement the object use_count. Once the count is 0, free the object using 469 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 470 * delete_object() path, the delayed RCU freeing ensures that there is no 471 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 472 * is also possible. 473 */ 474 static void put_object(struct kmemleak_object *object) 475 { 476 if (!atomic_dec_and_test(&object->use_count)) 477 return; 478 479 /* should only get here after delete_object was called */ 480 WARN_ON(object->flags & OBJECT_ALLOCATED); 481 482 call_rcu(&object->rcu, free_object_rcu); 483 } 484 485 /* 486 * Look up an object in the object search tree and increase its use_count. 487 */ 488 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 489 { 490 unsigned long flags; 491 struct kmemleak_object *object; 492 493 rcu_read_lock(); 494 read_lock_irqsave(&kmemleak_lock, flags); 495 object = lookup_object(ptr, alias); 496 read_unlock_irqrestore(&kmemleak_lock, flags); 497 498 /* check whether the object is still available */ 499 if (object && !get_object(object)) 500 object = NULL; 501 rcu_read_unlock(); 502 503 return object; 504 } 505 506 /* 507 * Look up an object in the object search tree and remove it from both 508 * object_tree_root and object_list. The returned object's use_count should be 509 * at least 1, as initially set by create_object(). 510 */ 511 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias) 512 { 513 unsigned long flags; 514 struct kmemleak_object *object; 515 516 write_lock_irqsave(&kmemleak_lock, flags); 517 object = lookup_object(ptr, alias); 518 if (object) { 519 rb_erase(&object->rb_node, &object_tree_root); 520 list_del_rcu(&object->object_list); 521 } 522 write_unlock_irqrestore(&kmemleak_lock, flags); 523 524 return object; 525 } 526 527 /* 528 * Save stack trace to the given array of MAX_TRACE size. 529 */ 530 static int __save_stack_trace(unsigned long *trace) 531 { 532 struct stack_trace stack_trace; 533 534 stack_trace.max_entries = MAX_TRACE; 535 stack_trace.nr_entries = 0; 536 stack_trace.entries = trace; 537 stack_trace.skip = 2; 538 save_stack_trace(&stack_trace); 539 540 return stack_trace.nr_entries; 541 } 542 543 /* 544 * Create the metadata (struct kmemleak_object) corresponding to an allocated 545 * memory block and add it to the object_list and object_tree_root. 546 */ 547 static struct kmemleak_object *create_object(unsigned long ptr, size_t size, 548 int min_count, gfp_t gfp) 549 { 550 unsigned long flags; 551 struct kmemleak_object *object, *parent; 552 struct rb_node **link, *rb_parent; 553 554 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 555 if (!object) { 556 pr_warn("Cannot allocate a kmemleak_object structure\n"); 557 kmemleak_disable(); 558 return NULL; 559 } 560 561 INIT_LIST_HEAD(&object->object_list); 562 INIT_LIST_HEAD(&object->gray_list); 563 INIT_HLIST_HEAD(&object->area_list); 564 spin_lock_init(&object->lock); 565 atomic_set(&object->use_count, 1); 566 object->flags = OBJECT_ALLOCATED; 567 object->pointer = ptr; 568 object->size = size; 569 object->excess_ref = 0; 570 object->min_count = min_count; 571 object->count = 0; /* white color initially */ 572 object->jiffies = jiffies; 573 object->checksum = 0; 574 575 /* task information */ 576 if (in_irq()) { 577 object->pid = 0; 578 strncpy(object->comm, "hardirq", sizeof(object->comm)); 579 } else if (in_softirq()) { 580 object->pid = 0; 581 strncpy(object->comm, "softirq", sizeof(object->comm)); 582 } else { 583 object->pid = current->pid; 584 /* 585 * There is a small chance of a race with set_task_comm(), 586 * however using get_task_comm() here may cause locking 587 * dependency issues with current->alloc_lock. In the worst 588 * case, the command line is not correct. 589 */ 590 strncpy(object->comm, current->comm, sizeof(object->comm)); 591 } 592 593 /* kernel backtrace */ 594 object->trace_len = __save_stack_trace(object->trace); 595 596 write_lock_irqsave(&kmemleak_lock, flags); 597 598 min_addr = min(min_addr, ptr); 599 max_addr = max(max_addr, ptr + size); 600 link = &object_tree_root.rb_node; 601 rb_parent = NULL; 602 while (*link) { 603 rb_parent = *link; 604 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 605 if (ptr + size <= parent->pointer) 606 link = &parent->rb_node.rb_left; 607 else if (parent->pointer + parent->size <= ptr) 608 link = &parent->rb_node.rb_right; 609 else { 610 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 611 ptr); 612 /* 613 * No need for parent->lock here since "parent" cannot 614 * be freed while the kmemleak_lock is held. 615 */ 616 dump_object_info(parent); 617 kmem_cache_free(object_cache, object); 618 object = NULL; 619 goto out; 620 } 621 } 622 rb_link_node(&object->rb_node, rb_parent, link); 623 rb_insert_color(&object->rb_node, &object_tree_root); 624 625 list_add_tail_rcu(&object->object_list, &object_list); 626 out: 627 write_unlock_irqrestore(&kmemleak_lock, flags); 628 return object; 629 } 630 631 /* 632 * Mark the object as not allocated and schedule RCU freeing via put_object(). 633 */ 634 static void __delete_object(struct kmemleak_object *object) 635 { 636 unsigned long flags; 637 638 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 639 WARN_ON(atomic_read(&object->use_count) < 1); 640 641 /* 642 * Locking here also ensures that the corresponding memory block 643 * cannot be freed when it is being scanned. 644 */ 645 spin_lock_irqsave(&object->lock, flags); 646 object->flags &= ~OBJECT_ALLOCATED; 647 spin_unlock_irqrestore(&object->lock, flags); 648 put_object(object); 649 } 650 651 /* 652 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 653 * delete it. 654 */ 655 static void delete_object_full(unsigned long ptr) 656 { 657 struct kmemleak_object *object; 658 659 object = find_and_remove_object(ptr, 0); 660 if (!object) { 661 #ifdef DEBUG 662 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 663 ptr); 664 #endif 665 return; 666 } 667 __delete_object(object); 668 } 669 670 /* 671 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 672 * delete it. If the memory block is partially freed, the function may create 673 * additional metadata for the remaining parts of the block. 674 */ 675 static void delete_object_part(unsigned long ptr, size_t size) 676 { 677 struct kmemleak_object *object; 678 unsigned long start, end; 679 680 object = find_and_remove_object(ptr, 1); 681 if (!object) { 682 #ifdef DEBUG 683 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 684 ptr, size); 685 #endif 686 return; 687 } 688 689 /* 690 * Create one or two objects that may result from the memory block 691 * split. Note that partial freeing is only done by free_bootmem() and 692 * this happens before kmemleak_init() is called. The path below is 693 * only executed during early log recording in kmemleak_init(), so 694 * GFP_KERNEL is enough. 695 */ 696 start = object->pointer; 697 end = object->pointer + object->size; 698 if (ptr > start) 699 create_object(start, ptr - start, object->min_count, 700 GFP_KERNEL); 701 if (ptr + size < end) 702 create_object(ptr + size, end - ptr - size, object->min_count, 703 GFP_KERNEL); 704 705 __delete_object(object); 706 } 707 708 static void __paint_it(struct kmemleak_object *object, int color) 709 { 710 object->min_count = color; 711 if (color == KMEMLEAK_BLACK) 712 object->flags |= OBJECT_NO_SCAN; 713 } 714 715 static void paint_it(struct kmemleak_object *object, int color) 716 { 717 unsigned long flags; 718 719 spin_lock_irqsave(&object->lock, flags); 720 __paint_it(object, color); 721 spin_unlock_irqrestore(&object->lock, flags); 722 } 723 724 static void paint_ptr(unsigned long ptr, int color) 725 { 726 struct kmemleak_object *object; 727 728 object = find_and_get_object(ptr, 0); 729 if (!object) { 730 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 731 ptr, 732 (color == KMEMLEAK_GREY) ? "Grey" : 733 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 734 return; 735 } 736 paint_it(object, color); 737 put_object(object); 738 } 739 740 /* 741 * Mark an object permanently as gray-colored so that it can no longer be 742 * reported as a leak. This is used in general to mark a false positive. 743 */ 744 static void make_gray_object(unsigned long ptr) 745 { 746 paint_ptr(ptr, KMEMLEAK_GREY); 747 } 748 749 /* 750 * Mark the object as black-colored so that it is ignored from scans and 751 * reporting. 752 */ 753 static void make_black_object(unsigned long ptr) 754 { 755 paint_ptr(ptr, KMEMLEAK_BLACK); 756 } 757 758 /* 759 * Add a scanning area to the object. If at least one such area is added, 760 * kmemleak will only scan these ranges rather than the whole memory block. 761 */ 762 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 763 { 764 unsigned long flags; 765 struct kmemleak_object *object; 766 struct kmemleak_scan_area *area; 767 768 object = find_and_get_object(ptr, 1); 769 if (!object) { 770 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 771 ptr); 772 return; 773 } 774 775 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 776 if (!area) { 777 pr_warn("Cannot allocate a scan area\n"); 778 goto out; 779 } 780 781 spin_lock_irqsave(&object->lock, flags); 782 if (size == SIZE_MAX) { 783 size = object->pointer + object->size - ptr; 784 } else if (ptr + size > object->pointer + object->size) { 785 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 786 dump_object_info(object); 787 kmem_cache_free(scan_area_cache, area); 788 goto out_unlock; 789 } 790 791 INIT_HLIST_NODE(&area->node); 792 area->start = ptr; 793 area->size = size; 794 795 hlist_add_head(&area->node, &object->area_list); 796 out_unlock: 797 spin_unlock_irqrestore(&object->lock, flags); 798 out: 799 put_object(object); 800 } 801 802 /* 803 * Any surplus references (object already gray) to 'ptr' are passed to 804 * 'excess_ref'. This is used in the vmalloc() case where a pointer to 805 * vm_struct may be used as an alternative reference to the vmalloc'ed object 806 * (see free_thread_stack()). 807 */ 808 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) 809 { 810 unsigned long flags; 811 struct kmemleak_object *object; 812 813 object = find_and_get_object(ptr, 0); 814 if (!object) { 815 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", 816 ptr); 817 return; 818 } 819 820 spin_lock_irqsave(&object->lock, flags); 821 object->excess_ref = excess_ref; 822 spin_unlock_irqrestore(&object->lock, flags); 823 put_object(object); 824 } 825 826 /* 827 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 828 * pointer. Such object will not be scanned by kmemleak but references to it 829 * are searched. 830 */ 831 static void object_no_scan(unsigned long ptr) 832 { 833 unsigned long flags; 834 struct kmemleak_object *object; 835 836 object = find_and_get_object(ptr, 0); 837 if (!object) { 838 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 839 return; 840 } 841 842 spin_lock_irqsave(&object->lock, flags); 843 object->flags |= OBJECT_NO_SCAN; 844 spin_unlock_irqrestore(&object->lock, flags); 845 put_object(object); 846 } 847 848 /* 849 * Log an early kmemleak_* call to the early_log buffer. These calls will be 850 * processed later once kmemleak is fully initialized. 851 */ 852 static void __init log_early(int op_type, const void *ptr, size_t size, 853 int min_count) 854 { 855 unsigned long flags; 856 struct early_log *log; 857 858 if (kmemleak_error) { 859 /* kmemleak stopped recording, just count the requests */ 860 crt_early_log++; 861 return; 862 } 863 864 if (crt_early_log >= ARRAY_SIZE(early_log)) { 865 crt_early_log++; 866 kmemleak_disable(); 867 return; 868 } 869 870 /* 871 * There is no need for locking since the kernel is still in UP mode 872 * at this stage. Disabling the IRQs is enough. 873 */ 874 local_irq_save(flags); 875 log = &early_log[crt_early_log]; 876 log->op_type = op_type; 877 log->ptr = ptr; 878 log->size = size; 879 log->min_count = min_count; 880 log->trace_len = __save_stack_trace(log->trace); 881 crt_early_log++; 882 local_irq_restore(flags); 883 } 884 885 /* 886 * Log an early allocated block and populate the stack trace. 887 */ 888 static void early_alloc(struct early_log *log) 889 { 890 struct kmemleak_object *object; 891 unsigned long flags; 892 int i; 893 894 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr)) 895 return; 896 897 /* 898 * RCU locking needed to ensure object is not freed via put_object(). 899 */ 900 rcu_read_lock(); 901 object = create_object((unsigned long)log->ptr, log->size, 902 log->min_count, GFP_ATOMIC); 903 if (!object) 904 goto out; 905 spin_lock_irqsave(&object->lock, flags); 906 for (i = 0; i < log->trace_len; i++) 907 object->trace[i] = log->trace[i]; 908 object->trace_len = log->trace_len; 909 spin_unlock_irqrestore(&object->lock, flags); 910 out: 911 rcu_read_unlock(); 912 } 913 914 /* 915 * Log an early allocated block and populate the stack trace. 916 */ 917 static void early_alloc_percpu(struct early_log *log) 918 { 919 unsigned int cpu; 920 const void __percpu *ptr = log->ptr; 921 922 for_each_possible_cpu(cpu) { 923 log->ptr = per_cpu_ptr(ptr, cpu); 924 early_alloc(log); 925 } 926 } 927 928 /** 929 * kmemleak_alloc - register a newly allocated object 930 * @ptr: pointer to beginning of the object 931 * @size: size of the object 932 * @min_count: minimum number of references to this object. If during memory 933 * scanning a number of references less than @min_count is found, 934 * the object is reported as a memory leak. If @min_count is 0, 935 * the object is never reported as a leak. If @min_count is -1, 936 * the object is ignored (not scanned and not reported as a leak) 937 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 938 * 939 * This function is called from the kernel allocators when a new object 940 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). 941 */ 942 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 943 gfp_t gfp) 944 { 945 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 946 947 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 948 create_object((unsigned long)ptr, size, min_count, gfp); 949 else if (kmemleak_early_log) 950 log_early(KMEMLEAK_ALLOC, ptr, size, min_count); 951 } 952 EXPORT_SYMBOL_GPL(kmemleak_alloc); 953 954 /** 955 * kmemleak_alloc_percpu - register a newly allocated __percpu object 956 * @ptr: __percpu pointer to beginning of the object 957 * @size: size of the object 958 * @gfp: flags used for kmemleak internal memory allocations 959 * 960 * This function is called from the kernel percpu allocator when a new object 961 * (memory block) is allocated (alloc_percpu). 962 */ 963 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 964 gfp_t gfp) 965 { 966 unsigned int cpu; 967 968 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); 969 970 /* 971 * Percpu allocations are only scanned and not reported as leaks 972 * (min_count is set to 0). 973 */ 974 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 975 for_each_possible_cpu(cpu) 976 create_object((unsigned long)per_cpu_ptr(ptr, cpu), 977 size, 0, gfp); 978 else if (kmemleak_early_log) 979 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0); 980 } 981 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 982 983 /** 984 * kmemleak_vmalloc - register a newly vmalloc'ed object 985 * @area: pointer to vm_struct 986 * @size: size of the object 987 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations 988 * 989 * This function is called from the vmalloc() kernel allocator when a new 990 * object (memory block) is allocated. 991 */ 992 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) 993 { 994 pr_debug("%s(0x%p, %zu)\n", __func__, area, size); 995 996 /* 997 * A min_count = 2 is needed because vm_struct contains a reference to 998 * the virtual address of the vmalloc'ed block. 999 */ 1000 if (kmemleak_enabled) { 1001 create_object((unsigned long)area->addr, size, 2, gfp); 1002 object_set_excess_ref((unsigned long)area, 1003 (unsigned long)area->addr); 1004 } else if (kmemleak_early_log) { 1005 log_early(KMEMLEAK_ALLOC, area->addr, size, 2); 1006 /* reusing early_log.size for storing area->addr */ 1007 log_early(KMEMLEAK_SET_EXCESS_REF, 1008 area, (unsigned long)area->addr, 0); 1009 } 1010 } 1011 EXPORT_SYMBOL_GPL(kmemleak_vmalloc); 1012 1013 /** 1014 * kmemleak_free - unregister a previously registered object 1015 * @ptr: pointer to beginning of the object 1016 * 1017 * This function is called from the kernel allocators when an object (memory 1018 * block) is freed (kmem_cache_free, kfree, vfree etc.). 1019 */ 1020 void __ref kmemleak_free(const void *ptr) 1021 { 1022 pr_debug("%s(0x%p)\n", __func__, ptr); 1023 1024 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1025 delete_object_full((unsigned long)ptr); 1026 else if (kmemleak_early_log) 1027 log_early(KMEMLEAK_FREE, ptr, 0, 0); 1028 } 1029 EXPORT_SYMBOL_GPL(kmemleak_free); 1030 1031 /** 1032 * kmemleak_free_part - partially unregister a previously registered object 1033 * @ptr: pointer to the beginning or inside the object. This also 1034 * represents the start of the range to be freed 1035 * @size: size to be unregistered 1036 * 1037 * This function is called when only a part of a memory block is freed 1038 * (usually from the bootmem allocator). 1039 */ 1040 void __ref kmemleak_free_part(const void *ptr, size_t size) 1041 { 1042 pr_debug("%s(0x%p)\n", __func__, ptr); 1043 1044 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1045 delete_object_part((unsigned long)ptr, size); 1046 else if (kmemleak_early_log) 1047 log_early(KMEMLEAK_FREE_PART, ptr, size, 0); 1048 } 1049 EXPORT_SYMBOL_GPL(kmemleak_free_part); 1050 1051 /** 1052 * kmemleak_free_percpu - unregister a previously registered __percpu object 1053 * @ptr: __percpu pointer to beginning of the object 1054 * 1055 * This function is called from the kernel percpu allocator when an object 1056 * (memory block) is freed (free_percpu). 1057 */ 1058 void __ref kmemleak_free_percpu(const void __percpu *ptr) 1059 { 1060 unsigned int cpu; 1061 1062 pr_debug("%s(0x%p)\n", __func__, ptr); 1063 1064 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1065 for_each_possible_cpu(cpu) 1066 delete_object_full((unsigned long)per_cpu_ptr(ptr, 1067 cpu)); 1068 else if (kmemleak_early_log) 1069 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0); 1070 } 1071 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1072 1073 /** 1074 * kmemleak_update_trace - update object allocation stack trace 1075 * @ptr: pointer to beginning of the object 1076 * 1077 * Override the object allocation stack trace for cases where the actual 1078 * allocation place is not always useful. 1079 */ 1080 void __ref kmemleak_update_trace(const void *ptr) 1081 { 1082 struct kmemleak_object *object; 1083 unsigned long flags; 1084 1085 pr_debug("%s(0x%p)\n", __func__, ptr); 1086 1087 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1088 return; 1089 1090 object = find_and_get_object((unsigned long)ptr, 1); 1091 if (!object) { 1092 #ifdef DEBUG 1093 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1094 ptr); 1095 #endif 1096 return; 1097 } 1098 1099 spin_lock_irqsave(&object->lock, flags); 1100 object->trace_len = __save_stack_trace(object->trace); 1101 spin_unlock_irqrestore(&object->lock, flags); 1102 1103 put_object(object); 1104 } 1105 EXPORT_SYMBOL(kmemleak_update_trace); 1106 1107 /** 1108 * kmemleak_not_leak - mark an allocated object as false positive 1109 * @ptr: pointer to beginning of the object 1110 * 1111 * Calling this function on an object will cause the memory block to no longer 1112 * be reported as leak and always be scanned. 1113 */ 1114 void __ref kmemleak_not_leak(const void *ptr) 1115 { 1116 pr_debug("%s(0x%p)\n", __func__, ptr); 1117 1118 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1119 make_gray_object((unsigned long)ptr); 1120 else if (kmemleak_early_log) 1121 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0); 1122 } 1123 EXPORT_SYMBOL(kmemleak_not_leak); 1124 1125 /** 1126 * kmemleak_ignore - ignore an allocated object 1127 * @ptr: pointer to beginning of the object 1128 * 1129 * Calling this function on an object will cause the memory block to be 1130 * ignored (not scanned and not reported as a leak). This is usually done when 1131 * it is known that the corresponding block is not a leak and does not contain 1132 * any references to other allocated memory blocks. 1133 */ 1134 void __ref kmemleak_ignore(const void *ptr) 1135 { 1136 pr_debug("%s(0x%p)\n", __func__, ptr); 1137 1138 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1139 make_black_object((unsigned long)ptr); 1140 else if (kmemleak_early_log) 1141 log_early(KMEMLEAK_IGNORE, ptr, 0, 0); 1142 } 1143 EXPORT_SYMBOL(kmemleak_ignore); 1144 1145 /** 1146 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1147 * @ptr: pointer to beginning or inside the object. This also 1148 * represents the start of the scan area 1149 * @size: size of the scan area 1150 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1151 * 1152 * This function is used when it is known that only certain parts of an object 1153 * contain references to other objects. Kmemleak will only scan these areas 1154 * reducing the number false negatives. 1155 */ 1156 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1157 { 1158 pr_debug("%s(0x%p)\n", __func__, ptr); 1159 1160 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1161 add_scan_area((unsigned long)ptr, size, gfp); 1162 else if (kmemleak_early_log) 1163 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0); 1164 } 1165 EXPORT_SYMBOL(kmemleak_scan_area); 1166 1167 /** 1168 * kmemleak_no_scan - do not scan an allocated object 1169 * @ptr: pointer to beginning of the object 1170 * 1171 * This function notifies kmemleak not to scan the given memory block. Useful 1172 * in situations where it is known that the given object does not contain any 1173 * references to other objects. Kmemleak will not scan such objects reducing 1174 * the number of false negatives. 1175 */ 1176 void __ref kmemleak_no_scan(const void *ptr) 1177 { 1178 pr_debug("%s(0x%p)\n", __func__, ptr); 1179 1180 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1181 object_no_scan((unsigned long)ptr); 1182 else if (kmemleak_early_log) 1183 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0); 1184 } 1185 EXPORT_SYMBOL(kmemleak_no_scan); 1186 1187 /** 1188 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1189 * address argument 1190 * @phys: physical address of the object 1191 * @size: size of the object 1192 * @min_count: minimum number of references to this object. 1193 * See kmemleak_alloc() 1194 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1195 */ 1196 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count, 1197 gfp_t gfp) 1198 { 1199 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1200 kmemleak_alloc(__va(phys), size, min_count, gfp); 1201 } 1202 EXPORT_SYMBOL(kmemleak_alloc_phys); 1203 1204 /** 1205 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1206 * physical address argument 1207 * @phys: physical address if the beginning or inside an object. This 1208 * also represents the start of the range to be freed 1209 * @size: size to be unregistered 1210 */ 1211 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1212 { 1213 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1214 kmemleak_free_part(__va(phys), size); 1215 } 1216 EXPORT_SYMBOL(kmemleak_free_part_phys); 1217 1218 /** 1219 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical 1220 * address argument 1221 * @phys: physical address of the object 1222 */ 1223 void __ref kmemleak_not_leak_phys(phys_addr_t phys) 1224 { 1225 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1226 kmemleak_not_leak(__va(phys)); 1227 } 1228 EXPORT_SYMBOL(kmemleak_not_leak_phys); 1229 1230 /** 1231 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1232 * address argument 1233 * @phys: physical address of the object 1234 */ 1235 void __ref kmemleak_ignore_phys(phys_addr_t phys) 1236 { 1237 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1238 kmemleak_ignore(__va(phys)); 1239 } 1240 EXPORT_SYMBOL(kmemleak_ignore_phys); 1241 1242 /* 1243 * Update an object's checksum and return true if it was modified. 1244 */ 1245 static bool update_checksum(struct kmemleak_object *object) 1246 { 1247 u32 old_csum = object->checksum; 1248 1249 kasan_disable_current(); 1250 object->checksum = crc32(0, (void *)object->pointer, object->size); 1251 kasan_enable_current(); 1252 1253 return object->checksum != old_csum; 1254 } 1255 1256 /* 1257 * Update an object's references. object->lock must be held by the caller. 1258 */ 1259 static void update_refs(struct kmemleak_object *object) 1260 { 1261 if (!color_white(object)) { 1262 /* non-orphan, ignored or new */ 1263 return; 1264 } 1265 1266 /* 1267 * Increase the object's reference count (number of pointers to the 1268 * memory block). If this count reaches the required minimum, the 1269 * object's color will become gray and it will be added to the 1270 * gray_list. 1271 */ 1272 object->count++; 1273 if (color_gray(object)) { 1274 /* put_object() called when removing from gray_list */ 1275 WARN_ON(!get_object(object)); 1276 list_add_tail(&object->gray_list, &gray_list); 1277 } 1278 } 1279 1280 /* 1281 * Memory scanning is a long process and it needs to be interruptable. This 1282 * function checks whether such interrupt condition occurred. 1283 */ 1284 static int scan_should_stop(void) 1285 { 1286 if (!kmemleak_enabled) 1287 return 1; 1288 1289 /* 1290 * This function may be called from either process or kthread context, 1291 * hence the need to check for both stop conditions. 1292 */ 1293 if (current->mm) 1294 return signal_pending(current); 1295 else 1296 return kthread_should_stop(); 1297 1298 return 0; 1299 } 1300 1301 /* 1302 * Scan a memory block (exclusive range) for valid pointers and add those 1303 * found to the gray list. 1304 */ 1305 static void scan_block(void *_start, void *_end, 1306 struct kmemleak_object *scanned) 1307 { 1308 unsigned long *ptr; 1309 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1310 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1311 unsigned long flags; 1312 1313 read_lock_irqsave(&kmemleak_lock, flags); 1314 for (ptr = start; ptr < end; ptr++) { 1315 struct kmemleak_object *object; 1316 unsigned long pointer; 1317 unsigned long excess_ref; 1318 1319 if (scan_should_stop()) 1320 break; 1321 1322 kasan_disable_current(); 1323 pointer = *ptr; 1324 kasan_enable_current(); 1325 1326 if (pointer < min_addr || pointer >= max_addr) 1327 continue; 1328 1329 /* 1330 * No need for get_object() here since we hold kmemleak_lock. 1331 * object->use_count cannot be dropped to 0 while the object 1332 * is still present in object_tree_root and object_list 1333 * (with updates protected by kmemleak_lock). 1334 */ 1335 object = lookup_object(pointer, 1); 1336 if (!object) 1337 continue; 1338 if (object == scanned) 1339 /* self referenced, ignore */ 1340 continue; 1341 1342 /* 1343 * Avoid the lockdep recursive warning on object->lock being 1344 * previously acquired in scan_object(). These locks are 1345 * enclosed by scan_mutex. 1346 */ 1347 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1348 /* only pass surplus references (object already gray) */ 1349 if (color_gray(object)) { 1350 excess_ref = object->excess_ref; 1351 /* no need for update_refs() if object already gray */ 1352 } else { 1353 excess_ref = 0; 1354 update_refs(object); 1355 } 1356 spin_unlock(&object->lock); 1357 1358 if (excess_ref) { 1359 object = lookup_object(excess_ref, 0); 1360 if (!object) 1361 continue; 1362 if (object == scanned) 1363 /* circular reference, ignore */ 1364 continue; 1365 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1366 update_refs(object); 1367 spin_unlock(&object->lock); 1368 } 1369 } 1370 read_unlock_irqrestore(&kmemleak_lock, flags); 1371 } 1372 1373 /* 1374 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1375 */ 1376 static void scan_large_block(void *start, void *end) 1377 { 1378 void *next; 1379 1380 while (start < end) { 1381 next = min(start + MAX_SCAN_SIZE, end); 1382 scan_block(start, next, NULL); 1383 start = next; 1384 cond_resched(); 1385 } 1386 } 1387 1388 /* 1389 * Scan a memory block corresponding to a kmemleak_object. A condition is 1390 * that object->use_count >= 1. 1391 */ 1392 static void scan_object(struct kmemleak_object *object) 1393 { 1394 struct kmemleak_scan_area *area; 1395 unsigned long flags; 1396 1397 /* 1398 * Once the object->lock is acquired, the corresponding memory block 1399 * cannot be freed (the same lock is acquired in delete_object). 1400 */ 1401 spin_lock_irqsave(&object->lock, flags); 1402 if (object->flags & OBJECT_NO_SCAN) 1403 goto out; 1404 if (!(object->flags & OBJECT_ALLOCATED)) 1405 /* already freed object */ 1406 goto out; 1407 if (hlist_empty(&object->area_list)) { 1408 void *start = (void *)object->pointer; 1409 void *end = (void *)(object->pointer + object->size); 1410 void *next; 1411 1412 do { 1413 next = min(start + MAX_SCAN_SIZE, end); 1414 scan_block(start, next, object); 1415 1416 start = next; 1417 if (start >= end) 1418 break; 1419 1420 spin_unlock_irqrestore(&object->lock, flags); 1421 cond_resched(); 1422 spin_lock_irqsave(&object->lock, flags); 1423 } while (object->flags & OBJECT_ALLOCATED); 1424 } else 1425 hlist_for_each_entry(area, &object->area_list, node) 1426 scan_block((void *)area->start, 1427 (void *)(area->start + area->size), 1428 object); 1429 out: 1430 spin_unlock_irqrestore(&object->lock, flags); 1431 } 1432 1433 /* 1434 * Scan the objects already referenced (gray objects). More objects will be 1435 * referenced and, if there are no memory leaks, all the objects are scanned. 1436 */ 1437 static void scan_gray_list(void) 1438 { 1439 struct kmemleak_object *object, *tmp; 1440 1441 /* 1442 * The list traversal is safe for both tail additions and removals 1443 * from inside the loop. The kmemleak objects cannot be freed from 1444 * outside the loop because their use_count was incremented. 1445 */ 1446 object = list_entry(gray_list.next, typeof(*object), gray_list); 1447 while (&object->gray_list != &gray_list) { 1448 cond_resched(); 1449 1450 /* may add new objects to the list */ 1451 if (!scan_should_stop()) 1452 scan_object(object); 1453 1454 tmp = list_entry(object->gray_list.next, typeof(*object), 1455 gray_list); 1456 1457 /* remove the object from the list and release it */ 1458 list_del(&object->gray_list); 1459 put_object(object); 1460 1461 object = tmp; 1462 } 1463 WARN_ON(!list_empty(&gray_list)); 1464 } 1465 1466 /* 1467 * Scan data sections and all the referenced memory blocks allocated via the 1468 * kernel's standard allocators. This function must be called with the 1469 * scan_mutex held. 1470 */ 1471 static void kmemleak_scan(void) 1472 { 1473 unsigned long flags; 1474 struct kmemleak_object *object; 1475 int i; 1476 int new_leaks = 0; 1477 1478 jiffies_last_scan = jiffies; 1479 1480 /* prepare the kmemleak_object's */ 1481 rcu_read_lock(); 1482 list_for_each_entry_rcu(object, &object_list, object_list) { 1483 spin_lock_irqsave(&object->lock, flags); 1484 #ifdef DEBUG 1485 /* 1486 * With a few exceptions there should be a maximum of 1487 * 1 reference to any object at this point. 1488 */ 1489 if (atomic_read(&object->use_count) > 1) { 1490 pr_debug("object->use_count = %d\n", 1491 atomic_read(&object->use_count)); 1492 dump_object_info(object); 1493 } 1494 #endif 1495 /* reset the reference count (whiten the object) */ 1496 object->count = 0; 1497 if (color_gray(object) && get_object(object)) 1498 list_add_tail(&object->gray_list, &gray_list); 1499 1500 spin_unlock_irqrestore(&object->lock, flags); 1501 } 1502 rcu_read_unlock(); 1503 1504 /* data/bss scanning */ 1505 scan_large_block(_sdata, _edata); 1506 scan_large_block(__bss_start, __bss_stop); 1507 scan_large_block(__start_ro_after_init, __end_ro_after_init); 1508 1509 #ifdef CONFIG_SMP 1510 /* per-cpu sections scanning */ 1511 for_each_possible_cpu(i) 1512 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1513 __per_cpu_end + per_cpu_offset(i)); 1514 #endif 1515 1516 /* 1517 * Struct page scanning for each node. 1518 */ 1519 get_online_mems(); 1520 for_each_online_node(i) { 1521 unsigned long start_pfn = node_start_pfn(i); 1522 unsigned long end_pfn = node_end_pfn(i); 1523 unsigned long pfn; 1524 1525 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1526 struct page *page; 1527 1528 if (!pfn_valid(pfn)) 1529 continue; 1530 page = pfn_to_page(pfn); 1531 /* only scan if page is in use */ 1532 if (page_count(page) == 0) 1533 continue; 1534 scan_block(page, page + 1, NULL); 1535 if (!(pfn & 63)) 1536 cond_resched(); 1537 } 1538 } 1539 put_online_mems(); 1540 1541 /* 1542 * Scanning the task stacks (may introduce false negatives). 1543 */ 1544 if (kmemleak_stack_scan) { 1545 struct task_struct *p, *g; 1546 1547 read_lock(&tasklist_lock); 1548 do_each_thread(g, p) { 1549 void *stack = try_get_task_stack(p); 1550 if (stack) { 1551 scan_block(stack, stack + THREAD_SIZE, NULL); 1552 put_task_stack(p); 1553 } 1554 } while_each_thread(g, p); 1555 read_unlock(&tasklist_lock); 1556 } 1557 1558 /* 1559 * Scan the objects already referenced from the sections scanned 1560 * above. 1561 */ 1562 scan_gray_list(); 1563 1564 /* 1565 * Check for new or unreferenced objects modified since the previous 1566 * scan and color them gray until the next scan. 1567 */ 1568 rcu_read_lock(); 1569 list_for_each_entry_rcu(object, &object_list, object_list) { 1570 spin_lock_irqsave(&object->lock, flags); 1571 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1572 && update_checksum(object) && get_object(object)) { 1573 /* color it gray temporarily */ 1574 object->count = object->min_count; 1575 list_add_tail(&object->gray_list, &gray_list); 1576 } 1577 spin_unlock_irqrestore(&object->lock, flags); 1578 } 1579 rcu_read_unlock(); 1580 1581 /* 1582 * Re-scan the gray list for modified unreferenced objects. 1583 */ 1584 scan_gray_list(); 1585 1586 /* 1587 * If scanning was stopped do not report any new unreferenced objects. 1588 */ 1589 if (scan_should_stop()) 1590 return; 1591 1592 /* 1593 * Scanning result reporting. 1594 */ 1595 rcu_read_lock(); 1596 list_for_each_entry_rcu(object, &object_list, object_list) { 1597 spin_lock_irqsave(&object->lock, flags); 1598 if (unreferenced_object(object) && 1599 !(object->flags & OBJECT_REPORTED)) { 1600 object->flags |= OBJECT_REPORTED; 1601 new_leaks++; 1602 } 1603 spin_unlock_irqrestore(&object->lock, flags); 1604 } 1605 rcu_read_unlock(); 1606 1607 if (new_leaks) { 1608 kmemleak_found_leaks = true; 1609 1610 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1611 new_leaks); 1612 } 1613 1614 } 1615 1616 /* 1617 * Thread function performing automatic memory scanning. Unreferenced objects 1618 * at the end of a memory scan are reported but only the first time. 1619 */ 1620 static int kmemleak_scan_thread(void *arg) 1621 { 1622 static int first_run = 1; 1623 1624 pr_info("Automatic memory scanning thread started\n"); 1625 set_user_nice(current, 10); 1626 1627 /* 1628 * Wait before the first scan to allow the system to fully initialize. 1629 */ 1630 if (first_run) { 1631 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); 1632 first_run = 0; 1633 while (timeout && !kthread_should_stop()) 1634 timeout = schedule_timeout_interruptible(timeout); 1635 } 1636 1637 while (!kthread_should_stop()) { 1638 signed long timeout = jiffies_scan_wait; 1639 1640 mutex_lock(&scan_mutex); 1641 kmemleak_scan(); 1642 mutex_unlock(&scan_mutex); 1643 1644 /* wait before the next scan */ 1645 while (timeout && !kthread_should_stop()) 1646 timeout = schedule_timeout_interruptible(timeout); 1647 } 1648 1649 pr_info("Automatic memory scanning thread ended\n"); 1650 1651 return 0; 1652 } 1653 1654 /* 1655 * Start the automatic memory scanning thread. This function must be called 1656 * with the scan_mutex held. 1657 */ 1658 static void start_scan_thread(void) 1659 { 1660 if (scan_thread) 1661 return; 1662 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1663 if (IS_ERR(scan_thread)) { 1664 pr_warn("Failed to create the scan thread\n"); 1665 scan_thread = NULL; 1666 } 1667 } 1668 1669 /* 1670 * Stop the automatic memory scanning thread. 1671 */ 1672 static void stop_scan_thread(void) 1673 { 1674 if (scan_thread) { 1675 kthread_stop(scan_thread); 1676 scan_thread = NULL; 1677 } 1678 } 1679 1680 /* 1681 * Iterate over the object_list and return the first valid object at or after 1682 * the required position with its use_count incremented. The function triggers 1683 * a memory scanning when the pos argument points to the first position. 1684 */ 1685 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1686 { 1687 struct kmemleak_object *object; 1688 loff_t n = *pos; 1689 int err; 1690 1691 err = mutex_lock_interruptible(&scan_mutex); 1692 if (err < 0) 1693 return ERR_PTR(err); 1694 1695 rcu_read_lock(); 1696 list_for_each_entry_rcu(object, &object_list, object_list) { 1697 if (n-- > 0) 1698 continue; 1699 if (get_object(object)) 1700 goto out; 1701 } 1702 object = NULL; 1703 out: 1704 return object; 1705 } 1706 1707 /* 1708 * Return the next object in the object_list. The function decrements the 1709 * use_count of the previous object and increases that of the next one. 1710 */ 1711 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1712 { 1713 struct kmemleak_object *prev_obj = v; 1714 struct kmemleak_object *next_obj = NULL; 1715 struct kmemleak_object *obj = prev_obj; 1716 1717 ++(*pos); 1718 1719 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1720 if (get_object(obj)) { 1721 next_obj = obj; 1722 break; 1723 } 1724 } 1725 1726 put_object(prev_obj); 1727 return next_obj; 1728 } 1729 1730 /* 1731 * Decrement the use_count of the last object required, if any. 1732 */ 1733 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1734 { 1735 if (!IS_ERR(v)) { 1736 /* 1737 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1738 * waiting was interrupted, so only release it if !IS_ERR. 1739 */ 1740 rcu_read_unlock(); 1741 mutex_unlock(&scan_mutex); 1742 if (v) 1743 put_object(v); 1744 } 1745 } 1746 1747 /* 1748 * Print the information for an unreferenced object to the seq file. 1749 */ 1750 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1751 { 1752 struct kmemleak_object *object = v; 1753 unsigned long flags; 1754 1755 spin_lock_irqsave(&object->lock, flags); 1756 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1757 print_unreferenced(seq, object); 1758 spin_unlock_irqrestore(&object->lock, flags); 1759 return 0; 1760 } 1761 1762 static const struct seq_operations kmemleak_seq_ops = { 1763 .start = kmemleak_seq_start, 1764 .next = kmemleak_seq_next, 1765 .stop = kmemleak_seq_stop, 1766 .show = kmemleak_seq_show, 1767 }; 1768 1769 static int kmemleak_open(struct inode *inode, struct file *file) 1770 { 1771 return seq_open(file, &kmemleak_seq_ops); 1772 } 1773 1774 static int dump_str_object_info(const char *str) 1775 { 1776 unsigned long flags; 1777 struct kmemleak_object *object; 1778 unsigned long addr; 1779 1780 if (kstrtoul(str, 0, &addr)) 1781 return -EINVAL; 1782 object = find_and_get_object(addr, 0); 1783 if (!object) { 1784 pr_info("Unknown object at 0x%08lx\n", addr); 1785 return -EINVAL; 1786 } 1787 1788 spin_lock_irqsave(&object->lock, flags); 1789 dump_object_info(object); 1790 spin_unlock_irqrestore(&object->lock, flags); 1791 1792 put_object(object); 1793 return 0; 1794 } 1795 1796 /* 1797 * We use grey instead of black to ensure we can do future scans on the same 1798 * objects. If we did not do future scans these black objects could 1799 * potentially contain references to newly allocated objects in the future and 1800 * we'd end up with false positives. 1801 */ 1802 static void kmemleak_clear(void) 1803 { 1804 struct kmemleak_object *object; 1805 unsigned long flags; 1806 1807 rcu_read_lock(); 1808 list_for_each_entry_rcu(object, &object_list, object_list) { 1809 spin_lock_irqsave(&object->lock, flags); 1810 if ((object->flags & OBJECT_REPORTED) && 1811 unreferenced_object(object)) 1812 __paint_it(object, KMEMLEAK_GREY); 1813 spin_unlock_irqrestore(&object->lock, flags); 1814 } 1815 rcu_read_unlock(); 1816 1817 kmemleak_found_leaks = false; 1818 } 1819 1820 static void __kmemleak_do_cleanup(void); 1821 1822 /* 1823 * File write operation to configure kmemleak at run-time. The following 1824 * commands can be written to the /sys/kernel/debug/kmemleak file: 1825 * off - disable kmemleak (irreversible) 1826 * stack=on - enable the task stacks scanning 1827 * stack=off - disable the tasks stacks scanning 1828 * scan=on - start the automatic memory scanning thread 1829 * scan=off - stop the automatic memory scanning thread 1830 * scan=... - set the automatic memory scanning period in seconds (0 to 1831 * disable it) 1832 * scan - trigger a memory scan 1833 * clear - mark all current reported unreferenced kmemleak objects as 1834 * grey to ignore printing them, or free all kmemleak objects 1835 * if kmemleak has been disabled. 1836 * dump=... - dump information about the object found at the given address 1837 */ 1838 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1839 size_t size, loff_t *ppos) 1840 { 1841 char buf[64]; 1842 int buf_size; 1843 int ret; 1844 1845 buf_size = min(size, (sizeof(buf) - 1)); 1846 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1847 return -EFAULT; 1848 buf[buf_size] = 0; 1849 1850 ret = mutex_lock_interruptible(&scan_mutex); 1851 if (ret < 0) 1852 return ret; 1853 1854 if (strncmp(buf, "clear", 5) == 0) { 1855 if (kmemleak_enabled) 1856 kmemleak_clear(); 1857 else 1858 __kmemleak_do_cleanup(); 1859 goto out; 1860 } 1861 1862 if (!kmemleak_enabled) { 1863 ret = -EBUSY; 1864 goto out; 1865 } 1866 1867 if (strncmp(buf, "off", 3) == 0) 1868 kmemleak_disable(); 1869 else if (strncmp(buf, "stack=on", 8) == 0) 1870 kmemleak_stack_scan = 1; 1871 else if (strncmp(buf, "stack=off", 9) == 0) 1872 kmemleak_stack_scan = 0; 1873 else if (strncmp(buf, "scan=on", 7) == 0) 1874 start_scan_thread(); 1875 else if (strncmp(buf, "scan=off", 8) == 0) 1876 stop_scan_thread(); 1877 else if (strncmp(buf, "scan=", 5) == 0) { 1878 unsigned long secs; 1879 1880 ret = kstrtoul(buf + 5, 0, &secs); 1881 if (ret < 0) 1882 goto out; 1883 stop_scan_thread(); 1884 if (secs) { 1885 jiffies_scan_wait = msecs_to_jiffies(secs * 1000); 1886 start_scan_thread(); 1887 } 1888 } else if (strncmp(buf, "scan", 4) == 0) 1889 kmemleak_scan(); 1890 else if (strncmp(buf, "dump=", 5) == 0) 1891 ret = dump_str_object_info(buf + 5); 1892 else 1893 ret = -EINVAL; 1894 1895 out: 1896 mutex_unlock(&scan_mutex); 1897 if (ret < 0) 1898 return ret; 1899 1900 /* ignore the rest of the buffer, only one command at a time */ 1901 *ppos += size; 1902 return size; 1903 } 1904 1905 static const struct file_operations kmemleak_fops = { 1906 .owner = THIS_MODULE, 1907 .open = kmemleak_open, 1908 .read = seq_read, 1909 .write = kmemleak_write, 1910 .llseek = seq_lseek, 1911 .release = seq_release, 1912 }; 1913 1914 static void __kmemleak_do_cleanup(void) 1915 { 1916 struct kmemleak_object *object; 1917 1918 rcu_read_lock(); 1919 list_for_each_entry_rcu(object, &object_list, object_list) 1920 delete_object_full(object->pointer); 1921 rcu_read_unlock(); 1922 } 1923 1924 /* 1925 * Stop the memory scanning thread and free the kmemleak internal objects if 1926 * no previous scan thread (otherwise, kmemleak may still have some useful 1927 * information on memory leaks). 1928 */ 1929 static void kmemleak_do_cleanup(struct work_struct *work) 1930 { 1931 stop_scan_thread(); 1932 1933 mutex_lock(&scan_mutex); 1934 /* 1935 * Once it is made sure that kmemleak_scan has stopped, it is safe to no 1936 * longer track object freeing. Ordering of the scan thread stopping and 1937 * the memory accesses below is guaranteed by the kthread_stop() 1938 * function. 1939 */ 1940 kmemleak_free_enabled = 0; 1941 mutex_unlock(&scan_mutex); 1942 1943 if (!kmemleak_found_leaks) 1944 __kmemleak_do_cleanup(); 1945 else 1946 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 1947 } 1948 1949 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 1950 1951 /* 1952 * Disable kmemleak. No memory allocation/freeing will be traced once this 1953 * function is called. Disabling kmemleak is an irreversible operation. 1954 */ 1955 static void kmemleak_disable(void) 1956 { 1957 /* atomically check whether it was already invoked */ 1958 if (cmpxchg(&kmemleak_error, 0, 1)) 1959 return; 1960 1961 /* stop any memory operation tracing */ 1962 kmemleak_enabled = 0; 1963 1964 /* check whether it is too early for a kernel thread */ 1965 if (kmemleak_initialized) 1966 schedule_work(&cleanup_work); 1967 else 1968 kmemleak_free_enabled = 0; 1969 1970 pr_info("Kernel memory leak detector disabled\n"); 1971 } 1972 1973 /* 1974 * Allow boot-time kmemleak disabling (enabled by default). 1975 */ 1976 static int __init kmemleak_boot_config(char *str) 1977 { 1978 if (!str) 1979 return -EINVAL; 1980 if (strcmp(str, "off") == 0) 1981 kmemleak_disable(); 1982 else if (strcmp(str, "on") == 0) 1983 kmemleak_skip_disable = 1; 1984 else 1985 return -EINVAL; 1986 return 0; 1987 } 1988 early_param("kmemleak", kmemleak_boot_config); 1989 1990 static void __init print_log_trace(struct early_log *log) 1991 { 1992 struct stack_trace trace; 1993 1994 trace.nr_entries = log->trace_len; 1995 trace.entries = log->trace; 1996 1997 pr_notice("Early log backtrace:\n"); 1998 print_stack_trace(&trace, 2); 1999 } 2000 2001 /* 2002 * Kmemleak initialization. 2003 */ 2004 void __init kmemleak_init(void) 2005 { 2006 int i; 2007 unsigned long flags; 2008 2009 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 2010 if (!kmemleak_skip_disable) { 2011 kmemleak_early_log = 0; 2012 kmemleak_disable(); 2013 return; 2014 } 2015 #endif 2016 2017 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 2018 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 2019 2020 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 2021 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 2022 2023 if (crt_early_log > ARRAY_SIZE(early_log)) 2024 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", 2025 crt_early_log); 2026 2027 /* the kernel is still in UP mode, so disabling the IRQs is enough */ 2028 local_irq_save(flags); 2029 kmemleak_early_log = 0; 2030 if (kmemleak_error) { 2031 local_irq_restore(flags); 2032 return; 2033 } else { 2034 kmemleak_enabled = 1; 2035 kmemleak_free_enabled = 1; 2036 } 2037 local_irq_restore(flags); 2038 2039 /* 2040 * This is the point where tracking allocations is safe. Automatic 2041 * scanning is started during the late initcall. Add the early logged 2042 * callbacks to the kmemleak infrastructure. 2043 */ 2044 for (i = 0; i < crt_early_log; i++) { 2045 struct early_log *log = &early_log[i]; 2046 2047 switch (log->op_type) { 2048 case KMEMLEAK_ALLOC: 2049 early_alloc(log); 2050 break; 2051 case KMEMLEAK_ALLOC_PERCPU: 2052 early_alloc_percpu(log); 2053 break; 2054 case KMEMLEAK_FREE: 2055 kmemleak_free(log->ptr); 2056 break; 2057 case KMEMLEAK_FREE_PART: 2058 kmemleak_free_part(log->ptr, log->size); 2059 break; 2060 case KMEMLEAK_FREE_PERCPU: 2061 kmemleak_free_percpu(log->ptr); 2062 break; 2063 case KMEMLEAK_NOT_LEAK: 2064 kmemleak_not_leak(log->ptr); 2065 break; 2066 case KMEMLEAK_IGNORE: 2067 kmemleak_ignore(log->ptr); 2068 break; 2069 case KMEMLEAK_SCAN_AREA: 2070 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL); 2071 break; 2072 case KMEMLEAK_NO_SCAN: 2073 kmemleak_no_scan(log->ptr); 2074 break; 2075 case KMEMLEAK_SET_EXCESS_REF: 2076 object_set_excess_ref((unsigned long)log->ptr, 2077 log->excess_ref); 2078 break; 2079 default: 2080 kmemleak_warn("Unknown early log operation: %d\n", 2081 log->op_type); 2082 } 2083 2084 if (kmemleak_warning) { 2085 print_log_trace(log); 2086 kmemleak_warning = 0; 2087 } 2088 } 2089 } 2090 2091 /* 2092 * Late initialization function. 2093 */ 2094 static int __init kmemleak_late_init(void) 2095 { 2096 struct dentry *dentry; 2097 2098 kmemleak_initialized = 1; 2099 2100 dentry = debugfs_create_file("kmemleak", 0644, NULL, NULL, 2101 &kmemleak_fops); 2102 if (!dentry) 2103 pr_warn("Failed to create the debugfs kmemleak file\n"); 2104 2105 if (kmemleak_error) { 2106 /* 2107 * Some error occurred and kmemleak was disabled. There is a 2108 * small chance that kmemleak_disable() was called immediately 2109 * after setting kmemleak_initialized and we may end up with 2110 * two clean-up threads but serialized by scan_mutex. 2111 */ 2112 schedule_work(&cleanup_work); 2113 return -ENOMEM; 2114 } 2115 2116 mutex_lock(&scan_mutex); 2117 start_scan_thread(); 2118 mutex_unlock(&scan_mutex); 2119 2120 pr_info("Kernel memory leak detector initialized\n"); 2121 2122 return 0; 2123 } 2124 late_initcall(kmemleak_late_init); 2125