xref: /openbmc/linux/mm/kmemleak.c (revision 711aab1d)
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/dev-tools/kmemleak.rst.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a red black tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * Locks and mutexes are acquired/nested in the following order:
57  *
58  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59  *
60  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61  * regions.
62  *
63  * The kmemleak_object structures have a use_count incremented or decremented
64  * using the get_object()/put_object() functions. When the use_count becomes
65  * 0, this count can no longer be incremented and put_object() schedules the
66  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67  * function must be protected by rcu_read_lock() to avoid accessing a freed
68  * structure.
69  */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/init.h>
74 #include <linux/kernel.h>
75 #include <linux/list.h>
76 #include <linux/sched/signal.h>
77 #include <linux/sched/task.h>
78 #include <linux/sched/task_stack.h>
79 #include <linux/jiffies.h>
80 #include <linux/delay.h>
81 #include <linux/export.h>
82 #include <linux/kthread.h>
83 #include <linux/rbtree.h>
84 #include <linux/fs.h>
85 #include <linux/debugfs.h>
86 #include <linux/seq_file.h>
87 #include <linux/cpumask.h>
88 #include <linux/spinlock.h>
89 #include <linux/mutex.h>
90 #include <linux/rcupdate.h>
91 #include <linux/stacktrace.h>
92 #include <linux/cache.h>
93 #include <linux/percpu.h>
94 #include <linux/hardirq.h>
95 #include <linux/bootmem.h>
96 #include <linux/pfn.h>
97 #include <linux/mmzone.h>
98 #include <linux/slab.h>
99 #include <linux/thread_info.h>
100 #include <linux/err.h>
101 #include <linux/uaccess.h>
102 #include <linux/string.h>
103 #include <linux/nodemask.h>
104 #include <linux/mm.h>
105 #include <linux/workqueue.h>
106 #include <linux/crc32.h>
107 
108 #include <asm/sections.h>
109 #include <asm/processor.h>
110 #include <linux/atomic.h>
111 
112 #include <linux/kasan.h>
113 #include <linux/kmemcheck.h>
114 #include <linux/kmemleak.h>
115 #include <linux/memory_hotplug.h>
116 
117 /*
118  * Kmemleak configuration and common defines.
119  */
120 #define MAX_TRACE		16	/* stack trace length */
121 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
122 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
123 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
124 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
125 
126 #define BYTES_PER_POINTER	sizeof(void *)
127 
128 /* GFP bitmask for kmemleak internal allocations */
129 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
130 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
131 				 __GFP_NOWARN)
132 
133 /* scanning area inside a memory block */
134 struct kmemleak_scan_area {
135 	struct hlist_node node;
136 	unsigned long start;
137 	size_t size;
138 };
139 
140 #define KMEMLEAK_GREY	0
141 #define KMEMLEAK_BLACK	-1
142 
143 /*
144  * Structure holding the metadata for each allocated memory block.
145  * Modifications to such objects should be made while holding the
146  * object->lock. Insertions or deletions from object_list, gray_list or
147  * rb_node are already protected by the corresponding locks or mutex (see
148  * the notes on locking above). These objects are reference-counted
149  * (use_count) and freed using the RCU mechanism.
150  */
151 struct kmemleak_object {
152 	spinlock_t lock;
153 	unsigned int flags;		/* object status flags */
154 	struct list_head object_list;
155 	struct list_head gray_list;
156 	struct rb_node rb_node;
157 	struct rcu_head rcu;		/* object_list lockless traversal */
158 	/* object usage count; object freed when use_count == 0 */
159 	atomic_t use_count;
160 	unsigned long pointer;
161 	size_t size;
162 	/* pass surplus references to this pointer */
163 	unsigned long excess_ref;
164 	/* minimum number of a pointers found before it is considered leak */
165 	int min_count;
166 	/* the total number of pointers found pointing to this object */
167 	int count;
168 	/* checksum for detecting modified objects */
169 	u32 checksum;
170 	/* memory ranges to be scanned inside an object (empty for all) */
171 	struct hlist_head area_list;
172 	unsigned long trace[MAX_TRACE];
173 	unsigned int trace_len;
174 	unsigned long jiffies;		/* creation timestamp */
175 	pid_t pid;			/* pid of the current task */
176 	char comm[TASK_COMM_LEN];	/* executable name */
177 };
178 
179 /* flag representing the memory block allocation status */
180 #define OBJECT_ALLOCATED	(1 << 0)
181 /* flag set after the first reporting of an unreference object */
182 #define OBJECT_REPORTED		(1 << 1)
183 /* flag set to not scan the object */
184 #define OBJECT_NO_SCAN		(1 << 2)
185 
186 /* number of bytes to print per line; must be 16 or 32 */
187 #define HEX_ROW_SIZE		16
188 /* number of bytes to print at a time (1, 2, 4, 8) */
189 #define HEX_GROUP_SIZE		1
190 /* include ASCII after the hex output */
191 #define HEX_ASCII		1
192 /* max number of lines to be printed */
193 #define HEX_MAX_LINES		2
194 
195 /* the list of all allocated objects */
196 static LIST_HEAD(object_list);
197 /* the list of gray-colored objects (see color_gray comment below) */
198 static LIST_HEAD(gray_list);
199 /* search tree for object boundaries */
200 static struct rb_root object_tree_root = RB_ROOT;
201 /* rw_lock protecting the access to object_list and object_tree_root */
202 static DEFINE_RWLOCK(kmemleak_lock);
203 
204 /* allocation caches for kmemleak internal data */
205 static struct kmem_cache *object_cache;
206 static struct kmem_cache *scan_area_cache;
207 
208 /* set if tracing memory operations is enabled */
209 static int kmemleak_enabled;
210 /* same as above but only for the kmemleak_free() callback */
211 static int kmemleak_free_enabled;
212 /* set in the late_initcall if there were no errors */
213 static int kmemleak_initialized;
214 /* enables or disables early logging of the memory operations */
215 static int kmemleak_early_log = 1;
216 /* set if a kmemleak warning was issued */
217 static int kmemleak_warning;
218 /* set if a fatal kmemleak error has occurred */
219 static int kmemleak_error;
220 
221 /* minimum and maximum address that may be valid pointers */
222 static unsigned long min_addr = ULONG_MAX;
223 static unsigned long max_addr;
224 
225 static struct task_struct *scan_thread;
226 /* used to avoid reporting of recently allocated objects */
227 static unsigned long jiffies_min_age;
228 static unsigned long jiffies_last_scan;
229 /* delay between automatic memory scannings */
230 static signed long jiffies_scan_wait;
231 /* enables or disables the task stacks scanning */
232 static int kmemleak_stack_scan = 1;
233 /* protects the memory scanning, parameters and debug/kmemleak file access */
234 static DEFINE_MUTEX(scan_mutex);
235 /* setting kmemleak=on, will set this var, skipping the disable */
236 static int kmemleak_skip_disable;
237 /* If there are leaks that can be reported */
238 static bool kmemleak_found_leaks;
239 
240 /*
241  * Early object allocation/freeing logging. Kmemleak is initialized after the
242  * kernel allocator. However, both the kernel allocator and kmemleak may
243  * allocate memory blocks which need to be tracked. Kmemleak defines an
244  * arbitrary buffer to hold the allocation/freeing information before it is
245  * fully initialized.
246  */
247 
248 /* kmemleak operation type for early logging */
249 enum {
250 	KMEMLEAK_ALLOC,
251 	KMEMLEAK_ALLOC_PERCPU,
252 	KMEMLEAK_FREE,
253 	KMEMLEAK_FREE_PART,
254 	KMEMLEAK_FREE_PERCPU,
255 	KMEMLEAK_NOT_LEAK,
256 	KMEMLEAK_IGNORE,
257 	KMEMLEAK_SCAN_AREA,
258 	KMEMLEAK_NO_SCAN,
259 	KMEMLEAK_SET_EXCESS_REF
260 };
261 
262 /*
263  * Structure holding the information passed to kmemleak callbacks during the
264  * early logging.
265  */
266 struct early_log {
267 	int op_type;			/* kmemleak operation type */
268 	int min_count;			/* minimum reference count */
269 	const void *ptr;		/* allocated/freed memory block */
270 	union {
271 		size_t size;		/* memory block size */
272 		unsigned long excess_ref; /* surplus reference passing */
273 	};
274 	unsigned long trace[MAX_TRACE];	/* stack trace */
275 	unsigned int trace_len;		/* stack trace length */
276 };
277 
278 /* early logging buffer and current position */
279 static struct early_log
280 	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
281 static int crt_early_log __initdata;
282 
283 static void kmemleak_disable(void);
284 
285 /*
286  * Print a warning and dump the stack trace.
287  */
288 #define kmemleak_warn(x...)	do {		\
289 	pr_warn(x);				\
290 	dump_stack();				\
291 	kmemleak_warning = 1;			\
292 } while (0)
293 
294 /*
295  * Macro invoked when a serious kmemleak condition occurred and cannot be
296  * recovered from. Kmemleak will be disabled and further allocation/freeing
297  * tracing no longer available.
298  */
299 #define kmemleak_stop(x...)	do {	\
300 	kmemleak_warn(x);		\
301 	kmemleak_disable();		\
302 } while (0)
303 
304 /*
305  * Printing of the objects hex dump to the seq file. The number of lines to be
306  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
307  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
308  * with the object->lock held.
309  */
310 static void hex_dump_object(struct seq_file *seq,
311 			    struct kmemleak_object *object)
312 {
313 	const u8 *ptr = (const u8 *)object->pointer;
314 	size_t len;
315 
316 	/* limit the number of lines to HEX_MAX_LINES */
317 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
318 
319 	seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
320 	kasan_disable_current();
321 	seq_hex_dump(seq, "    ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
322 		     HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
323 	kasan_enable_current();
324 }
325 
326 /*
327  * Object colors, encoded with count and min_count:
328  * - white - orphan object, not enough references to it (count < min_count)
329  * - gray  - not orphan, not marked as false positive (min_count == 0) or
330  *		sufficient references to it (count >= min_count)
331  * - black - ignore, it doesn't contain references (e.g. text section)
332  *		(min_count == -1). No function defined for this color.
333  * Newly created objects don't have any color assigned (object->count == -1)
334  * before the next memory scan when they become white.
335  */
336 static bool color_white(const struct kmemleak_object *object)
337 {
338 	return object->count != KMEMLEAK_BLACK &&
339 		object->count < object->min_count;
340 }
341 
342 static bool color_gray(const struct kmemleak_object *object)
343 {
344 	return object->min_count != KMEMLEAK_BLACK &&
345 		object->count >= object->min_count;
346 }
347 
348 /*
349  * Objects are considered unreferenced only if their color is white, they have
350  * not be deleted and have a minimum age to avoid false positives caused by
351  * pointers temporarily stored in CPU registers.
352  */
353 static bool unreferenced_object(struct kmemleak_object *object)
354 {
355 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
356 		time_before_eq(object->jiffies + jiffies_min_age,
357 			       jiffies_last_scan);
358 }
359 
360 /*
361  * Printing of the unreferenced objects information to the seq file. The
362  * print_unreferenced function must be called with the object->lock held.
363  */
364 static void print_unreferenced(struct seq_file *seq,
365 			       struct kmemleak_object *object)
366 {
367 	int i;
368 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
369 
370 	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
371 		   object->pointer, object->size);
372 	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
373 		   object->comm, object->pid, object->jiffies,
374 		   msecs_age / 1000, msecs_age % 1000);
375 	hex_dump_object(seq, object);
376 	seq_printf(seq, "  backtrace:\n");
377 
378 	for (i = 0; i < object->trace_len; i++) {
379 		void *ptr = (void *)object->trace[i];
380 		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
381 	}
382 }
383 
384 /*
385  * Print the kmemleak_object information. This function is used mainly for
386  * debugging special cases when kmemleak operations. It must be called with
387  * the object->lock held.
388  */
389 static void dump_object_info(struct kmemleak_object *object)
390 {
391 	struct stack_trace trace;
392 
393 	trace.nr_entries = object->trace_len;
394 	trace.entries = object->trace;
395 
396 	pr_notice("Object 0x%08lx (size %zu):\n",
397 		  object->pointer, object->size);
398 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
399 		  object->comm, object->pid, object->jiffies);
400 	pr_notice("  min_count = %d\n", object->min_count);
401 	pr_notice("  count = %d\n", object->count);
402 	pr_notice("  flags = 0x%x\n", object->flags);
403 	pr_notice("  checksum = %u\n", object->checksum);
404 	pr_notice("  backtrace:\n");
405 	print_stack_trace(&trace, 4);
406 }
407 
408 /*
409  * Look-up a memory block metadata (kmemleak_object) in the object search
410  * tree based on a pointer value. If alias is 0, only values pointing to the
411  * beginning of the memory block are allowed. The kmemleak_lock must be held
412  * when calling this function.
413  */
414 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
415 {
416 	struct rb_node *rb = object_tree_root.rb_node;
417 
418 	while (rb) {
419 		struct kmemleak_object *object =
420 			rb_entry(rb, struct kmemleak_object, rb_node);
421 		if (ptr < object->pointer)
422 			rb = object->rb_node.rb_left;
423 		else if (object->pointer + object->size <= ptr)
424 			rb = object->rb_node.rb_right;
425 		else if (object->pointer == ptr || alias)
426 			return object;
427 		else {
428 			kmemleak_warn("Found object by alias at 0x%08lx\n",
429 				      ptr);
430 			dump_object_info(object);
431 			break;
432 		}
433 	}
434 	return NULL;
435 }
436 
437 /*
438  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
439  * that once an object's use_count reached 0, the RCU freeing was already
440  * registered and the object should no longer be used. This function must be
441  * called under the protection of rcu_read_lock().
442  */
443 static int get_object(struct kmemleak_object *object)
444 {
445 	return atomic_inc_not_zero(&object->use_count);
446 }
447 
448 /*
449  * RCU callback to free a kmemleak_object.
450  */
451 static void free_object_rcu(struct rcu_head *rcu)
452 {
453 	struct hlist_node *tmp;
454 	struct kmemleak_scan_area *area;
455 	struct kmemleak_object *object =
456 		container_of(rcu, struct kmemleak_object, rcu);
457 
458 	/*
459 	 * Once use_count is 0 (guaranteed by put_object), there is no other
460 	 * code accessing this object, hence no need for locking.
461 	 */
462 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
463 		hlist_del(&area->node);
464 		kmem_cache_free(scan_area_cache, area);
465 	}
466 	kmem_cache_free(object_cache, object);
467 }
468 
469 /*
470  * Decrement the object use_count. Once the count is 0, free the object using
471  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
472  * delete_object() path, the delayed RCU freeing ensures that there is no
473  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
474  * is also possible.
475  */
476 static void put_object(struct kmemleak_object *object)
477 {
478 	if (!atomic_dec_and_test(&object->use_count))
479 		return;
480 
481 	/* should only get here after delete_object was called */
482 	WARN_ON(object->flags & OBJECT_ALLOCATED);
483 
484 	call_rcu(&object->rcu, free_object_rcu);
485 }
486 
487 /*
488  * Look up an object in the object search tree and increase its use_count.
489  */
490 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
491 {
492 	unsigned long flags;
493 	struct kmemleak_object *object;
494 
495 	rcu_read_lock();
496 	read_lock_irqsave(&kmemleak_lock, flags);
497 	object = lookup_object(ptr, alias);
498 	read_unlock_irqrestore(&kmemleak_lock, flags);
499 
500 	/* check whether the object is still available */
501 	if (object && !get_object(object))
502 		object = NULL;
503 	rcu_read_unlock();
504 
505 	return object;
506 }
507 
508 /*
509  * Look up an object in the object search tree and remove it from both
510  * object_tree_root and object_list. The returned object's use_count should be
511  * at least 1, as initially set by create_object().
512  */
513 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
514 {
515 	unsigned long flags;
516 	struct kmemleak_object *object;
517 
518 	write_lock_irqsave(&kmemleak_lock, flags);
519 	object = lookup_object(ptr, alias);
520 	if (object) {
521 		rb_erase(&object->rb_node, &object_tree_root);
522 		list_del_rcu(&object->object_list);
523 	}
524 	write_unlock_irqrestore(&kmemleak_lock, flags);
525 
526 	return object;
527 }
528 
529 /*
530  * Save stack trace to the given array of MAX_TRACE size.
531  */
532 static int __save_stack_trace(unsigned long *trace)
533 {
534 	struct stack_trace stack_trace;
535 
536 	stack_trace.max_entries = MAX_TRACE;
537 	stack_trace.nr_entries = 0;
538 	stack_trace.entries = trace;
539 	stack_trace.skip = 2;
540 	save_stack_trace(&stack_trace);
541 
542 	return stack_trace.nr_entries;
543 }
544 
545 /*
546  * Create the metadata (struct kmemleak_object) corresponding to an allocated
547  * memory block and add it to the object_list and object_tree_root.
548  */
549 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
550 					     int min_count, gfp_t gfp)
551 {
552 	unsigned long flags;
553 	struct kmemleak_object *object, *parent;
554 	struct rb_node **link, *rb_parent;
555 
556 	object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
557 	if (!object) {
558 		pr_warn("Cannot allocate a kmemleak_object structure\n");
559 		kmemleak_disable();
560 		return NULL;
561 	}
562 
563 	INIT_LIST_HEAD(&object->object_list);
564 	INIT_LIST_HEAD(&object->gray_list);
565 	INIT_HLIST_HEAD(&object->area_list);
566 	spin_lock_init(&object->lock);
567 	atomic_set(&object->use_count, 1);
568 	object->flags = OBJECT_ALLOCATED;
569 	object->pointer = ptr;
570 	object->size = size;
571 	object->excess_ref = 0;
572 	object->min_count = min_count;
573 	object->count = 0;			/* white color initially */
574 	object->jiffies = jiffies;
575 	object->checksum = 0;
576 
577 	/* task information */
578 	if (in_irq()) {
579 		object->pid = 0;
580 		strncpy(object->comm, "hardirq", sizeof(object->comm));
581 	} else if (in_softirq()) {
582 		object->pid = 0;
583 		strncpy(object->comm, "softirq", sizeof(object->comm));
584 	} else {
585 		object->pid = current->pid;
586 		/*
587 		 * There is a small chance of a race with set_task_comm(),
588 		 * however using get_task_comm() here may cause locking
589 		 * dependency issues with current->alloc_lock. In the worst
590 		 * case, the command line is not correct.
591 		 */
592 		strncpy(object->comm, current->comm, sizeof(object->comm));
593 	}
594 
595 	/* kernel backtrace */
596 	object->trace_len = __save_stack_trace(object->trace);
597 
598 	write_lock_irqsave(&kmemleak_lock, flags);
599 
600 	min_addr = min(min_addr, ptr);
601 	max_addr = max(max_addr, ptr + size);
602 	link = &object_tree_root.rb_node;
603 	rb_parent = NULL;
604 	while (*link) {
605 		rb_parent = *link;
606 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
607 		if (ptr + size <= parent->pointer)
608 			link = &parent->rb_node.rb_left;
609 		else if (parent->pointer + parent->size <= ptr)
610 			link = &parent->rb_node.rb_right;
611 		else {
612 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
613 				      ptr);
614 			/*
615 			 * No need for parent->lock here since "parent" cannot
616 			 * be freed while the kmemleak_lock is held.
617 			 */
618 			dump_object_info(parent);
619 			kmem_cache_free(object_cache, object);
620 			object = NULL;
621 			goto out;
622 		}
623 	}
624 	rb_link_node(&object->rb_node, rb_parent, link);
625 	rb_insert_color(&object->rb_node, &object_tree_root);
626 
627 	list_add_tail_rcu(&object->object_list, &object_list);
628 out:
629 	write_unlock_irqrestore(&kmemleak_lock, flags);
630 	return object;
631 }
632 
633 /*
634  * Mark the object as not allocated and schedule RCU freeing via put_object().
635  */
636 static void __delete_object(struct kmemleak_object *object)
637 {
638 	unsigned long flags;
639 
640 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
641 	WARN_ON(atomic_read(&object->use_count) < 1);
642 
643 	/*
644 	 * Locking here also ensures that the corresponding memory block
645 	 * cannot be freed when it is being scanned.
646 	 */
647 	spin_lock_irqsave(&object->lock, flags);
648 	object->flags &= ~OBJECT_ALLOCATED;
649 	spin_unlock_irqrestore(&object->lock, flags);
650 	put_object(object);
651 }
652 
653 /*
654  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
655  * delete it.
656  */
657 static void delete_object_full(unsigned long ptr)
658 {
659 	struct kmemleak_object *object;
660 
661 	object = find_and_remove_object(ptr, 0);
662 	if (!object) {
663 #ifdef DEBUG
664 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
665 			      ptr);
666 #endif
667 		return;
668 	}
669 	__delete_object(object);
670 }
671 
672 /*
673  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
674  * delete it. If the memory block is partially freed, the function may create
675  * additional metadata for the remaining parts of the block.
676  */
677 static void delete_object_part(unsigned long ptr, size_t size)
678 {
679 	struct kmemleak_object *object;
680 	unsigned long start, end;
681 
682 	object = find_and_remove_object(ptr, 1);
683 	if (!object) {
684 #ifdef DEBUG
685 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
686 			      ptr, size);
687 #endif
688 		return;
689 	}
690 
691 	/*
692 	 * Create one or two objects that may result from the memory block
693 	 * split. Note that partial freeing is only done by free_bootmem() and
694 	 * this happens before kmemleak_init() is called. The path below is
695 	 * only executed during early log recording in kmemleak_init(), so
696 	 * GFP_KERNEL is enough.
697 	 */
698 	start = object->pointer;
699 	end = object->pointer + object->size;
700 	if (ptr > start)
701 		create_object(start, ptr - start, object->min_count,
702 			      GFP_KERNEL);
703 	if (ptr + size < end)
704 		create_object(ptr + size, end - ptr - size, object->min_count,
705 			      GFP_KERNEL);
706 
707 	__delete_object(object);
708 }
709 
710 static void __paint_it(struct kmemleak_object *object, int color)
711 {
712 	object->min_count = color;
713 	if (color == KMEMLEAK_BLACK)
714 		object->flags |= OBJECT_NO_SCAN;
715 }
716 
717 static void paint_it(struct kmemleak_object *object, int color)
718 {
719 	unsigned long flags;
720 
721 	spin_lock_irqsave(&object->lock, flags);
722 	__paint_it(object, color);
723 	spin_unlock_irqrestore(&object->lock, flags);
724 }
725 
726 static void paint_ptr(unsigned long ptr, int color)
727 {
728 	struct kmemleak_object *object;
729 
730 	object = find_and_get_object(ptr, 0);
731 	if (!object) {
732 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
733 			      ptr,
734 			      (color == KMEMLEAK_GREY) ? "Grey" :
735 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
736 		return;
737 	}
738 	paint_it(object, color);
739 	put_object(object);
740 }
741 
742 /*
743  * Mark an object permanently as gray-colored so that it can no longer be
744  * reported as a leak. This is used in general to mark a false positive.
745  */
746 static void make_gray_object(unsigned long ptr)
747 {
748 	paint_ptr(ptr, KMEMLEAK_GREY);
749 }
750 
751 /*
752  * Mark the object as black-colored so that it is ignored from scans and
753  * reporting.
754  */
755 static void make_black_object(unsigned long ptr)
756 {
757 	paint_ptr(ptr, KMEMLEAK_BLACK);
758 }
759 
760 /*
761  * Add a scanning area to the object. If at least one such area is added,
762  * kmemleak will only scan these ranges rather than the whole memory block.
763  */
764 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
765 {
766 	unsigned long flags;
767 	struct kmemleak_object *object;
768 	struct kmemleak_scan_area *area;
769 
770 	object = find_and_get_object(ptr, 1);
771 	if (!object) {
772 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
773 			      ptr);
774 		return;
775 	}
776 
777 	area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
778 	if (!area) {
779 		pr_warn("Cannot allocate a scan area\n");
780 		goto out;
781 	}
782 
783 	spin_lock_irqsave(&object->lock, flags);
784 	if (size == SIZE_MAX) {
785 		size = object->pointer + object->size - ptr;
786 	} else if (ptr + size > object->pointer + object->size) {
787 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
788 		dump_object_info(object);
789 		kmem_cache_free(scan_area_cache, area);
790 		goto out_unlock;
791 	}
792 
793 	INIT_HLIST_NODE(&area->node);
794 	area->start = ptr;
795 	area->size = size;
796 
797 	hlist_add_head(&area->node, &object->area_list);
798 out_unlock:
799 	spin_unlock_irqrestore(&object->lock, flags);
800 out:
801 	put_object(object);
802 }
803 
804 /*
805  * Any surplus references (object already gray) to 'ptr' are passed to
806  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
807  * vm_struct may be used as an alternative reference to the vmalloc'ed object
808  * (see free_thread_stack()).
809  */
810 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
811 {
812 	unsigned long flags;
813 	struct kmemleak_object *object;
814 
815 	object = find_and_get_object(ptr, 0);
816 	if (!object) {
817 		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
818 			      ptr);
819 		return;
820 	}
821 
822 	spin_lock_irqsave(&object->lock, flags);
823 	object->excess_ref = excess_ref;
824 	spin_unlock_irqrestore(&object->lock, flags);
825 	put_object(object);
826 }
827 
828 /*
829  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
830  * pointer. Such object will not be scanned by kmemleak but references to it
831  * are searched.
832  */
833 static void object_no_scan(unsigned long ptr)
834 {
835 	unsigned long flags;
836 	struct kmemleak_object *object;
837 
838 	object = find_and_get_object(ptr, 0);
839 	if (!object) {
840 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
841 		return;
842 	}
843 
844 	spin_lock_irqsave(&object->lock, flags);
845 	object->flags |= OBJECT_NO_SCAN;
846 	spin_unlock_irqrestore(&object->lock, flags);
847 	put_object(object);
848 }
849 
850 /*
851  * Log an early kmemleak_* call to the early_log buffer. These calls will be
852  * processed later once kmemleak is fully initialized.
853  */
854 static void __init log_early(int op_type, const void *ptr, size_t size,
855 			     int min_count)
856 {
857 	unsigned long flags;
858 	struct early_log *log;
859 
860 	if (kmemleak_error) {
861 		/* kmemleak stopped recording, just count the requests */
862 		crt_early_log++;
863 		return;
864 	}
865 
866 	if (crt_early_log >= ARRAY_SIZE(early_log)) {
867 		crt_early_log++;
868 		kmemleak_disable();
869 		return;
870 	}
871 
872 	/*
873 	 * There is no need for locking since the kernel is still in UP mode
874 	 * at this stage. Disabling the IRQs is enough.
875 	 */
876 	local_irq_save(flags);
877 	log = &early_log[crt_early_log];
878 	log->op_type = op_type;
879 	log->ptr = ptr;
880 	log->size = size;
881 	log->min_count = min_count;
882 	log->trace_len = __save_stack_trace(log->trace);
883 	crt_early_log++;
884 	local_irq_restore(flags);
885 }
886 
887 /*
888  * Log an early allocated block and populate the stack trace.
889  */
890 static void early_alloc(struct early_log *log)
891 {
892 	struct kmemleak_object *object;
893 	unsigned long flags;
894 	int i;
895 
896 	if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
897 		return;
898 
899 	/*
900 	 * RCU locking needed to ensure object is not freed via put_object().
901 	 */
902 	rcu_read_lock();
903 	object = create_object((unsigned long)log->ptr, log->size,
904 			       log->min_count, GFP_ATOMIC);
905 	if (!object)
906 		goto out;
907 	spin_lock_irqsave(&object->lock, flags);
908 	for (i = 0; i < log->trace_len; i++)
909 		object->trace[i] = log->trace[i];
910 	object->trace_len = log->trace_len;
911 	spin_unlock_irqrestore(&object->lock, flags);
912 out:
913 	rcu_read_unlock();
914 }
915 
916 /*
917  * Log an early allocated block and populate the stack trace.
918  */
919 static void early_alloc_percpu(struct early_log *log)
920 {
921 	unsigned int cpu;
922 	const void __percpu *ptr = log->ptr;
923 
924 	for_each_possible_cpu(cpu) {
925 		log->ptr = per_cpu_ptr(ptr, cpu);
926 		early_alloc(log);
927 	}
928 }
929 
930 /**
931  * kmemleak_alloc - register a newly allocated object
932  * @ptr:	pointer to beginning of the object
933  * @size:	size of the object
934  * @min_count:	minimum number of references to this object. If during memory
935  *		scanning a number of references less than @min_count is found,
936  *		the object is reported as a memory leak. If @min_count is 0,
937  *		the object is never reported as a leak. If @min_count is -1,
938  *		the object is ignored (not scanned and not reported as a leak)
939  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
940  *
941  * This function is called from the kernel allocators when a new object
942  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
943  */
944 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
945 			  gfp_t gfp)
946 {
947 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
948 
949 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
950 		create_object((unsigned long)ptr, size, min_count, gfp);
951 	else if (kmemleak_early_log)
952 		log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
953 }
954 EXPORT_SYMBOL_GPL(kmemleak_alloc);
955 
956 /**
957  * kmemleak_alloc_percpu - register a newly allocated __percpu object
958  * @ptr:	__percpu pointer to beginning of the object
959  * @size:	size of the object
960  * @gfp:	flags used for kmemleak internal memory allocations
961  *
962  * This function is called from the kernel percpu allocator when a new object
963  * (memory block) is allocated (alloc_percpu).
964  */
965 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
966 				 gfp_t gfp)
967 {
968 	unsigned int cpu;
969 
970 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
971 
972 	/*
973 	 * Percpu allocations are only scanned and not reported as leaks
974 	 * (min_count is set to 0).
975 	 */
976 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
977 		for_each_possible_cpu(cpu)
978 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
979 				      size, 0, gfp);
980 	else if (kmemleak_early_log)
981 		log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
982 }
983 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
984 
985 /**
986  * kmemleak_vmalloc - register a newly vmalloc'ed object
987  * @area:	pointer to vm_struct
988  * @size:	size of the object
989  * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
990  *
991  * This function is called from the vmalloc() kernel allocator when a new
992  * object (memory block) is allocated.
993  */
994 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
995 {
996 	pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
997 
998 	/*
999 	 * A min_count = 2 is needed because vm_struct contains a reference to
1000 	 * the virtual address of the vmalloc'ed block.
1001 	 */
1002 	if (kmemleak_enabled) {
1003 		create_object((unsigned long)area->addr, size, 2, gfp);
1004 		object_set_excess_ref((unsigned long)area,
1005 				      (unsigned long)area->addr);
1006 	} else if (kmemleak_early_log) {
1007 		log_early(KMEMLEAK_ALLOC, area->addr, size, 2);
1008 		/* reusing early_log.size for storing area->addr */
1009 		log_early(KMEMLEAK_SET_EXCESS_REF,
1010 			  area, (unsigned long)area->addr, 0);
1011 	}
1012 }
1013 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1014 
1015 /**
1016  * kmemleak_free - unregister a previously registered object
1017  * @ptr:	pointer to beginning of the object
1018  *
1019  * This function is called from the kernel allocators when an object (memory
1020  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1021  */
1022 void __ref kmemleak_free(const void *ptr)
1023 {
1024 	pr_debug("%s(0x%p)\n", __func__, ptr);
1025 
1026 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1027 		delete_object_full((unsigned long)ptr);
1028 	else if (kmemleak_early_log)
1029 		log_early(KMEMLEAK_FREE, ptr, 0, 0);
1030 }
1031 EXPORT_SYMBOL_GPL(kmemleak_free);
1032 
1033 /**
1034  * kmemleak_free_part - partially unregister a previously registered object
1035  * @ptr:	pointer to the beginning or inside the object. This also
1036  *		represents the start of the range to be freed
1037  * @size:	size to be unregistered
1038  *
1039  * This function is called when only a part of a memory block is freed
1040  * (usually from the bootmem allocator).
1041  */
1042 void __ref kmemleak_free_part(const void *ptr, size_t size)
1043 {
1044 	pr_debug("%s(0x%p)\n", __func__, ptr);
1045 
1046 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1047 		delete_object_part((unsigned long)ptr, size);
1048 	else if (kmemleak_early_log)
1049 		log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
1050 }
1051 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1052 
1053 /**
1054  * kmemleak_free_percpu - unregister a previously registered __percpu object
1055  * @ptr:	__percpu pointer to beginning of the object
1056  *
1057  * This function is called from the kernel percpu allocator when an object
1058  * (memory block) is freed (free_percpu).
1059  */
1060 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1061 {
1062 	unsigned int cpu;
1063 
1064 	pr_debug("%s(0x%p)\n", __func__, ptr);
1065 
1066 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1067 		for_each_possible_cpu(cpu)
1068 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
1069 								      cpu));
1070 	else if (kmemleak_early_log)
1071 		log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1072 }
1073 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1074 
1075 /**
1076  * kmemleak_update_trace - update object allocation stack trace
1077  * @ptr:	pointer to beginning of the object
1078  *
1079  * Override the object allocation stack trace for cases where the actual
1080  * allocation place is not always useful.
1081  */
1082 void __ref kmemleak_update_trace(const void *ptr)
1083 {
1084 	struct kmemleak_object *object;
1085 	unsigned long flags;
1086 
1087 	pr_debug("%s(0x%p)\n", __func__, ptr);
1088 
1089 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1090 		return;
1091 
1092 	object = find_and_get_object((unsigned long)ptr, 1);
1093 	if (!object) {
1094 #ifdef DEBUG
1095 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1096 			      ptr);
1097 #endif
1098 		return;
1099 	}
1100 
1101 	spin_lock_irqsave(&object->lock, flags);
1102 	object->trace_len = __save_stack_trace(object->trace);
1103 	spin_unlock_irqrestore(&object->lock, flags);
1104 
1105 	put_object(object);
1106 }
1107 EXPORT_SYMBOL(kmemleak_update_trace);
1108 
1109 /**
1110  * kmemleak_not_leak - mark an allocated object as false positive
1111  * @ptr:	pointer to beginning of the object
1112  *
1113  * Calling this function on an object will cause the memory block to no longer
1114  * be reported as leak and always be scanned.
1115  */
1116 void __ref kmemleak_not_leak(const void *ptr)
1117 {
1118 	pr_debug("%s(0x%p)\n", __func__, ptr);
1119 
1120 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1121 		make_gray_object((unsigned long)ptr);
1122 	else if (kmemleak_early_log)
1123 		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1124 }
1125 EXPORT_SYMBOL(kmemleak_not_leak);
1126 
1127 /**
1128  * kmemleak_ignore - ignore an allocated object
1129  * @ptr:	pointer to beginning of the object
1130  *
1131  * Calling this function on an object will cause the memory block to be
1132  * ignored (not scanned and not reported as a leak). This is usually done when
1133  * it is known that the corresponding block is not a leak and does not contain
1134  * any references to other allocated memory blocks.
1135  */
1136 void __ref kmemleak_ignore(const void *ptr)
1137 {
1138 	pr_debug("%s(0x%p)\n", __func__, ptr);
1139 
1140 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1141 		make_black_object((unsigned long)ptr);
1142 	else if (kmemleak_early_log)
1143 		log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1144 }
1145 EXPORT_SYMBOL(kmemleak_ignore);
1146 
1147 /**
1148  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1149  * @ptr:	pointer to beginning or inside the object. This also
1150  *		represents the start of the scan area
1151  * @size:	size of the scan area
1152  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1153  *
1154  * This function is used when it is known that only certain parts of an object
1155  * contain references to other objects. Kmemleak will only scan these areas
1156  * reducing the number false negatives.
1157  */
1158 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1159 {
1160 	pr_debug("%s(0x%p)\n", __func__, ptr);
1161 
1162 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1163 		add_scan_area((unsigned long)ptr, size, gfp);
1164 	else if (kmemleak_early_log)
1165 		log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1166 }
1167 EXPORT_SYMBOL(kmemleak_scan_area);
1168 
1169 /**
1170  * kmemleak_no_scan - do not scan an allocated object
1171  * @ptr:	pointer to beginning of the object
1172  *
1173  * This function notifies kmemleak not to scan the given memory block. Useful
1174  * in situations where it is known that the given object does not contain any
1175  * references to other objects. Kmemleak will not scan such objects reducing
1176  * the number of false negatives.
1177  */
1178 void __ref kmemleak_no_scan(const void *ptr)
1179 {
1180 	pr_debug("%s(0x%p)\n", __func__, ptr);
1181 
1182 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1183 		object_no_scan((unsigned long)ptr);
1184 	else if (kmemleak_early_log)
1185 		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1186 }
1187 EXPORT_SYMBOL(kmemleak_no_scan);
1188 
1189 /**
1190  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1191  *			 address argument
1192  */
1193 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1194 			       gfp_t gfp)
1195 {
1196 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1197 		kmemleak_alloc(__va(phys), size, min_count, gfp);
1198 }
1199 EXPORT_SYMBOL(kmemleak_alloc_phys);
1200 
1201 /**
1202  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1203  *			     physical address argument
1204  */
1205 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1206 {
1207 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1208 		kmemleak_free_part(__va(phys), size);
1209 }
1210 EXPORT_SYMBOL(kmemleak_free_part_phys);
1211 
1212 /**
1213  * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1214  *			    address argument
1215  */
1216 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1217 {
1218 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1219 		kmemleak_not_leak(__va(phys));
1220 }
1221 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1222 
1223 /**
1224  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1225  *			  address argument
1226  */
1227 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1228 {
1229 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1230 		kmemleak_ignore(__va(phys));
1231 }
1232 EXPORT_SYMBOL(kmemleak_ignore_phys);
1233 
1234 /*
1235  * Update an object's checksum and return true if it was modified.
1236  */
1237 static bool update_checksum(struct kmemleak_object *object)
1238 {
1239 	u32 old_csum = object->checksum;
1240 
1241 	if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1242 		return false;
1243 
1244 	kasan_disable_current();
1245 	object->checksum = crc32(0, (void *)object->pointer, object->size);
1246 	kasan_enable_current();
1247 
1248 	return object->checksum != old_csum;
1249 }
1250 
1251 /*
1252  * Update an object's references. object->lock must be held by the caller.
1253  */
1254 static void update_refs(struct kmemleak_object *object)
1255 {
1256 	if (!color_white(object)) {
1257 		/* non-orphan, ignored or new */
1258 		return;
1259 	}
1260 
1261 	/*
1262 	 * Increase the object's reference count (number of pointers to the
1263 	 * memory block). If this count reaches the required minimum, the
1264 	 * object's color will become gray and it will be added to the
1265 	 * gray_list.
1266 	 */
1267 	object->count++;
1268 	if (color_gray(object)) {
1269 		/* put_object() called when removing from gray_list */
1270 		WARN_ON(!get_object(object));
1271 		list_add_tail(&object->gray_list, &gray_list);
1272 	}
1273 }
1274 
1275 /*
1276  * Memory scanning is a long process and it needs to be interruptable. This
1277  * function checks whether such interrupt condition occurred.
1278  */
1279 static int scan_should_stop(void)
1280 {
1281 	if (!kmemleak_enabled)
1282 		return 1;
1283 
1284 	/*
1285 	 * This function may be called from either process or kthread context,
1286 	 * hence the need to check for both stop conditions.
1287 	 */
1288 	if (current->mm)
1289 		return signal_pending(current);
1290 	else
1291 		return kthread_should_stop();
1292 
1293 	return 0;
1294 }
1295 
1296 /*
1297  * Scan a memory block (exclusive range) for valid pointers and add those
1298  * found to the gray list.
1299  */
1300 static void scan_block(void *_start, void *_end,
1301 		       struct kmemleak_object *scanned)
1302 {
1303 	unsigned long *ptr;
1304 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1305 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1306 	unsigned long flags;
1307 
1308 	read_lock_irqsave(&kmemleak_lock, flags);
1309 	for (ptr = start; ptr < end; ptr++) {
1310 		struct kmemleak_object *object;
1311 		unsigned long pointer;
1312 		unsigned long excess_ref;
1313 
1314 		if (scan_should_stop())
1315 			break;
1316 
1317 		/* don't scan uninitialized memory */
1318 		if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1319 						  BYTES_PER_POINTER))
1320 			continue;
1321 
1322 		kasan_disable_current();
1323 		pointer = *ptr;
1324 		kasan_enable_current();
1325 
1326 		if (pointer < min_addr || pointer >= max_addr)
1327 			continue;
1328 
1329 		/*
1330 		 * No need for get_object() here since we hold kmemleak_lock.
1331 		 * object->use_count cannot be dropped to 0 while the object
1332 		 * is still present in object_tree_root and object_list
1333 		 * (with updates protected by kmemleak_lock).
1334 		 */
1335 		object = lookup_object(pointer, 1);
1336 		if (!object)
1337 			continue;
1338 		if (object == scanned)
1339 			/* self referenced, ignore */
1340 			continue;
1341 
1342 		/*
1343 		 * Avoid the lockdep recursive warning on object->lock being
1344 		 * previously acquired in scan_object(). These locks are
1345 		 * enclosed by scan_mutex.
1346 		 */
1347 		spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1348 		/* only pass surplus references (object already gray) */
1349 		if (color_gray(object)) {
1350 			excess_ref = object->excess_ref;
1351 			/* no need for update_refs() if object already gray */
1352 		} else {
1353 			excess_ref = 0;
1354 			update_refs(object);
1355 		}
1356 		spin_unlock(&object->lock);
1357 
1358 		if (excess_ref) {
1359 			object = lookup_object(excess_ref, 0);
1360 			if (!object)
1361 				continue;
1362 			if (object == scanned)
1363 				/* circular reference, ignore */
1364 				continue;
1365 			spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1366 			update_refs(object);
1367 			spin_unlock(&object->lock);
1368 		}
1369 	}
1370 	read_unlock_irqrestore(&kmemleak_lock, flags);
1371 }
1372 
1373 /*
1374  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1375  */
1376 static void scan_large_block(void *start, void *end)
1377 {
1378 	void *next;
1379 
1380 	while (start < end) {
1381 		next = min(start + MAX_SCAN_SIZE, end);
1382 		scan_block(start, next, NULL);
1383 		start = next;
1384 		cond_resched();
1385 	}
1386 }
1387 
1388 /*
1389  * Scan a memory block corresponding to a kmemleak_object. A condition is
1390  * that object->use_count >= 1.
1391  */
1392 static void scan_object(struct kmemleak_object *object)
1393 {
1394 	struct kmemleak_scan_area *area;
1395 	unsigned long flags;
1396 
1397 	/*
1398 	 * Once the object->lock is acquired, the corresponding memory block
1399 	 * cannot be freed (the same lock is acquired in delete_object).
1400 	 */
1401 	spin_lock_irqsave(&object->lock, flags);
1402 	if (object->flags & OBJECT_NO_SCAN)
1403 		goto out;
1404 	if (!(object->flags & OBJECT_ALLOCATED))
1405 		/* already freed object */
1406 		goto out;
1407 	if (hlist_empty(&object->area_list)) {
1408 		void *start = (void *)object->pointer;
1409 		void *end = (void *)(object->pointer + object->size);
1410 		void *next;
1411 
1412 		do {
1413 			next = min(start + MAX_SCAN_SIZE, end);
1414 			scan_block(start, next, object);
1415 
1416 			start = next;
1417 			if (start >= end)
1418 				break;
1419 
1420 			spin_unlock_irqrestore(&object->lock, flags);
1421 			cond_resched();
1422 			spin_lock_irqsave(&object->lock, flags);
1423 		} while (object->flags & OBJECT_ALLOCATED);
1424 	} else
1425 		hlist_for_each_entry(area, &object->area_list, node)
1426 			scan_block((void *)area->start,
1427 				   (void *)(area->start + area->size),
1428 				   object);
1429 out:
1430 	spin_unlock_irqrestore(&object->lock, flags);
1431 }
1432 
1433 /*
1434  * Scan the objects already referenced (gray objects). More objects will be
1435  * referenced and, if there are no memory leaks, all the objects are scanned.
1436  */
1437 static void scan_gray_list(void)
1438 {
1439 	struct kmemleak_object *object, *tmp;
1440 
1441 	/*
1442 	 * The list traversal is safe for both tail additions and removals
1443 	 * from inside the loop. The kmemleak objects cannot be freed from
1444 	 * outside the loop because their use_count was incremented.
1445 	 */
1446 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1447 	while (&object->gray_list != &gray_list) {
1448 		cond_resched();
1449 
1450 		/* may add new objects to the list */
1451 		if (!scan_should_stop())
1452 			scan_object(object);
1453 
1454 		tmp = list_entry(object->gray_list.next, typeof(*object),
1455 				 gray_list);
1456 
1457 		/* remove the object from the list and release it */
1458 		list_del(&object->gray_list);
1459 		put_object(object);
1460 
1461 		object = tmp;
1462 	}
1463 	WARN_ON(!list_empty(&gray_list));
1464 }
1465 
1466 /*
1467  * Scan data sections and all the referenced memory blocks allocated via the
1468  * kernel's standard allocators. This function must be called with the
1469  * scan_mutex held.
1470  */
1471 static void kmemleak_scan(void)
1472 {
1473 	unsigned long flags;
1474 	struct kmemleak_object *object;
1475 	int i;
1476 	int new_leaks = 0;
1477 
1478 	jiffies_last_scan = jiffies;
1479 
1480 	/* prepare the kmemleak_object's */
1481 	rcu_read_lock();
1482 	list_for_each_entry_rcu(object, &object_list, object_list) {
1483 		spin_lock_irqsave(&object->lock, flags);
1484 #ifdef DEBUG
1485 		/*
1486 		 * With a few exceptions there should be a maximum of
1487 		 * 1 reference to any object at this point.
1488 		 */
1489 		if (atomic_read(&object->use_count) > 1) {
1490 			pr_debug("object->use_count = %d\n",
1491 				 atomic_read(&object->use_count));
1492 			dump_object_info(object);
1493 		}
1494 #endif
1495 		/* reset the reference count (whiten the object) */
1496 		object->count = 0;
1497 		if (color_gray(object) && get_object(object))
1498 			list_add_tail(&object->gray_list, &gray_list);
1499 
1500 		spin_unlock_irqrestore(&object->lock, flags);
1501 	}
1502 	rcu_read_unlock();
1503 
1504 	/* data/bss scanning */
1505 	scan_large_block(_sdata, _edata);
1506 	scan_large_block(__bss_start, __bss_stop);
1507 	scan_large_block(__start_ro_after_init, __end_ro_after_init);
1508 
1509 #ifdef CONFIG_SMP
1510 	/* per-cpu sections scanning */
1511 	for_each_possible_cpu(i)
1512 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1513 				 __per_cpu_end + per_cpu_offset(i));
1514 #endif
1515 
1516 	/*
1517 	 * Struct page scanning for each node.
1518 	 */
1519 	get_online_mems();
1520 	for_each_online_node(i) {
1521 		unsigned long start_pfn = node_start_pfn(i);
1522 		unsigned long end_pfn = node_end_pfn(i);
1523 		unsigned long pfn;
1524 
1525 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1526 			struct page *page;
1527 
1528 			if (!pfn_valid(pfn))
1529 				continue;
1530 			page = pfn_to_page(pfn);
1531 			/* only scan if page is in use */
1532 			if (page_count(page) == 0)
1533 				continue;
1534 			scan_block(page, page + 1, NULL);
1535 		}
1536 	}
1537 	put_online_mems();
1538 
1539 	/*
1540 	 * Scanning the task stacks (may introduce false negatives).
1541 	 */
1542 	if (kmemleak_stack_scan) {
1543 		struct task_struct *p, *g;
1544 
1545 		read_lock(&tasklist_lock);
1546 		do_each_thread(g, p) {
1547 			void *stack = try_get_task_stack(p);
1548 			if (stack) {
1549 				scan_block(stack, stack + THREAD_SIZE, NULL);
1550 				put_task_stack(p);
1551 			}
1552 		} while_each_thread(g, p);
1553 		read_unlock(&tasklist_lock);
1554 	}
1555 
1556 	/*
1557 	 * Scan the objects already referenced from the sections scanned
1558 	 * above.
1559 	 */
1560 	scan_gray_list();
1561 
1562 	/*
1563 	 * Check for new or unreferenced objects modified since the previous
1564 	 * scan and color them gray until the next scan.
1565 	 */
1566 	rcu_read_lock();
1567 	list_for_each_entry_rcu(object, &object_list, object_list) {
1568 		spin_lock_irqsave(&object->lock, flags);
1569 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1570 		    && update_checksum(object) && get_object(object)) {
1571 			/* color it gray temporarily */
1572 			object->count = object->min_count;
1573 			list_add_tail(&object->gray_list, &gray_list);
1574 		}
1575 		spin_unlock_irqrestore(&object->lock, flags);
1576 	}
1577 	rcu_read_unlock();
1578 
1579 	/*
1580 	 * Re-scan the gray list for modified unreferenced objects.
1581 	 */
1582 	scan_gray_list();
1583 
1584 	/*
1585 	 * If scanning was stopped do not report any new unreferenced objects.
1586 	 */
1587 	if (scan_should_stop())
1588 		return;
1589 
1590 	/*
1591 	 * Scanning result reporting.
1592 	 */
1593 	rcu_read_lock();
1594 	list_for_each_entry_rcu(object, &object_list, object_list) {
1595 		spin_lock_irqsave(&object->lock, flags);
1596 		if (unreferenced_object(object) &&
1597 		    !(object->flags & OBJECT_REPORTED)) {
1598 			object->flags |= OBJECT_REPORTED;
1599 			new_leaks++;
1600 		}
1601 		spin_unlock_irqrestore(&object->lock, flags);
1602 	}
1603 	rcu_read_unlock();
1604 
1605 	if (new_leaks) {
1606 		kmemleak_found_leaks = true;
1607 
1608 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1609 			new_leaks);
1610 	}
1611 
1612 }
1613 
1614 /*
1615  * Thread function performing automatic memory scanning. Unreferenced objects
1616  * at the end of a memory scan are reported but only the first time.
1617  */
1618 static int kmemleak_scan_thread(void *arg)
1619 {
1620 	static int first_run = 1;
1621 
1622 	pr_info("Automatic memory scanning thread started\n");
1623 	set_user_nice(current, 10);
1624 
1625 	/*
1626 	 * Wait before the first scan to allow the system to fully initialize.
1627 	 */
1628 	if (first_run) {
1629 		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1630 		first_run = 0;
1631 		while (timeout && !kthread_should_stop())
1632 			timeout = schedule_timeout_interruptible(timeout);
1633 	}
1634 
1635 	while (!kthread_should_stop()) {
1636 		signed long timeout = jiffies_scan_wait;
1637 
1638 		mutex_lock(&scan_mutex);
1639 		kmemleak_scan();
1640 		mutex_unlock(&scan_mutex);
1641 
1642 		/* wait before the next scan */
1643 		while (timeout && !kthread_should_stop())
1644 			timeout = schedule_timeout_interruptible(timeout);
1645 	}
1646 
1647 	pr_info("Automatic memory scanning thread ended\n");
1648 
1649 	return 0;
1650 }
1651 
1652 /*
1653  * Start the automatic memory scanning thread. This function must be called
1654  * with the scan_mutex held.
1655  */
1656 static void start_scan_thread(void)
1657 {
1658 	if (scan_thread)
1659 		return;
1660 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1661 	if (IS_ERR(scan_thread)) {
1662 		pr_warn("Failed to create the scan thread\n");
1663 		scan_thread = NULL;
1664 	}
1665 }
1666 
1667 /*
1668  * Stop the automatic memory scanning thread. This function must be called
1669  * with the scan_mutex held.
1670  */
1671 static void stop_scan_thread(void)
1672 {
1673 	if (scan_thread) {
1674 		kthread_stop(scan_thread);
1675 		scan_thread = NULL;
1676 	}
1677 }
1678 
1679 /*
1680  * Iterate over the object_list and return the first valid object at or after
1681  * the required position with its use_count incremented. The function triggers
1682  * a memory scanning when the pos argument points to the first position.
1683  */
1684 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1685 {
1686 	struct kmemleak_object *object;
1687 	loff_t n = *pos;
1688 	int err;
1689 
1690 	err = mutex_lock_interruptible(&scan_mutex);
1691 	if (err < 0)
1692 		return ERR_PTR(err);
1693 
1694 	rcu_read_lock();
1695 	list_for_each_entry_rcu(object, &object_list, object_list) {
1696 		if (n-- > 0)
1697 			continue;
1698 		if (get_object(object))
1699 			goto out;
1700 	}
1701 	object = NULL;
1702 out:
1703 	return object;
1704 }
1705 
1706 /*
1707  * Return the next object in the object_list. The function decrements the
1708  * use_count of the previous object and increases that of the next one.
1709  */
1710 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1711 {
1712 	struct kmemleak_object *prev_obj = v;
1713 	struct kmemleak_object *next_obj = NULL;
1714 	struct kmemleak_object *obj = prev_obj;
1715 
1716 	++(*pos);
1717 
1718 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1719 		if (get_object(obj)) {
1720 			next_obj = obj;
1721 			break;
1722 		}
1723 	}
1724 
1725 	put_object(prev_obj);
1726 	return next_obj;
1727 }
1728 
1729 /*
1730  * Decrement the use_count of the last object required, if any.
1731  */
1732 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1733 {
1734 	if (!IS_ERR(v)) {
1735 		/*
1736 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1737 		 * waiting was interrupted, so only release it if !IS_ERR.
1738 		 */
1739 		rcu_read_unlock();
1740 		mutex_unlock(&scan_mutex);
1741 		if (v)
1742 			put_object(v);
1743 	}
1744 }
1745 
1746 /*
1747  * Print the information for an unreferenced object to the seq file.
1748  */
1749 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1750 {
1751 	struct kmemleak_object *object = v;
1752 	unsigned long flags;
1753 
1754 	spin_lock_irqsave(&object->lock, flags);
1755 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1756 		print_unreferenced(seq, object);
1757 	spin_unlock_irqrestore(&object->lock, flags);
1758 	return 0;
1759 }
1760 
1761 static const struct seq_operations kmemleak_seq_ops = {
1762 	.start = kmemleak_seq_start,
1763 	.next  = kmemleak_seq_next,
1764 	.stop  = kmemleak_seq_stop,
1765 	.show  = kmemleak_seq_show,
1766 };
1767 
1768 static int kmemleak_open(struct inode *inode, struct file *file)
1769 {
1770 	return seq_open(file, &kmemleak_seq_ops);
1771 }
1772 
1773 static int dump_str_object_info(const char *str)
1774 {
1775 	unsigned long flags;
1776 	struct kmemleak_object *object;
1777 	unsigned long addr;
1778 
1779 	if (kstrtoul(str, 0, &addr))
1780 		return -EINVAL;
1781 	object = find_and_get_object(addr, 0);
1782 	if (!object) {
1783 		pr_info("Unknown object at 0x%08lx\n", addr);
1784 		return -EINVAL;
1785 	}
1786 
1787 	spin_lock_irqsave(&object->lock, flags);
1788 	dump_object_info(object);
1789 	spin_unlock_irqrestore(&object->lock, flags);
1790 
1791 	put_object(object);
1792 	return 0;
1793 }
1794 
1795 /*
1796  * We use grey instead of black to ensure we can do future scans on the same
1797  * objects. If we did not do future scans these black objects could
1798  * potentially contain references to newly allocated objects in the future and
1799  * we'd end up with false positives.
1800  */
1801 static void kmemleak_clear(void)
1802 {
1803 	struct kmemleak_object *object;
1804 	unsigned long flags;
1805 
1806 	rcu_read_lock();
1807 	list_for_each_entry_rcu(object, &object_list, object_list) {
1808 		spin_lock_irqsave(&object->lock, flags);
1809 		if ((object->flags & OBJECT_REPORTED) &&
1810 		    unreferenced_object(object))
1811 			__paint_it(object, KMEMLEAK_GREY);
1812 		spin_unlock_irqrestore(&object->lock, flags);
1813 	}
1814 	rcu_read_unlock();
1815 
1816 	kmemleak_found_leaks = false;
1817 }
1818 
1819 static void __kmemleak_do_cleanup(void);
1820 
1821 /*
1822  * File write operation to configure kmemleak at run-time. The following
1823  * commands can be written to the /sys/kernel/debug/kmemleak file:
1824  *   off	- disable kmemleak (irreversible)
1825  *   stack=on	- enable the task stacks scanning
1826  *   stack=off	- disable the tasks stacks scanning
1827  *   scan=on	- start the automatic memory scanning thread
1828  *   scan=off	- stop the automatic memory scanning thread
1829  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1830  *		  disable it)
1831  *   scan	- trigger a memory scan
1832  *   clear	- mark all current reported unreferenced kmemleak objects as
1833  *		  grey to ignore printing them, or free all kmemleak objects
1834  *		  if kmemleak has been disabled.
1835  *   dump=...	- dump information about the object found at the given address
1836  */
1837 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1838 			      size_t size, loff_t *ppos)
1839 {
1840 	char buf[64];
1841 	int buf_size;
1842 	int ret;
1843 
1844 	buf_size = min(size, (sizeof(buf) - 1));
1845 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1846 		return -EFAULT;
1847 	buf[buf_size] = 0;
1848 
1849 	ret = mutex_lock_interruptible(&scan_mutex);
1850 	if (ret < 0)
1851 		return ret;
1852 
1853 	if (strncmp(buf, "clear", 5) == 0) {
1854 		if (kmemleak_enabled)
1855 			kmemleak_clear();
1856 		else
1857 			__kmemleak_do_cleanup();
1858 		goto out;
1859 	}
1860 
1861 	if (!kmemleak_enabled) {
1862 		ret = -EBUSY;
1863 		goto out;
1864 	}
1865 
1866 	if (strncmp(buf, "off", 3) == 0)
1867 		kmemleak_disable();
1868 	else if (strncmp(buf, "stack=on", 8) == 0)
1869 		kmemleak_stack_scan = 1;
1870 	else if (strncmp(buf, "stack=off", 9) == 0)
1871 		kmemleak_stack_scan = 0;
1872 	else if (strncmp(buf, "scan=on", 7) == 0)
1873 		start_scan_thread();
1874 	else if (strncmp(buf, "scan=off", 8) == 0)
1875 		stop_scan_thread();
1876 	else if (strncmp(buf, "scan=", 5) == 0) {
1877 		unsigned long secs;
1878 
1879 		ret = kstrtoul(buf + 5, 0, &secs);
1880 		if (ret < 0)
1881 			goto out;
1882 		stop_scan_thread();
1883 		if (secs) {
1884 			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1885 			start_scan_thread();
1886 		}
1887 	} else if (strncmp(buf, "scan", 4) == 0)
1888 		kmemleak_scan();
1889 	else if (strncmp(buf, "dump=", 5) == 0)
1890 		ret = dump_str_object_info(buf + 5);
1891 	else
1892 		ret = -EINVAL;
1893 
1894 out:
1895 	mutex_unlock(&scan_mutex);
1896 	if (ret < 0)
1897 		return ret;
1898 
1899 	/* ignore the rest of the buffer, only one command at a time */
1900 	*ppos += size;
1901 	return size;
1902 }
1903 
1904 static const struct file_operations kmemleak_fops = {
1905 	.owner		= THIS_MODULE,
1906 	.open		= kmemleak_open,
1907 	.read		= seq_read,
1908 	.write		= kmemleak_write,
1909 	.llseek		= seq_lseek,
1910 	.release	= seq_release,
1911 };
1912 
1913 static void __kmemleak_do_cleanup(void)
1914 {
1915 	struct kmemleak_object *object;
1916 
1917 	rcu_read_lock();
1918 	list_for_each_entry_rcu(object, &object_list, object_list)
1919 		delete_object_full(object->pointer);
1920 	rcu_read_unlock();
1921 }
1922 
1923 /*
1924  * Stop the memory scanning thread and free the kmemleak internal objects if
1925  * no previous scan thread (otherwise, kmemleak may still have some useful
1926  * information on memory leaks).
1927  */
1928 static void kmemleak_do_cleanup(struct work_struct *work)
1929 {
1930 	stop_scan_thread();
1931 
1932 	/*
1933 	 * Once the scan thread has stopped, it is safe to no longer track
1934 	 * object freeing. Ordering of the scan thread stopping and the memory
1935 	 * accesses below is guaranteed by the kthread_stop() function.
1936 	 */
1937 	kmemleak_free_enabled = 0;
1938 
1939 	if (!kmemleak_found_leaks)
1940 		__kmemleak_do_cleanup();
1941 	else
1942 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1943 }
1944 
1945 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1946 
1947 /*
1948  * Disable kmemleak. No memory allocation/freeing will be traced once this
1949  * function is called. Disabling kmemleak is an irreversible operation.
1950  */
1951 static void kmemleak_disable(void)
1952 {
1953 	/* atomically check whether it was already invoked */
1954 	if (cmpxchg(&kmemleak_error, 0, 1))
1955 		return;
1956 
1957 	/* stop any memory operation tracing */
1958 	kmemleak_enabled = 0;
1959 
1960 	/* check whether it is too early for a kernel thread */
1961 	if (kmemleak_initialized)
1962 		schedule_work(&cleanup_work);
1963 	else
1964 		kmemleak_free_enabled = 0;
1965 
1966 	pr_info("Kernel memory leak detector disabled\n");
1967 }
1968 
1969 /*
1970  * Allow boot-time kmemleak disabling (enabled by default).
1971  */
1972 static int kmemleak_boot_config(char *str)
1973 {
1974 	if (!str)
1975 		return -EINVAL;
1976 	if (strcmp(str, "off") == 0)
1977 		kmemleak_disable();
1978 	else if (strcmp(str, "on") == 0)
1979 		kmemleak_skip_disable = 1;
1980 	else
1981 		return -EINVAL;
1982 	return 0;
1983 }
1984 early_param("kmemleak", kmemleak_boot_config);
1985 
1986 static void __init print_log_trace(struct early_log *log)
1987 {
1988 	struct stack_trace trace;
1989 
1990 	trace.nr_entries = log->trace_len;
1991 	trace.entries = log->trace;
1992 
1993 	pr_notice("Early log backtrace:\n");
1994 	print_stack_trace(&trace, 2);
1995 }
1996 
1997 /*
1998  * Kmemleak initialization.
1999  */
2000 void __init kmemleak_init(void)
2001 {
2002 	int i;
2003 	unsigned long flags;
2004 
2005 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2006 	if (!kmemleak_skip_disable) {
2007 		kmemleak_early_log = 0;
2008 		kmemleak_disable();
2009 		return;
2010 	}
2011 #endif
2012 
2013 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2014 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2015 
2016 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2017 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2018 
2019 	if (crt_early_log > ARRAY_SIZE(early_log))
2020 		pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
2021 			crt_early_log);
2022 
2023 	/* the kernel is still in UP mode, so disabling the IRQs is enough */
2024 	local_irq_save(flags);
2025 	kmemleak_early_log = 0;
2026 	if (kmemleak_error) {
2027 		local_irq_restore(flags);
2028 		return;
2029 	} else {
2030 		kmemleak_enabled = 1;
2031 		kmemleak_free_enabled = 1;
2032 	}
2033 	local_irq_restore(flags);
2034 
2035 	/*
2036 	 * This is the point where tracking allocations is safe. Automatic
2037 	 * scanning is started during the late initcall. Add the early logged
2038 	 * callbacks to the kmemleak infrastructure.
2039 	 */
2040 	for (i = 0; i < crt_early_log; i++) {
2041 		struct early_log *log = &early_log[i];
2042 
2043 		switch (log->op_type) {
2044 		case KMEMLEAK_ALLOC:
2045 			early_alloc(log);
2046 			break;
2047 		case KMEMLEAK_ALLOC_PERCPU:
2048 			early_alloc_percpu(log);
2049 			break;
2050 		case KMEMLEAK_FREE:
2051 			kmemleak_free(log->ptr);
2052 			break;
2053 		case KMEMLEAK_FREE_PART:
2054 			kmemleak_free_part(log->ptr, log->size);
2055 			break;
2056 		case KMEMLEAK_FREE_PERCPU:
2057 			kmemleak_free_percpu(log->ptr);
2058 			break;
2059 		case KMEMLEAK_NOT_LEAK:
2060 			kmemleak_not_leak(log->ptr);
2061 			break;
2062 		case KMEMLEAK_IGNORE:
2063 			kmemleak_ignore(log->ptr);
2064 			break;
2065 		case KMEMLEAK_SCAN_AREA:
2066 			kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
2067 			break;
2068 		case KMEMLEAK_NO_SCAN:
2069 			kmemleak_no_scan(log->ptr);
2070 			break;
2071 		case KMEMLEAK_SET_EXCESS_REF:
2072 			object_set_excess_ref((unsigned long)log->ptr,
2073 					      log->excess_ref);
2074 			break;
2075 		default:
2076 			kmemleak_warn("Unknown early log operation: %d\n",
2077 				      log->op_type);
2078 		}
2079 
2080 		if (kmemleak_warning) {
2081 			print_log_trace(log);
2082 			kmemleak_warning = 0;
2083 		}
2084 	}
2085 }
2086 
2087 /*
2088  * Late initialization function.
2089  */
2090 static int __init kmemleak_late_init(void)
2091 {
2092 	struct dentry *dentry;
2093 
2094 	kmemleak_initialized = 1;
2095 
2096 	if (kmemleak_error) {
2097 		/*
2098 		 * Some error occurred and kmemleak was disabled. There is a
2099 		 * small chance that kmemleak_disable() was called immediately
2100 		 * after setting kmemleak_initialized and we may end up with
2101 		 * two clean-up threads but serialized by scan_mutex.
2102 		 */
2103 		schedule_work(&cleanup_work);
2104 		return -ENOMEM;
2105 	}
2106 
2107 	dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
2108 				     &kmemleak_fops);
2109 	if (!dentry)
2110 		pr_warn("Failed to create the debugfs kmemleak file\n");
2111 	mutex_lock(&scan_mutex);
2112 	start_scan_thread();
2113 	mutex_unlock(&scan_mutex);
2114 
2115 	pr_info("Kernel memory leak detector initialized\n");
2116 
2117 	return 0;
2118 }
2119 late_initcall(kmemleak_late_init);
2120