1 /* 2 * mm/kmemleak.c 3 * 4 * Copyright (C) 2008 ARM Limited 5 * Written by Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 * 21 * For more information on the algorithm and kmemleak usage, please see 22 * Documentation/kmemleak.txt. 23 * 24 * Notes on locking 25 * ---------------- 26 * 27 * The following locks and mutexes are used by kmemleak: 28 * 29 * - kmemleak_lock (rwlock): protects the object_list modifications and 30 * accesses to the object_tree_root. The object_list is the main list 31 * holding the metadata (struct kmemleak_object) for the allocated memory 32 * blocks. The object_tree_root is a red black tree used to look-up 33 * metadata based on a pointer to the corresponding memory block. The 34 * kmemleak_object structures are added to the object_list and 35 * object_tree_root in the create_object() function called from the 36 * kmemleak_alloc() callback and removed in delete_object() called from the 37 * kmemleak_free() callback 38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to 39 * the metadata (e.g. count) are protected by this lock. Note that some 40 * members of this structure may be protected by other means (atomic or 41 * kmemleak_lock). This lock is also held when scanning the corresponding 42 * memory block to avoid the kernel freeing it via the kmemleak_free() 43 * callback. This is less heavyweight than holding a global lock like 44 * kmemleak_lock during scanning 45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 46 * unreferenced objects at a time. The gray_list contains the objects which 47 * are already referenced or marked as false positives and need to be 48 * scanned. This list is only modified during a scanning episode when the 49 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 50 * Note that the kmemleak_object.use_count is incremented when an object is 51 * added to the gray_list and therefore cannot be freed. This mutex also 52 * prevents multiple users of the "kmemleak" debugfs file together with 53 * modifications to the memory scanning parameters including the scan_thread 54 * pointer 55 * 56 * The kmemleak_object structures have a use_count incremented or decremented 57 * using the get_object()/put_object() functions. When the use_count becomes 58 * 0, this count can no longer be incremented and put_object() schedules the 59 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 60 * function must be protected by rcu_read_lock() to avoid accessing a freed 61 * structure. 62 */ 63 64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 65 66 #include <linux/init.h> 67 #include <linux/kernel.h> 68 #include <linux/list.h> 69 #include <linux/sched.h> 70 #include <linux/jiffies.h> 71 #include <linux/delay.h> 72 #include <linux/export.h> 73 #include <linux/kthread.h> 74 #include <linux/rbtree.h> 75 #include <linux/fs.h> 76 #include <linux/debugfs.h> 77 #include <linux/seq_file.h> 78 #include <linux/cpumask.h> 79 #include <linux/spinlock.h> 80 #include <linux/mutex.h> 81 #include <linux/rcupdate.h> 82 #include <linux/stacktrace.h> 83 #include <linux/cache.h> 84 #include <linux/percpu.h> 85 #include <linux/hardirq.h> 86 #include <linux/mmzone.h> 87 #include <linux/slab.h> 88 #include <linux/thread_info.h> 89 #include <linux/err.h> 90 #include <linux/uaccess.h> 91 #include <linux/string.h> 92 #include <linux/nodemask.h> 93 #include <linux/mm.h> 94 #include <linux/workqueue.h> 95 #include <linux/crc32.h> 96 97 #include <asm/sections.h> 98 #include <asm/processor.h> 99 #include <linux/atomic.h> 100 101 #include <linux/kasan.h> 102 #include <linux/kmemcheck.h> 103 #include <linux/kmemleak.h> 104 #include <linux/memory_hotplug.h> 105 106 /* 107 * Kmemleak configuration and common defines. 108 */ 109 #define MAX_TRACE 16 /* stack trace length */ 110 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 111 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 112 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 113 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 114 115 #define BYTES_PER_POINTER sizeof(void *) 116 117 /* GFP bitmask for kmemleak internal allocations */ 118 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \ 119 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 120 __GFP_NOWARN) 121 122 /* scanning area inside a memory block */ 123 struct kmemleak_scan_area { 124 struct hlist_node node; 125 unsigned long start; 126 size_t size; 127 }; 128 129 #define KMEMLEAK_GREY 0 130 #define KMEMLEAK_BLACK -1 131 132 /* 133 * Structure holding the metadata for each allocated memory block. 134 * Modifications to such objects should be made while holding the 135 * object->lock. Insertions or deletions from object_list, gray_list or 136 * rb_node are already protected by the corresponding locks or mutex (see 137 * the notes on locking above). These objects are reference-counted 138 * (use_count) and freed using the RCU mechanism. 139 */ 140 struct kmemleak_object { 141 spinlock_t lock; 142 unsigned long flags; /* object status flags */ 143 struct list_head object_list; 144 struct list_head gray_list; 145 struct rb_node rb_node; 146 struct rcu_head rcu; /* object_list lockless traversal */ 147 /* object usage count; object freed when use_count == 0 */ 148 atomic_t use_count; 149 unsigned long pointer; 150 size_t size; 151 /* minimum number of a pointers found before it is considered leak */ 152 int min_count; 153 /* the total number of pointers found pointing to this object */ 154 int count; 155 /* checksum for detecting modified objects */ 156 u32 checksum; 157 /* memory ranges to be scanned inside an object (empty for all) */ 158 struct hlist_head area_list; 159 unsigned long trace[MAX_TRACE]; 160 unsigned int trace_len; 161 unsigned long jiffies; /* creation timestamp */ 162 pid_t pid; /* pid of the current task */ 163 char comm[TASK_COMM_LEN]; /* executable name */ 164 }; 165 166 /* flag representing the memory block allocation status */ 167 #define OBJECT_ALLOCATED (1 << 0) 168 /* flag set after the first reporting of an unreference object */ 169 #define OBJECT_REPORTED (1 << 1) 170 /* flag set to not scan the object */ 171 #define OBJECT_NO_SCAN (1 << 2) 172 173 /* number of bytes to print per line; must be 16 or 32 */ 174 #define HEX_ROW_SIZE 16 175 /* number of bytes to print at a time (1, 2, 4, 8) */ 176 #define HEX_GROUP_SIZE 1 177 /* include ASCII after the hex output */ 178 #define HEX_ASCII 1 179 /* max number of lines to be printed */ 180 #define HEX_MAX_LINES 2 181 182 /* the list of all allocated objects */ 183 static LIST_HEAD(object_list); 184 /* the list of gray-colored objects (see color_gray comment below) */ 185 static LIST_HEAD(gray_list); 186 /* search tree for object boundaries */ 187 static struct rb_root object_tree_root = RB_ROOT; 188 /* rw_lock protecting the access to object_list and object_tree_root */ 189 static DEFINE_RWLOCK(kmemleak_lock); 190 191 /* allocation caches for kmemleak internal data */ 192 static struct kmem_cache *object_cache; 193 static struct kmem_cache *scan_area_cache; 194 195 /* set if tracing memory operations is enabled */ 196 static int kmemleak_enabled; 197 /* set in the late_initcall if there were no errors */ 198 static int kmemleak_initialized; 199 /* enables or disables early logging of the memory operations */ 200 static int kmemleak_early_log = 1; 201 /* set if a kmemleak warning was issued */ 202 static int kmemleak_warning; 203 /* set if a fatal kmemleak error has occurred */ 204 static int kmemleak_error; 205 206 /* minimum and maximum address that may be valid pointers */ 207 static unsigned long min_addr = ULONG_MAX; 208 static unsigned long max_addr; 209 210 static struct task_struct *scan_thread; 211 /* used to avoid reporting of recently allocated objects */ 212 static unsigned long jiffies_min_age; 213 static unsigned long jiffies_last_scan; 214 /* delay between automatic memory scannings */ 215 static signed long jiffies_scan_wait; 216 /* enables or disables the task stacks scanning */ 217 static int kmemleak_stack_scan = 1; 218 /* protects the memory scanning, parameters and debug/kmemleak file access */ 219 static DEFINE_MUTEX(scan_mutex); 220 /* setting kmemleak=on, will set this var, skipping the disable */ 221 static int kmemleak_skip_disable; 222 /* If there are leaks that can be reported */ 223 static bool kmemleak_found_leaks; 224 225 /* 226 * Early object allocation/freeing logging. Kmemleak is initialized after the 227 * kernel allocator. However, both the kernel allocator and kmemleak may 228 * allocate memory blocks which need to be tracked. Kmemleak defines an 229 * arbitrary buffer to hold the allocation/freeing information before it is 230 * fully initialized. 231 */ 232 233 /* kmemleak operation type for early logging */ 234 enum { 235 KMEMLEAK_ALLOC, 236 KMEMLEAK_ALLOC_PERCPU, 237 KMEMLEAK_FREE, 238 KMEMLEAK_FREE_PART, 239 KMEMLEAK_FREE_PERCPU, 240 KMEMLEAK_NOT_LEAK, 241 KMEMLEAK_IGNORE, 242 KMEMLEAK_SCAN_AREA, 243 KMEMLEAK_NO_SCAN 244 }; 245 246 /* 247 * Structure holding the information passed to kmemleak callbacks during the 248 * early logging. 249 */ 250 struct early_log { 251 int op_type; /* kmemleak operation type */ 252 const void *ptr; /* allocated/freed memory block */ 253 size_t size; /* memory block size */ 254 int min_count; /* minimum reference count */ 255 unsigned long trace[MAX_TRACE]; /* stack trace */ 256 unsigned int trace_len; /* stack trace length */ 257 }; 258 259 /* early logging buffer and current position */ 260 static struct early_log 261 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata; 262 static int crt_early_log __initdata; 263 264 static void kmemleak_disable(void); 265 266 /* 267 * Print a warning and dump the stack trace. 268 */ 269 #define kmemleak_warn(x...) do { \ 270 pr_warning(x); \ 271 dump_stack(); \ 272 kmemleak_warning = 1; \ 273 } while (0) 274 275 /* 276 * Macro invoked when a serious kmemleak condition occurred and cannot be 277 * recovered from. Kmemleak will be disabled and further allocation/freeing 278 * tracing no longer available. 279 */ 280 #define kmemleak_stop(x...) do { \ 281 kmemleak_warn(x); \ 282 kmemleak_disable(); \ 283 } while (0) 284 285 /* 286 * Printing of the objects hex dump to the seq file. The number of lines to be 287 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 288 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 289 * with the object->lock held. 290 */ 291 static void hex_dump_object(struct seq_file *seq, 292 struct kmemleak_object *object) 293 { 294 const u8 *ptr = (const u8 *)object->pointer; 295 int i, len, remaining; 296 unsigned char linebuf[HEX_ROW_SIZE * 5]; 297 298 /* limit the number of lines to HEX_MAX_LINES */ 299 remaining = len = 300 min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE)); 301 302 seq_printf(seq, " hex dump (first %d bytes):\n", len); 303 for (i = 0; i < len; i += HEX_ROW_SIZE) { 304 int linelen = min(remaining, HEX_ROW_SIZE); 305 306 remaining -= HEX_ROW_SIZE; 307 hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE, 308 HEX_GROUP_SIZE, linebuf, sizeof(linebuf), 309 HEX_ASCII); 310 seq_printf(seq, " %s\n", linebuf); 311 } 312 } 313 314 /* 315 * Object colors, encoded with count and min_count: 316 * - white - orphan object, not enough references to it (count < min_count) 317 * - gray - not orphan, not marked as false positive (min_count == 0) or 318 * sufficient references to it (count >= min_count) 319 * - black - ignore, it doesn't contain references (e.g. text section) 320 * (min_count == -1). No function defined for this color. 321 * Newly created objects don't have any color assigned (object->count == -1) 322 * before the next memory scan when they become white. 323 */ 324 static bool color_white(const struct kmemleak_object *object) 325 { 326 return object->count != KMEMLEAK_BLACK && 327 object->count < object->min_count; 328 } 329 330 static bool color_gray(const struct kmemleak_object *object) 331 { 332 return object->min_count != KMEMLEAK_BLACK && 333 object->count >= object->min_count; 334 } 335 336 /* 337 * Objects are considered unreferenced only if their color is white, they have 338 * not be deleted and have a minimum age to avoid false positives caused by 339 * pointers temporarily stored in CPU registers. 340 */ 341 static bool unreferenced_object(struct kmemleak_object *object) 342 { 343 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 344 time_before_eq(object->jiffies + jiffies_min_age, 345 jiffies_last_scan); 346 } 347 348 /* 349 * Printing of the unreferenced objects information to the seq file. The 350 * print_unreferenced function must be called with the object->lock held. 351 */ 352 static void print_unreferenced(struct seq_file *seq, 353 struct kmemleak_object *object) 354 { 355 int i; 356 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 357 358 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 359 object->pointer, object->size); 360 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 361 object->comm, object->pid, object->jiffies, 362 msecs_age / 1000, msecs_age % 1000); 363 hex_dump_object(seq, object); 364 seq_printf(seq, " backtrace:\n"); 365 366 for (i = 0; i < object->trace_len; i++) { 367 void *ptr = (void *)object->trace[i]; 368 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); 369 } 370 } 371 372 /* 373 * Print the kmemleak_object information. This function is used mainly for 374 * debugging special cases when kmemleak operations. It must be called with 375 * the object->lock held. 376 */ 377 static void dump_object_info(struct kmemleak_object *object) 378 { 379 struct stack_trace trace; 380 381 trace.nr_entries = object->trace_len; 382 trace.entries = object->trace; 383 384 pr_notice("Object 0x%08lx (size %zu):\n", 385 object->pointer, object->size); 386 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 387 object->comm, object->pid, object->jiffies); 388 pr_notice(" min_count = %d\n", object->min_count); 389 pr_notice(" count = %d\n", object->count); 390 pr_notice(" flags = 0x%lx\n", object->flags); 391 pr_notice(" checksum = %u\n", object->checksum); 392 pr_notice(" backtrace:\n"); 393 print_stack_trace(&trace, 4); 394 } 395 396 /* 397 * Look-up a memory block metadata (kmemleak_object) in the object search 398 * tree based on a pointer value. If alias is 0, only values pointing to the 399 * beginning of the memory block are allowed. The kmemleak_lock must be held 400 * when calling this function. 401 */ 402 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 403 { 404 struct rb_node *rb = object_tree_root.rb_node; 405 406 while (rb) { 407 struct kmemleak_object *object = 408 rb_entry(rb, struct kmemleak_object, rb_node); 409 if (ptr < object->pointer) 410 rb = object->rb_node.rb_left; 411 else if (object->pointer + object->size <= ptr) 412 rb = object->rb_node.rb_right; 413 else if (object->pointer == ptr || alias) 414 return object; 415 else { 416 kmemleak_warn("Found object by alias at 0x%08lx\n", 417 ptr); 418 dump_object_info(object); 419 break; 420 } 421 } 422 return NULL; 423 } 424 425 /* 426 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 427 * that once an object's use_count reached 0, the RCU freeing was already 428 * registered and the object should no longer be used. This function must be 429 * called under the protection of rcu_read_lock(). 430 */ 431 static int get_object(struct kmemleak_object *object) 432 { 433 return atomic_inc_not_zero(&object->use_count); 434 } 435 436 /* 437 * RCU callback to free a kmemleak_object. 438 */ 439 static void free_object_rcu(struct rcu_head *rcu) 440 { 441 struct hlist_node *tmp; 442 struct kmemleak_scan_area *area; 443 struct kmemleak_object *object = 444 container_of(rcu, struct kmemleak_object, rcu); 445 446 /* 447 * Once use_count is 0 (guaranteed by put_object), there is no other 448 * code accessing this object, hence no need for locking. 449 */ 450 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 451 hlist_del(&area->node); 452 kmem_cache_free(scan_area_cache, area); 453 } 454 kmem_cache_free(object_cache, object); 455 } 456 457 /* 458 * Decrement the object use_count. Once the count is 0, free the object using 459 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 460 * delete_object() path, the delayed RCU freeing ensures that there is no 461 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 462 * is also possible. 463 */ 464 static void put_object(struct kmemleak_object *object) 465 { 466 if (!atomic_dec_and_test(&object->use_count)) 467 return; 468 469 /* should only get here after delete_object was called */ 470 WARN_ON(object->flags & OBJECT_ALLOCATED); 471 472 call_rcu(&object->rcu, free_object_rcu); 473 } 474 475 /* 476 * Look up an object in the object search tree and increase its use_count. 477 */ 478 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 479 { 480 unsigned long flags; 481 struct kmemleak_object *object = NULL; 482 483 rcu_read_lock(); 484 read_lock_irqsave(&kmemleak_lock, flags); 485 if (ptr >= min_addr && ptr < max_addr) 486 object = lookup_object(ptr, alias); 487 read_unlock_irqrestore(&kmemleak_lock, flags); 488 489 /* check whether the object is still available */ 490 if (object && !get_object(object)) 491 object = NULL; 492 rcu_read_unlock(); 493 494 return object; 495 } 496 497 /* 498 * Save stack trace to the given array of MAX_TRACE size. 499 */ 500 static int __save_stack_trace(unsigned long *trace) 501 { 502 struct stack_trace stack_trace; 503 504 stack_trace.max_entries = MAX_TRACE; 505 stack_trace.nr_entries = 0; 506 stack_trace.entries = trace; 507 stack_trace.skip = 2; 508 save_stack_trace(&stack_trace); 509 510 return stack_trace.nr_entries; 511 } 512 513 /* 514 * Create the metadata (struct kmemleak_object) corresponding to an allocated 515 * memory block and add it to the object_list and object_tree_root. 516 */ 517 static struct kmemleak_object *create_object(unsigned long ptr, size_t size, 518 int min_count, gfp_t gfp) 519 { 520 unsigned long flags; 521 struct kmemleak_object *object, *parent; 522 struct rb_node **link, *rb_parent; 523 524 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 525 if (!object) { 526 pr_warning("Cannot allocate a kmemleak_object structure\n"); 527 kmemleak_disable(); 528 return NULL; 529 } 530 531 INIT_LIST_HEAD(&object->object_list); 532 INIT_LIST_HEAD(&object->gray_list); 533 INIT_HLIST_HEAD(&object->area_list); 534 spin_lock_init(&object->lock); 535 atomic_set(&object->use_count, 1); 536 object->flags = OBJECT_ALLOCATED; 537 object->pointer = ptr; 538 object->size = size; 539 object->min_count = min_count; 540 object->count = 0; /* white color initially */ 541 object->jiffies = jiffies; 542 object->checksum = 0; 543 544 /* task information */ 545 if (in_irq()) { 546 object->pid = 0; 547 strncpy(object->comm, "hardirq", sizeof(object->comm)); 548 } else if (in_softirq()) { 549 object->pid = 0; 550 strncpy(object->comm, "softirq", sizeof(object->comm)); 551 } else { 552 object->pid = current->pid; 553 /* 554 * There is a small chance of a race with set_task_comm(), 555 * however using get_task_comm() here may cause locking 556 * dependency issues with current->alloc_lock. In the worst 557 * case, the command line is not correct. 558 */ 559 strncpy(object->comm, current->comm, sizeof(object->comm)); 560 } 561 562 /* kernel backtrace */ 563 object->trace_len = __save_stack_trace(object->trace); 564 565 write_lock_irqsave(&kmemleak_lock, flags); 566 567 min_addr = min(min_addr, ptr); 568 max_addr = max(max_addr, ptr + size); 569 link = &object_tree_root.rb_node; 570 rb_parent = NULL; 571 while (*link) { 572 rb_parent = *link; 573 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 574 if (ptr + size <= parent->pointer) 575 link = &parent->rb_node.rb_left; 576 else if (parent->pointer + parent->size <= ptr) 577 link = &parent->rb_node.rb_right; 578 else { 579 kmemleak_stop("Cannot insert 0x%lx into the object " 580 "search tree (overlaps existing)\n", 581 ptr); 582 kmem_cache_free(object_cache, object); 583 object = parent; 584 spin_lock(&object->lock); 585 dump_object_info(object); 586 spin_unlock(&object->lock); 587 goto out; 588 } 589 } 590 rb_link_node(&object->rb_node, rb_parent, link); 591 rb_insert_color(&object->rb_node, &object_tree_root); 592 593 list_add_tail_rcu(&object->object_list, &object_list); 594 out: 595 write_unlock_irqrestore(&kmemleak_lock, flags); 596 return object; 597 } 598 599 /* 600 * Remove the metadata (struct kmemleak_object) for a memory block from the 601 * object_list and object_tree_root and decrement its use_count. 602 */ 603 static void __delete_object(struct kmemleak_object *object) 604 { 605 unsigned long flags; 606 607 write_lock_irqsave(&kmemleak_lock, flags); 608 rb_erase(&object->rb_node, &object_tree_root); 609 list_del_rcu(&object->object_list); 610 write_unlock_irqrestore(&kmemleak_lock, flags); 611 612 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 613 WARN_ON(atomic_read(&object->use_count) < 2); 614 615 /* 616 * Locking here also ensures that the corresponding memory block 617 * cannot be freed when it is being scanned. 618 */ 619 spin_lock_irqsave(&object->lock, flags); 620 object->flags &= ~OBJECT_ALLOCATED; 621 spin_unlock_irqrestore(&object->lock, flags); 622 put_object(object); 623 } 624 625 /* 626 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 627 * delete it. 628 */ 629 static void delete_object_full(unsigned long ptr) 630 { 631 struct kmemleak_object *object; 632 633 object = find_and_get_object(ptr, 0); 634 if (!object) { 635 #ifdef DEBUG 636 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 637 ptr); 638 #endif 639 return; 640 } 641 __delete_object(object); 642 put_object(object); 643 } 644 645 /* 646 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 647 * delete it. If the memory block is partially freed, the function may create 648 * additional metadata for the remaining parts of the block. 649 */ 650 static void delete_object_part(unsigned long ptr, size_t size) 651 { 652 struct kmemleak_object *object; 653 unsigned long start, end; 654 655 object = find_and_get_object(ptr, 1); 656 if (!object) { 657 #ifdef DEBUG 658 kmemleak_warn("Partially freeing unknown object at 0x%08lx " 659 "(size %zu)\n", ptr, size); 660 #endif 661 return; 662 } 663 __delete_object(object); 664 665 /* 666 * Create one or two objects that may result from the memory block 667 * split. Note that partial freeing is only done by free_bootmem() and 668 * this happens before kmemleak_init() is called. The path below is 669 * only executed during early log recording in kmemleak_init(), so 670 * GFP_KERNEL is enough. 671 */ 672 start = object->pointer; 673 end = object->pointer + object->size; 674 if (ptr > start) 675 create_object(start, ptr - start, object->min_count, 676 GFP_KERNEL); 677 if (ptr + size < end) 678 create_object(ptr + size, end - ptr - size, object->min_count, 679 GFP_KERNEL); 680 681 put_object(object); 682 } 683 684 static void __paint_it(struct kmemleak_object *object, int color) 685 { 686 object->min_count = color; 687 if (color == KMEMLEAK_BLACK) 688 object->flags |= OBJECT_NO_SCAN; 689 } 690 691 static void paint_it(struct kmemleak_object *object, int color) 692 { 693 unsigned long flags; 694 695 spin_lock_irqsave(&object->lock, flags); 696 __paint_it(object, color); 697 spin_unlock_irqrestore(&object->lock, flags); 698 } 699 700 static void paint_ptr(unsigned long ptr, int color) 701 { 702 struct kmemleak_object *object; 703 704 object = find_and_get_object(ptr, 0); 705 if (!object) { 706 kmemleak_warn("Trying to color unknown object " 707 "at 0x%08lx as %s\n", ptr, 708 (color == KMEMLEAK_GREY) ? "Grey" : 709 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 710 return; 711 } 712 paint_it(object, color); 713 put_object(object); 714 } 715 716 /* 717 * Mark an object permanently as gray-colored so that it can no longer be 718 * reported as a leak. This is used in general to mark a false positive. 719 */ 720 static void make_gray_object(unsigned long ptr) 721 { 722 paint_ptr(ptr, KMEMLEAK_GREY); 723 } 724 725 /* 726 * Mark the object as black-colored so that it is ignored from scans and 727 * reporting. 728 */ 729 static void make_black_object(unsigned long ptr) 730 { 731 paint_ptr(ptr, KMEMLEAK_BLACK); 732 } 733 734 /* 735 * Add a scanning area to the object. If at least one such area is added, 736 * kmemleak will only scan these ranges rather than the whole memory block. 737 */ 738 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 739 { 740 unsigned long flags; 741 struct kmemleak_object *object; 742 struct kmemleak_scan_area *area; 743 744 object = find_and_get_object(ptr, 1); 745 if (!object) { 746 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 747 ptr); 748 return; 749 } 750 751 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 752 if (!area) { 753 pr_warning("Cannot allocate a scan area\n"); 754 goto out; 755 } 756 757 spin_lock_irqsave(&object->lock, flags); 758 if (size == SIZE_MAX) { 759 size = object->pointer + object->size - ptr; 760 } else if (ptr + size > object->pointer + object->size) { 761 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 762 dump_object_info(object); 763 kmem_cache_free(scan_area_cache, area); 764 goto out_unlock; 765 } 766 767 INIT_HLIST_NODE(&area->node); 768 area->start = ptr; 769 area->size = size; 770 771 hlist_add_head(&area->node, &object->area_list); 772 out_unlock: 773 spin_unlock_irqrestore(&object->lock, flags); 774 out: 775 put_object(object); 776 } 777 778 /* 779 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 780 * pointer. Such object will not be scanned by kmemleak but references to it 781 * are searched. 782 */ 783 static void object_no_scan(unsigned long ptr) 784 { 785 unsigned long flags; 786 struct kmemleak_object *object; 787 788 object = find_and_get_object(ptr, 0); 789 if (!object) { 790 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 791 return; 792 } 793 794 spin_lock_irqsave(&object->lock, flags); 795 object->flags |= OBJECT_NO_SCAN; 796 spin_unlock_irqrestore(&object->lock, flags); 797 put_object(object); 798 } 799 800 /* 801 * Log an early kmemleak_* call to the early_log buffer. These calls will be 802 * processed later once kmemleak is fully initialized. 803 */ 804 static void __init log_early(int op_type, const void *ptr, size_t size, 805 int min_count) 806 { 807 unsigned long flags; 808 struct early_log *log; 809 810 if (kmemleak_error) { 811 /* kmemleak stopped recording, just count the requests */ 812 crt_early_log++; 813 return; 814 } 815 816 if (crt_early_log >= ARRAY_SIZE(early_log)) { 817 kmemleak_disable(); 818 return; 819 } 820 821 /* 822 * There is no need for locking since the kernel is still in UP mode 823 * at this stage. Disabling the IRQs is enough. 824 */ 825 local_irq_save(flags); 826 log = &early_log[crt_early_log]; 827 log->op_type = op_type; 828 log->ptr = ptr; 829 log->size = size; 830 log->min_count = min_count; 831 log->trace_len = __save_stack_trace(log->trace); 832 crt_early_log++; 833 local_irq_restore(flags); 834 } 835 836 /* 837 * Log an early allocated block and populate the stack trace. 838 */ 839 static void early_alloc(struct early_log *log) 840 { 841 struct kmemleak_object *object; 842 unsigned long flags; 843 int i; 844 845 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr)) 846 return; 847 848 /* 849 * RCU locking needed to ensure object is not freed via put_object(). 850 */ 851 rcu_read_lock(); 852 object = create_object((unsigned long)log->ptr, log->size, 853 log->min_count, GFP_ATOMIC); 854 if (!object) 855 goto out; 856 spin_lock_irqsave(&object->lock, flags); 857 for (i = 0; i < log->trace_len; i++) 858 object->trace[i] = log->trace[i]; 859 object->trace_len = log->trace_len; 860 spin_unlock_irqrestore(&object->lock, flags); 861 out: 862 rcu_read_unlock(); 863 } 864 865 /* 866 * Log an early allocated block and populate the stack trace. 867 */ 868 static void early_alloc_percpu(struct early_log *log) 869 { 870 unsigned int cpu; 871 const void __percpu *ptr = log->ptr; 872 873 for_each_possible_cpu(cpu) { 874 log->ptr = per_cpu_ptr(ptr, cpu); 875 early_alloc(log); 876 } 877 } 878 879 /** 880 * kmemleak_alloc - register a newly allocated object 881 * @ptr: pointer to beginning of the object 882 * @size: size of the object 883 * @min_count: minimum number of references to this object. If during memory 884 * scanning a number of references less than @min_count is found, 885 * the object is reported as a memory leak. If @min_count is 0, 886 * the object is never reported as a leak. If @min_count is -1, 887 * the object is ignored (not scanned and not reported as a leak) 888 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 889 * 890 * This function is called from the kernel allocators when a new object 891 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.). 892 */ 893 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 894 gfp_t gfp) 895 { 896 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 897 898 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 899 create_object((unsigned long)ptr, size, min_count, gfp); 900 else if (kmemleak_early_log) 901 log_early(KMEMLEAK_ALLOC, ptr, size, min_count); 902 } 903 EXPORT_SYMBOL_GPL(kmemleak_alloc); 904 905 /** 906 * kmemleak_alloc_percpu - register a newly allocated __percpu object 907 * @ptr: __percpu pointer to beginning of the object 908 * @size: size of the object 909 * 910 * This function is called from the kernel percpu allocator when a new object 911 * (memory block) is allocated (alloc_percpu). It assumes GFP_KERNEL 912 * allocation. 913 */ 914 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size) 915 { 916 unsigned int cpu; 917 918 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); 919 920 /* 921 * Percpu allocations are only scanned and not reported as leaks 922 * (min_count is set to 0). 923 */ 924 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 925 for_each_possible_cpu(cpu) 926 create_object((unsigned long)per_cpu_ptr(ptr, cpu), 927 size, 0, GFP_KERNEL); 928 else if (kmemleak_early_log) 929 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0); 930 } 931 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 932 933 /** 934 * kmemleak_free - unregister a previously registered object 935 * @ptr: pointer to beginning of the object 936 * 937 * This function is called from the kernel allocators when an object (memory 938 * block) is freed (kmem_cache_free, kfree, vfree etc.). 939 */ 940 void __ref kmemleak_free(const void *ptr) 941 { 942 pr_debug("%s(0x%p)\n", __func__, ptr); 943 944 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 945 delete_object_full((unsigned long)ptr); 946 else if (kmemleak_early_log) 947 log_early(KMEMLEAK_FREE, ptr, 0, 0); 948 } 949 EXPORT_SYMBOL_GPL(kmemleak_free); 950 951 /** 952 * kmemleak_free_part - partially unregister a previously registered object 953 * @ptr: pointer to the beginning or inside the object. This also 954 * represents the start of the range to be freed 955 * @size: size to be unregistered 956 * 957 * This function is called when only a part of a memory block is freed 958 * (usually from the bootmem allocator). 959 */ 960 void __ref kmemleak_free_part(const void *ptr, size_t size) 961 { 962 pr_debug("%s(0x%p)\n", __func__, ptr); 963 964 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 965 delete_object_part((unsigned long)ptr, size); 966 else if (kmemleak_early_log) 967 log_early(KMEMLEAK_FREE_PART, ptr, size, 0); 968 } 969 EXPORT_SYMBOL_GPL(kmemleak_free_part); 970 971 /** 972 * kmemleak_free_percpu - unregister a previously registered __percpu object 973 * @ptr: __percpu pointer to beginning of the object 974 * 975 * This function is called from the kernel percpu allocator when an object 976 * (memory block) is freed (free_percpu). 977 */ 978 void __ref kmemleak_free_percpu(const void __percpu *ptr) 979 { 980 unsigned int cpu; 981 982 pr_debug("%s(0x%p)\n", __func__, ptr); 983 984 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 985 for_each_possible_cpu(cpu) 986 delete_object_full((unsigned long)per_cpu_ptr(ptr, 987 cpu)); 988 else if (kmemleak_early_log) 989 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0); 990 } 991 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 992 993 /** 994 * kmemleak_update_trace - update object allocation stack trace 995 * @ptr: pointer to beginning of the object 996 * 997 * Override the object allocation stack trace for cases where the actual 998 * allocation place is not always useful. 999 */ 1000 void __ref kmemleak_update_trace(const void *ptr) 1001 { 1002 struct kmemleak_object *object; 1003 unsigned long flags; 1004 1005 pr_debug("%s(0x%p)\n", __func__, ptr); 1006 1007 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1008 return; 1009 1010 object = find_and_get_object((unsigned long)ptr, 1); 1011 if (!object) { 1012 #ifdef DEBUG 1013 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1014 ptr); 1015 #endif 1016 return; 1017 } 1018 1019 spin_lock_irqsave(&object->lock, flags); 1020 object->trace_len = __save_stack_trace(object->trace); 1021 spin_unlock_irqrestore(&object->lock, flags); 1022 1023 put_object(object); 1024 } 1025 EXPORT_SYMBOL(kmemleak_update_trace); 1026 1027 /** 1028 * kmemleak_not_leak - mark an allocated object as false positive 1029 * @ptr: pointer to beginning of the object 1030 * 1031 * Calling this function on an object will cause the memory block to no longer 1032 * be reported as leak and always be scanned. 1033 */ 1034 void __ref kmemleak_not_leak(const void *ptr) 1035 { 1036 pr_debug("%s(0x%p)\n", __func__, ptr); 1037 1038 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1039 make_gray_object((unsigned long)ptr); 1040 else if (kmemleak_early_log) 1041 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0); 1042 } 1043 EXPORT_SYMBOL(kmemleak_not_leak); 1044 1045 /** 1046 * kmemleak_ignore - ignore an allocated object 1047 * @ptr: pointer to beginning of the object 1048 * 1049 * Calling this function on an object will cause the memory block to be 1050 * ignored (not scanned and not reported as a leak). This is usually done when 1051 * it is known that the corresponding block is not a leak and does not contain 1052 * any references to other allocated memory blocks. 1053 */ 1054 void __ref kmemleak_ignore(const void *ptr) 1055 { 1056 pr_debug("%s(0x%p)\n", __func__, ptr); 1057 1058 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1059 make_black_object((unsigned long)ptr); 1060 else if (kmemleak_early_log) 1061 log_early(KMEMLEAK_IGNORE, ptr, 0, 0); 1062 } 1063 EXPORT_SYMBOL(kmemleak_ignore); 1064 1065 /** 1066 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1067 * @ptr: pointer to beginning or inside the object. This also 1068 * represents the start of the scan area 1069 * @size: size of the scan area 1070 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1071 * 1072 * This function is used when it is known that only certain parts of an object 1073 * contain references to other objects. Kmemleak will only scan these areas 1074 * reducing the number false negatives. 1075 */ 1076 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1077 { 1078 pr_debug("%s(0x%p)\n", __func__, ptr); 1079 1080 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1081 add_scan_area((unsigned long)ptr, size, gfp); 1082 else if (kmemleak_early_log) 1083 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0); 1084 } 1085 EXPORT_SYMBOL(kmemleak_scan_area); 1086 1087 /** 1088 * kmemleak_no_scan - do not scan an allocated object 1089 * @ptr: pointer to beginning of the object 1090 * 1091 * This function notifies kmemleak not to scan the given memory block. Useful 1092 * in situations where it is known that the given object does not contain any 1093 * references to other objects. Kmemleak will not scan such objects reducing 1094 * the number of false negatives. 1095 */ 1096 void __ref kmemleak_no_scan(const void *ptr) 1097 { 1098 pr_debug("%s(0x%p)\n", __func__, ptr); 1099 1100 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1101 object_no_scan((unsigned long)ptr); 1102 else if (kmemleak_early_log) 1103 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0); 1104 } 1105 EXPORT_SYMBOL(kmemleak_no_scan); 1106 1107 /* 1108 * Update an object's checksum and return true if it was modified. 1109 */ 1110 static bool update_checksum(struct kmemleak_object *object) 1111 { 1112 u32 old_csum = object->checksum; 1113 1114 if (!kmemcheck_is_obj_initialized(object->pointer, object->size)) 1115 return false; 1116 1117 kasan_disable_current(); 1118 object->checksum = crc32(0, (void *)object->pointer, object->size); 1119 kasan_enable_current(); 1120 1121 return object->checksum != old_csum; 1122 } 1123 1124 /* 1125 * Memory scanning is a long process and it needs to be interruptable. This 1126 * function checks whether such interrupt condition occurred. 1127 */ 1128 static int scan_should_stop(void) 1129 { 1130 if (!kmemleak_enabled) 1131 return 1; 1132 1133 /* 1134 * This function may be called from either process or kthread context, 1135 * hence the need to check for both stop conditions. 1136 */ 1137 if (current->mm) 1138 return signal_pending(current); 1139 else 1140 return kthread_should_stop(); 1141 1142 return 0; 1143 } 1144 1145 /* 1146 * Scan a memory block (exclusive range) for valid pointers and add those 1147 * found to the gray list. 1148 */ 1149 static void scan_block(void *_start, void *_end, 1150 struct kmemleak_object *scanned, int allow_resched) 1151 { 1152 unsigned long *ptr; 1153 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1154 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1155 1156 for (ptr = start; ptr < end; ptr++) { 1157 struct kmemleak_object *object; 1158 unsigned long flags; 1159 unsigned long pointer; 1160 1161 if (allow_resched) 1162 cond_resched(); 1163 if (scan_should_stop()) 1164 break; 1165 1166 /* don't scan uninitialized memory */ 1167 if (!kmemcheck_is_obj_initialized((unsigned long)ptr, 1168 BYTES_PER_POINTER)) 1169 continue; 1170 1171 kasan_disable_current(); 1172 pointer = *ptr; 1173 kasan_enable_current(); 1174 1175 object = find_and_get_object(pointer, 1); 1176 if (!object) 1177 continue; 1178 if (object == scanned) { 1179 /* self referenced, ignore */ 1180 put_object(object); 1181 continue; 1182 } 1183 1184 /* 1185 * Avoid the lockdep recursive warning on object->lock being 1186 * previously acquired in scan_object(). These locks are 1187 * enclosed by scan_mutex. 1188 */ 1189 spin_lock_irqsave_nested(&object->lock, flags, 1190 SINGLE_DEPTH_NESTING); 1191 if (!color_white(object)) { 1192 /* non-orphan, ignored or new */ 1193 spin_unlock_irqrestore(&object->lock, flags); 1194 put_object(object); 1195 continue; 1196 } 1197 1198 /* 1199 * Increase the object's reference count (number of pointers 1200 * to the memory block). If this count reaches the required 1201 * minimum, the object's color will become gray and it will be 1202 * added to the gray_list. 1203 */ 1204 object->count++; 1205 if (color_gray(object)) { 1206 list_add_tail(&object->gray_list, &gray_list); 1207 spin_unlock_irqrestore(&object->lock, flags); 1208 continue; 1209 } 1210 1211 spin_unlock_irqrestore(&object->lock, flags); 1212 put_object(object); 1213 } 1214 } 1215 1216 /* 1217 * Scan a memory block corresponding to a kmemleak_object. A condition is 1218 * that object->use_count >= 1. 1219 */ 1220 static void scan_object(struct kmemleak_object *object) 1221 { 1222 struct kmemleak_scan_area *area; 1223 unsigned long flags; 1224 1225 /* 1226 * Once the object->lock is acquired, the corresponding memory block 1227 * cannot be freed (the same lock is acquired in delete_object). 1228 */ 1229 spin_lock_irqsave(&object->lock, flags); 1230 if (object->flags & OBJECT_NO_SCAN) 1231 goto out; 1232 if (!(object->flags & OBJECT_ALLOCATED)) 1233 /* already freed object */ 1234 goto out; 1235 if (hlist_empty(&object->area_list)) { 1236 void *start = (void *)object->pointer; 1237 void *end = (void *)(object->pointer + object->size); 1238 1239 while (start < end && (object->flags & OBJECT_ALLOCATED) && 1240 !(object->flags & OBJECT_NO_SCAN)) { 1241 scan_block(start, min(start + MAX_SCAN_SIZE, end), 1242 object, 0); 1243 start += MAX_SCAN_SIZE; 1244 1245 spin_unlock_irqrestore(&object->lock, flags); 1246 cond_resched(); 1247 spin_lock_irqsave(&object->lock, flags); 1248 } 1249 } else 1250 hlist_for_each_entry(area, &object->area_list, node) 1251 scan_block((void *)area->start, 1252 (void *)(area->start + area->size), 1253 object, 0); 1254 out: 1255 spin_unlock_irqrestore(&object->lock, flags); 1256 } 1257 1258 /* 1259 * Scan the objects already referenced (gray objects). More objects will be 1260 * referenced and, if there are no memory leaks, all the objects are scanned. 1261 */ 1262 static void scan_gray_list(void) 1263 { 1264 struct kmemleak_object *object, *tmp; 1265 1266 /* 1267 * The list traversal is safe for both tail additions and removals 1268 * from inside the loop. The kmemleak objects cannot be freed from 1269 * outside the loop because their use_count was incremented. 1270 */ 1271 object = list_entry(gray_list.next, typeof(*object), gray_list); 1272 while (&object->gray_list != &gray_list) { 1273 cond_resched(); 1274 1275 /* may add new objects to the list */ 1276 if (!scan_should_stop()) 1277 scan_object(object); 1278 1279 tmp = list_entry(object->gray_list.next, typeof(*object), 1280 gray_list); 1281 1282 /* remove the object from the list and release it */ 1283 list_del(&object->gray_list); 1284 put_object(object); 1285 1286 object = tmp; 1287 } 1288 WARN_ON(!list_empty(&gray_list)); 1289 } 1290 1291 /* 1292 * Scan data sections and all the referenced memory blocks allocated via the 1293 * kernel's standard allocators. This function must be called with the 1294 * scan_mutex held. 1295 */ 1296 static void kmemleak_scan(void) 1297 { 1298 unsigned long flags; 1299 struct kmemleak_object *object; 1300 int i; 1301 int new_leaks = 0; 1302 1303 jiffies_last_scan = jiffies; 1304 1305 /* prepare the kmemleak_object's */ 1306 rcu_read_lock(); 1307 list_for_each_entry_rcu(object, &object_list, object_list) { 1308 spin_lock_irqsave(&object->lock, flags); 1309 #ifdef DEBUG 1310 /* 1311 * With a few exceptions there should be a maximum of 1312 * 1 reference to any object at this point. 1313 */ 1314 if (atomic_read(&object->use_count) > 1) { 1315 pr_debug("object->use_count = %d\n", 1316 atomic_read(&object->use_count)); 1317 dump_object_info(object); 1318 } 1319 #endif 1320 /* reset the reference count (whiten the object) */ 1321 object->count = 0; 1322 if (color_gray(object) && get_object(object)) 1323 list_add_tail(&object->gray_list, &gray_list); 1324 1325 spin_unlock_irqrestore(&object->lock, flags); 1326 } 1327 rcu_read_unlock(); 1328 1329 /* data/bss scanning */ 1330 scan_block(_sdata, _edata, NULL, 1); 1331 scan_block(__bss_start, __bss_stop, NULL, 1); 1332 1333 #ifdef CONFIG_SMP 1334 /* per-cpu sections scanning */ 1335 for_each_possible_cpu(i) 1336 scan_block(__per_cpu_start + per_cpu_offset(i), 1337 __per_cpu_end + per_cpu_offset(i), NULL, 1); 1338 #endif 1339 1340 /* 1341 * Struct page scanning for each node. 1342 */ 1343 get_online_mems(); 1344 for_each_online_node(i) { 1345 unsigned long start_pfn = node_start_pfn(i); 1346 unsigned long end_pfn = node_end_pfn(i); 1347 unsigned long pfn; 1348 1349 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1350 struct page *page; 1351 1352 if (!pfn_valid(pfn)) 1353 continue; 1354 page = pfn_to_page(pfn); 1355 /* only scan if page is in use */ 1356 if (page_count(page) == 0) 1357 continue; 1358 scan_block(page, page + 1, NULL, 1); 1359 } 1360 } 1361 put_online_mems(); 1362 1363 /* 1364 * Scanning the task stacks (may introduce false negatives). 1365 */ 1366 if (kmemleak_stack_scan) { 1367 struct task_struct *p, *g; 1368 1369 read_lock(&tasklist_lock); 1370 do_each_thread(g, p) { 1371 scan_block(task_stack_page(p), task_stack_page(p) + 1372 THREAD_SIZE, NULL, 0); 1373 } while_each_thread(g, p); 1374 read_unlock(&tasklist_lock); 1375 } 1376 1377 /* 1378 * Scan the objects already referenced from the sections scanned 1379 * above. 1380 */ 1381 scan_gray_list(); 1382 1383 /* 1384 * Check for new or unreferenced objects modified since the previous 1385 * scan and color them gray until the next scan. 1386 */ 1387 rcu_read_lock(); 1388 list_for_each_entry_rcu(object, &object_list, object_list) { 1389 spin_lock_irqsave(&object->lock, flags); 1390 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1391 && update_checksum(object) && get_object(object)) { 1392 /* color it gray temporarily */ 1393 object->count = object->min_count; 1394 list_add_tail(&object->gray_list, &gray_list); 1395 } 1396 spin_unlock_irqrestore(&object->lock, flags); 1397 } 1398 rcu_read_unlock(); 1399 1400 /* 1401 * Re-scan the gray list for modified unreferenced objects. 1402 */ 1403 scan_gray_list(); 1404 1405 /* 1406 * If scanning was stopped do not report any new unreferenced objects. 1407 */ 1408 if (scan_should_stop()) 1409 return; 1410 1411 /* 1412 * Scanning result reporting. 1413 */ 1414 rcu_read_lock(); 1415 list_for_each_entry_rcu(object, &object_list, object_list) { 1416 spin_lock_irqsave(&object->lock, flags); 1417 if (unreferenced_object(object) && 1418 !(object->flags & OBJECT_REPORTED)) { 1419 object->flags |= OBJECT_REPORTED; 1420 new_leaks++; 1421 } 1422 spin_unlock_irqrestore(&object->lock, flags); 1423 } 1424 rcu_read_unlock(); 1425 1426 if (new_leaks) { 1427 kmemleak_found_leaks = true; 1428 1429 pr_info("%d new suspected memory leaks (see " 1430 "/sys/kernel/debug/kmemleak)\n", new_leaks); 1431 } 1432 1433 } 1434 1435 /* 1436 * Thread function performing automatic memory scanning. Unreferenced objects 1437 * at the end of a memory scan are reported but only the first time. 1438 */ 1439 static int kmemleak_scan_thread(void *arg) 1440 { 1441 static int first_run = 1; 1442 1443 pr_info("Automatic memory scanning thread started\n"); 1444 set_user_nice(current, 10); 1445 1446 /* 1447 * Wait before the first scan to allow the system to fully initialize. 1448 */ 1449 if (first_run) { 1450 first_run = 0; 1451 ssleep(SECS_FIRST_SCAN); 1452 } 1453 1454 while (!kthread_should_stop()) { 1455 signed long timeout = jiffies_scan_wait; 1456 1457 mutex_lock(&scan_mutex); 1458 kmemleak_scan(); 1459 mutex_unlock(&scan_mutex); 1460 1461 /* wait before the next scan */ 1462 while (timeout && !kthread_should_stop()) 1463 timeout = schedule_timeout_interruptible(timeout); 1464 } 1465 1466 pr_info("Automatic memory scanning thread ended\n"); 1467 1468 return 0; 1469 } 1470 1471 /* 1472 * Start the automatic memory scanning thread. This function must be called 1473 * with the scan_mutex held. 1474 */ 1475 static void start_scan_thread(void) 1476 { 1477 if (scan_thread) 1478 return; 1479 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1480 if (IS_ERR(scan_thread)) { 1481 pr_warning("Failed to create the scan thread\n"); 1482 scan_thread = NULL; 1483 } 1484 } 1485 1486 /* 1487 * Stop the automatic memory scanning thread. This function must be called 1488 * with the scan_mutex held. 1489 */ 1490 static void stop_scan_thread(void) 1491 { 1492 if (scan_thread) { 1493 kthread_stop(scan_thread); 1494 scan_thread = NULL; 1495 } 1496 } 1497 1498 /* 1499 * Iterate over the object_list and return the first valid object at or after 1500 * the required position with its use_count incremented. The function triggers 1501 * a memory scanning when the pos argument points to the first position. 1502 */ 1503 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1504 { 1505 struct kmemleak_object *object; 1506 loff_t n = *pos; 1507 int err; 1508 1509 err = mutex_lock_interruptible(&scan_mutex); 1510 if (err < 0) 1511 return ERR_PTR(err); 1512 1513 rcu_read_lock(); 1514 list_for_each_entry_rcu(object, &object_list, object_list) { 1515 if (n-- > 0) 1516 continue; 1517 if (get_object(object)) 1518 goto out; 1519 } 1520 object = NULL; 1521 out: 1522 return object; 1523 } 1524 1525 /* 1526 * Return the next object in the object_list. The function decrements the 1527 * use_count of the previous object and increases that of the next one. 1528 */ 1529 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1530 { 1531 struct kmemleak_object *prev_obj = v; 1532 struct kmemleak_object *next_obj = NULL; 1533 struct kmemleak_object *obj = prev_obj; 1534 1535 ++(*pos); 1536 1537 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1538 if (get_object(obj)) { 1539 next_obj = obj; 1540 break; 1541 } 1542 } 1543 1544 put_object(prev_obj); 1545 return next_obj; 1546 } 1547 1548 /* 1549 * Decrement the use_count of the last object required, if any. 1550 */ 1551 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1552 { 1553 if (!IS_ERR(v)) { 1554 /* 1555 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1556 * waiting was interrupted, so only release it if !IS_ERR. 1557 */ 1558 rcu_read_unlock(); 1559 mutex_unlock(&scan_mutex); 1560 if (v) 1561 put_object(v); 1562 } 1563 } 1564 1565 /* 1566 * Print the information for an unreferenced object to the seq file. 1567 */ 1568 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1569 { 1570 struct kmemleak_object *object = v; 1571 unsigned long flags; 1572 1573 spin_lock_irqsave(&object->lock, flags); 1574 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1575 print_unreferenced(seq, object); 1576 spin_unlock_irqrestore(&object->lock, flags); 1577 return 0; 1578 } 1579 1580 static const struct seq_operations kmemleak_seq_ops = { 1581 .start = kmemleak_seq_start, 1582 .next = kmemleak_seq_next, 1583 .stop = kmemleak_seq_stop, 1584 .show = kmemleak_seq_show, 1585 }; 1586 1587 static int kmemleak_open(struct inode *inode, struct file *file) 1588 { 1589 return seq_open(file, &kmemleak_seq_ops); 1590 } 1591 1592 static int dump_str_object_info(const char *str) 1593 { 1594 unsigned long flags; 1595 struct kmemleak_object *object; 1596 unsigned long addr; 1597 1598 if (kstrtoul(str, 0, &addr)) 1599 return -EINVAL; 1600 object = find_and_get_object(addr, 0); 1601 if (!object) { 1602 pr_info("Unknown object at 0x%08lx\n", addr); 1603 return -EINVAL; 1604 } 1605 1606 spin_lock_irqsave(&object->lock, flags); 1607 dump_object_info(object); 1608 spin_unlock_irqrestore(&object->lock, flags); 1609 1610 put_object(object); 1611 return 0; 1612 } 1613 1614 /* 1615 * We use grey instead of black to ensure we can do future scans on the same 1616 * objects. If we did not do future scans these black objects could 1617 * potentially contain references to newly allocated objects in the future and 1618 * we'd end up with false positives. 1619 */ 1620 static void kmemleak_clear(void) 1621 { 1622 struct kmemleak_object *object; 1623 unsigned long flags; 1624 1625 rcu_read_lock(); 1626 list_for_each_entry_rcu(object, &object_list, object_list) { 1627 spin_lock_irqsave(&object->lock, flags); 1628 if ((object->flags & OBJECT_REPORTED) && 1629 unreferenced_object(object)) 1630 __paint_it(object, KMEMLEAK_GREY); 1631 spin_unlock_irqrestore(&object->lock, flags); 1632 } 1633 rcu_read_unlock(); 1634 1635 kmemleak_found_leaks = false; 1636 } 1637 1638 static void __kmemleak_do_cleanup(void); 1639 1640 /* 1641 * File write operation to configure kmemleak at run-time. The following 1642 * commands can be written to the /sys/kernel/debug/kmemleak file: 1643 * off - disable kmemleak (irreversible) 1644 * stack=on - enable the task stacks scanning 1645 * stack=off - disable the tasks stacks scanning 1646 * scan=on - start the automatic memory scanning thread 1647 * scan=off - stop the automatic memory scanning thread 1648 * scan=... - set the automatic memory scanning period in seconds (0 to 1649 * disable it) 1650 * scan - trigger a memory scan 1651 * clear - mark all current reported unreferenced kmemleak objects as 1652 * grey to ignore printing them, or free all kmemleak objects 1653 * if kmemleak has been disabled. 1654 * dump=... - dump information about the object found at the given address 1655 */ 1656 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1657 size_t size, loff_t *ppos) 1658 { 1659 char buf[64]; 1660 int buf_size; 1661 int ret; 1662 1663 buf_size = min(size, (sizeof(buf) - 1)); 1664 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1665 return -EFAULT; 1666 buf[buf_size] = 0; 1667 1668 ret = mutex_lock_interruptible(&scan_mutex); 1669 if (ret < 0) 1670 return ret; 1671 1672 if (strncmp(buf, "clear", 5) == 0) { 1673 if (kmemleak_enabled) 1674 kmemleak_clear(); 1675 else 1676 __kmemleak_do_cleanup(); 1677 goto out; 1678 } 1679 1680 if (!kmemleak_enabled) { 1681 ret = -EBUSY; 1682 goto out; 1683 } 1684 1685 if (strncmp(buf, "off", 3) == 0) 1686 kmemleak_disable(); 1687 else if (strncmp(buf, "stack=on", 8) == 0) 1688 kmemleak_stack_scan = 1; 1689 else if (strncmp(buf, "stack=off", 9) == 0) 1690 kmemleak_stack_scan = 0; 1691 else if (strncmp(buf, "scan=on", 7) == 0) 1692 start_scan_thread(); 1693 else if (strncmp(buf, "scan=off", 8) == 0) 1694 stop_scan_thread(); 1695 else if (strncmp(buf, "scan=", 5) == 0) { 1696 unsigned long secs; 1697 1698 ret = kstrtoul(buf + 5, 0, &secs); 1699 if (ret < 0) 1700 goto out; 1701 stop_scan_thread(); 1702 if (secs) { 1703 jiffies_scan_wait = msecs_to_jiffies(secs * 1000); 1704 start_scan_thread(); 1705 } 1706 } else if (strncmp(buf, "scan", 4) == 0) 1707 kmemleak_scan(); 1708 else if (strncmp(buf, "dump=", 5) == 0) 1709 ret = dump_str_object_info(buf + 5); 1710 else 1711 ret = -EINVAL; 1712 1713 out: 1714 mutex_unlock(&scan_mutex); 1715 if (ret < 0) 1716 return ret; 1717 1718 /* ignore the rest of the buffer, only one command at a time */ 1719 *ppos += size; 1720 return size; 1721 } 1722 1723 static const struct file_operations kmemleak_fops = { 1724 .owner = THIS_MODULE, 1725 .open = kmemleak_open, 1726 .read = seq_read, 1727 .write = kmemleak_write, 1728 .llseek = seq_lseek, 1729 .release = seq_release, 1730 }; 1731 1732 static void __kmemleak_do_cleanup(void) 1733 { 1734 struct kmemleak_object *object; 1735 1736 rcu_read_lock(); 1737 list_for_each_entry_rcu(object, &object_list, object_list) 1738 delete_object_full(object->pointer); 1739 rcu_read_unlock(); 1740 } 1741 1742 /* 1743 * Stop the memory scanning thread and free the kmemleak internal objects if 1744 * no previous scan thread (otherwise, kmemleak may still have some useful 1745 * information on memory leaks). 1746 */ 1747 static void kmemleak_do_cleanup(struct work_struct *work) 1748 { 1749 mutex_lock(&scan_mutex); 1750 stop_scan_thread(); 1751 1752 if (!kmemleak_found_leaks) 1753 __kmemleak_do_cleanup(); 1754 else 1755 pr_info("Kmemleak disabled without freeing internal data. " 1756 "Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\"\n"); 1757 mutex_unlock(&scan_mutex); 1758 } 1759 1760 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 1761 1762 /* 1763 * Disable kmemleak. No memory allocation/freeing will be traced once this 1764 * function is called. Disabling kmemleak is an irreversible operation. 1765 */ 1766 static void kmemleak_disable(void) 1767 { 1768 /* atomically check whether it was already invoked */ 1769 if (cmpxchg(&kmemleak_error, 0, 1)) 1770 return; 1771 1772 /* stop any memory operation tracing */ 1773 kmemleak_enabled = 0; 1774 1775 /* check whether it is too early for a kernel thread */ 1776 if (kmemleak_initialized) 1777 schedule_work(&cleanup_work); 1778 1779 pr_info("Kernel memory leak detector disabled\n"); 1780 } 1781 1782 /* 1783 * Allow boot-time kmemleak disabling (enabled by default). 1784 */ 1785 static int kmemleak_boot_config(char *str) 1786 { 1787 if (!str) 1788 return -EINVAL; 1789 if (strcmp(str, "off") == 0) 1790 kmemleak_disable(); 1791 else if (strcmp(str, "on") == 0) 1792 kmemleak_skip_disable = 1; 1793 else 1794 return -EINVAL; 1795 return 0; 1796 } 1797 early_param("kmemleak", kmemleak_boot_config); 1798 1799 static void __init print_log_trace(struct early_log *log) 1800 { 1801 struct stack_trace trace; 1802 1803 trace.nr_entries = log->trace_len; 1804 trace.entries = log->trace; 1805 1806 pr_notice("Early log backtrace:\n"); 1807 print_stack_trace(&trace, 2); 1808 } 1809 1810 /* 1811 * Kmemleak initialization. 1812 */ 1813 void __init kmemleak_init(void) 1814 { 1815 int i; 1816 unsigned long flags; 1817 1818 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 1819 if (!kmemleak_skip_disable) { 1820 kmemleak_early_log = 0; 1821 kmemleak_disable(); 1822 return; 1823 } 1824 #endif 1825 1826 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 1827 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 1828 1829 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 1830 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 1831 1832 if (crt_early_log >= ARRAY_SIZE(early_log)) 1833 pr_warning("Early log buffer exceeded (%d), please increase " 1834 "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log); 1835 1836 /* the kernel is still in UP mode, so disabling the IRQs is enough */ 1837 local_irq_save(flags); 1838 kmemleak_early_log = 0; 1839 if (kmemleak_error) { 1840 local_irq_restore(flags); 1841 return; 1842 } else 1843 kmemleak_enabled = 1; 1844 local_irq_restore(flags); 1845 1846 /* 1847 * This is the point where tracking allocations is safe. Automatic 1848 * scanning is started during the late initcall. Add the early logged 1849 * callbacks to the kmemleak infrastructure. 1850 */ 1851 for (i = 0; i < crt_early_log; i++) { 1852 struct early_log *log = &early_log[i]; 1853 1854 switch (log->op_type) { 1855 case KMEMLEAK_ALLOC: 1856 early_alloc(log); 1857 break; 1858 case KMEMLEAK_ALLOC_PERCPU: 1859 early_alloc_percpu(log); 1860 break; 1861 case KMEMLEAK_FREE: 1862 kmemleak_free(log->ptr); 1863 break; 1864 case KMEMLEAK_FREE_PART: 1865 kmemleak_free_part(log->ptr, log->size); 1866 break; 1867 case KMEMLEAK_FREE_PERCPU: 1868 kmemleak_free_percpu(log->ptr); 1869 break; 1870 case KMEMLEAK_NOT_LEAK: 1871 kmemleak_not_leak(log->ptr); 1872 break; 1873 case KMEMLEAK_IGNORE: 1874 kmemleak_ignore(log->ptr); 1875 break; 1876 case KMEMLEAK_SCAN_AREA: 1877 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL); 1878 break; 1879 case KMEMLEAK_NO_SCAN: 1880 kmemleak_no_scan(log->ptr); 1881 break; 1882 default: 1883 kmemleak_warn("Unknown early log operation: %d\n", 1884 log->op_type); 1885 } 1886 1887 if (kmemleak_warning) { 1888 print_log_trace(log); 1889 kmemleak_warning = 0; 1890 } 1891 } 1892 } 1893 1894 /* 1895 * Late initialization function. 1896 */ 1897 static int __init kmemleak_late_init(void) 1898 { 1899 struct dentry *dentry; 1900 1901 kmemleak_initialized = 1; 1902 1903 if (kmemleak_error) { 1904 /* 1905 * Some error occurred and kmemleak was disabled. There is a 1906 * small chance that kmemleak_disable() was called immediately 1907 * after setting kmemleak_initialized and we may end up with 1908 * two clean-up threads but serialized by scan_mutex. 1909 */ 1910 schedule_work(&cleanup_work); 1911 return -ENOMEM; 1912 } 1913 1914 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL, 1915 &kmemleak_fops); 1916 if (!dentry) 1917 pr_warning("Failed to create the debugfs kmemleak file\n"); 1918 mutex_lock(&scan_mutex); 1919 start_scan_thread(); 1920 mutex_unlock(&scan_mutex); 1921 1922 pr_info("Kernel memory leak detector initialized\n"); 1923 1924 return 0; 1925 } 1926 late_initcall(kmemleak_late_init); 1927