xref: /openbmc/linux/mm/kmemleak.c (revision 8b036556)
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/kmemleak.txt.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a red black tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * The kmemleak_object structures have a use_count incremented or decremented
57  * using the get_object()/put_object() functions. When the use_count becomes
58  * 0, this count can no longer be incremented and put_object() schedules the
59  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60  * function must be protected by rcu_read_lock() to avoid accessing a freed
61  * structure.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 
66 #include <linux/init.h>
67 #include <linux/kernel.h>
68 #include <linux/list.h>
69 #include <linux/sched.h>
70 #include <linux/jiffies.h>
71 #include <linux/delay.h>
72 #include <linux/export.h>
73 #include <linux/kthread.h>
74 #include <linux/rbtree.h>
75 #include <linux/fs.h>
76 #include <linux/debugfs.h>
77 #include <linux/seq_file.h>
78 #include <linux/cpumask.h>
79 #include <linux/spinlock.h>
80 #include <linux/mutex.h>
81 #include <linux/rcupdate.h>
82 #include <linux/stacktrace.h>
83 #include <linux/cache.h>
84 #include <linux/percpu.h>
85 #include <linux/hardirq.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96 
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
100 
101 #include <linux/kasan.h>
102 #include <linux/kmemcheck.h>
103 #include <linux/kmemleak.h>
104 #include <linux/memory_hotplug.h>
105 
106 /*
107  * Kmemleak configuration and common defines.
108  */
109 #define MAX_TRACE		16	/* stack trace length */
110 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
111 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
112 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
113 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
114 
115 #define BYTES_PER_POINTER	sizeof(void *)
116 
117 /* GFP bitmask for kmemleak internal allocations */
118 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
119 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
120 				 __GFP_NOWARN)
121 
122 /* scanning area inside a memory block */
123 struct kmemleak_scan_area {
124 	struct hlist_node node;
125 	unsigned long start;
126 	size_t size;
127 };
128 
129 #define KMEMLEAK_GREY	0
130 #define KMEMLEAK_BLACK	-1
131 
132 /*
133  * Structure holding the metadata for each allocated memory block.
134  * Modifications to such objects should be made while holding the
135  * object->lock. Insertions or deletions from object_list, gray_list or
136  * rb_node are already protected by the corresponding locks or mutex (see
137  * the notes on locking above). These objects are reference-counted
138  * (use_count) and freed using the RCU mechanism.
139  */
140 struct kmemleak_object {
141 	spinlock_t lock;
142 	unsigned long flags;		/* object status flags */
143 	struct list_head object_list;
144 	struct list_head gray_list;
145 	struct rb_node rb_node;
146 	struct rcu_head rcu;		/* object_list lockless traversal */
147 	/* object usage count; object freed when use_count == 0 */
148 	atomic_t use_count;
149 	unsigned long pointer;
150 	size_t size;
151 	/* minimum number of a pointers found before it is considered leak */
152 	int min_count;
153 	/* the total number of pointers found pointing to this object */
154 	int count;
155 	/* checksum for detecting modified objects */
156 	u32 checksum;
157 	/* memory ranges to be scanned inside an object (empty for all) */
158 	struct hlist_head area_list;
159 	unsigned long trace[MAX_TRACE];
160 	unsigned int trace_len;
161 	unsigned long jiffies;		/* creation timestamp */
162 	pid_t pid;			/* pid of the current task */
163 	char comm[TASK_COMM_LEN];	/* executable name */
164 };
165 
166 /* flag representing the memory block allocation status */
167 #define OBJECT_ALLOCATED	(1 << 0)
168 /* flag set after the first reporting of an unreference object */
169 #define OBJECT_REPORTED		(1 << 1)
170 /* flag set to not scan the object */
171 #define OBJECT_NO_SCAN		(1 << 2)
172 
173 /* number of bytes to print per line; must be 16 or 32 */
174 #define HEX_ROW_SIZE		16
175 /* number of bytes to print at a time (1, 2, 4, 8) */
176 #define HEX_GROUP_SIZE		1
177 /* include ASCII after the hex output */
178 #define HEX_ASCII		1
179 /* max number of lines to be printed */
180 #define HEX_MAX_LINES		2
181 
182 /* the list of all allocated objects */
183 static LIST_HEAD(object_list);
184 /* the list of gray-colored objects (see color_gray comment below) */
185 static LIST_HEAD(gray_list);
186 /* search tree for object boundaries */
187 static struct rb_root object_tree_root = RB_ROOT;
188 /* rw_lock protecting the access to object_list and object_tree_root */
189 static DEFINE_RWLOCK(kmemleak_lock);
190 
191 /* allocation caches for kmemleak internal data */
192 static struct kmem_cache *object_cache;
193 static struct kmem_cache *scan_area_cache;
194 
195 /* set if tracing memory operations is enabled */
196 static int kmemleak_enabled;
197 /* set in the late_initcall if there were no errors */
198 static int kmemleak_initialized;
199 /* enables or disables early logging of the memory operations */
200 static int kmemleak_early_log = 1;
201 /* set if a kmemleak warning was issued */
202 static int kmemleak_warning;
203 /* set if a fatal kmemleak error has occurred */
204 static int kmemleak_error;
205 
206 /* minimum and maximum address that may be valid pointers */
207 static unsigned long min_addr = ULONG_MAX;
208 static unsigned long max_addr;
209 
210 static struct task_struct *scan_thread;
211 /* used to avoid reporting of recently allocated objects */
212 static unsigned long jiffies_min_age;
213 static unsigned long jiffies_last_scan;
214 /* delay between automatic memory scannings */
215 static signed long jiffies_scan_wait;
216 /* enables or disables the task stacks scanning */
217 static int kmemleak_stack_scan = 1;
218 /* protects the memory scanning, parameters and debug/kmemleak file access */
219 static DEFINE_MUTEX(scan_mutex);
220 /* setting kmemleak=on, will set this var, skipping the disable */
221 static int kmemleak_skip_disable;
222 /* If there are leaks that can be reported */
223 static bool kmemleak_found_leaks;
224 
225 /*
226  * Early object allocation/freeing logging. Kmemleak is initialized after the
227  * kernel allocator. However, both the kernel allocator and kmemleak may
228  * allocate memory blocks which need to be tracked. Kmemleak defines an
229  * arbitrary buffer to hold the allocation/freeing information before it is
230  * fully initialized.
231  */
232 
233 /* kmemleak operation type for early logging */
234 enum {
235 	KMEMLEAK_ALLOC,
236 	KMEMLEAK_ALLOC_PERCPU,
237 	KMEMLEAK_FREE,
238 	KMEMLEAK_FREE_PART,
239 	KMEMLEAK_FREE_PERCPU,
240 	KMEMLEAK_NOT_LEAK,
241 	KMEMLEAK_IGNORE,
242 	KMEMLEAK_SCAN_AREA,
243 	KMEMLEAK_NO_SCAN
244 };
245 
246 /*
247  * Structure holding the information passed to kmemleak callbacks during the
248  * early logging.
249  */
250 struct early_log {
251 	int op_type;			/* kmemleak operation type */
252 	const void *ptr;		/* allocated/freed memory block */
253 	size_t size;			/* memory block size */
254 	int min_count;			/* minimum reference count */
255 	unsigned long trace[MAX_TRACE];	/* stack trace */
256 	unsigned int trace_len;		/* stack trace length */
257 };
258 
259 /* early logging buffer and current position */
260 static struct early_log
261 	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
262 static int crt_early_log __initdata;
263 
264 static void kmemleak_disable(void);
265 
266 /*
267  * Print a warning and dump the stack trace.
268  */
269 #define kmemleak_warn(x...)	do {		\
270 	pr_warning(x);				\
271 	dump_stack();				\
272 	kmemleak_warning = 1;			\
273 } while (0)
274 
275 /*
276  * Macro invoked when a serious kmemleak condition occurred and cannot be
277  * recovered from. Kmemleak will be disabled and further allocation/freeing
278  * tracing no longer available.
279  */
280 #define kmemleak_stop(x...)	do {	\
281 	kmemleak_warn(x);		\
282 	kmemleak_disable();		\
283 } while (0)
284 
285 /*
286  * Printing of the objects hex dump to the seq file. The number of lines to be
287  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
288  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
289  * with the object->lock held.
290  */
291 static void hex_dump_object(struct seq_file *seq,
292 			    struct kmemleak_object *object)
293 {
294 	const u8 *ptr = (const u8 *)object->pointer;
295 	int i, len, remaining;
296 	unsigned char linebuf[HEX_ROW_SIZE * 5];
297 
298 	/* limit the number of lines to HEX_MAX_LINES */
299 	remaining = len =
300 		min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
301 
302 	seq_printf(seq, "  hex dump (first %d bytes):\n", len);
303 	for (i = 0; i < len; i += HEX_ROW_SIZE) {
304 		int linelen = min(remaining, HEX_ROW_SIZE);
305 
306 		remaining -= HEX_ROW_SIZE;
307 		hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
308 				   HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
309 				   HEX_ASCII);
310 		seq_printf(seq, "    %s\n", linebuf);
311 	}
312 }
313 
314 /*
315  * Object colors, encoded with count and min_count:
316  * - white - orphan object, not enough references to it (count < min_count)
317  * - gray  - not orphan, not marked as false positive (min_count == 0) or
318  *		sufficient references to it (count >= min_count)
319  * - black - ignore, it doesn't contain references (e.g. text section)
320  *		(min_count == -1). No function defined for this color.
321  * Newly created objects don't have any color assigned (object->count == -1)
322  * before the next memory scan when they become white.
323  */
324 static bool color_white(const struct kmemleak_object *object)
325 {
326 	return object->count != KMEMLEAK_BLACK &&
327 		object->count < object->min_count;
328 }
329 
330 static bool color_gray(const struct kmemleak_object *object)
331 {
332 	return object->min_count != KMEMLEAK_BLACK &&
333 		object->count >= object->min_count;
334 }
335 
336 /*
337  * Objects are considered unreferenced only if their color is white, they have
338  * not be deleted and have a minimum age to avoid false positives caused by
339  * pointers temporarily stored in CPU registers.
340  */
341 static bool unreferenced_object(struct kmemleak_object *object)
342 {
343 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
344 		time_before_eq(object->jiffies + jiffies_min_age,
345 			       jiffies_last_scan);
346 }
347 
348 /*
349  * Printing of the unreferenced objects information to the seq file. The
350  * print_unreferenced function must be called with the object->lock held.
351  */
352 static void print_unreferenced(struct seq_file *seq,
353 			       struct kmemleak_object *object)
354 {
355 	int i;
356 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
357 
358 	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
359 		   object->pointer, object->size);
360 	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
361 		   object->comm, object->pid, object->jiffies,
362 		   msecs_age / 1000, msecs_age % 1000);
363 	hex_dump_object(seq, object);
364 	seq_printf(seq, "  backtrace:\n");
365 
366 	for (i = 0; i < object->trace_len; i++) {
367 		void *ptr = (void *)object->trace[i];
368 		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
369 	}
370 }
371 
372 /*
373  * Print the kmemleak_object information. This function is used mainly for
374  * debugging special cases when kmemleak operations. It must be called with
375  * the object->lock held.
376  */
377 static void dump_object_info(struct kmemleak_object *object)
378 {
379 	struct stack_trace trace;
380 
381 	trace.nr_entries = object->trace_len;
382 	trace.entries = object->trace;
383 
384 	pr_notice("Object 0x%08lx (size %zu):\n",
385 		  object->pointer, object->size);
386 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
387 		  object->comm, object->pid, object->jiffies);
388 	pr_notice("  min_count = %d\n", object->min_count);
389 	pr_notice("  count = %d\n", object->count);
390 	pr_notice("  flags = 0x%lx\n", object->flags);
391 	pr_notice("  checksum = %u\n", object->checksum);
392 	pr_notice("  backtrace:\n");
393 	print_stack_trace(&trace, 4);
394 }
395 
396 /*
397  * Look-up a memory block metadata (kmemleak_object) in the object search
398  * tree based on a pointer value. If alias is 0, only values pointing to the
399  * beginning of the memory block are allowed. The kmemleak_lock must be held
400  * when calling this function.
401  */
402 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
403 {
404 	struct rb_node *rb = object_tree_root.rb_node;
405 
406 	while (rb) {
407 		struct kmemleak_object *object =
408 			rb_entry(rb, struct kmemleak_object, rb_node);
409 		if (ptr < object->pointer)
410 			rb = object->rb_node.rb_left;
411 		else if (object->pointer + object->size <= ptr)
412 			rb = object->rb_node.rb_right;
413 		else if (object->pointer == ptr || alias)
414 			return object;
415 		else {
416 			kmemleak_warn("Found object by alias at 0x%08lx\n",
417 				      ptr);
418 			dump_object_info(object);
419 			break;
420 		}
421 	}
422 	return NULL;
423 }
424 
425 /*
426  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
427  * that once an object's use_count reached 0, the RCU freeing was already
428  * registered and the object should no longer be used. This function must be
429  * called under the protection of rcu_read_lock().
430  */
431 static int get_object(struct kmemleak_object *object)
432 {
433 	return atomic_inc_not_zero(&object->use_count);
434 }
435 
436 /*
437  * RCU callback to free a kmemleak_object.
438  */
439 static void free_object_rcu(struct rcu_head *rcu)
440 {
441 	struct hlist_node *tmp;
442 	struct kmemleak_scan_area *area;
443 	struct kmemleak_object *object =
444 		container_of(rcu, struct kmemleak_object, rcu);
445 
446 	/*
447 	 * Once use_count is 0 (guaranteed by put_object), there is no other
448 	 * code accessing this object, hence no need for locking.
449 	 */
450 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
451 		hlist_del(&area->node);
452 		kmem_cache_free(scan_area_cache, area);
453 	}
454 	kmem_cache_free(object_cache, object);
455 }
456 
457 /*
458  * Decrement the object use_count. Once the count is 0, free the object using
459  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
460  * delete_object() path, the delayed RCU freeing ensures that there is no
461  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
462  * is also possible.
463  */
464 static void put_object(struct kmemleak_object *object)
465 {
466 	if (!atomic_dec_and_test(&object->use_count))
467 		return;
468 
469 	/* should only get here after delete_object was called */
470 	WARN_ON(object->flags & OBJECT_ALLOCATED);
471 
472 	call_rcu(&object->rcu, free_object_rcu);
473 }
474 
475 /*
476  * Look up an object in the object search tree and increase its use_count.
477  */
478 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
479 {
480 	unsigned long flags;
481 	struct kmemleak_object *object = NULL;
482 
483 	rcu_read_lock();
484 	read_lock_irqsave(&kmemleak_lock, flags);
485 	if (ptr >= min_addr && ptr < max_addr)
486 		object = lookup_object(ptr, alias);
487 	read_unlock_irqrestore(&kmemleak_lock, flags);
488 
489 	/* check whether the object is still available */
490 	if (object && !get_object(object))
491 		object = NULL;
492 	rcu_read_unlock();
493 
494 	return object;
495 }
496 
497 /*
498  * Save stack trace to the given array of MAX_TRACE size.
499  */
500 static int __save_stack_trace(unsigned long *trace)
501 {
502 	struct stack_trace stack_trace;
503 
504 	stack_trace.max_entries = MAX_TRACE;
505 	stack_trace.nr_entries = 0;
506 	stack_trace.entries = trace;
507 	stack_trace.skip = 2;
508 	save_stack_trace(&stack_trace);
509 
510 	return stack_trace.nr_entries;
511 }
512 
513 /*
514  * Create the metadata (struct kmemleak_object) corresponding to an allocated
515  * memory block and add it to the object_list and object_tree_root.
516  */
517 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
518 					     int min_count, gfp_t gfp)
519 {
520 	unsigned long flags;
521 	struct kmemleak_object *object, *parent;
522 	struct rb_node **link, *rb_parent;
523 
524 	object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
525 	if (!object) {
526 		pr_warning("Cannot allocate a kmemleak_object structure\n");
527 		kmemleak_disable();
528 		return NULL;
529 	}
530 
531 	INIT_LIST_HEAD(&object->object_list);
532 	INIT_LIST_HEAD(&object->gray_list);
533 	INIT_HLIST_HEAD(&object->area_list);
534 	spin_lock_init(&object->lock);
535 	atomic_set(&object->use_count, 1);
536 	object->flags = OBJECT_ALLOCATED;
537 	object->pointer = ptr;
538 	object->size = size;
539 	object->min_count = min_count;
540 	object->count = 0;			/* white color initially */
541 	object->jiffies = jiffies;
542 	object->checksum = 0;
543 
544 	/* task information */
545 	if (in_irq()) {
546 		object->pid = 0;
547 		strncpy(object->comm, "hardirq", sizeof(object->comm));
548 	} else if (in_softirq()) {
549 		object->pid = 0;
550 		strncpy(object->comm, "softirq", sizeof(object->comm));
551 	} else {
552 		object->pid = current->pid;
553 		/*
554 		 * There is a small chance of a race with set_task_comm(),
555 		 * however using get_task_comm() here may cause locking
556 		 * dependency issues with current->alloc_lock. In the worst
557 		 * case, the command line is not correct.
558 		 */
559 		strncpy(object->comm, current->comm, sizeof(object->comm));
560 	}
561 
562 	/* kernel backtrace */
563 	object->trace_len = __save_stack_trace(object->trace);
564 
565 	write_lock_irqsave(&kmemleak_lock, flags);
566 
567 	min_addr = min(min_addr, ptr);
568 	max_addr = max(max_addr, ptr + size);
569 	link = &object_tree_root.rb_node;
570 	rb_parent = NULL;
571 	while (*link) {
572 		rb_parent = *link;
573 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
574 		if (ptr + size <= parent->pointer)
575 			link = &parent->rb_node.rb_left;
576 		else if (parent->pointer + parent->size <= ptr)
577 			link = &parent->rb_node.rb_right;
578 		else {
579 			kmemleak_stop("Cannot insert 0x%lx into the object "
580 				      "search tree (overlaps existing)\n",
581 				      ptr);
582 			kmem_cache_free(object_cache, object);
583 			object = parent;
584 			spin_lock(&object->lock);
585 			dump_object_info(object);
586 			spin_unlock(&object->lock);
587 			goto out;
588 		}
589 	}
590 	rb_link_node(&object->rb_node, rb_parent, link);
591 	rb_insert_color(&object->rb_node, &object_tree_root);
592 
593 	list_add_tail_rcu(&object->object_list, &object_list);
594 out:
595 	write_unlock_irqrestore(&kmemleak_lock, flags);
596 	return object;
597 }
598 
599 /*
600  * Remove the metadata (struct kmemleak_object) for a memory block from the
601  * object_list and object_tree_root and decrement its use_count.
602  */
603 static void __delete_object(struct kmemleak_object *object)
604 {
605 	unsigned long flags;
606 
607 	write_lock_irqsave(&kmemleak_lock, flags);
608 	rb_erase(&object->rb_node, &object_tree_root);
609 	list_del_rcu(&object->object_list);
610 	write_unlock_irqrestore(&kmemleak_lock, flags);
611 
612 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
613 	WARN_ON(atomic_read(&object->use_count) < 2);
614 
615 	/*
616 	 * Locking here also ensures that the corresponding memory block
617 	 * cannot be freed when it is being scanned.
618 	 */
619 	spin_lock_irqsave(&object->lock, flags);
620 	object->flags &= ~OBJECT_ALLOCATED;
621 	spin_unlock_irqrestore(&object->lock, flags);
622 	put_object(object);
623 }
624 
625 /*
626  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
627  * delete it.
628  */
629 static void delete_object_full(unsigned long ptr)
630 {
631 	struct kmemleak_object *object;
632 
633 	object = find_and_get_object(ptr, 0);
634 	if (!object) {
635 #ifdef DEBUG
636 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
637 			      ptr);
638 #endif
639 		return;
640 	}
641 	__delete_object(object);
642 	put_object(object);
643 }
644 
645 /*
646  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
647  * delete it. If the memory block is partially freed, the function may create
648  * additional metadata for the remaining parts of the block.
649  */
650 static void delete_object_part(unsigned long ptr, size_t size)
651 {
652 	struct kmemleak_object *object;
653 	unsigned long start, end;
654 
655 	object = find_and_get_object(ptr, 1);
656 	if (!object) {
657 #ifdef DEBUG
658 		kmemleak_warn("Partially freeing unknown object at 0x%08lx "
659 			      "(size %zu)\n", ptr, size);
660 #endif
661 		return;
662 	}
663 	__delete_object(object);
664 
665 	/*
666 	 * Create one or two objects that may result from the memory block
667 	 * split. Note that partial freeing is only done by free_bootmem() and
668 	 * this happens before kmemleak_init() is called. The path below is
669 	 * only executed during early log recording in kmemleak_init(), so
670 	 * GFP_KERNEL is enough.
671 	 */
672 	start = object->pointer;
673 	end = object->pointer + object->size;
674 	if (ptr > start)
675 		create_object(start, ptr - start, object->min_count,
676 			      GFP_KERNEL);
677 	if (ptr + size < end)
678 		create_object(ptr + size, end - ptr - size, object->min_count,
679 			      GFP_KERNEL);
680 
681 	put_object(object);
682 }
683 
684 static void __paint_it(struct kmemleak_object *object, int color)
685 {
686 	object->min_count = color;
687 	if (color == KMEMLEAK_BLACK)
688 		object->flags |= OBJECT_NO_SCAN;
689 }
690 
691 static void paint_it(struct kmemleak_object *object, int color)
692 {
693 	unsigned long flags;
694 
695 	spin_lock_irqsave(&object->lock, flags);
696 	__paint_it(object, color);
697 	spin_unlock_irqrestore(&object->lock, flags);
698 }
699 
700 static void paint_ptr(unsigned long ptr, int color)
701 {
702 	struct kmemleak_object *object;
703 
704 	object = find_and_get_object(ptr, 0);
705 	if (!object) {
706 		kmemleak_warn("Trying to color unknown object "
707 			      "at 0x%08lx as %s\n", ptr,
708 			      (color == KMEMLEAK_GREY) ? "Grey" :
709 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
710 		return;
711 	}
712 	paint_it(object, color);
713 	put_object(object);
714 }
715 
716 /*
717  * Mark an object permanently as gray-colored so that it can no longer be
718  * reported as a leak. This is used in general to mark a false positive.
719  */
720 static void make_gray_object(unsigned long ptr)
721 {
722 	paint_ptr(ptr, KMEMLEAK_GREY);
723 }
724 
725 /*
726  * Mark the object as black-colored so that it is ignored from scans and
727  * reporting.
728  */
729 static void make_black_object(unsigned long ptr)
730 {
731 	paint_ptr(ptr, KMEMLEAK_BLACK);
732 }
733 
734 /*
735  * Add a scanning area to the object. If at least one such area is added,
736  * kmemleak will only scan these ranges rather than the whole memory block.
737  */
738 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
739 {
740 	unsigned long flags;
741 	struct kmemleak_object *object;
742 	struct kmemleak_scan_area *area;
743 
744 	object = find_and_get_object(ptr, 1);
745 	if (!object) {
746 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
747 			      ptr);
748 		return;
749 	}
750 
751 	area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
752 	if (!area) {
753 		pr_warning("Cannot allocate a scan area\n");
754 		goto out;
755 	}
756 
757 	spin_lock_irqsave(&object->lock, flags);
758 	if (size == SIZE_MAX) {
759 		size = object->pointer + object->size - ptr;
760 	} else if (ptr + size > object->pointer + object->size) {
761 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
762 		dump_object_info(object);
763 		kmem_cache_free(scan_area_cache, area);
764 		goto out_unlock;
765 	}
766 
767 	INIT_HLIST_NODE(&area->node);
768 	area->start = ptr;
769 	area->size = size;
770 
771 	hlist_add_head(&area->node, &object->area_list);
772 out_unlock:
773 	spin_unlock_irqrestore(&object->lock, flags);
774 out:
775 	put_object(object);
776 }
777 
778 /*
779  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
780  * pointer. Such object will not be scanned by kmemleak but references to it
781  * are searched.
782  */
783 static void object_no_scan(unsigned long ptr)
784 {
785 	unsigned long flags;
786 	struct kmemleak_object *object;
787 
788 	object = find_and_get_object(ptr, 0);
789 	if (!object) {
790 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
791 		return;
792 	}
793 
794 	spin_lock_irqsave(&object->lock, flags);
795 	object->flags |= OBJECT_NO_SCAN;
796 	spin_unlock_irqrestore(&object->lock, flags);
797 	put_object(object);
798 }
799 
800 /*
801  * Log an early kmemleak_* call to the early_log buffer. These calls will be
802  * processed later once kmemleak is fully initialized.
803  */
804 static void __init log_early(int op_type, const void *ptr, size_t size,
805 			     int min_count)
806 {
807 	unsigned long flags;
808 	struct early_log *log;
809 
810 	if (kmemleak_error) {
811 		/* kmemleak stopped recording, just count the requests */
812 		crt_early_log++;
813 		return;
814 	}
815 
816 	if (crt_early_log >= ARRAY_SIZE(early_log)) {
817 		kmemleak_disable();
818 		return;
819 	}
820 
821 	/*
822 	 * There is no need for locking since the kernel is still in UP mode
823 	 * at this stage. Disabling the IRQs is enough.
824 	 */
825 	local_irq_save(flags);
826 	log = &early_log[crt_early_log];
827 	log->op_type = op_type;
828 	log->ptr = ptr;
829 	log->size = size;
830 	log->min_count = min_count;
831 	log->trace_len = __save_stack_trace(log->trace);
832 	crt_early_log++;
833 	local_irq_restore(flags);
834 }
835 
836 /*
837  * Log an early allocated block and populate the stack trace.
838  */
839 static void early_alloc(struct early_log *log)
840 {
841 	struct kmemleak_object *object;
842 	unsigned long flags;
843 	int i;
844 
845 	if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
846 		return;
847 
848 	/*
849 	 * RCU locking needed to ensure object is not freed via put_object().
850 	 */
851 	rcu_read_lock();
852 	object = create_object((unsigned long)log->ptr, log->size,
853 			       log->min_count, GFP_ATOMIC);
854 	if (!object)
855 		goto out;
856 	spin_lock_irqsave(&object->lock, flags);
857 	for (i = 0; i < log->trace_len; i++)
858 		object->trace[i] = log->trace[i];
859 	object->trace_len = log->trace_len;
860 	spin_unlock_irqrestore(&object->lock, flags);
861 out:
862 	rcu_read_unlock();
863 }
864 
865 /*
866  * Log an early allocated block and populate the stack trace.
867  */
868 static void early_alloc_percpu(struct early_log *log)
869 {
870 	unsigned int cpu;
871 	const void __percpu *ptr = log->ptr;
872 
873 	for_each_possible_cpu(cpu) {
874 		log->ptr = per_cpu_ptr(ptr, cpu);
875 		early_alloc(log);
876 	}
877 }
878 
879 /**
880  * kmemleak_alloc - register a newly allocated object
881  * @ptr:	pointer to beginning of the object
882  * @size:	size of the object
883  * @min_count:	minimum number of references to this object. If during memory
884  *		scanning a number of references less than @min_count is found,
885  *		the object is reported as a memory leak. If @min_count is 0,
886  *		the object is never reported as a leak. If @min_count is -1,
887  *		the object is ignored (not scanned and not reported as a leak)
888  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
889  *
890  * This function is called from the kernel allocators when a new object
891  * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
892  */
893 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
894 			  gfp_t gfp)
895 {
896 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
897 
898 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
899 		create_object((unsigned long)ptr, size, min_count, gfp);
900 	else if (kmemleak_early_log)
901 		log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
902 }
903 EXPORT_SYMBOL_GPL(kmemleak_alloc);
904 
905 /**
906  * kmemleak_alloc_percpu - register a newly allocated __percpu object
907  * @ptr:	__percpu pointer to beginning of the object
908  * @size:	size of the object
909  *
910  * This function is called from the kernel percpu allocator when a new object
911  * (memory block) is allocated (alloc_percpu). It assumes GFP_KERNEL
912  * allocation.
913  */
914 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size)
915 {
916 	unsigned int cpu;
917 
918 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
919 
920 	/*
921 	 * Percpu allocations are only scanned and not reported as leaks
922 	 * (min_count is set to 0).
923 	 */
924 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
925 		for_each_possible_cpu(cpu)
926 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
927 				      size, 0, GFP_KERNEL);
928 	else if (kmemleak_early_log)
929 		log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
930 }
931 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
932 
933 /**
934  * kmemleak_free - unregister a previously registered object
935  * @ptr:	pointer to beginning of the object
936  *
937  * This function is called from the kernel allocators when an object (memory
938  * block) is freed (kmem_cache_free, kfree, vfree etc.).
939  */
940 void __ref kmemleak_free(const void *ptr)
941 {
942 	pr_debug("%s(0x%p)\n", __func__, ptr);
943 
944 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
945 		delete_object_full((unsigned long)ptr);
946 	else if (kmemleak_early_log)
947 		log_early(KMEMLEAK_FREE, ptr, 0, 0);
948 }
949 EXPORT_SYMBOL_GPL(kmemleak_free);
950 
951 /**
952  * kmemleak_free_part - partially unregister a previously registered object
953  * @ptr:	pointer to the beginning or inside the object. This also
954  *		represents the start of the range to be freed
955  * @size:	size to be unregistered
956  *
957  * This function is called when only a part of a memory block is freed
958  * (usually from the bootmem allocator).
959  */
960 void __ref kmemleak_free_part(const void *ptr, size_t size)
961 {
962 	pr_debug("%s(0x%p)\n", __func__, ptr);
963 
964 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
965 		delete_object_part((unsigned long)ptr, size);
966 	else if (kmemleak_early_log)
967 		log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
968 }
969 EXPORT_SYMBOL_GPL(kmemleak_free_part);
970 
971 /**
972  * kmemleak_free_percpu - unregister a previously registered __percpu object
973  * @ptr:	__percpu pointer to beginning of the object
974  *
975  * This function is called from the kernel percpu allocator when an object
976  * (memory block) is freed (free_percpu).
977  */
978 void __ref kmemleak_free_percpu(const void __percpu *ptr)
979 {
980 	unsigned int cpu;
981 
982 	pr_debug("%s(0x%p)\n", __func__, ptr);
983 
984 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
985 		for_each_possible_cpu(cpu)
986 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
987 								      cpu));
988 	else if (kmemleak_early_log)
989 		log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
990 }
991 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
992 
993 /**
994  * kmemleak_update_trace - update object allocation stack trace
995  * @ptr:	pointer to beginning of the object
996  *
997  * Override the object allocation stack trace for cases where the actual
998  * allocation place is not always useful.
999  */
1000 void __ref kmemleak_update_trace(const void *ptr)
1001 {
1002 	struct kmemleak_object *object;
1003 	unsigned long flags;
1004 
1005 	pr_debug("%s(0x%p)\n", __func__, ptr);
1006 
1007 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1008 		return;
1009 
1010 	object = find_and_get_object((unsigned long)ptr, 1);
1011 	if (!object) {
1012 #ifdef DEBUG
1013 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1014 			      ptr);
1015 #endif
1016 		return;
1017 	}
1018 
1019 	spin_lock_irqsave(&object->lock, flags);
1020 	object->trace_len = __save_stack_trace(object->trace);
1021 	spin_unlock_irqrestore(&object->lock, flags);
1022 
1023 	put_object(object);
1024 }
1025 EXPORT_SYMBOL(kmemleak_update_trace);
1026 
1027 /**
1028  * kmemleak_not_leak - mark an allocated object as false positive
1029  * @ptr:	pointer to beginning of the object
1030  *
1031  * Calling this function on an object will cause the memory block to no longer
1032  * be reported as leak and always be scanned.
1033  */
1034 void __ref kmemleak_not_leak(const void *ptr)
1035 {
1036 	pr_debug("%s(0x%p)\n", __func__, ptr);
1037 
1038 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1039 		make_gray_object((unsigned long)ptr);
1040 	else if (kmemleak_early_log)
1041 		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1042 }
1043 EXPORT_SYMBOL(kmemleak_not_leak);
1044 
1045 /**
1046  * kmemleak_ignore - ignore an allocated object
1047  * @ptr:	pointer to beginning of the object
1048  *
1049  * Calling this function on an object will cause the memory block to be
1050  * ignored (not scanned and not reported as a leak). This is usually done when
1051  * it is known that the corresponding block is not a leak and does not contain
1052  * any references to other allocated memory blocks.
1053  */
1054 void __ref kmemleak_ignore(const void *ptr)
1055 {
1056 	pr_debug("%s(0x%p)\n", __func__, ptr);
1057 
1058 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1059 		make_black_object((unsigned long)ptr);
1060 	else if (kmemleak_early_log)
1061 		log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1062 }
1063 EXPORT_SYMBOL(kmemleak_ignore);
1064 
1065 /**
1066  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1067  * @ptr:	pointer to beginning or inside the object. This also
1068  *		represents the start of the scan area
1069  * @size:	size of the scan area
1070  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1071  *
1072  * This function is used when it is known that only certain parts of an object
1073  * contain references to other objects. Kmemleak will only scan these areas
1074  * reducing the number false negatives.
1075  */
1076 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1077 {
1078 	pr_debug("%s(0x%p)\n", __func__, ptr);
1079 
1080 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1081 		add_scan_area((unsigned long)ptr, size, gfp);
1082 	else if (kmemleak_early_log)
1083 		log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1084 }
1085 EXPORT_SYMBOL(kmemleak_scan_area);
1086 
1087 /**
1088  * kmemleak_no_scan - do not scan an allocated object
1089  * @ptr:	pointer to beginning of the object
1090  *
1091  * This function notifies kmemleak not to scan the given memory block. Useful
1092  * in situations where it is known that the given object does not contain any
1093  * references to other objects. Kmemleak will not scan such objects reducing
1094  * the number of false negatives.
1095  */
1096 void __ref kmemleak_no_scan(const void *ptr)
1097 {
1098 	pr_debug("%s(0x%p)\n", __func__, ptr);
1099 
1100 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1101 		object_no_scan((unsigned long)ptr);
1102 	else if (kmemleak_early_log)
1103 		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1104 }
1105 EXPORT_SYMBOL(kmemleak_no_scan);
1106 
1107 /*
1108  * Update an object's checksum and return true if it was modified.
1109  */
1110 static bool update_checksum(struct kmemleak_object *object)
1111 {
1112 	u32 old_csum = object->checksum;
1113 
1114 	if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1115 		return false;
1116 
1117 	kasan_disable_current();
1118 	object->checksum = crc32(0, (void *)object->pointer, object->size);
1119 	kasan_enable_current();
1120 
1121 	return object->checksum != old_csum;
1122 }
1123 
1124 /*
1125  * Memory scanning is a long process and it needs to be interruptable. This
1126  * function checks whether such interrupt condition occurred.
1127  */
1128 static int scan_should_stop(void)
1129 {
1130 	if (!kmemleak_enabled)
1131 		return 1;
1132 
1133 	/*
1134 	 * This function may be called from either process or kthread context,
1135 	 * hence the need to check for both stop conditions.
1136 	 */
1137 	if (current->mm)
1138 		return signal_pending(current);
1139 	else
1140 		return kthread_should_stop();
1141 
1142 	return 0;
1143 }
1144 
1145 /*
1146  * Scan a memory block (exclusive range) for valid pointers and add those
1147  * found to the gray list.
1148  */
1149 static void scan_block(void *_start, void *_end,
1150 		       struct kmemleak_object *scanned, int allow_resched)
1151 {
1152 	unsigned long *ptr;
1153 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1154 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1155 
1156 	for (ptr = start; ptr < end; ptr++) {
1157 		struct kmemleak_object *object;
1158 		unsigned long flags;
1159 		unsigned long pointer;
1160 
1161 		if (allow_resched)
1162 			cond_resched();
1163 		if (scan_should_stop())
1164 			break;
1165 
1166 		/* don't scan uninitialized memory */
1167 		if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1168 						  BYTES_PER_POINTER))
1169 			continue;
1170 
1171 		kasan_disable_current();
1172 		pointer = *ptr;
1173 		kasan_enable_current();
1174 
1175 		object = find_and_get_object(pointer, 1);
1176 		if (!object)
1177 			continue;
1178 		if (object == scanned) {
1179 			/* self referenced, ignore */
1180 			put_object(object);
1181 			continue;
1182 		}
1183 
1184 		/*
1185 		 * Avoid the lockdep recursive warning on object->lock being
1186 		 * previously acquired in scan_object(). These locks are
1187 		 * enclosed by scan_mutex.
1188 		 */
1189 		spin_lock_irqsave_nested(&object->lock, flags,
1190 					 SINGLE_DEPTH_NESTING);
1191 		if (!color_white(object)) {
1192 			/* non-orphan, ignored or new */
1193 			spin_unlock_irqrestore(&object->lock, flags);
1194 			put_object(object);
1195 			continue;
1196 		}
1197 
1198 		/*
1199 		 * Increase the object's reference count (number of pointers
1200 		 * to the memory block). If this count reaches the required
1201 		 * minimum, the object's color will become gray and it will be
1202 		 * added to the gray_list.
1203 		 */
1204 		object->count++;
1205 		if (color_gray(object)) {
1206 			list_add_tail(&object->gray_list, &gray_list);
1207 			spin_unlock_irqrestore(&object->lock, flags);
1208 			continue;
1209 		}
1210 
1211 		spin_unlock_irqrestore(&object->lock, flags);
1212 		put_object(object);
1213 	}
1214 }
1215 
1216 /*
1217  * Scan a memory block corresponding to a kmemleak_object. A condition is
1218  * that object->use_count >= 1.
1219  */
1220 static void scan_object(struct kmemleak_object *object)
1221 {
1222 	struct kmemleak_scan_area *area;
1223 	unsigned long flags;
1224 
1225 	/*
1226 	 * Once the object->lock is acquired, the corresponding memory block
1227 	 * cannot be freed (the same lock is acquired in delete_object).
1228 	 */
1229 	spin_lock_irqsave(&object->lock, flags);
1230 	if (object->flags & OBJECT_NO_SCAN)
1231 		goto out;
1232 	if (!(object->flags & OBJECT_ALLOCATED))
1233 		/* already freed object */
1234 		goto out;
1235 	if (hlist_empty(&object->area_list)) {
1236 		void *start = (void *)object->pointer;
1237 		void *end = (void *)(object->pointer + object->size);
1238 
1239 		while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1240 		       !(object->flags & OBJECT_NO_SCAN)) {
1241 			scan_block(start, min(start + MAX_SCAN_SIZE, end),
1242 				   object, 0);
1243 			start += MAX_SCAN_SIZE;
1244 
1245 			spin_unlock_irqrestore(&object->lock, flags);
1246 			cond_resched();
1247 			spin_lock_irqsave(&object->lock, flags);
1248 		}
1249 	} else
1250 		hlist_for_each_entry(area, &object->area_list, node)
1251 			scan_block((void *)area->start,
1252 				   (void *)(area->start + area->size),
1253 				   object, 0);
1254 out:
1255 	spin_unlock_irqrestore(&object->lock, flags);
1256 }
1257 
1258 /*
1259  * Scan the objects already referenced (gray objects). More objects will be
1260  * referenced and, if there are no memory leaks, all the objects are scanned.
1261  */
1262 static void scan_gray_list(void)
1263 {
1264 	struct kmemleak_object *object, *tmp;
1265 
1266 	/*
1267 	 * The list traversal is safe for both tail additions and removals
1268 	 * from inside the loop. The kmemleak objects cannot be freed from
1269 	 * outside the loop because their use_count was incremented.
1270 	 */
1271 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1272 	while (&object->gray_list != &gray_list) {
1273 		cond_resched();
1274 
1275 		/* may add new objects to the list */
1276 		if (!scan_should_stop())
1277 			scan_object(object);
1278 
1279 		tmp = list_entry(object->gray_list.next, typeof(*object),
1280 				 gray_list);
1281 
1282 		/* remove the object from the list and release it */
1283 		list_del(&object->gray_list);
1284 		put_object(object);
1285 
1286 		object = tmp;
1287 	}
1288 	WARN_ON(!list_empty(&gray_list));
1289 }
1290 
1291 /*
1292  * Scan data sections and all the referenced memory blocks allocated via the
1293  * kernel's standard allocators. This function must be called with the
1294  * scan_mutex held.
1295  */
1296 static void kmemleak_scan(void)
1297 {
1298 	unsigned long flags;
1299 	struct kmemleak_object *object;
1300 	int i;
1301 	int new_leaks = 0;
1302 
1303 	jiffies_last_scan = jiffies;
1304 
1305 	/* prepare the kmemleak_object's */
1306 	rcu_read_lock();
1307 	list_for_each_entry_rcu(object, &object_list, object_list) {
1308 		spin_lock_irqsave(&object->lock, flags);
1309 #ifdef DEBUG
1310 		/*
1311 		 * With a few exceptions there should be a maximum of
1312 		 * 1 reference to any object at this point.
1313 		 */
1314 		if (atomic_read(&object->use_count) > 1) {
1315 			pr_debug("object->use_count = %d\n",
1316 				 atomic_read(&object->use_count));
1317 			dump_object_info(object);
1318 		}
1319 #endif
1320 		/* reset the reference count (whiten the object) */
1321 		object->count = 0;
1322 		if (color_gray(object) && get_object(object))
1323 			list_add_tail(&object->gray_list, &gray_list);
1324 
1325 		spin_unlock_irqrestore(&object->lock, flags);
1326 	}
1327 	rcu_read_unlock();
1328 
1329 	/* data/bss scanning */
1330 	scan_block(_sdata, _edata, NULL, 1);
1331 	scan_block(__bss_start, __bss_stop, NULL, 1);
1332 
1333 #ifdef CONFIG_SMP
1334 	/* per-cpu sections scanning */
1335 	for_each_possible_cpu(i)
1336 		scan_block(__per_cpu_start + per_cpu_offset(i),
1337 			   __per_cpu_end + per_cpu_offset(i), NULL, 1);
1338 #endif
1339 
1340 	/*
1341 	 * Struct page scanning for each node.
1342 	 */
1343 	get_online_mems();
1344 	for_each_online_node(i) {
1345 		unsigned long start_pfn = node_start_pfn(i);
1346 		unsigned long end_pfn = node_end_pfn(i);
1347 		unsigned long pfn;
1348 
1349 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1350 			struct page *page;
1351 
1352 			if (!pfn_valid(pfn))
1353 				continue;
1354 			page = pfn_to_page(pfn);
1355 			/* only scan if page is in use */
1356 			if (page_count(page) == 0)
1357 				continue;
1358 			scan_block(page, page + 1, NULL, 1);
1359 		}
1360 	}
1361 	put_online_mems();
1362 
1363 	/*
1364 	 * Scanning the task stacks (may introduce false negatives).
1365 	 */
1366 	if (kmemleak_stack_scan) {
1367 		struct task_struct *p, *g;
1368 
1369 		read_lock(&tasklist_lock);
1370 		do_each_thread(g, p) {
1371 			scan_block(task_stack_page(p), task_stack_page(p) +
1372 				   THREAD_SIZE, NULL, 0);
1373 		} while_each_thread(g, p);
1374 		read_unlock(&tasklist_lock);
1375 	}
1376 
1377 	/*
1378 	 * Scan the objects already referenced from the sections scanned
1379 	 * above.
1380 	 */
1381 	scan_gray_list();
1382 
1383 	/*
1384 	 * Check for new or unreferenced objects modified since the previous
1385 	 * scan and color them gray until the next scan.
1386 	 */
1387 	rcu_read_lock();
1388 	list_for_each_entry_rcu(object, &object_list, object_list) {
1389 		spin_lock_irqsave(&object->lock, flags);
1390 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1391 		    && update_checksum(object) && get_object(object)) {
1392 			/* color it gray temporarily */
1393 			object->count = object->min_count;
1394 			list_add_tail(&object->gray_list, &gray_list);
1395 		}
1396 		spin_unlock_irqrestore(&object->lock, flags);
1397 	}
1398 	rcu_read_unlock();
1399 
1400 	/*
1401 	 * Re-scan the gray list for modified unreferenced objects.
1402 	 */
1403 	scan_gray_list();
1404 
1405 	/*
1406 	 * If scanning was stopped do not report any new unreferenced objects.
1407 	 */
1408 	if (scan_should_stop())
1409 		return;
1410 
1411 	/*
1412 	 * Scanning result reporting.
1413 	 */
1414 	rcu_read_lock();
1415 	list_for_each_entry_rcu(object, &object_list, object_list) {
1416 		spin_lock_irqsave(&object->lock, flags);
1417 		if (unreferenced_object(object) &&
1418 		    !(object->flags & OBJECT_REPORTED)) {
1419 			object->flags |= OBJECT_REPORTED;
1420 			new_leaks++;
1421 		}
1422 		spin_unlock_irqrestore(&object->lock, flags);
1423 	}
1424 	rcu_read_unlock();
1425 
1426 	if (new_leaks) {
1427 		kmemleak_found_leaks = true;
1428 
1429 		pr_info("%d new suspected memory leaks (see "
1430 			"/sys/kernel/debug/kmemleak)\n", new_leaks);
1431 	}
1432 
1433 }
1434 
1435 /*
1436  * Thread function performing automatic memory scanning. Unreferenced objects
1437  * at the end of a memory scan are reported but only the first time.
1438  */
1439 static int kmemleak_scan_thread(void *arg)
1440 {
1441 	static int first_run = 1;
1442 
1443 	pr_info("Automatic memory scanning thread started\n");
1444 	set_user_nice(current, 10);
1445 
1446 	/*
1447 	 * Wait before the first scan to allow the system to fully initialize.
1448 	 */
1449 	if (first_run) {
1450 		first_run = 0;
1451 		ssleep(SECS_FIRST_SCAN);
1452 	}
1453 
1454 	while (!kthread_should_stop()) {
1455 		signed long timeout = jiffies_scan_wait;
1456 
1457 		mutex_lock(&scan_mutex);
1458 		kmemleak_scan();
1459 		mutex_unlock(&scan_mutex);
1460 
1461 		/* wait before the next scan */
1462 		while (timeout && !kthread_should_stop())
1463 			timeout = schedule_timeout_interruptible(timeout);
1464 	}
1465 
1466 	pr_info("Automatic memory scanning thread ended\n");
1467 
1468 	return 0;
1469 }
1470 
1471 /*
1472  * Start the automatic memory scanning thread. This function must be called
1473  * with the scan_mutex held.
1474  */
1475 static void start_scan_thread(void)
1476 {
1477 	if (scan_thread)
1478 		return;
1479 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1480 	if (IS_ERR(scan_thread)) {
1481 		pr_warning("Failed to create the scan thread\n");
1482 		scan_thread = NULL;
1483 	}
1484 }
1485 
1486 /*
1487  * Stop the automatic memory scanning thread. This function must be called
1488  * with the scan_mutex held.
1489  */
1490 static void stop_scan_thread(void)
1491 {
1492 	if (scan_thread) {
1493 		kthread_stop(scan_thread);
1494 		scan_thread = NULL;
1495 	}
1496 }
1497 
1498 /*
1499  * Iterate over the object_list and return the first valid object at or after
1500  * the required position with its use_count incremented. The function triggers
1501  * a memory scanning when the pos argument points to the first position.
1502  */
1503 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1504 {
1505 	struct kmemleak_object *object;
1506 	loff_t n = *pos;
1507 	int err;
1508 
1509 	err = mutex_lock_interruptible(&scan_mutex);
1510 	if (err < 0)
1511 		return ERR_PTR(err);
1512 
1513 	rcu_read_lock();
1514 	list_for_each_entry_rcu(object, &object_list, object_list) {
1515 		if (n-- > 0)
1516 			continue;
1517 		if (get_object(object))
1518 			goto out;
1519 	}
1520 	object = NULL;
1521 out:
1522 	return object;
1523 }
1524 
1525 /*
1526  * Return the next object in the object_list. The function decrements the
1527  * use_count of the previous object and increases that of the next one.
1528  */
1529 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1530 {
1531 	struct kmemleak_object *prev_obj = v;
1532 	struct kmemleak_object *next_obj = NULL;
1533 	struct kmemleak_object *obj = prev_obj;
1534 
1535 	++(*pos);
1536 
1537 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1538 		if (get_object(obj)) {
1539 			next_obj = obj;
1540 			break;
1541 		}
1542 	}
1543 
1544 	put_object(prev_obj);
1545 	return next_obj;
1546 }
1547 
1548 /*
1549  * Decrement the use_count of the last object required, if any.
1550  */
1551 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1552 {
1553 	if (!IS_ERR(v)) {
1554 		/*
1555 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1556 		 * waiting was interrupted, so only release it if !IS_ERR.
1557 		 */
1558 		rcu_read_unlock();
1559 		mutex_unlock(&scan_mutex);
1560 		if (v)
1561 			put_object(v);
1562 	}
1563 }
1564 
1565 /*
1566  * Print the information for an unreferenced object to the seq file.
1567  */
1568 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1569 {
1570 	struct kmemleak_object *object = v;
1571 	unsigned long flags;
1572 
1573 	spin_lock_irqsave(&object->lock, flags);
1574 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1575 		print_unreferenced(seq, object);
1576 	spin_unlock_irqrestore(&object->lock, flags);
1577 	return 0;
1578 }
1579 
1580 static const struct seq_operations kmemleak_seq_ops = {
1581 	.start = kmemleak_seq_start,
1582 	.next  = kmemleak_seq_next,
1583 	.stop  = kmemleak_seq_stop,
1584 	.show  = kmemleak_seq_show,
1585 };
1586 
1587 static int kmemleak_open(struct inode *inode, struct file *file)
1588 {
1589 	return seq_open(file, &kmemleak_seq_ops);
1590 }
1591 
1592 static int dump_str_object_info(const char *str)
1593 {
1594 	unsigned long flags;
1595 	struct kmemleak_object *object;
1596 	unsigned long addr;
1597 
1598 	if (kstrtoul(str, 0, &addr))
1599 		return -EINVAL;
1600 	object = find_and_get_object(addr, 0);
1601 	if (!object) {
1602 		pr_info("Unknown object at 0x%08lx\n", addr);
1603 		return -EINVAL;
1604 	}
1605 
1606 	spin_lock_irqsave(&object->lock, flags);
1607 	dump_object_info(object);
1608 	spin_unlock_irqrestore(&object->lock, flags);
1609 
1610 	put_object(object);
1611 	return 0;
1612 }
1613 
1614 /*
1615  * We use grey instead of black to ensure we can do future scans on the same
1616  * objects. If we did not do future scans these black objects could
1617  * potentially contain references to newly allocated objects in the future and
1618  * we'd end up with false positives.
1619  */
1620 static void kmemleak_clear(void)
1621 {
1622 	struct kmemleak_object *object;
1623 	unsigned long flags;
1624 
1625 	rcu_read_lock();
1626 	list_for_each_entry_rcu(object, &object_list, object_list) {
1627 		spin_lock_irqsave(&object->lock, flags);
1628 		if ((object->flags & OBJECT_REPORTED) &&
1629 		    unreferenced_object(object))
1630 			__paint_it(object, KMEMLEAK_GREY);
1631 		spin_unlock_irqrestore(&object->lock, flags);
1632 	}
1633 	rcu_read_unlock();
1634 
1635 	kmemleak_found_leaks = false;
1636 }
1637 
1638 static void __kmemleak_do_cleanup(void);
1639 
1640 /*
1641  * File write operation to configure kmemleak at run-time. The following
1642  * commands can be written to the /sys/kernel/debug/kmemleak file:
1643  *   off	- disable kmemleak (irreversible)
1644  *   stack=on	- enable the task stacks scanning
1645  *   stack=off	- disable the tasks stacks scanning
1646  *   scan=on	- start the automatic memory scanning thread
1647  *   scan=off	- stop the automatic memory scanning thread
1648  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1649  *		  disable it)
1650  *   scan	- trigger a memory scan
1651  *   clear	- mark all current reported unreferenced kmemleak objects as
1652  *		  grey to ignore printing them, or free all kmemleak objects
1653  *		  if kmemleak has been disabled.
1654  *   dump=...	- dump information about the object found at the given address
1655  */
1656 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1657 			      size_t size, loff_t *ppos)
1658 {
1659 	char buf[64];
1660 	int buf_size;
1661 	int ret;
1662 
1663 	buf_size = min(size, (sizeof(buf) - 1));
1664 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1665 		return -EFAULT;
1666 	buf[buf_size] = 0;
1667 
1668 	ret = mutex_lock_interruptible(&scan_mutex);
1669 	if (ret < 0)
1670 		return ret;
1671 
1672 	if (strncmp(buf, "clear", 5) == 0) {
1673 		if (kmemleak_enabled)
1674 			kmemleak_clear();
1675 		else
1676 			__kmemleak_do_cleanup();
1677 		goto out;
1678 	}
1679 
1680 	if (!kmemleak_enabled) {
1681 		ret = -EBUSY;
1682 		goto out;
1683 	}
1684 
1685 	if (strncmp(buf, "off", 3) == 0)
1686 		kmemleak_disable();
1687 	else if (strncmp(buf, "stack=on", 8) == 0)
1688 		kmemleak_stack_scan = 1;
1689 	else if (strncmp(buf, "stack=off", 9) == 0)
1690 		kmemleak_stack_scan = 0;
1691 	else if (strncmp(buf, "scan=on", 7) == 0)
1692 		start_scan_thread();
1693 	else if (strncmp(buf, "scan=off", 8) == 0)
1694 		stop_scan_thread();
1695 	else if (strncmp(buf, "scan=", 5) == 0) {
1696 		unsigned long secs;
1697 
1698 		ret = kstrtoul(buf + 5, 0, &secs);
1699 		if (ret < 0)
1700 			goto out;
1701 		stop_scan_thread();
1702 		if (secs) {
1703 			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1704 			start_scan_thread();
1705 		}
1706 	} else if (strncmp(buf, "scan", 4) == 0)
1707 		kmemleak_scan();
1708 	else if (strncmp(buf, "dump=", 5) == 0)
1709 		ret = dump_str_object_info(buf + 5);
1710 	else
1711 		ret = -EINVAL;
1712 
1713 out:
1714 	mutex_unlock(&scan_mutex);
1715 	if (ret < 0)
1716 		return ret;
1717 
1718 	/* ignore the rest of the buffer, only one command at a time */
1719 	*ppos += size;
1720 	return size;
1721 }
1722 
1723 static const struct file_operations kmemleak_fops = {
1724 	.owner		= THIS_MODULE,
1725 	.open		= kmemleak_open,
1726 	.read		= seq_read,
1727 	.write		= kmemleak_write,
1728 	.llseek		= seq_lseek,
1729 	.release	= seq_release,
1730 };
1731 
1732 static void __kmemleak_do_cleanup(void)
1733 {
1734 	struct kmemleak_object *object;
1735 
1736 	rcu_read_lock();
1737 	list_for_each_entry_rcu(object, &object_list, object_list)
1738 		delete_object_full(object->pointer);
1739 	rcu_read_unlock();
1740 }
1741 
1742 /*
1743  * Stop the memory scanning thread and free the kmemleak internal objects if
1744  * no previous scan thread (otherwise, kmemleak may still have some useful
1745  * information on memory leaks).
1746  */
1747 static void kmemleak_do_cleanup(struct work_struct *work)
1748 {
1749 	mutex_lock(&scan_mutex);
1750 	stop_scan_thread();
1751 
1752 	if (!kmemleak_found_leaks)
1753 		__kmemleak_do_cleanup();
1754 	else
1755 		pr_info("Kmemleak disabled without freeing internal data. "
1756 			"Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\"\n");
1757 	mutex_unlock(&scan_mutex);
1758 }
1759 
1760 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1761 
1762 /*
1763  * Disable kmemleak. No memory allocation/freeing will be traced once this
1764  * function is called. Disabling kmemleak is an irreversible operation.
1765  */
1766 static void kmemleak_disable(void)
1767 {
1768 	/* atomically check whether it was already invoked */
1769 	if (cmpxchg(&kmemleak_error, 0, 1))
1770 		return;
1771 
1772 	/* stop any memory operation tracing */
1773 	kmemleak_enabled = 0;
1774 
1775 	/* check whether it is too early for a kernel thread */
1776 	if (kmemleak_initialized)
1777 		schedule_work(&cleanup_work);
1778 
1779 	pr_info("Kernel memory leak detector disabled\n");
1780 }
1781 
1782 /*
1783  * Allow boot-time kmemleak disabling (enabled by default).
1784  */
1785 static int kmemleak_boot_config(char *str)
1786 {
1787 	if (!str)
1788 		return -EINVAL;
1789 	if (strcmp(str, "off") == 0)
1790 		kmemleak_disable();
1791 	else if (strcmp(str, "on") == 0)
1792 		kmemleak_skip_disable = 1;
1793 	else
1794 		return -EINVAL;
1795 	return 0;
1796 }
1797 early_param("kmemleak", kmemleak_boot_config);
1798 
1799 static void __init print_log_trace(struct early_log *log)
1800 {
1801 	struct stack_trace trace;
1802 
1803 	trace.nr_entries = log->trace_len;
1804 	trace.entries = log->trace;
1805 
1806 	pr_notice("Early log backtrace:\n");
1807 	print_stack_trace(&trace, 2);
1808 }
1809 
1810 /*
1811  * Kmemleak initialization.
1812  */
1813 void __init kmemleak_init(void)
1814 {
1815 	int i;
1816 	unsigned long flags;
1817 
1818 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1819 	if (!kmemleak_skip_disable) {
1820 		kmemleak_early_log = 0;
1821 		kmemleak_disable();
1822 		return;
1823 	}
1824 #endif
1825 
1826 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1827 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1828 
1829 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1830 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1831 
1832 	if (crt_early_log >= ARRAY_SIZE(early_log))
1833 		pr_warning("Early log buffer exceeded (%d), please increase "
1834 			   "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
1835 
1836 	/* the kernel is still in UP mode, so disabling the IRQs is enough */
1837 	local_irq_save(flags);
1838 	kmemleak_early_log = 0;
1839 	if (kmemleak_error) {
1840 		local_irq_restore(flags);
1841 		return;
1842 	} else
1843 		kmemleak_enabled = 1;
1844 	local_irq_restore(flags);
1845 
1846 	/*
1847 	 * This is the point where tracking allocations is safe. Automatic
1848 	 * scanning is started during the late initcall. Add the early logged
1849 	 * callbacks to the kmemleak infrastructure.
1850 	 */
1851 	for (i = 0; i < crt_early_log; i++) {
1852 		struct early_log *log = &early_log[i];
1853 
1854 		switch (log->op_type) {
1855 		case KMEMLEAK_ALLOC:
1856 			early_alloc(log);
1857 			break;
1858 		case KMEMLEAK_ALLOC_PERCPU:
1859 			early_alloc_percpu(log);
1860 			break;
1861 		case KMEMLEAK_FREE:
1862 			kmemleak_free(log->ptr);
1863 			break;
1864 		case KMEMLEAK_FREE_PART:
1865 			kmemleak_free_part(log->ptr, log->size);
1866 			break;
1867 		case KMEMLEAK_FREE_PERCPU:
1868 			kmemleak_free_percpu(log->ptr);
1869 			break;
1870 		case KMEMLEAK_NOT_LEAK:
1871 			kmemleak_not_leak(log->ptr);
1872 			break;
1873 		case KMEMLEAK_IGNORE:
1874 			kmemleak_ignore(log->ptr);
1875 			break;
1876 		case KMEMLEAK_SCAN_AREA:
1877 			kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1878 			break;
1879 		case KMEMLEAK_NO_SCAN:
1880 			kmemleak_no_scan(log->ptr);
1881 			break;
1882 		default:
1883 			kmemleak_warn("Unknown early log operation: %d\n",
1884 				      log->op_type);
1885 		}
1886 
1887 		if (kmemleak_warning) {
1888 			print_log_trace(log);
1889 			kmemleak_warning = 0;
1890 		}
1891 	}
1892 }
1893 
1894 /*
1895  * Late initialization function.
1896  */
1897 static int __init kmemleak_late_init(void)
1898 {
1899 	struct dentry *dentry;
1900 
1901 	kmemleak_initialized = 1;
1902 
1903 	if (kmemleak_error) {
1904 		/*
1905 		 * Some error occurred and kmemleak was disabled. There is a
1906 		 * small chance that kmemleak_disable() was called immediately
1907 		 * after setting kmemleak_initialized and we may end up with
1908 		 * two clean-up threads but serialized by scan_mutex.
1909 		 */
1910 		schedule_work(&cleanup_work);
1911 		return -ENOMEM;
1912 	}
1913 
1914 	dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1915 				     &kmemleak_fops);
1916 	if (!dentry)
1917 		pr_warning("Failed to create the debugfs kmemleak file\n");
1918 	mutex_lock(&scan_mutex);
1919 	start_scan_thread();
1920 	mutex_unlock(&scan_mutex);
1921 
1922 	pr_info("Kernel memory leak detector initialized\n");
1923 
1924 	return 0;
1925 }
1926 late_initcall(kmemleak_late_init);
1927