1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/kmemleak.c 4 * 5 * Copyright (C) 2008 ARM Limited 6 * Written by Catalin Marinas <catalin.marinas@arm.com> 7 * 8 * For more information on the algorithm and kmemleak usage, please see 9 * Documentation/dev-tools/kmemleak.rst. 10 * 11 * Notes on locking 12 * ---------------- 13 * 14 * The following locks and mutexes are used by kmemleak: 15 * 16 * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and 17 * accesses to the object_tree_root. The object_list is the main list 18 * holding the metadata (struct kmemleak_object) for the allocated memory 19 * blocks. The object_tree_root is a red black tree used to look-up 20 * metadata based on a pointer to the corresponding memory block. The 21 * kmemleak_object structures are added to the object_list and 22 * object_tree_root in the create_object() function called from the 23 * kmemleak_alloc() callback and removed in delete_object() called from the 24 * kmemleak_free() callback 25 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object. 26 * Accesses to the metadata (e.g. count) are protected by this lock. Note 27 * that some members of this structure may be protected by other means 28 * (atomic or kmemleak_lock). This lock is also held when scanning the 29 * corresponding memory block to avoid the kernel freeing it via the 30 * kmemleak_free() callback. This is less heavyweight than holding a global 31 * lock like kmemleak_lock during scanning. 32 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 33 * unreferenced objects at a time. The gray_list contains the objects which 34 * are already referenced or marked as false positives and need to be 35 * scanned. This list is only modified during a scanning episode when the 36 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 37 * Note that the kmemleak_object.use_count is incremented when an object is 38 * added to the gray_list and therefore cannot be freed. This mutex also 39 * prevents multiple users of the "kmemleak" debugfs file together with 40 * modifications to the memory scanning parameters including the scan_thread 41 * pointer 42 * 43 * Locks and mutexes are acquired/nested in the following order: 44 * 45 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 46 * 47 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 48 * regions. 49 * 50 * The kmemleak_object structures have a use_count incremented or decremented 51 * using the get_object()/put_object() functions. When the use_count becomes 52 * 0, this count can no longer be incremented and put_object() schedules the 53 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 54 * function must be protected by rcu_read_lock() to avoid accessing a freed 55 * structure. 56 */ 57 58 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 59 60 #include <linux/init.h> 61 #include <linux/kernel.h> 62 #include <linux/list.h> 63 #include <linux/sched/signal.h> 64 #include <linux/sched/task.h> 65 #include <linux/sched/task_stack.h> 66 #include <linux/jiffies.h> 67 #include <linux/delay.h> 68 #include <linux/export.h> 69 #include <linux/kthread.h> 70 #include <linux/rbtree.h> 71 #include <linux/fs.h> 72 #include <linux/debugfs.h> 73 #include <linux/seq_file.h> 74 #include <linux/cpumask.h> 75 #include <linux/spinlock.h> 76 #include <linux/module.h> 77 #include <linux/mutex.h> 78 #include <linux/rcupdate.h> 79 #include <linux/stacktrace.h> 80 #include <linux/cache.h> 81 #include <linux/percpu.h> 82 #include <linux/memblock.h> 83 #include <linux/pfn.h> 84 #include <linux/mmzone.h> 85 #include <linux/slab.h> 86 #include <linux/thread_info.h> 87 #include <linux/err.h> 88 #include <linux/uaccess.h> 89 #include <linux/string.h> 90 #include <linux/nodemask.h> 91 #include <linux/mm.h> 92 #include <linux/workqueue.h> 93 #include <linux/crc32.h> 94 95 #include <asm/sections.h> 96 #include <asm/processor.h> 97 #include <linux/atomic.h> 98 99 #include <linux/kasan.h> 100 #include <linux/kfence.h> 101 #include <linux/kmemleak.h> 102 #include <linux/memory_hotplug.h> 103 104 /* 105 * Kmemleak configuration and common defines. 106 */ 107 #define MAX_TRACE 16 /* stack trace length */ 108 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 109 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 110 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 111 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 112 113 #define BYTES_PER_POINTER sizeof(void *) 114 115 /* GFP bitmask for kmemleak internal allocations */ 116 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \ 117 __GFP_NOLOCKDEP)) | \ 118 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 119 __GFP_NOWARN) 120 121 /* scanning area inside a memory block */ 122 struct kmemleak_scan_area { 123 struct hlist_node node; 124 unsigned long start; 125 size_t size; 126 }; 127 128 #define KMEMLEAK_GREY 0 129 #define KMEMLEAK_BLACK -1 130 131 /* 132 * Structure holding the metadata for each allocated memory block. 133 * Modifications to such objects should be made while holding the 134 * object->lock. Insertions or deletions from object_list, gray_list or 135 * rb_node are already protected by the corresponding locks or mutex (see 136 * the notes on locking above). These objects are reference-counted 137 * (use_count) and freed using the RCU mechanism. 138 */ 139 struct kmemleak_object { 140 raw_spinlock_t lock; 141 unsigned int flags; /* object status flags */ 142 struct list_head object_list; 143 struct list_head gray_list; 144 struct rb_node rb_node; 145 struct rcu_head rcu; /* object_list lockless traversal */ 146 /* object usage count; object freed when use_count == 0 */ 147 atomic_t use_count; 148 unsigned long pointer; 149 size_t size; 150 /* pass surplus references to this pointer */ 151 unsigned long excess_ref; 152 /* minimum number of a pointers found before it is considered leak */ 153 int min_count; 154 /* the total number of pointers found pointing to this object */ 155 int count; 156 /* checksum for detecting modified objects */ 157 u32 checksum; 158 /* memory ranges to be scanned inside an object (empty for all) */ 159 struct hlist_head area_list; 160 unsigned long trace[MAX_TRACE]; 161 unsigned int trace_len; 162 unsigned long jiffies; /* creation timestamp */ 163 pid_t pid; /* pid of the current task */ 164 char comm[TASK_COMM_LEN]; /* executable name */ 165 }; 166 167 /* flag representing the memory block allocation status */ 168 #define OBJECT_ALLOCATED (1 << 0) 169 /* flag set after the first reporting of an unreference object */ 170 #define OBJECT_REPORTED (1 << 1) 171 /* flag set to not scan the object */ 172 #define OBJECT_NO_SCAN (1 << 2) 173 /* flag set to fully scan the object when scan_area allocation failed */ 174 #define OBJECT_FULL_SCAN (1 << 3) 175 176 #define HEX_PREFIX " " 177 /* number of bytes to print per line; must be 16 or 32 */ 178 #define HEX_ROW_SIZE 16 179 /* number of bytes to print at a time (1, 2, 4, 8) */ 180 #define HEX_GROUP_SIZE 1 181 /* include ASCII after the hex output */ 182 #define HEX_ASCII 1 183 /* max number of lines to be printed */ 184 #define HEX_MAX_LINES 2 185 186 /* the list of all allocated objects */ 187 static LIST_HEAD(object_list); 188 /* the list of gray-colored objects (see color_gray comment below) */ 189 static LIST_HEAD(gray_list); 190 /* memory pool allocation */ 191 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE]; 192 static int mem_pool_free_count = ARRAY_SIZE(mem_pool); 193 static LIST_HEAD(mem_pool_free_list); 194 /* search tree for object boundaries */ 195 static struct rb_root object_tree_root = RB_ROOT; 196 /* protecting the access to object_list and object_tree_root */ 197 static DEFINE_RAW_SPINLOCK(kmemleak_lock); 198 199 /* allocation caches for kmemleak internal data */ 200 static struct kmem_cache *object_cache; 201 static struct kmem_cache *scan_area_cache; 202 203 /* set if tracing memory operations is enabled */ 204 static int kmemleak_enabled = 1; 205 /* same as above but only for the kmemleak_free() callback */ 206 static int kmemleak_free_enabled = 1; 207 /* set in the late_initcall if there were no errors */ 208 static int kmemleak_initialized; 209 /* set if a kmemleak warning was issued */ 210 static int kmemleak_warning; 211 /* set if a fatal kmemleak error has occurred */ 212 static int kmemleak_error; 213 214 /* minimum and maximum address that may be valid pointers */ 215 static unsigned long min_addr = ULONG_MAX; 216 static unsigned long max_addr; 217 218 static struct task_struct *scan_thread; 219 /* used to avoid reporting of recently allocated objects */ 220 static unsigned long jiffies_min_age; 221 static unsigned long jiffies_last_scan; 222 /* delay between automatic memory scannings */ 223 static unsigned long jiffies_scan_wait; 224 /* enables or disables the task stacks scanning */ 225 static int kmemleak_stack_scan = 1; 226 /* protects the memory scanning, parameters and debug/kmemleak file access */ 227 static DEFINE_MUTEX(scan_mutex); 228 /* setting kmemleak=on, will set this var, skipping the disable */ 229 static int kmemleak_skip_disable; 230 /* If there are leaks that can be reported */ 231 static bool kmemleak_found_leaks; 232 233 static bool kmemleak_verbose; 234 module_param_named(verbose, kmemleak_verbose, bool, 0600); 235 236 static void kmemleak_disable(void); 237 238 /* 239 * Print a warning and dump the stack trace. 240 */ 241 #define kmemleak_warn(x...) do { \ 242 pr_warn(x); \ 243 dump_stack(); \ 244 kmemleak_warning = 1; \ 245 } while (0) 246 247 /* 248 * Macro invoked when a serious kmemleak condition occurred and cannot be 249 * recovered from. Kmemleak will be disabled and further allocation/freeing 250 * tracing no longer available. 251 */ 252 #define kmemleak_stop(x...) do { \ 253 kmemleak_warn(x); \ 254 kmemleak_disable(); \ 255 } while (0) 256 257 #define warn_or_seq_printf(seq, fmt, ...) do { \ 258 if (seq) \ 259 seq_printf(seq, fmt, ##__VA_ARGS__); \ 260 else \ 261 pr_warn(fmt, ##__VA_ARGS__); \ 262 } while (0) 263 264 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type, 265 int rowsize, int groupsize, const void *buf, 266 size_t len, bool ascii) 267 { 268 if (seq) 269 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize, 270 buf, len, ascii); 271 else 272 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type, 273 rowsize, groupsize, buf, len, ascii); 274 } 275 276 /* 277 * Printing of the objects hex dump to the seq file. The number of lines to be 278 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 279 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 280 * with the object->lock held. 281 */ 282 static void hex_dump_object(struct seq_file *seq, 283 struct kmemleak_object *object) 284 { 285 const u8 *ptr = (const u8 *)object->pointer; 286 size_t len; 287 288 /* limit the number of lines to HEX_MAX_LINES */ 289 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 290 291 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len); 292 kasan_disable_current(); 293 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE, 294 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII); 295 kasan_enable_current(); 296 } 297 298 /* 299 * Object colors, encoded with count and min_count: 300 * - white - orphan object, not enough references to it (count < min_count) 301 * - gray - not orphan, not marked as false positive (min_count == 0) or 302 * sufficient references to it (count >= min_count) 303 * - black - ignore, it doesn't contain references (e.g. text section) 304 * (min_count == -1). No function defined for this color. 305 * Newly created objects don't have any color assigned (object->count == -1) 306 * before the next memory scan when they become white. 307 */ 308 static bool color_white(const struct kmemleak_object *object) 309 { 310 return object->count != KMEMLEAK_BLACK && 311 object->count < object->min_count; 312 } 313 314 static bool color_gray(const struct kmemleak_object *object) 315 { 316 return object->min_count != KMEMLEAK_BLACK && 317 object->count >= object->min_count; 318 } 319 320 /* 321 * Objects are considered unreferenced only if their color is white, they have 322 * not be deleted and have a minimum age to avoid false positives caused by 323 * pointers temporarily stored in CPU registers. 324 */ 325 static bool unreferenced_object(struct kmemleak_object *object) 326 { 327 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 328 time_before_eq(object->jiffies + jiffies_min_age, 329 jiffies_last_scan); 330 } 331 332 /* 333 * Printing of the unreferenced objects information to the seq file. The 334 * print_unreferenced function must be called with the object->lock held. 335 */ 336 static void print_unreferenced(struct seq_file *seq, 337 struct kmemleak_object *object) 338 { 339 int i; 340 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 341 342 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 343 object->pointer, object->size); 344 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 345 object->comm, object->pid, object->jiffies, 346 msecs_age / 1000, msecs_age % 1000); 347 hex_dump_object(seq, object); 348 warn_or_seq_printf(seq, " backtrace:\n"); 349 350 for (i = 0; i < object->trace_len; i++) { 351 void *ptr = (void *)object->trace[i]; 352 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); 353 } 354 } 355 356 /* 357 * Print the kmemleak_object information. This function is used mainly for 358 * debugging special cases when kmemleak operations. It must be called with 359 * the object->lock held. 360 */ 361 static void dump_object_info(struct kmemleak_object *object) 362 { 363 pr_notice("Object 0x%08lx (size %zu):\n", 364 object->pointer, object->size); 365 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 366 object->comm, object->pid, object->jiffies); 367 pr_notice(" min_count = %d\n", object->min_count); 368 pr_notice(" count = %d\n", object->count); 369 pr_notice(" flags = 0x%x\n", object->flags); 370 pr_notice(" checksum = %u\n", object->checksum); 371 pr_notice(" backtrace:\n"); 372 stack_trace_print(object->trace, object->trace_len, 4); 373 } 374 375 /* 376 * Look-up a memory block metadata (kmemleak_object) in the object search 377 * tree based on a pointer value. If alias is 0, only values pointing to the 378 * beginning of the memory block are allowed. The kmemleak_lock must be held 379 * when calling this function. 380 */ 381 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 382 { 383 struct rb_node *rb = object_tree_root.rb_node; 384 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 385 386 while (rb) { 387 struct kmemleak_object *object; 388 unsigned long untagged_objp; 389 390 object = rb_entry(rb, struct kmemleak_object, rb_node); 391 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 392 393 if (untagged_ptr < untagged_objp) 394 rb = object->rb_node.rb_left; 395 else if (untagged_objp + object->size <= untagged_ptr) 396 rb = object->rb_node.rb_right; 397 else if (untagged_objp == untagged_ptr || alias) 398 return object; 399 else { 400 kmemleak_warn("Found object by alias at 0x%08lx\n", 401 ptr); 402 dump_object_info(object); 403 break; 404 } 405 } 406 return NULL; 407 } 408 409 /* 410 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 411 * that once an object's use_count reached 0, the RCU freeing was already 412 * registered and the object should no longer be used. This function must be 413 * called under the protection of rcu_read_lock(). 414 */ 415 static int get_object(struct kmemleak_object *object) 416 { 417 return atomic_inc_not_zero(&object->use_count); 418 } 419 420 /* 421 * Memory pool allocation and freeing. kmemleak_lock must not be held. 422 */ 423 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp) 424 { 425 unsigned long flags; 426 struct kmemleak_object *object; 427 428 /* try the slab allocator first */ 429 if (object_cache) { 430 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 431 if (object) 432 return object; 433 } 434 435 /* slab allocation failed, try the memory pool */ 436 raw_spin_lock_irqsave(&kmemleak_lock, flags); 437 object = list_first_entry_or_null(&mem_pool_free_list, 438 typeof(*object), object_list); 439 if (object) 440 list_del(&object->object_list); 441 else if (mem_pool_free_count) 442 object = &mem_pool[--mem_pool_free_count]; 443 else 444 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n"); 445 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 446 447 return object; 448 } 449 450 /* 451 * Return the object to either the slab allocator or the memory pool. 452 */ 453 static void mem_pool_free(struct kmemleak_object *object) 454 { 455 unsigned long flags; 456 457 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) { 458 kmem_cache_free(object_cache, object); 459 return; 460 } 461 462 /* add the object to the memory pool free list */ 463 raw_spin_lock_irqsave(&kmemleak_lock, flags); 464 list_add(&object->object_list, &mem_pool_free_list); 465 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 466 } 467 468 /* 469 * RCU callback to free a kmemleak_object. 470 */ 471 static void free_object_rcu(struct rcu_head *rcu) 472 { 473 struct hlist_node *tmp; 474 struct kmemleak_scan_area *area; 475 struct kmemleak_object *object = 476 container_of(rcu, struct kmemleak_object, rcu); 477 478 /* 479 * Once use_count is 0 (guaranteed by put_object), there is no other 480 * code accessing this object, hence no need for locking. 481 */ 482 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 483 hlist_del(&area->node); 484 kmem_cache_free(scan_area_cache, area); 485 } 486 mem_pool_free(object); 487 } 488 489 /* 490 * Decrement the object use_count. Once the count is 0, free the object using 491 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 492 * delete_object() path, the delayed RCU freeing ensures that there is no 493 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 494 * is also possible. 495 */ 496 static void put_object(struct kmemleak_object *object) 497 { 498 if (!atomic_dec_and_test(&object->use_count)) 499 return; 500 501 /* should only get here after delete_object was called */ 502 WARN_ON(object->flags & OBJECT_ALLOCATED); 503 504 /* 505 * It may be too early for the RCU callbacks, however, there is no 506 * concurrent object_list traversal when !object_cache and all objects 507 * came from the memory pool. Free the object directly. 508 */ 509 if (object_cache) 510 call_rcu(&object->rcu, free_object_rcu); 511 else 512 free_object_rcu(&object->rcu); 513 } 514 515 /* 516 * Look up an object in the object search tree and increase its use_count. 517 */ 518 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 519 { 520 unsigned long flags; 521 struct kmemleak_object *object; 522 523 rcu_read_lock(); 524 raw_spin_lock_irqsave(&kmemleak_lock, flags); 525 object = lookup_object(ptr, alias); 526 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 527 528 /* check whether the object is still available */ 529 if (object && !get_object(object)) 530 object = NULL; 531 rcu_read_unlock(); 532 533 return object; 534 } 535 536 /* 537 * Remove an object from the object_tree_root and object_list. Must be called 538 * with the kmemleak_lock held _if_ kmemleak is still enabled. 539 */ 540 static void __remove_object(struct kmemleak_object *object) 541 { 542 rb_erase(&object->rb_node, &object_tree_root); 543 list_del_rcu(&object->object_list); 544 } 545 546 /* 547 * Look up an object in the object search tree and remove it from both 548 * object_tree_root and object_list. The returned object's use_count should be 549 * at least 1, as initially set by create_object(). 550 */ 551 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias) 552 { 553 unsigned long flags; 554 struct kmemleak_object *object; 555 556 raw_spin_lock_irqsave(&kmemleak_lock, flags); 557 object = lookup_object(ptr, alias); 558 if (object) 559 __remove_object(object); 560 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 561 562 return object; 563 } 564 565 /* 566 * Save stack trace to the given array of MAX_TRACE size. 567 */ 568 static int __save_stack_trace(unsigned long *trace) 569 { 570 return stack_trace_save(trace, MAX_TRACE, 2); 571 } 572 573 /* 574 * Create the metadata (struct kmemleak_object) corresponding to an allocated 575 * memory block and add it to the object_list and object_tree_root. 576 */ 577 static struct kmemleak_object *create_object(unsigned long ptr, size_t size, 578 int min_count, gfp_t gfp) 579 { 580 unsigned long flags; 581 struct kmemleak_object *object, *parent; 582 struct rb_node **link, *rb_parent; 583 unsigned long untagged_ptr; 584 unsigned long untagged_objp; 585 586 object = mem_pool_alloc(gfp); 587 if (!object) { 588 pr_warn("Cannot allocate a kmemleak_object structure\n"); 589 kmemleak_disable(); 590 return NULL; 591 } 592 593 INIT_LIST_HEAD(&object->object_list); 594 INIT_LIST_HEAD(&object->gray_list); 595 INIT_HLIST_HEAD(&object->area_list); 596 raw_spin_lock_init(&object->lock); 597 atomic_set(&object->use_count, 1); 598 object->flags = OBJECT_ALLOCATED; 599 object->pointer = ptr; 600 object->size = kfence_ksize((void *)ptr) ?: size; 601 object->excess_ref = 0; 602 object->min_count = min_count; 603 object->count = 0; /* white color initially */ 604 object->jiffies = jiffies; 605 object->checksum = 0; 606 607 /* task information */ 608 if (in_hardirq()) { 609 object->pid = 0; 610 strncpy(object->comm, "hardirq", sizeof(object->comm)); 611 } else if (in_serving_softirq()) { 612 object->pid = 0; 613 strncpy(object->comm, "softirq", sizeof(object->comm)); 614 } else { 615 object->pid = current->pid; 616 /* 617 * There is a small chance of a race with set_task_comm(), 618 * however using get_task_comm() here may cause locking 619 * dependency issues with current->alloc_lock. In the worst 620 * case, the command line is not correct. 621 */ 622 strncpy(object->comm, current->comm, sizeof(object->comm)); 623 } 624 625 /* kernel backtrace */ 626 object->trace_len = __save_stack_trace(object->trace); 627 628 raw_spin_lock_irqsave(&kmemleak_lock, flags); 629 630 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 631 min_addr = min(min_addr, untagged_ptr); 632 max_addr = max(max_addr, untagged_ptr + size); 633 link = &object_tree_root.rb_node; 634 rb_parent = NULL; 635 while (*link) { 636 rb_parent = *link; 637 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 638 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer); 639 if (untagged_ptr + size <= untagged_objp) 640 link = &parent->rb_node.rb_left; 641 else if (untagged_objp + parent->size <= untagged_ptr) 642 link = &parent->rb_node.rb_right; 643 else { 644 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 645 ptr); 646 /* 647 * No need for parent->lock here since "parent" cannot 648 * be freed while the kmemleak_lock is held. 649 */ 650 dump_object_info(parent); 651 kmem_cache_free(object_cache, object); 652 object = NULL; 653 goto out; 654 } 655 } 656 rb_link_node(&object->rb_node, rb_parent, link); 657 rb_insert_color(&object->rb_node, &object_tree_root); 658 659 list_add_tail_rcu(&object->object_list, &object_list); 660 out: 661 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 662 return object; 663 } 664 665 /* 666 * Mark the object as not allocated and schedule RCU freeing via put_object(). 667 */ 668 static void __delete_object(struct kmemleak_object *object) 669 { 670 unsigned long flags; 671 672 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 673 WARN_ON(atomic_read(&object->use_count) < 1); 674 675 /* 676 * Locking here also ensures that the corresponding memory block 677 * cannot be freed when it is being scanned. 678 */ 679 raw_spin_lock_irqsave(&object->lock, flags); 680 object->flags &= ~OBJECT_ALLOCATED; 681 raw_spin_unlock_irqrestore(&object->lock, flags); 682 put_object(object); 683 } 684 685 /* 686 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 687 * delete it. 688 */ 689 static void delete_object_full(unsigned long ptr) 690 { 691 struct kmemleak_object *object; 692 693 object = find_and_remove_object(ptr, 0); 694 if (!object) { 695 #ifdef DEBUG 696 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 697 ptr); 698 #endif 699 return; 700 } 701 __delete_object(object); 702 } 703 704 /* 705 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 706 * delete it. If the memory block is partially freed, the function may create 707 * additional metadata for the remaining parts of the block. 708 */ 709 static void delete_object_part(unsigned long ptr, size_t size) 710 { 711 struct kmemleak_object *object; 712 unsigned long start, end; 713 714 object = find_and_remove_object(ptr, 1); 715 if (!object) { 716 #ifdef DEBUG 717 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 718 ptr, size); 719 #endif 720 return; 721 } 722 723 /* 724 * Create one or two objects that may result from the memory block 725 * split. Note that partial freeing is only done by free_bootmem() and 726 * this happens before kmemleak_init() is called. 727 */ 728 start = object->pointer; 729 end = object->pointer + object->size; 730 if (ptr > start) 731 create_object(start, ptr - start, object->min_count, 732 GFP_KERNEL); 733 if (ptr + size < end) 734 create_object(ptr + size, end - ptr - size, object->min_count, 735 GFP_KERNEL); 736 737 __delete_object(object); 738 } 739 740 static void __paint_it(struct kmemleak_object *object, int color) 741 { 742 object->min_count = color; 743 if (color == KMEMLEAK_BLACK) 744 object->flags |= OBJECT_NO_SCAN; 745 } 746 747 static void paint_it(struct kmemleak_object *object, int color) 748 { 749 unsigned long flags; 750 751 raw_spin_lock_irqsave(&object->lock, flags); 752 __paint_it(object, color); 753 raw_spin_unlock_irqrestore(&object->lock, flags); 754 } 755 756 static void paint_ptr(unsigned long ptr, int color) 757 { 758 struct kmemleak_object *object; 759 760 object = find_and_get_object(ptr, 0); 761 if (!object) { 762 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 763 ptr, 764 (color == KMEMLEAK_GREY) ? "Grey" : 765 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 766 return; 767 } 768 paint_it(object, color); 769 put_object(object); 770 } 771 772 /* 773 * Mark an object permanently as gray-colored so that it can no longer be 774 * reported as a leak. This is used in general to mark a false positive. 775 */ 776 static void make_gray_object(unsigned long ptr) 777 { 778 paint_ptr(ptr, KMEMLEAK_GREY); 779 } 780 781 /* 782 * Mark the object as black-colored so that it is ignored from scans and 783 * reporting. 784 */ 785 static void make_black_object(unsigned long ptr) 786 { 787 paint_ptr(ptr, KMEMLEAK_BLACK); 788 } 789 790 /* 791 * Add a scanning area to the object. If at least one such area is added, 792 * kmemleak will only scan these ranges rather than the whole memory block. 793 */ 794 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 795 { 796 unsigned long flags; 797 struct kmemleak_object *object; 798 struct kmemleak_scan_area *area = NULL; 799 800 object = find_and_get_object(ptr, 1); 801 if (!object) { 802 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 803 ptr); 804 return; 805 } 806 807 if (scan_area_cache) 808 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 809 810 raw_spin_lock_irqsave(&object->lock, flags); 811 if (!area) { 812 pr_warn_once("Cannot allocate a scan area, scanning the full object\n"); 813 /* mark the object for full scan to avoid false positives */ 814 object->flags |= OBJECT_FULL_SCAN; 815 goto out_unlock; 816 } 817 if (size == SIZE_MAX) { 818 size = object->pointer + object->size - ptr; 819 } else if (ptr + size > object->pointer + object->size) { 820 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 821 dump_object_info(object); 822 kmem_cache_free(scan_area_cache, area); 823 goto out_unlock; 824 } 825 826 INIT_HLIST_NODE(&area->node); 827 area->start = ptr; 828 area->size = size; 829 830 hlist_add_head(&area->node, &object->area_list); 831 out_unlock: 832 raw_spin_unlock_irqrestore(&object->lock, flags); 833 put_object(object); 834 } 835 836 /* 837 * Any surplus references (object already gray) to 'ptr' are passed to 838 * 'excess_ref'. This is used in the vmalloc() case where a pointer to 839 * vm_struct may be used as an alternative reference to the vmalloc'ed object 840 * (see free_thread_stack()). 841 */ 842 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) 843 { 844 unsigned long flags; 845 struct kmemleak_object *object; 846 847 object = find_and_get_object(ptr, 0); 848 if (!object) { 849 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", 850 ptr); 851 return; 852 } 853 854 raw_spin_lock_irqsave(&object->lock, flags); 855 object->excess_ref = excess_ref; 856 raw_spin_unlock_irqrestore(&object->lock, flags); 857 put_object(object); 858 } 859 860 /* 861 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 862 * pointer. Such object will not be scanned by kmemleak but references to it 863 * are searched. 864 */ 865 static void object_no_scan(unsigned long ptr) 866 { 867 unsigned long flags; 868 struct kmemleak_object *object; 869 870 object = find_and_get_object(ptr, 0); 871 if (!object) { 872 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 873 return; 874 } 875 876 raw_spin_lock_irqsave(&object->lock, flags); 877 object->flags |= OBJECT_NO_SCAN; 878 raw_spin_unlock_irqrestore(&object->lock, flags); 879 put_object(object); 880 } 881 882 /** 883 * kmemleak_alloc - register a newly allocated object 884 * @ptr: pointer to beginning of the object 885 * @size: size of the object 886 * @min_count: minimum number of references to this object. If during memory 887 * scanning a number of references less than @min_count is found, 888 * the object is reported as a memory leak. If @min_count is 0, 889 * the object is never reported as a leak. If @min_count is -1, 890 * the object is ignored (not scanned and not reported as a leak) 891 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 892 * 893 * This function is called from the kernel allocators when a new object 894 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). 895 */ 896 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 897 gfp_t gfp) 898 { 899 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 900 901 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 902 create_object((unsigned long)ptr, size, min_count, gfp); 903 } 904 EXPORT_SYMBOL_GPL(kmemleak_alloc); 905 906 /** 907 * kmemleak_alloc_percpu - register a newly allocated __percpu object 908 * @ptr: __percpu pointer to beginning of the object 909 * @size: size of the object 910 * @gfp: flags used for kmemleak internal memory allocations 911 * 912 * This function is called from the kernel percpu allocator when a new object 913 * (memory block) is allocated (alloc_percpu). 914 */ 915 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 916 gfp_t gfp) 917 { 918 unsigned int cpu; 919 920 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); 921 922 /* 923 * Percpu allocations are only scanned and not reported as leaks 924 * (min_count is set to 0). 925 */ 926 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 927 for_each_possible_cpu(cpu) 928 create_object((unsigned long)per_cpu_ptr(ptr, cpu), 929 size, 0, gfp); 930 } 931 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 932 933 /** 934 * kmemleak_vmalloc - register a newly vmalloc'ed object 935 * @area: pointer to vm_struct 936 * @size: size of the object 937 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations 938 * 939 * This function is called from the vmalloc() kernel allocator when a new 940 * object (memory block) is allocated. 941 */ 942 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) 943 { 944 pr_debug("%s(0x%p, %zu)\n", __func__, area, size); 945 946 /* 947 * A min_count = 2 is needed because vm_struct contains a reference to 948 * the virtual address of the vmalloc'ed block. 949 */ 950 if (kmemleak_enabled) { 951 create_object((unsigned long)area->addr, size, 2, gfp); 952 object_set_excess_ref((unsigned long)area, 953 (unsigned long)area->addr); 954 } 955 } 956 EXPORT_SYMBOL_GPL(kmemleak_vmalloc); 957 958 /** 959 * kmemleak_free - unregister a previously registered object 960 * @ptr: pointer to beginning of the object 961 * 962 * This function is called from the kernel allocators when an object (memory 963 * block) is freed (kmem_cache_free, kfree, vfree etc.). 964 */ 965 void __ref kmemleak_free(const void *ptr) 966 { 967 pr_debug("%s(0x%p)\n", __func__, ptr); 968 969 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 970 delete_object_full((unsigned long)ptr); 971 } 972 EXPORT_SYMBOL_GPL(kmemleak_free); 973 974 /** 975 * kmemleak_free_part - partially unregister a previously registered object 976 * @ptr: pointer to the beginning or inside the object. This also 977 * represents the start of the range to be freed 978 * @size: size to be unregistered 979 * 980 * This function is called when only a part of a memory block is freed 981 * (usually from the bootmem allocator). 982 */ 983 void __ref kmemleak_free_part(const void *ptr, size_t size) 984 { 985 pr_debug("%s(0x%p)\n", __func__, ptr); 986 987 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 988 delete_object_part((unsigned long)ptr, size); 989 } 990 EXPORT_SYMBOL_GPL(kmemleak_free_part); 991 992 /** 993 * kmemleak_free_percpu - unregister a previously registered __percpu object 994 * @ptr: __percpu pointer to beginning of the object 995 * 996 * This function is called from the kernel percpu allocator when an object 997 * (memory block) is freed (free_percpu). 998 */ 999 void __ref kmemleak_free_percpu(const void __percpu *ptr) 1000 { 1001 unsigned int cpu; 1002 1003 pr_debug("%s(0x%p)\n", __func__, ptr); 1004 1005 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1006 for_each_possible_cpu(cpu) 1007 delete_object_full((unsigned long)per_cpu_ptr(ptr, 1008 cpu)); 1009 } 1010 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1011 1012 /** 1013 * kmemleak_update_trace - update object allocation stack trace 1014 * @ptr: pointer to beginning of the object 1015 * 1016 * Override the object allocation stack trace for cases where the actual 1017 * allocation place is not always useful. 1018 */ 1019 void __ref kmemleak_update_trace(const void *ptr) 1020 { 1021 struct kmemleak_object *object; 1022 unsigned long flags; 1023 1024 pr_debug("%s(0x%p)\n", __func__, ptr); 1025 1026 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1027 return; 1028 1029 object = find_and_get_object((unsigned long)ptr, 1); 1030 if (!object) { 1031 #ifdef DEBUG 1032 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1033 ptr); 1034 #endif 1035 return; 1036 } 1037 1038 raw_spin_lock_irqsave(&object->lock, flags); 1039 object->trace_len = __save_stack_trace(object->trace); 1040 raw_spin_unlock_irqrestore(&object->lock, flags); 1041 1042 put_object(object); 1043 } 1044 EXPORT_SYMBOL(kmemleak_update_trace); 1045 1046 /** 1047 * kmemleak_not_leak - mark an allocated object as false positive 1048 * @ptr: pointer to beginning of the object 1049 * 1050 * Calling this function on an object will cause the memory block to no longer 1051 * be reported as leak and always be scanned. 1052 */ 1053 void __ref kmemleak_not_leak(const void *ptr) 1054 { 1055 pr_debug("%s(0x%p)\n", __func__, ptr); 1056 1057 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1058 make_gray_object((unsigned long)ptr); 1059 } 1060 EXPORT_SYMBOL(kmemleak_not_leak); 1061 1062 /** 1063 * kmemleak_ignore - ignore an allocated object 1064 * @ptr: pointer to beginning of the object 1065 * 1066 * Calling this function on an object will cause the memory block to be 1067 * ignored (not scanned and not reported as a leak). This is usually done when 1068 * it is known that the corresponding block is not a leak and does not contain 1069 * any references to other allocated memory blocks. 1070 */ 1071 void __ref kmemleak_ignore(const void *ptr) 1072 { 1073 pr_debug("%s(0x%p)\n", __func__, ptr); 1074 1075 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1076 make_black_object((unsigned long)ptr); 1077 } 1078 EXPORT_SYMBOL(kmemleak_ignore); 1079 1080 /** 1081 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1082 * @ptr: pointer to beginning or inside the object. This also 1083 * represents the start of the scan area 1084 * @size: size of the scan area 1085 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1086 * 1087 * This function is used when it is known that only certain parts of an object 1088 * contain references to other objects. Kmemleak will only scan these areas 1089 * reducing the number false negatives. 1090 */ 1091 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1092 { 1093 pr_debug("%s(0x%p)\n", __func__, ptr); 1094 1095 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1096 add_scan_area((unsigned long)ptr, size, gfp); 1097 } 1098 EXPORT_SYMBOL(kmemleak_scan_area); 1099 1100 /** 1101 * kmemleak_no_scan - do not scan an allocated object 1102 * @ptr: pointer to beginning of the object 1103 * 1104 * This function notifies kmemleak not to scan the given memory block. Useful 1105 * in situations where it is known that the given object does not contain any 1106 * references to other objects. Kmemleak will not scan such objects reducing 1107 * the number of false negatives. 1108 */ 1109 void __ref kmemleak_no_scan(const void *ptr) 1110 { 1111 pr_debug("%s(0x%p)\n", __func__, ptr); 1112 1113 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1114 object_no_scan((unsigned long)ptr); 1115 } 1116 EXPORT_SYMBOL(kmemleak_no_scan); 1117 1118 /** 1119 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1120 * address argument 1121 * @phys: physical address of the object 1122 * @size: size of the object 1123 * @min_count: minimum number of references to this object. 1124 * See kmemleak_alloc() 1125 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1126 */ 1127 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count, 1128 gfp_t gfp) 1129 { 1130 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1131 kmemleak_alloc(__va(phys), size, min_count, gfp); 1132 } 1133 EXPORT_SYMBOL(kmemleak_alloc_phys); 1134 1135 /** 1136 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1137 * physical address argument 1138 * @phys: physical address if the beginning or inside an object. This 1139 * also represents the start of the range to be freed 1140 * @size: size to be unregistered 1141 */ 1142 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1143 { 1144 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1145 kmemleak_free_part(__va(phys), size); 1146 } 1147 EXPORT_SYMBOL(kmemleak_free_part_phys); 1148 1149 /** 1150 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical 1151 * address argument 1152 * @phys: physical address of the object 1153 */ 1154 void __ref kmemleak_not_leak_phys(phys_addr_t phys) 1155 { 1156 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1157 kmemleak_not_leak(__va(phys)); 1158 } 1159 EXPORT_SYMBOL(kmemleak_not_leak_phys); 1160 1161 /** 1162 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1163 * address argument 1164 * @phys: physical address of the object 1165 */ 1166 void __ref kmemleak_ignore_phys(phys_addr_t phys) 1167 { 1168 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1169 kmemleak_ignore(__va(phys)); 1170 } 1171 EXPORT_SYMBOL(kmemleak_ignore_phys); 1172 1173 /* 1174 * Update an object's checksum and return true if it was modified. 1175 */ 1176 static bool update_checksum(struct kmemleak_object *object) 1177 { 1178 u32 old_csum = object->checksum; 1179 1180 kasan_disable_current(); 1181 kcsan_disable_current(); 1182 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size); 1183 kasan_enable_current(); 1184 kcsan_enable_current(); 1185 1186 return object->checksum != old_csum; 1187 } 1188 1189 /* 1190 * Update an object's references. object->lock must be held by the caller. 1191 */ 1192 static void update_refs(struct kmemleak_object *object) 1193 { 1194 if (!color_white(object)) { 1195 /* non-orphan, ignored or new */ 1196 return; 1197 } 1198 1199 /* 1200 * Increase the object's reference count (number of pointers to the 1201 * memory block). If this count reaches the required minimum, the 1202 * object's color will become gray and it will be added to the 1203 * gray_list. 1204 */ 1205 object->count++; 1206 if (color_gray(object)) { 1207 /* put_object() called when removing from gray_list */ 1208 WARN_ON(!get_object(object)); 1209 list_add_tail(&object->gray_list, &gray_list); 1210 } 1211 } 1212 1213 /* 1214 * Memory scanning is a long process and it needs to be interruptible. This 1215 * function checks whether such interrupt condition occurred. 1216 */ 1217 static int scan_should_stop(void) 1218 { 1219 if (!kmemleak_enabled) 1220 return 1; 1221 1222 /* 1223 * This function may be called from either process or kthread context, 1224 * hence the need to check for both stop conditions. 1225 */ 1226 if (current->mm) 1227 return signal_pending(current); 1228 else 1229 return kthread_should_stop(); 1230 1231 return 0; 1232 } 1233 1234 /* 1235 * Scan a memory block (exclusive range) for valid pointers and add those 1236 * found to the gray list. 1237 */ 1238 static void scan_block(void *_start, void *_end, 1239 struct kmemleak_object *scanned) 1240 { 1241 unsigned long *ptr; 1242 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1243 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1244 unsigned long flags; 1245 unsigned long untagged_ptr; 1246 1247 raw_spin_lock_irqsave(&kmemleak_lock, flags); 1248 for (ptr = start; ptr < end; ptr++) { 1249 struct kmemleak_object *object; 1250 unsigned long pointer; 1251 unsigned long excess_ref; 1252 1253 if (scan_should_stop()) 1254 break; 1255 1256 kasan_disable_current(); 1257 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr); 1258 kasan_enable_current(); 1259 1260 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer); 1261 if (untagged_ptr < min_addr || untagged_ptr >= max_addr) 1262 continue; 1263 1264 /* 1265 * No need for get_object() here since we hold kmemleak_lock. 1266 * object->use_count cannot be dropped to 0 while the object 1267 * is still present in object_tree_root and object_list 1268 * (with updates protected by kmemleak_lock). 1269 */ 1270 object = lookup_object(pointer, 1); 1271 if (!object) 1272 continue; 1273 if (object == scanned) 1274 /* self referenced, ignore */ 1275 continue; 1276 1277 /* 1278 * Avoid the lockdep recursive warning on object->lock being 1279 * previously acquired in scan_object(). These locks are 1280 * enclosed by scan_mutex. 1281 */ 1282 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1283 /* only pass surplus references (object already gray) */ 1284 if (color_gray(object)) { 1285 excess_ref = object->excess_ref; 1286 /* no need for update_refs() if object already gray */ 1287 } else { 1288 excess_ref = 0; 1289 update_refs(object); 1290 } 1291 raw_spin_unlock(&object->lock); 1292 1293 if (excess_ref) { 1294 object = lookup_object(excess_ref, 0); 1295 if (!object) 1296 continue; 1297 if (object == scanned) 1298 /* circular reference, ignore */ 1299 continue; 1300 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1301 update_refs(object); 1302 raw_spin_unlock(&object->lock); 1303 } 1304 } 1305 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 1306 } 1307 1308 /* 1309 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1310 */ 1311 #ifdef CONFIG_SMP 1312 static void scan_large_block(void *start, void *end) 1313 { 1314 void *next; 1315 1316 while (start < end) { 1317 next = min(start + MAX_SCAN_SIZE, end); 1318 scan_block(start, next, NULL); 1319 start = next; 1320 cond_resched(); 1321 } 1322 } 1323 #endif 1324 1325 /* 1326 * Scan a memory block corresponding to a kmemleak_object. A condition is 1327 * that object->use_count >= 1. 1328 */ 1329 static void scan_object(struct kmemleak_object *object) 1330 { 1331 struct kmemleak_scan_area *area; 1332 unsigned long flags; 1333 1334 /* 1335 * Once the object->lock is acquired, the corresponding memory block 1336 * cannot be freed (the same lock is acquired in delete_object). 1337 */ 1338 raw_spin_lock_irqsave(&object->lock, flags); 1339 if (object->flags & OBJECT_NO_SCAN) 1340 goto out; 1341 if (!(object->flags & OBJECT_ALLOCATED)) 1342 /* already freed object */ 1343 goto out; 1344 if (hlist_empty(&object->area_list) || 1345 object->flags & OBJECT_FULL_SCAN) { 1346 void *start = (void *)object->pointer; 1347 void *end = (void *)(object->pointer + object->size); 1348 void *next; 1349 1350 do { 1351 next = min(start + MAX_SCAN_SIZE, end); 1352 scan_block(start, next, object); 1353 1354 start = next; 1355 if (start >= end) 1356 break; 1357 1358 raw_spin_unlock_irqrestore(&object->lock, flags); 1359 cond_resched(); 1360 raw_spin_lock_irqsave(&object->lock, flags); 1361 } while (object->flags & OBJECT_ALLOCATED); 1362 } else 1363 hlist_for_each_entry(area, &object->area_list, node) 1364 scan_block((void *)area->start, 1365 (void *)(area->start + area->size), 1366 object); 1367 out: 1368 raw_spin_unlock_irqrestore(&object->lock, flags); 1369 } 1370 1371 /* 1372 * Scan the objects already referenced (gray objects). More objects will be 1373 * referenced and, if there are no memory leaks, all the objects are scanned. 1374 */ 1375 static void scan_gray_list(void) 1376 { 1377 struct kmemleak_object *object, *tmp; 1378 1379 /* 1380 * The list traversal is safe for both tail additions and removals 1381 * from inside the loop. The kmemleak objects cannot be freed from 1382 * outside the loop because their use_count was incremented. 1383 */ 1384 object = list_entry(gray_list.next, typeof(*object), gray_list); 1385 while (&object->gray_list != &gray_list) { 1386 cond_resched(); 1387 1388 /* may add new objects to the list */ 1389 if (!scan_should_stop()) 1390 scan_object(object); 1391 1392 tmp = list_entry(object->gray_list.next, typeof(*object), 1393 gray_list); 1394 1395 /* remove the object from the list and release it */ 1396 list_del(&object->gray_list); 1397 put_object(object); 1398 1399 object = tmp; 1400 } 1401 WARN_ON(!list_empty(&gray_list)); 1402 } 1403 1404 /* 1405 * Scan data sections and all the referenced memory blocks allocated via the 1406 * kernel's standard allocators. This function must be called with the 1407 * scan_mutex held. 1408 */ 1409 static void kmemleak_scan(void) 1410 { 1411 unsigned long flags; 1412 struct kmemleak_object *object; 1413 struct zone *zone; 1414 int __maybe_unused i; 1415 int new_leaks = 0; 1416 1417 jiffies_last_scan = jiffies; 1418 1419 /* prepare the kmemleak_object's */ 1420 rcu_read_lock(); 1421 list_for_each_entry_rcu(object, &object_list, object_list) { 1422 raw_spin_lock_irqsave(&object->lock, flags); 1423 #ifdef DEBUG 1424 /* 1425 * With a few exceptions there should be a maximum of 1426 * 1 reference to any object at this point. 1427 */ 1428 if (atomic_read(&object->use_count) > 1) { 1429 pr_debug("object->use_count = %d\n", 1430 atomic_read(&object->use_count)); 1431 dump_object_info(object); 1432 } 1433 #endif 1434 /* reset the reference count (whiten the object) */ 1435 object->count = 0; 1436 if (color_gray(object) && get_object(object)) 1437 list_add_tail(&object->gray_list, &gray_list); 1438 1439 raw_spin_unlock_irqrestore(&object->lock, flags); 1440 } 1441 rcu_read_unlock(); 1442 1443 #ifdef CONFIG_SMP 1444 /* per-cpu sections scanning */ 1445 for_each_possible_cpu(i) 1446 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1447 __per_cpu_end + per_cpu_offset(i)); 1448 #endif 1449 1450 /* 1451 * Struct page scanning for each node. 1452 */ 1453 get_online_mems(); 1454 for_each_populated_zone(zone) { 1455 unsigned long start_pfn = zone->zone_start_pfn; 1456 unsigned long end_pfn = zone_end_pfn(zone); 1457 unsigned long pfn; 1458 1459 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1460 struct page *page = pfn_to_online_page(pfn); 1461 1462 if (!page) 1463 continue; 1464 1465 /* only scan pages belonging to this zone */ 1466 if (page_zone(page) != zone) 1467 continue; 1468 /* only scan if page is in use */ 1469 if (page_count(page) == 0) 1470 continue; 1471 scan_block(page, page + 1, NULL); 1472 if (!(pfn & 63)) 1473 cond_resched(); 1474 } 1475 } 1476 put_online_mems(); 1477 1478 /* 1479 * Scanning the task stacks (may introduce false negatives). 1480 */ 1481 if (kmemleak_stack_scan) { 1482 struct task_struct *p, *g; 1483 1484 rcu_read_lock(); 1485 for_each_process_thread(g, p) { 1486 void *stack = try_get_task_stack(p); 1487 if (stack) { 1488 scan_block(stack, stack + THREAD_SIZE, NULL); 1489 put_task_stack(p); 1490 } 1491 } 1492 rcu_read_unlock(); 1493 } 1494 1495 /* 1496 * Scan the objects already referenced from the sections scanned 1497 * above. 1498 */ 1499 scan_gray_list(); 1500 1501 /* 1502 * Check for new or unreferenced objects modified since the previous 1503 * scan and color them gray until the next scan. 1504 */ 1505 rcu_read_lock(); 1506 list_for_each_entry_rcu(object, &object_list, object_list) { 1507 raw_spin_lock_irqsave(&object->lock, flags); 1508 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1509 && update_checksum(object) && get_object(object)) { 1510 /* color it gray temporarily */ 1511 object->count = object->min_count; 1512 list_add_tail(&object->gray_list, &gray_list); 1513 } 1514 raw_spin_unlock_irqrestore(&object->lock, flags); 1515 } 1516 rcu_read_unlock(); 1517 1518 /* 1519 * Re-scan the gray list for modified unreferenced objects. 1520 */ 1521 scan_gray_list(); 1522 1523 /* 1524 * If scanning was stopped do not report any new unreferenced objects. 1525 */ 1526 if (scan_should_stop()) 1527 return; 1528 1529 /* 1530 * Scanning result reporting. 1531 */ 1532 rcu_read_lock(); 1533 list_for_each_entry_rcu(object, &object_list, object_list) { 1534 raw_spin_lock_irqsave(&object->lock, flags); 1535 if (unreferenced_object(object) && 1536 !(object->flags & OBJECT_REPORTED)) { 1537 object->flags |= OBJECT_REPORTED; 1538 1539 if (kmemleak_verbose) 1540 print_unreferenced(NULL, object); 1541 1542 new_leaks++; 1543 } 1544 raw_spin_unlock_irqrestore(&object->lock, flags); 1545 } 1546 rcu_read_unlock(); 1547 1548 if (new_leaks) { 1549 kmemleak_found_leaks = true; 1550 1551 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1552 new_leaks); 1553 } 1554 1555 } 1556 1557 /* 1558 * Thread function performing automatic memory scanning. Unreferenced objects 1559 * at the end of a memory scan are reported but only the first time. 1560 */ 1561 static int kmemleak_scan_thread(void *arg) 1562 { 1563 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN); 1564 1565 pr_info("Automatic memory scanning thread started\n"); 1566 set_user_nice(current, 10); 1567 1568 /* 1569 * Wait before the first scan to allow the system to fully initialize. 1570 */ 1571 if (first_run) { 1572 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); 1573 first_run = 0; 1574 while (timeout && !kthread_should_stop()) 1575 timeout = schedule_timeout_interruptible(timeout); 1576 } 1577 1578 while (!kthread_should_stop()) { 1579 signed long timeout = READ_ONCE(jiffies_scan_wait); 1580 1581 mutex_lock(&scan_mutex); 1582 kmemleak_scan(); 1583 mutex_unlock(&scan_mutex); 1584 1585 /* wait before the next scan */ 1586 while (timeout && !kthread_should_stop()) 1587 timeout = schedule_timeout_interruptible(timeout); 1588 } 1589 1590 pr_info("Automatic memory scanning thread ended\n"); 1591 1592 return 0; 1593 } 1594 1595 /* 1596 * Start the automatic memory scanning thread. This function must be called 1597 * with the scan_mutex held. 1598 */ 1599 static void start_scan_thread(void) 1600 { 1601 if (scan_thread) 1602 return; 1603 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1604 if (IS_ERR(scan_thread)) { 1605 pr_warn("Failed to create the scan thread\n"); 1606 scan_thread = NULL; 1607 } 1608 } 1609 1610 /* 1611 * Stop the automatic memory scanning thread. 1612 */ 1613 static void stop_scan_thread(void) 1614 { 1615 if (scan_thread) { 1616 kthread_stop(scan_thread); 1617 scan_thread = NULL; 1618 } 1619 } 1620 1621 /* 1622 * Iterate over the object_list and return the first valid object at or after 1623 * the required position with its use_count incremented. The function triggers 1624 * a memory scanning when the pos argument points to the first position. 1625 */ 1626 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1627 { 1628 struct kmemleak_object *object; 1629 loff_t n = *pos; 1630 int err; 1631 1632 err = mutex_lock_interruptible(&scan_mutex); 1633 if (err < 0) 1634 return ERR_PTR(err); 1635 1636 rcu_read_lock(); 1637 list_for_each_entry_rcu(object, &object_list, object_list) { 1638 if (n-- > 0) 1639 continue; 1640 if (get_object(object)) 1641 goto out; 1642 } 1643 object = NULL; 1644 out: 1645 return object; 1646 } 1647 1648 /* 1649 * Return the next object in the object_list. The function decrements the 1650 * use_count of the previous object and increases that of the next one. 1651 */ 1652 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1653 { 1654 struct kmemleak_object *prev_obj = v; 1655 struct kmemleak_object *next_obj = NULL; 1656 struct kmemleak_object *obj = prev_obj; 1657 1658 ++(*pos); 1659 1660 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1661 if (get_object(obj)) { 1662 next_obj = obj; 1663 break; 1664 } 1665 } 1666 1667 put_object(prev_obj); 1668 return next_obj; 1669 } 1670 1671 /* 1672 * Decrement the use_count of the last object required, if any. 1673 */ 1674 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1675 { 1676 if (!IS_ERR(v)) { 1677 /* 1678 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1679 * waiting was interrupted, so only release it if !IS_ERR. 1680 */ 1681 rcu_read_unlock(); 1682 mutex_unlock(&scan_mutex); 1683 if (v) 1684 put_object(v); 1685 } 1686 } 1687 1688 /* 1689 * Print the information for an unreferenced object to the seq file. 1690 */ 1691 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1692 { 1693 struct kmemleak_object *object = v; 1694 unsigned long flags; 1695 1696 raw_spin_lock_irqsave(&object->lock, flags); 1697 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1698 print_unreferenced(seq, object); 1699 raw_spin_unlock_irqrestore(&object->lock, flags); 1700 return 0; 1701 } 1702 1703 static const struct seq_operations kmemleak_seq_ops = { 1704 .start = kmemleak_seq_start, 1705 .next = kmemleak_seq_next, 1706 .stop = kmemleak_seq_stop, 1707 .show = kmemleak_seq_show, 1708 }; 1709 1710 static int kmemleak_open(struct inode *inode, struct file *file) 1711 { 1712 return seq_open(file, &kmemleak_seq_ops); 1713 } 1714 1715 static int dump_str_object_info(const char *str) 1716 { 1717 unsigned long flags; 1718 struct kmemleak_object *object; 1719 unsigned long addr; 1720 1721 if (kstrtoul(str, 0, &addr)) 1722 return -EINVAL; 1723 object = find_and_get_object(addr, 0); 1724 if (!object) { 1725 pr_info("Unknown object at 0x%08lx\n", addr); 1726 return -EINVAL; 1727 } 1728 1729 raw_spin_lock_irqsave(&object->lock, flags); 1730 dump_object_info(object); 1731 raw_spin_unlock_irqrestore(&object->lock, flags); 1732 1733 put_object(object); 1734 return 0; 1735 } 1736 1737 /* 1738 * We use grey instead of black to ensure we can do future scans on the same 1739 * objects. If we did not do future scans these black objects could 1740 * potentially contain references to newly allocated objects in the future and 1741 * we'd end up with false positives. 1742 */ 1743 static void kmemleak_clear(void) 1744 { 1745 struct kmemleak_object *object; 1746 unsigned long flags; 1747 1748 rcu_read_lock(); 1749 list_for_each_entry_rcu(object, &object_list, object_list) { 1750 raw_spin_lock_irqsave(&object->lock, flags); 1751 if ((object->flags & OBJECT_REPORTED) && 1752 unreferenced_object(object)) 1753 __paint_it(object, KMEMLEAK_GREY); 1754 raw_spin_unlock_irqrestore(&object->lock, flags); 1755 } 1756 rcu_read_unlock(); 1757 1758 kmemleak_found_leaks = false; 1759 } 1760 1761 static void __kmemleak_do_cleanup(void); 1762 1763 /* 1764 * File write operation to configure kmemleak at run-time. The following 1765 * commands can be written to the /sys/kernel/debug/kmemleak file: 1766 * off - disable kmemleak (irreversible) 1767 * stack=on - enable the task stacks scanning 1768 * stack=off - disable the tasks stacks scanning 1769 * scan=on - start the automatic memory scanning thread 1770 * scan=off - stop the automatic memory scanning thread 1771 * scan=... - set the automatic memory scanning period in seconds (0 to 1772 * disable it) 1773 * scan - trigger a memory scan 1774 * clear - mark all current reported unreferenced kmemleak objects as 1775 * grey to ignore printing them, or free all kmemleak objects 1776 * if kmemleak has been disabled. 1777 * dump=... - dump information about the object found at the given address 1778 */ 1779 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1780 size_t size, loff_t *ppos) 1781 { 1782 char buf[64]; 1783 int buf_size; 1784 int ret; 1785 1786 buf_size = min(size, (sizeof(buf) - 1)); 1787 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1788 return -EFAULT; 1789 buf[buf_size] = 0; 1790 1791 ret = mutex_lock_interruptible(&scan_mutex); 1792 if (ret < 0) 1793 return ret; 1794 1795 if (strncmp(buf, "clear", 5) == 0) { 1796 if (kmemleak_enabled) 1797 kmemleak_clear(); 1798 else 1799 __kmemleak_do_cleanup(); 1800 goto out; 1801 } 1802 1803 if (!kmemleak_enabled) { 1804 ret = -EPERM; 1805 goto out; 1806 } 1807 1808 if (strncmp(buf, "off", 3) == 0) 1809 kmemleak_disable(); 1810 else if (strncmp(buf, "stack=on", 8) == 0) 1811 kmemleak_stack_scan = 1; 1812 else if (strncmp(buf, "stack=off", 9) == 0) 1813 kmemleak_stack_scan = 0; 1814 else if (strncmp(buf, "scan=on", 7) == 0) 1815 start_scan_thread(); 1816 else if (strncmp(buf, "scan=off", 8) == 0) 1817 stop_scan_thread(); 1818 else if (strncmp(buf, "scan=", 5) == 0) { 1819 unsigned secs; 1820 unsigned long msecs; 1821 1822 ret = kstrtouint(buf + 5, 0, &secs); 1823 if (ret < 0) 1824 goto out; 1825 1826 msecs = secs * MSEC_PER_SEC; 1827 if (msecs > UINT_MAX) 1828 msecs = UINT_MAX; 1829 1830 stop_scan_thread(); 1831 if (msecs) { 1832 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs)); 1833 start_scan_thread(); 1834 } 1835 } else if (strncmp(buf, "scan", 4) == 0) 1836 kmemleak_scan(); 1837 else if (strncmp(buf, "dump=", 5) == 0) 1838 ret = dump_str_object_info(buf + 5); 1839 else 1840 ret = -EINVAL; 1841 1842 out: 1843 mutex_unlock(&scan_mutex); 1844 if (ret < 0) 1845 return ret; 1846 1847 /* ignore the rest of the buffer, only one command at a time */ 1848 *ppos += size; 1849 return size; 1850 } 1851 1852 static const struct file_operations kmemleak_fops = { 1853 .owner = THIS_MODULE, 1854 .open = kmemleak_open, 1855 .read = seq_read, 1856 .write = kmemleak_write, 1857 .llseek = seq_lseek, 1858 .release = seq_release, 1859 }; 1860 1861 static void __kmemleak_do_cleanup(void) 1862 { 1863 struct kmemleak_object *object, *tmp; 1864 1865 /* 1866 * Kmemleak has already been disabled, no need for RCU list traversal 1867 * or kmemleak_lock held. 1868 */ 1869 list_for_each_entry_safe(object, tmp, &object_list, object_list) { 1870 __remove_object(object); 1871 __delete_object(object); 1872 } 1873 } 1874 1875 /* 1876 * Stop the memory scanning thread and free the kmemleak internal objects if 1877 * no previous scan thread (otherwise, kmemleak may still have some useful 1878 * information on memory leaks). 1879 */ 1880 static void kmemleak_do_cleanup(struct work_struct *work) 1881 { 1882 stop_scan_thread(); 1883 1884 mutex_lock(&scan_mutex); 1885 /* 1886 * Once it is made sure that kmemleak_scan has stopped, it is safe to no 1887 * longer track object freeing. Ordering of the scan thread stopping and 1888 * the memory accesses below is guaranteed by the kthread_stop() 1889 * function. 1890 */ 1891 kmemleak_free_enabled = 0; 1892 mutex_unlock(&scan_mutex); 1893 1894 if (!kmemleak_found_leaks) 1895 __kmemleak_do_cleanup(); 1896 else 1897 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 1898 } 1899 1900 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 1901 1902 /* 1903 * Disable kmemleak. No memory allocation/freeing will be traced once this 1904 * function is called. Disabling kmemleak is an irreversible operation. 1905 */ 1906 static void kmemleak_disable(void) 1907 { 1908 /* atomically check whether it was already invoked */ 1909 if (cmpxchg(&kmemleak_error, 0, 1)) 1910 return; 1911 1912 /* stop any memory operation tracing */ 1913 kmemleak_enabled = 0; 1914 1915 /* check whether it is too early for a kernel thread */ 1916 if (kmemleak_initialized) 1917 schedule_work(&cleanup_work); 1918 else 1919 kmemleak_free_enabled = 0; 1920 1921 pr_info("Kernel memory leak detector disabled\n"); 1922 } 1923 1924 /* 1925 * Allow boot-time kmemleak disabling (enabled by default). 1926 */ 1927 static int __init kmemleak_boot_config(char *str) 1928 { 1929 if (!str) 1930 return -EINVAL; 1931 if (strcmp(str, "off") == 0) 1932 kmemleak_disable(); 1933 else if (strcmp(str, "on") == 0) 1934 kmemleak_skip_disable = 1; 1935 else 1936 return -EINVAL; 1937 return 0; 1938 } 1939 early_param("kmemleak", kmemleak_boot_config); 1940 1941 /* 1942 * Kmemleak initialization. 1943 */ 1944 void __init kmemleak_init(void) 1945 { 1946 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 1947 if (!kmemleak_skip_disable) { 1948 kmemleak_disable(); 1949 return; 1950 } 1951 #endif 1952 1953 if (kmemleak_error) 1954 return; 1955 1956 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 1957 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 1958 1959 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 1960 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 1961 1962 /* register the data/bss sections */ 1963 create_object((unsigned long)_sdata, _edata - _sdata, 1964 KMEMLEAK_GREY, GFP_ATOMIC); 1965 create_object((unsigned long)__bss_start, __bss_stop - __bss_start, 1966 KMEMLEAK_GREY, GFP_ATOMIC); 1967 /* only register .data..ro_after_init if not within .data */ 1968 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata) 1969 create_object((unsigned long)__start_ro_after_init, 1970 __end_ro_after_init - __start_ro_after_init, 1971 KMEMLEAK_GREY, GFP_ATOMIC); 1972 } 1973 1974 /* 1975 * Late initialization function. 1976 */ 1977 static int __init kmemleak_late_init(void) 1978 { 1979 kmemleak_initialized = 1; 1980 1981 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops); 1982 1983 if (kmemleak_error) { 1984 /* 1985 * Some error occurred and kmemleak was disabled. There is a 1986 * small chance that kmemleak_disable() was called immediately 1987 * after setting kmemleak_initialized and we may end up with 1988 * two clean-up threads but serialized by scan_mutex. 1989 */ 1990 schedule_work(&cleanup_work); 1991 return -ENOMEM; 1992 } 1993 1994 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) { 1995 mutex_lock(&scan_mutex); 1996 start_scan_thread(); 1997 mutex_unlock(&scan_mutex); 1998 } 1999 2000 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n", 2001 mem_pool_free_count); 2002 2003 return 0; 2004 } 2005 late_initcall(kmemleak_late_init); 2006