1 /* 2 * mm/kmemleak.c 3 * 4 * Copyright (C) 2008 ARM Limited 5 * Written by Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 * 21 * For more information on the algorithm and kmemleak usage, please see 22 * Documentation/dev-tools/kmemleak.rst. 23 * 24 * Notes on locking 25 * ---------------- 26 * 27 * The following locks and mutexes are used by kmemleak: 28 * 29 * - kmemleak_lock (rwlock): protects the object_list modifications and 30 * accesses to the object_tree_root. The object_list is the main list 31 * holding the metadata (struct kmemleak_object) for the allocated memory 32 * blocks. The object_tree_root is a red black tree used to look-up 33 * metadata based on a pointer to the corresponding memory block. The 34 * kmemleak_object structures are added to the object_list and 35 * object_tree_root in the create_object() function called from the 36 * kmemleak_alloc() callback and removed in delete_object() called from the 37 * kmemleak_free() callback 38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to 39 * the metadata (e.g. count) are protected by this lock. Note that some 40 * members of this structure may be protected by other means (atomic or 41 * kmemleak_lock). This lock is also held when scanning the corresponding 42 * memory block to avoid the kernel freeing it via the kmemleak_free() 43 * callback. This is less heavyweight than holding a global lock like 44 * kmemleak_lock during scanning 45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 46 * unreferenced objects at a time. The gray_list contains the objects which 47 * are already referenced or marked as false positives and need to be 48 * scanned. This list is only modified during a scanning episode when the 49 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 50 * Note that the kmemleak_object.use_count is incremented when an object is 51 * added to the gray_list and therefore cannot be freed. This mutex also 52 * prevents multiple users of the "kmemleak" debugfs file together with 53 * modifications to the memory scanning parameters including the scan_thread 54 * pointer 55 * 56 * Locks and mutexes are acquired/nested in the following order: 57 * 58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 59 * 60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 61 * regions. 62 * 63 * The kmemleak_object structures have a use_count incremented or decremented 64 * using the get_object()/put_object() functions. When the use_count becomes 65 * 0, this count can no longer be incremented and put_object() schedules the 66 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 67 * function must be protected by rcu_read_lock() to avoid accessing a freed 68 * structure. 69 */ 70 71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 72 73 #include <linux/init.h> 74 #include <linux/kernel.h> 75 #include <linux/list.h> 76 #include <linux/sched/signal.h> 77 #include <linux/sched/task.h> 78 #include <linux/sched/task_stack.h> 79 #include <linux/jiffies.h> 80 #include <linux/delay.h> 81 #include <linux/export.h> 82 #include <linux/kthread.h> 83 #include <linux/rbtree.h> 84 #include <linux/fs.h> 85 #include <linux/debugfs.h> 86 #include <linux/seq_file.h> 87 #include <linux/cpumask.h> 88 #include <linux/spinlock.h> 89 #include <linux/mutex.h> 90 #include <linux/rcupdate.h> 91 #include <linux/stacktrace.h> 92 #include <linux/cache.h> 93 #include <linux/percpu.h> 94 #include <linux/hardirq.h> 95 #include <linux/bootmem.h> 96 #include <linux/pfn.h> 97 #include <linux/mmzone.h> 98 #include <linux/slab.h> 99 #include <linux/thread_info.h> 100 #include <linux/err.h> 101 #include <linux/uaccess.h> 102 #include <linux/string.h> 103 #include <linux/nodemask.h> 104 #include <linux/mm.h> 105 #include <linux/workqueue.h> 106 #include <linux/crc32.h> 107 108 #include <asm/sections.h> 109 #include <asm/processor.h> 110 #include <linux/atomic.h> 111 112 #include <linux/kasan.h> 113 #include <linux/kmemcheck.h> 114 #include <linux/kmemleak.h> 115 #include <linux/memory_hotplug.h> 116 117 /* 118 * Kmemleak configuration and common defines. 119 */ 120 #define MAX_TRACE 16 /* stack trace length */ 121 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 122 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 123 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 124 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 125 126 #define BYTES_PER_POINTER sizeof(void *) 127 128 /* GFP bitmask for kmemleak internal allocations */ 129 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \ 130 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 131 __GFP_NOWARN) 132 133 /* scanning area inside a memory block */ 134 struct kmemleak_scan_area { 135 struct hlist_node node; 136 unsigned long start; 137 size_t size; 138 }; 139 140 #define KMEMLEAK_GREY 0 141 #define KMEMLEAK_BLACK -1 142 143 /* 144 * Structure holding the metadata for each allocated memory block. 145 * Modifications to such objects should be made while holding the 146 * object->lock. Insertions or deletions from object_list, gray_list or 147 * rb_node are already protected by the corresponding locks or mutex (see 148 * the notes on locking above). These objects are reference-counted 149 * (use_count) and freed using the RCU mechanism. 150 */ 151 struct kmemleak_object { 152 spinlock_t lock; 153 unsigned int flags; /* object status flags */ 154 struct list_head object_list; 155 struct list_head gray_list; 156 struct rb_node rb_node; 157 struct rcu_head rcu; /* object_list lockless traversal */ 158 /* object usage count; object freed when use_count == 0 */ 159 atomic_t use_count; 160 unsigned long pointer; 161 size_t size; 162 /* pass surplus references to this pointer */ 163 unsigned long excess_ref; 164 /* minimum number of a pointers found before it is considered leak */ 165 int min_count; 166 /* the total number of pointers found pointing to this object */ 167 int count; 168 /* checksum for detecting modified objects */ 169 u32 checksum; 170 /* memory ranges to be scanned inside an object (empty for all) */ 171 struct hlist_head area_list; 172 unsigned long trace[MAX_TRACE]; 173 unsigned int trace_len; 174 unsigned long jiffies; /* creation timestamp */ 175 pid_t pid; /* pid of the current task */ 176 char comm[TASK_COMM_LEN]; /* executable name */ 177 }; 178 179 /* flag representing the memory block allocation status */ 180 #define OBJECT_ALLOCATED (1 << 0) 181 /* flag set after the first reporting of an unreference object */ 182 #define OBJECT_REPORTED (1 << 1) 183 /* flag set to not scan the object */ 184 #define OBJECT_NO_SCAN (1 << 2) 185 186 /* number of bytes to print per line; must be 16 or 32 */ 187 #define HEX_ROW_SIZE 16 188 /* number of bytes to print at a time (1, 2, 4, 8) */ 189 #define HEX_GROUP_SIZE 1 190 /* include ASCII after the hex output */ 191 #define HEX_ASCII 1 192 /* max number of lines to be printed */ 193 #define HEX_MAX_LINES 2 194 195 /* the list of all allocated objects */ 196 static LIST_HEAD(object_list); 197 /* the list of gray-colored objects (see color_gray comment below) */ 198 static LIST_HEAD(gray_list); 199 /* search tree for object boundaries */ 200 static struct rb_root object_tree_root = RB_ROOT; 201 /* rw_lock protecting the access to object_list and object_tree_root */ 202 static DEFINE_RWLOCK(kmemleak_lock); 203 204 /* allocation caches for kmemleak internal data */ 205 static struct kmem_cache *object_cache; 206 static struct kmem_cache *scan_area_cache; 207 208 /* set if tracing memory operations is enabled */ 209 static int kmemleak_enabled; 210 /* same as above but only for the kmemleak_free() callback */ 211 static int kmemleak_free_enabled; 212 /* set in the late_initcall if there were no errors */ 213 static int kmemleak_initialized; 214 /* enables or disables early logging of the memory operations */ 215 static int kmemleak_early_log = 1; 216 /* set if a kmemleak warning was issued */ 217 static int kmemleak_warning; 218 /* set if a fatal kmemleak error has occurred */ 219 static int kmemleak_error; 220 221 /* minimum and maximum address that may be valid pointers */ 222 static unsigned long min_addr = ULONG_MAX; 223 static unsigned long max_addr; 224 225 static struct task_struct *scan_thread; 226 /* used to avoid reporting of recently allocated objects */ 227 static unsigned long jiffies_min_age; 228 static unsigned long jiffies_last_scan; 229 /* delay between automatic memory scannings */ 230 static signed long jiffies_scan_wait; 231 /* enables or disables the task stacks scanning */ 232 static int kmemleak_stack_scan = 1; 233 /* protects the memory scanning, parameters and debug/kmemleak file access */ 234 static DEFINE_MUTEX(scan_mutex); 235 /* setting kmemleak=on, will set this var, skipping the disable */ 236 static int kmemleak_skip_disable; 237 /* If there are leaks that can be reported */ 238 static bool kmemleak_found_leaks; 239 240 /* 241 * Early object allocation/freeing logging. Kmemleak is initialized after the 242 * kernel allocator. However, both the kernel allocator and kmemleak may 243 * allocate memory blocks which need to be tracked. Kmemleak defines an 244 * arbitrary buffer to hold the allocation/freeing information before it is 245 * fully initialized. 246 */ 247 248 /* kmemleak operation type for early logging */ 249 enum { 250 KMEMLEAK_ALLOC, 251 KMEMLEAK_ALLOC_PERCPU, 252 KMEMLEAK_FREE, 253 KMEMLEAK_FREE_PART, 254 KMEMLEAK_FREE_PERCPU, 255 KMEMLEAK_NOT_LEAK, 256 KMEMLEAK_IGNORE, 257 KMEMLEAK_SCAN_AREA, 258 KMEMLEAK_NO_SCAN, 259 KMEMLEAK_SET_EXCESS_REF 260 }; 261 262 /* 263 * Structure holding the information passed to kmemleak callbacks during the 264 * early logging. 265 */ 266 struct early_log { 267 int op_type; /* kmemleak operation type */ 268 int min_count; /* minimum reference count */ 269 const void *ptr; /* allocated/freed memory block */ 270 union { 271 size_t size; /* memory block size */ 272 unsigned long excess_ref; /* surplus reference passing */ 273 }; 274 unsigned long trace[MAX_TRACE]; /* stack trace */ 275 unsigned int trace_len; /* stack trace length */ 276 }; 277 278 /* early logging buffer and current position */ 279 static struct early_log 280 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata; 281 static int crt_early_log __initdata; 282 283 static void kmemleak_disable(void); 284 285 /* 286 * Print a warning and dump the stack trace. 287 */ 288 #define kmemleak_warn(x...) do { \ 289 pr_warn(x); \ 290 dump_stack(); \ 291 kmemleak_warning = 1; \ 292 } while (0) 293 294 /* 295 * Macro invoked when a serious kmemleak condition occurred and cannot be 296 * recovered from. Kmemleak will be disabled and further allocation/freeing 297 * tracing no longer available. 298 */ 299 #define kmemleak_stop(x...) do { \ 300 kmemleak_warn(x); \ 301 kmemleak_disable(); \ 302 } while (0) 303 304 /* 305 * Printing of the objects hex dump to the seq file. The number of lines to be 306 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 307 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 308 * with the object->lock held. 309 */ 310 static void hex_dump_object(struct seq_file *seq, 311 struct kmemleak_object *object) 312 { 313 const u8 *ptr = (const u8 *)object->pointer; 314 size_t len; 315 316 /* limit the number of lines to HEX_MAX_LINES */ 317 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 318 319 seq_printf(seq, " hex dump (first %zu bytes):\n", len); 320 kasan_disable_current(); 321 seq_hex_dump(seq, " ", DUMP_PREFIX_NONE, HEX_ROW_SIZE, 322 HEX_GROUP_SIZE, ptr, len, HEX_ASCII); 323 kasan_enable_current(); 324 } 325 326 /* 327 * Object colors, encoded with count and min_count: 328 * - white - orphan object, not enough references to it (count < min_count) 329 * - gray - not orphan, not marked as false positive (min_count == 0) or 330 * sufficient references to it (count >= min_count) 331 * - black - ignore, it doesn't contain references (e.g. text section) 332 * (min_count == -1). No function defined for this color. 333 * Newly created objects don't have any color assigned (object->count == -1) 334 * before the next memory scan when they become white. 335 */ 336 static bool color_white(const struct kmemleak_object *object) 337 { 338 return object->count != KMEMLEAK_BLACK && 339 object->count < object->min_count; 340 } 341 342 static bool color_gray(const struct kmemleak_object *object) 343 { 344 return object->min_count != KMEMLEAK_BLACK && 345 object->count >= object->min_count; 346 } 347 348 /* 349 * Objects are considered unreferenced only if their color is white, they have 350 * not be deleted and have a minimum age to avoid false positives caused by 351 * pointers temporarily stored in CPU registers. 352 */ 353 static bool unreferenced_object(struct kmemleak_object *object) 354 { 355 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 356 time_before_eq(object->jiffies + jiffies_min_age, 357 jiffies_last_scan); 358 } 359 360 /* 361 * Printing of the unreferenced objects information to the seq file. The 362 * print_unreferenced function must be called with the object->lock held. 363 */ 364 static void print_unreferenced(struct seq_file *seq, 365 struct kmemleak_object *object) 366 { 367 int i; 368 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 369 370 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 371 object->pointer, object->size); 372 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 373 object->comm, object->pid, object->jiffies, 374 msecs_age / 1000, msecs_age % 1000); 375 hex_dump_object(seq, object); 376 seq_printf(seq, " backtrace:\n"); 377 378 for (i = 0; i < object->trace_len; i++) { 379 void *ptr = (void *)object->trace[i]; 380 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); 381 } 382 } 383 384 /* 385 * Print the kmemleak_object information. This function is used mainly for 386 * debugging special cases when kmemleak operations. It must be called with 387 * the object->lock held. 388 */ 389 static void dump_object_info(struct kmemleak_object *object) 390 { 391 struct stack_trace trace; 392 393 trace.nr_entries = object->trace_len; 394 trace.entries = object->trace; 395 396 pr_notice("Object 0x%08lx (size %zu):\n", 397 object->pointer, object->size); 398 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 399 object->comm, object->pid, object->jiffies); 400 pr_notice(" min_count = %d\n", object->min_count); 401 pr_notice(" count = %d\n", object->count); 402 pr_notice(" flags = 0x%x\n", object->flags); 403 pr_notice(" checksum = %u\n", object->checksum); 404 pr_notice(" backtrace:\n"); 405 print_stack_trace(&trace, 4); 406 } 407 408 /* 409 * Look-up a memory block metadata (kmemleak_object) in the object search 410 * tree based on a pointer value. If alias is 0, only values pointing to the 411 * beginning of the memory block are allowed. The kmemleak_lock must be held 412 * when calling this function. 413 */ 414 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 415 { 416 struct rb_node *rb = object_tree_root.rb_node; 417 418 while (rb) { 419 struct kmemleak_object *object = 420 rb_entry(rb, struct kmemleak_object, rb_node); 421 if (ptr < object->pointer) 422 rb = object->rb_node.rb_left; 423 else if (object->pointer + object->size <= ptr) 424 rb = object->rb_node.rb_right; 425 else if (object->pointer == ptr || alias) 426 return object; 427 else { 428 kmemleak_warn("Found object by alias at 0x%08lx\n", 429 ptr); 430 dump_object_info(object); 431 break; 432 } 433 } 434 return NULL; 435 } 436 437 /* 438 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 439 * that once an object's use_count reached 0, the RCU freeing was already 440 * registered and the object should no longer be used. This function must be 441 * called under the protection of rcu_read_lock(). 442 */ 443 static int get_object(struct kmemleak_object *object) 444 { 445 return atomic_inc_not_zero(&object->use_count); 446 } 447 448 /* 449 * RCU callback to free a kmemleak_object. 450 */ 451 static void free_object_rcu(struct rcu_head *rcu) 452 { 453 struct hlist_node *tmp; 454 struct kmemleak_scan_area *area; 455 struct kmemleak_object *object = 456 container_of(rcu, struct kmemleak_object, rcu); 457 458 /* 459 * Once use_count is 0 (guaranteed by put_object), there is no other 460 * code accessing this object, hence no need for locking. 461 */ 462 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 463 hlist_del(&area->node); 464 kmem_cache_free(scan_area_cache, area); 465 } 466 kmem_cache_free(object_cache, object); 467 } 468 469 /* 470 * Decrement the object use_count. Once the count is 0, free the object using 471 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 472 * delete_object() path, the delayed RCU freeing ensures that there is no 473 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 474 * is also possible. 475 */ 476 static void put_object(struct kmemleak_object *object) 477 { 478 if (!atomic_dec_and_test(&object->use_count)) 479 return; 480 481 /* should only get here after delete_object was called */ 482 WARN_ON(object->flags & OBJECT_ALLOCATED); 483 484 call_rcu(&object->rcu, free_object_rcu); 485 } 486 487 /* 488 * Look up an object in the object search tree and increase its use_count. 489 */ 490 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 491 { 492 unsigned long flags; 493 struct kmemleak_object *object; 494 495 rcu_read_lock(); 496 read_lock_irqsave(&kmemleak_lock, flags); 497 object = lookup_object(ptr, alias); 498 read_unlock_irqrestore(&kmemleak_lock, flags); 499 500 /* check whether the object is still available */ 501 if (object && !get_object(object)) 502 object = NULL; 503 rcu_read_unlock(); 504 505 return object; 506 } 507 508 /* 509 * Look up an object in the object search tree and remove it from both 510 * object_tree_root and object_list. The returned object's use_count should be 511 * at least 1, as initially set by create_object(). 512 */ 513 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias) 514 { 515 unsigned long flags; 516 struct kmemleak_object *object; 517 518 write_lock_irqsave(&kmemleak_lock, flags); 519 object = lookup_object(ptr, alias); 520 if (object) { 521 rb_erase(&object->rb_node, &object_tree_root); 522 list_del_rcu(&object->object_list); 523 } 524 write_unlock_irqrestore(&kmemleak_lock, flags); 525 526 return object; 527 } 528 529 /* 530 * Save stack trace to the given array of MAX_TRACE size. 531 */ 532 static int __save_stack_trace(unsigned long *trace) 533 { 534 struct stack_trace stack_trace; 535 536 stack_trace.max_entries = MAX_TRACE; 537 stack_trace.nr_entries = 0; 538 stack_trace.entries = trace; 539 stack_trace.skip = 2; 540 save_stack_trace(&stack_trace); 541 542 return stack_trace.nr_entries; 543 } 544 545 /* 546 * Create the metadata (struct kmemleak_object) corresponding to an allocated 547 * memory block and add it to the object_list and object_tree_root. 548 */ 549 static struct kmemleak_object *create_object(unsigned long ptr, size_t size, 550 int min_count, gfp_t gfp) 551 { 552 unsigned long flags; 553 struct kmemleak_object *object, *parent; 554 struct rb_node **link, *rb_parent; 555 556 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 557 if (!object) { 558 pr_warn("Cannot allocate a kmemleak_object structure\n"); 559 kmemleak_disable(); 560 return NULL; 561 } 562 563 INIT_LIST_HEAD(&object->object_list); 564 INIT_LIST_HEAD(&object->gray_list); 565 INIT_HLIST_HEAD(&object->area_list); 566 spin_lock_init(&object->lock); 567 atomic_set(&object->use_count, 1); 568 object->flags = OBJECT_ALLOCATED; 569 object->pointer = ptr; 570 object->size = size; 571 object->excess_ref = 0; 572 object->min_count = min_count; 573 object->count = 0; /* white color initially */ 574 object->jiffies = jiffies; 575 object->checksum = 0; 576 577 /* task information */ 578 if (in_irq()) { 579 object->pid = 0; 580 strncpy(object->comm, "hardirq", sizeof(object->comm)); 581 } else if (in_softirq()) { 582 object->pid = 0; 583 strncpy(object->comm, "softirq", sizeof(object->comm)); 584 } else { 585 object->pid = current->pid; 586 /* 587 * There is a small chance of a race with set_task_comm(), 588 * however using get_task_comm() here may cause locking 589 * dependency issues with current->alloc_lock. In the worst 590 * case, the command line is not correct. 591 */ 592 strncpy(object->comm, current->comm, sizeof(object->comm)); 593 } 594 595 /* kernel backtrace */ 596 object->trace_len = __save_stack_trace(object->trace); 597 598 write_lock_irqsave(&kmemleak_lock, flags); 599 600 min_addr = min(min_addr, ptr); 601 max_addr = max(max_addr, ptr + size); 602 link = &object_tree_root.rb_node; 603 rb_parent = NULL; 604 while (*link) { 605 rb_parent = *link; 606 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 607 if (ptr + size <= parent->pointer) 608 link = &parent->rb_node.rb_left; 609 else if (parent->pointer + parent->size <= ptr) 610 link = &parent->rb_node.rb_right; 611 else { 612 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 613 ptr); 614 /* 615 * No need for parent->lock here since "parent" cannot 616 * be freed while the kmemleak_lock is held. 617 */ 618 dump_object_info(parent); 619 kmem_cache_free(object_cache, object); 620 object = NULL; 621 goto out; 622 } 623 } 624 rb_link_node(&object->rb_node, rb_parent, link); 625 rb_insert_color(&object->rb_node, &object_tree_root); 626 627 list_add_tail_rcu(&object->object_list, &object_list); 628 out: 629 write_unlock_irqrestore(&kmemleak_lock, flags); 630 return object; 631 } 632 633 /* 634 * Mark the object as not allocated and schedule RCU freeing via put_object(). 635 */ 636 static void __delete_object(struct kmemleak_object *object) 637 { 638 unsigned long flags; 639 640 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 641 WARN_ON(atomic_read(&object->use_count) < 1); 642 643 /* 644 * Locking here also ensures that the corresponding memory block 645 * cannot be freed when it is being scanned. 646 */ 647 spin_lock_irqsave(&object->lock, flags); 648 object->flags &= ~OBJECT_ALLOCATED; 649 spin_unlock_irqrestore(&object->lock, flags); 650 put_object(object); 651 } 652 653 /* 654 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 655 * delete it. 656 */ 657 static void delete_object_full(unsigned long ptr) 658 { 659 struct kmemleak_object *object; 660 661 object = find_and_remove_object(ptr, 0); 662 if (!object) { 663 #ifdef DEBUG 664 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 665 ptr); 666 #endif 667 return; 668 } 669 __delete_object(object); 670 } 671 672 /* 673 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 674 * delete it. If the memory block is partially freed, the function may create 675 * additional metadata for the remaining parts of the block. 676 */ 677 static void delete_object_part(unsigned long ptr, size_t size) 678 { 679 struct kmemleak_object *object; 680 unsigned long start, end; 681 682 object = find_and_remove_object(ptr, 1); 683 if (!object) { 684 #ifdef DEBUG 685 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 686 ptr, size); 687 #endif 688 return; 689 } 690 691 /* 692 * Create one or two objects that may result from the memory block 693 * split. Note that partial freeing is only done by free_bootmem() and 694 * this happens before kmemleak_init() is called. The path below is 695 * only executed during early log recording in kmemleak_init(), so 696 * GFP_KERNEL is enough. 697 */ 698 start = object->pointer; 699 end = object->pointer + object->size; 700 if (ptr > start) 701 create_object(start, ptr - start, object->min_count, 702 GFP_KERNEL); 703 if (ptr + size < end) 704 create_object(ptr + size, end - ptr - size, object->min_count, 705 GFP_KERNEL); 706 707 __delete_object(object); 708 } 709 710 static void __paint_it(struct kmemleak_object *object, int color) 711 { 712 object->min_count = color; 713 if (color == KMEMLEAK_BLACK) 714 object->flags |= OBJECT_NO_SCAN; 715 } 716 717 static void paint_it(struct kmemleak_object *object, int color) 718 { 719 unsigned long flags; 720 721 spin_lock_irqsave(&object->lock, flags); 722 __paint_it(object, color); 723 spin_unlock_irqrestore(&object->lock, flags); 724 } 725 726 static void paint_ptr(unsigned long ptr, int color) 727 { 728 struct kmemleak_object *object; 729 730 object = find_and_get_object(ptr, 0); 731 if (!object) { 732 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 733 ptr, 734 (color == KMEMLEAK_GREY) ? "Grey" : 735 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 736 return; 737 } 738 paint_it(object, color); 739 put_object(object); 740 } 741 742 /* 743 * Mark an object permanently as gray-colored so that it can no longer be 744 * reported as a leak. This is used in general to mark a false positive. 745 */ 746 static void make_gray_object(unsigned long ptr) 747 { 748 paint_ptr(ptr, KMEMLEAK_GREY); 749 } 750 751 /* 752 * Mark the object as black-colored so that it is ignored from scans and 753 * reporting. 754 */ 755 static void make_black_object(unsigned long ptr) 756 { 757 paint_ptr(ptr, KMEMLEAK_BLACK); 758 } 759 760 /* 761 * Add a scanning area to the object. If at least one such area is added, 762 * kmemleak will only scan these ranges rather than the whole memory block. 763 */ 764 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 765 { 766 unsigned long flags; 767 struct kmemleak_object *object; 768 struct kmemleak_scan_area *area; 769 770 object = find_and_get_object(ptr, 1); 771 if (!object) { 772 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 773 ptr); 774 return; 775 } 776 777 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 778 if (!area) { 779 pr_warn("Cannot allocate a scan area\n"); 780 goto out; 781 } 782 783 spin_lock_irqsave(&object->lock, flags); 784 if (size == SIZE_MAX) { 785 size = object->pointer + object->size - ptr; 786 } else if (ptr + size > object->pointer + object->size) { 787 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 788 dump_object_info(object); 789 kmem_cache_free(scan_area_cache, area); 790 goto out_unlock; 791 } 792 793 INIT_HLIST_NODE(&area->node); 794 area->start = ptr; 795 area->size = size; 796 797 hlist_add_head(&area->node, &object->area_list); 798 out_unlock: 799 spin_unlock_irqrestore(&object->lock, flags); 800 out: 801 put_object(object); 802 } 803 804 /* 805 * Any surplus references (object already gray) to 'ptr' are passed to 806 * 'excess_ref'. This is used in the vmalloc() case where a pointer to 807 * vm_struct may be used as an alternative reference to the vmalloc'ed object 808 * (see free_thread_stack()). 809 */ 810 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) 811 { 812 unsigned long flags; 813 struct kmemleak_object *object; 814 815 object = find_and_get_object(ptr, 0); 816 if (!object) { 817 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", 818 ptr); 819 return; 820 } 821 822 spin_lock_irqsave(&object->lock, flags); 823 object->excess_ref = excess_ref; 824 spin_unlock_irqrestore(&object->lock, flags); 825 put_object(object); 826 } 827 828 /* 829 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 830 * pointer. Such object will not be scanned by kmemleak but references to it 831 * are searched. 832 */ 833 static void object_no_scan(unsigned long ptr) 834 { 835 unsigned long flags; 836 struct kmemleak_object *object; 837 838 object = find_and_get_object(ptr, 0); 839 if (!object) { 840 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 841 return; 842 } 843 844 spin_lock_irqsave(&object->lock, flags); 845 object->flags |= OBJECT_NO_SCAN; 846 spin_unlock_irqrestore(&object->lock, flags); 847 put_object(object); 848 } 849 850 /* 851 * Log an early kmemleak_* call to the early_log buffer. These calls will be 852 * processed later once kmemleak is fully initialized. 853 */ 854 static void __init log_early(int op_type, const void *ptr, size_t size, 855 int min_count) 856 { 857 unsigned long flags; 858 struct early_log *log; 859 860 if (kmemleak_error) { 861 /* kmemleak stopped recording, just count the requests */ 862 crt_early_log++; 863 return; 864 } 865 866 if (crt_early_log >= ARRAY_SIZE(early_log)) { 867 crt_early_log++; 868 kmemleak_disable(); 869 return; 870 } 871 872 /* 873 * There is no need for locking since the kernel is still in UP mode 874 * at this stage. Disabling the IRQs is enough. 875 */ 876 local_irq_save(flags); 877 log = &early_log[crt_early_log]; 878 log->op_type = op_type; 879 log->ptr = ptr; 880 log->size = size; 881 log->min_count = min_count; 882 log->trace_len = __save_stack_trace(log->trace); 883 crt_early_log++; 884 local_irq_restore(flags); 885 } 886 887 /* 888 * Log an early allocated block and populate the stack trace. 889 */ 890 static void early_alloc(struct early_log *log) 891 { 892 struct kmemleak_object *object; 893 unsigned long flags; 894 int i; 895 896 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr)) 897 return; 898 899 /* 900 * RCU locking needed to ensure object is not freed via put_object(). 901 */ 902 rcu_read_lock(); 903 object = create_object((unsigned long)log->ptr, log->size, 904 log->min_count, GFP_ATOMIC); 905 if (!object) 906 goto out; 907 spin_lock_irqsave(&object->lock, flags); 908 for (i = 0; i < log->trace_len; i++) 909 object->trace[i] = log->trace[i]; 910 object->trace_len = log->trace_len; 911 spin_unlock_irqrestore(&object->lock, flags); 912 out: 913 rcu_read_unlock(); 914 } 915 916 /* 917 * Log an early allocated block and populate the stack trace. 918 */ 919 static void early_alloc_percpu(struct early_log *log) 920 { 921 unsigned int cpu; 922 const void __percpu *ptr = log->ptr; 923 924 for_each_possible_cpu(cpu) { 925 log->ptr = per_cpu_ptr(ptr, cpu); 926 early_alloc(log); 927 } 928 } 929 930 /** 931 * kmemleak_alloc - register a newly allocated object 932 * @ptr: pointer to beginning of the object 933 * @size: size of the object 934 * @min_count: minimum number of references to this object. If during memory 935 * scanning a number of references less than @min_count is found, 936 * the object is reported as a memory leak. If @min_count is 0, 937 * the object is never reported as a leak. If @min_count is -1, 938 * the object is ignored (not scanned and not reported as a leak) 939 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 940 * 941 * This function is called from the kernel allocators when a new object 942 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). 943 */ 944 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 945 gfp_t gfp) 946 { 947 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 948 949 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 950 create_object((unsigned long)ptr, size, min_count, gfp); 951 else if (kmemleak_early_log) 952 log_early(KMEMLEAK_ALLOC, ptr, size, min_count); 953 } 954 EXPORT_SYMBOL_GPL(kmemleak_alloc); 955 956 /** 957 * kmemleak_alloc_percpu - register a newly allocated __percpu object 958 * @ptr: __percpu pointer to beginning of the object 959 * @size: size of the object 960 * @gfp: flags used for kmemleak internal memory allocations 961 * 962 * This function is called from the kernel percpu allocator when a new object 963 * (memory block) is allocated (alloc_percpu). 964 */ 965 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 966 gfp_t gfp) 967 { 968 unsigned int cpu; 969 970 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); 971 972 /* 973 * Percpu allocations are only scanned and not reported as leaks 974 * (min_count is set to 0). 975 */ 976 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 977 for_each_possible_cpu(cpu) 978 create_object((unsigned long)per_cpu_ptr(ptr, cpu), 979 size, 0, gfp); 980 else if (kmemleak_early_log) 981 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0); 982 } 983 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 984 985 /** 986 * kmemleak_vmalloc - register a newly vmalloc'ed object 987 * @area: pointer to vm_struct 988 * @size: size of the object 989 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations 990 * 991 * This function is called from the vmalloc() kernel allocator when a new 992 * object (memory block) is allocated. 993 */ 994 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) 995 { 996 pr_debug("%s(0x%p, %zu)\n", __func__, area, size); 997 998 /* 999 * A min_count = 2 is needed because vm_struct contains a reference to 1000 * the virtual address of the vmalloc'ed block. 1001 */ 1002 if (kmemleak_enabled) { 1003 create_object((unsigned long)area->addr, size, 2, gfp); 1004 object_set_excess_ref((unsigned long)area, 1005 (unsigned long)area->addr); 1006 } else if (kmemleak_early_log) { 1007 log_early(KMEMLEAK_ALLOC, area->addr, size, 2); 1008 /* reusing early_log.size for storing area->addr */ 1009 log_early(KMEMLEAK_SET_EXCESS_REF, 1010 area, (unsigned long)area->addr, 0); 1011 } 1012 } 1013 EXPORT_SYMBOL_GPL(kmemleak_vmalloc); 1014 1015 /** 1016 * kmemleak_free - unregister a previously registered object 1017 * @ptr: pointer to beginning of the object 1018 * 1019 * This function is called from the kernel allocators when an object (memory 1020 * block) is freed (kmem_cache_free, kfree, vfree etc.). 1021 */ 1022 void __ref kmemleak_free(const void *ptr) 1023 { 1024 pr_debug("%s(0x%p)\n", __func__, ptr); 1025 1026 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1027 delete_object_full((unsigned long)ptr); 1028 else if (kmemleak_early_log) 1029 log_early(KMEMLEAK_FREE, ptr, 0, 0); 1030 } 1031 EXPORT_SYMBOL_GPL(kmemleak_free); 1032 1033 /** 1034 * kmemleak_free_part - partially unregister a previously registered object 1035 * @ptr: pointer to the beginning or inside the object. This also 1036 * represents the start of the range to be freed 1037 * @size: size to be unregistered 1038 * 1039 * This function is called when only a part of a memory block is freed 1040 * (usually from the bootmem allocator). 1041 */ 1042 void __ref kmemleak_free_part(const void *ptr, size_t size) 1043 { 1044 pr_debug("%s(0x%p)\n", __func__, ptr); 1045 1046 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1047 delete_object_part((unsigned long)ptr, size); 1048 else if (kmemleak_early_log) 1049 log_early(KMEMLEAK_FREE_PART, ptr, size, 0); 1050 } 1051 EXPORT_SYMBOL_GPL(kmemleak_free_part); 1052 1053 /** 1054 * kmemleak_free_percpu - unregister a previously registered __percpu object 1055 * @ptr: __percpu pointer to beginning of the object 1056 * 1057 * This function is called from the kernel percpu allocator when an object 1058 * (memory block) is freed (free_percpu). 1059 */ 1060 void __ref kmemleak_free_percpu(const void __percpu *ptr) 1061 { 1062 unsigned int cpu; 1063 1064 pr_debug("%s(0x%p)\n", __func__, ptr); 1065 1066 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1067 for_each_possible_cpu(cpu) 1068 delete_object_full((unsigned long)per_cpu_ptr(ptr, 1069 cpu)); 1070 else if (kmemleak_early_log) 1071 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0); 1072 } 1073 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1074 1075 /** 1076 * kmemleak_update_trace - update object allocation stack trace 1077 * @ptr: pointer to beginning of the object 1078 * 1079 * Override the object allocation stack trace for cases where the actual 1080 * allocation place is not always useful. 1081 */ 1082 void __ref kmemleak_update_trace(const void *ptr) 1083 { 1084 struct kmemleak_object *object; 1085 unsigned long flags; 1086 1087 pr_debug("%s(0x%p)\n", __func__, ptr); 1088 1089 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1090 return; 1091 1092 object = find_and_get_object((unsigned long)ptr, 1); 1093 if (!object) { 1094 #ifdef DEBUG 1095 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1096 ptr); 1097 #endif 1098 return; 1099 } 1100 1101 spin_lock_irqsave(&object->lock, flags); 1102 object->trace_len = __save_stack_trace(object->trace); 1103 spin_unlock_irqrestore(&object->lock, flags); 1104 1105 put_object(object); 1106 } 1107 EXPORT_SYMBOL(kmemleak_update_trace); 1108 1109 /** 1110 * kmemleak_not_leak - mark an allocated object as false positive 1111 * @ptr: pointer to beginning of the object 1112 * 1113 * Calling this function on an object will cause the memory block to no longer 1114 * be reported as leak and always be scanned. 1115 */ 1116 void __ref kmemleak_not_leak(const void *ptr) 1117 { 1118 pr_debug("%s(0x%p)\n", __func__, ptr); 1119 1120 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1121 make_gray_object((unsigned long)ptr); 1122 else if (kmemleak_early_log) 1123 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0); 1124 } 1125 EXPORT_SYMBOL(kmemleak_not_leak); 1126 1127 /** 1128 * kmemleak_ignore - ignore an allocated object 1129 * @ptr: pointer to beginning of the object 1130 * 1131 * Calling this function on an object will cause the memory block to be 1132 * ignored (not scanned and not reported as a leak). This is usually done when 1133 * it is known that the corresponding block is not a leak and does not contain 1134 * any references to other allocated memory blocks. 1135 */ 1136 void __ref kmemleak_ignore(const void *ptr) 1137 { 1138 pr_debug("%s(0x%p)\n", __func__, ptr); 1139 1140 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1141 make_black_object((unsigned long)ptr); 1142 else if (kmemleak_early_log) 1143 log_early(KMEMLEAK_IGNORE, ptr, 0, 0); 1144 } 1145 EXPORT_SYMBOL(kmemleak_ignore); 1146 1147 /** 1148 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1149 * @ptr: pointer to beginning or inside the object. This also 1150 * represents the start of the scan area 1151 * @size: size of the scan area 1152 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1153 * 1154 * This function is used when it is known that only certain parts of an object 1155 * contain references to other objects. Kmemleak will only scan these areas 1156 * reducing the number false negatives. 1157 */ 1158 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1159 { 1160 pr_debug("%s(0x%p)\n", __func__, ptr); 1161 1162 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1163 add_scan_area((unsigned long)ptr, size, gfp); 1164 else if (kmemleak_early_log) 1165 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0); 1166 } 1167 EXPORT_SYMBOL(kmemleak_scan_area); 1168 1169 /** 1170 * kmemleak_no_scan - do not scan an allocated object 1171 * @ptr: pointer to beginning of the object 1172 * 1173 * This function notifies kmemleak not to scan the given memory block. Useful 1174 * in situations where it is known that the given object does not contain any 1175 * references to other objects. Kmemleak will not scan such objects reducing 1176 * the number of false negatives. 1177 */ 1178 void __ref kmemleak_no_scan(const void *ptr) 1179 { 1180 pr_debug("%s(0x%p)\n", __func__, ptr); 1181 1182 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1183 object_no_scan((unsigned long)ptr); 1184 else if (kmemleak_early_log) 1185 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0); 1186 } 1187 EXPORT_SYMBOL(kmemleak_no_scan); 1188 1189 /** 1190 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1191 * address argument 1192 */ 1193 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count, 1194 gfp_t gfp) 1195 { 1196 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1197 kmemleak_alloc(__va(phys), size, min_count, gfp); 1198 } 1199 EXPORT_SYMBOL(kmemleak_alloc_phys); 1200 1201 /** 1202 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1203 * physical address argument 1204 */ 1205 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1206 { 1207 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1208 kmemleak_free_part(__va(phys), size); 1209 } 1210 EXPORT_SYMBOL(kmemleak_free_part_phys); 1211 1212 /** 1213 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical 1214 * address argument 1215 */ 1216 void __ref kmemleak_not_leak_phys(phys_addr_t phys) 1217 { 1218 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1219 kmemleak_not_leak(__va(phys)); 1220 } 1221 EXPORT_SYMBOL(kmemleak_not_leak_phys); 1222 1223 /** 1224 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1225 * address argument 1226 */ 1227 void __ref kmemleak_ignore_phys(phys_addr_t phys) 1228 { 1229 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1230 kmemleak_ignore(__va(phys)); 1231 } 1232 EXPORT_SYMBOL(kmemleak_ignore_phys); 1233 1234 /* 1235 * Update an object's checksum and return true if it was modified. 1236 */ 1237 static bool update_checksum(struct kmemleak_object *object) 1238 { 1239 u32 old_csum = object->checksum; 1240 1241 if (!kmemcheck_is_obj_initialized(object->pointer, object->size)) 1242 return false; 1243 1244 kasan_disable_current(); 1245 object->checksum = crc32(0, (void *)object->pointer, object->size); 1246 kasan_enable_current(); 1247 1248 return object->checksum != old_csum; 1249 } 1250 1251 /* 1252 * Update an object's references. object->lock must be held by the caller. 1253 */ 1254 static void update_refs(struct kmemleak_object *object) 1255 { 1256 if (!color_white(object)) { 1257 /* non-orphan, ignored or new */ 1258 return; 1259 } 1260 1261 /* 1262 * Increase the object's reference count (number of pointers to the 1263 * memory block). If this count reaches the required minimum, the 1264 * object's color will become gray and it will be added to the 1265 * gray_list. 1266 */ 1267 object->count++; 1268 if (color_gray(object)) { 1269 /* put_object() called when removing from gray_list */ 1270 WARN_ON(!get_object(object)); 1271 list_add_tail(&object->gray_list, &gray_list); 1272 } 1273 } 1274 1275 /* 1276 * Memory scanning is a long process and it needs to be interruptable. This 1277 * function checks whether such interrupt condition occurred. 1278 */ 1279 static int scan_should_stop(void) 1280 { 1281 if (!kmemleak_enabled) 1282 return 1; 1283 1284 /* 1285 * This function may be called from either process or kthread context, 1286 * hence the need to check for both stop conditions. 1287 */ 1288 if (current->mm) 1289 return signal_pending(current); 1290 else 1291 return kthread_should_stop(); 1292 1293 return 0; 1294 } 1295 1296 /* 1297 * Scan a memory block (exclusive range) for valid pointers and add those 1298 * found to the gray list. 1299 */ 1300 static void scan_block(void *_start, void *_end, 1301 struct kmemleak_object *scanned) 1302 { 1303 unsigned long *ptr; 1304 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1305 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1306 unsigned long flags; 1307 1308 read_lock_irqsave(&kmemleak_lock, flags); 1309 for (ptr = start; ptr < end; ptr++) { 1310 struct kmemleak_object *object; 1311 unsigned long pointer; 1312 unsigned long excess_ref; 1313 1314 if (scan_should_stop()) 1315 break; 1316 1317 /* don't scan uninitialized memory */ 1318 if (!kmemcheck_is_obj_initialized((unsigned long)ptr, 1319 BYTES_PER_POINTER)) 1320 continue; 1321 1322 kasan_disable_current(); 1323 pointer = *ptr; 1324 kasan_enable_current(); 1325 1326 if (pointer < min_addr || pointer >= max_addr) 1327 continue; 1328 1329 /* 1330 * No need for get_object() here since we hold kmemleak_lock. 1331 * object->use_count cannot be dropped to 0 while the object 1332 * is still present in object_tree_root and object_list 1333 * (with updates protected by kmemleak_lock). 1334 */ 1335 object = lookup_object(pointer, 1); 1336 if (!object) 1337 continue; 1338 if (object == scanned) 1339 /* self referenced, ignore */ 1340 continue; 1341 1342 /* 1343 * Avoid the lockdep recursive warning on object->lock being 1344 * previously acquired in scan_object(). These locks are 1345 * enclosed by scan_mutex. 1346 */ 1347 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1348 /* only pass surplus references (object already gray) */ 1349 if (color_gray(object)) { 1350 excess_ref = object->excess_ref; 1351 /* no need for update_refs() if object already gray */ 1352 } else { 1353 excess_ref = 0; 1354 update_refs(object); 1355 } 1356 spin_unlock(&object->lock); 1357 1358 if (excess_ref) { 1359 object = lookup_object(excess_ref, 0); 1360 if (!object) 1361 continue; 1362 if (object == scanned) 1363 /* circular reference, ignore */ 1364 continue; 1365 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1366 update_refs(object); 1367 spin_unlock(&object->lock); 1368 } 1369 } 1370 read_unlock_irqrestore(&kmemleak_lock, flags); 1371 } 1372 1373 /* 1374 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1375 */ 1376 static void scan_large_block(void *start, void *end) 1377 { 1378 void *next; 1379 1380 while (start < end) { 1381 next = min(start + MAX_SCAN_SIZE, end); 1382 scan_block(start, next, NULL); 1383 start = next; 1384 cond_resched(); 1385 } 1386 } 1387 1388 /* 1389 * Scan a memory block corresponding to a kmemleak_object. A condition is 1390 * that object->use_count >= 1. 1391 */ 1392 static void scan_object(struct kmemleak_object *object) 1393 { 1394 struct kmemleak_scan_area *area; 1395 unsigned long flags; 1396 1397 /* 1398 * Once the object->lock is acquired, the corresponding memory block 1399 * cannot be freed (the same lock is acquired in delete_object). 1400 */ 1401 spin_lock_irqsave(&object->lock, flags); 1402 if (object->flags & OBJECT_NO_SCAN) 1403 goto out; 1404 if (!(object->flags & OBJECT_ALLOCATED)) 1405 /* already freed object */ 1406 goto out; 1407 if (hlist_empty(&object->area_list)) { 1408 void *start = (void *)object->pointer; 1409 void *end = (void *)(object->pointer + object->size); 1410 void *next; 1411 1412 do { 1413 next = min(start + MAX_SCAN_SIZE, end); 1414 scan_block(start, next, object); 1415 1416 start = next; 1417 if (start >= end) 1418 break; 1419 1420 spin_unlock_irqrestore(&object->lock, flags); 1421 cond_resched(); 1422 spin_lock_irqsave(&object->lock, flags); 1423 } while (object->flags & OBJECT_ALLOCATED); 1424 } else 1425 hlist_for_each_entry(area, &object->area_list, node) 1426 scan_block((void *)area->start, 1427 (void *)(area->start + area->size), 1428 object); 1429 out: 1430 spin_unlock_irqrestore(&object->lock, flags); 1431 } 1432 1433 /* 1434 * Scan the objects already referenced (gray objects). More objects will be 1435 * referenced and, if there are no memory leaks, all the objects are scanned. 1436 */ 1437 static void scan_gray_list(void) 1438 { 1439 struct kmemleak_object *object, *tmp; 1440 1441 /* 1442 * The list traversal is safe for both tail additions and removals 1443 * from inside the loop. The kmemleak objects cannot be freed from 1444 * outside the loop because their use_count was incremented. 1445 */ 1446 object = list_entry(gray_list.next, typeof(*object), gray_list); 1447 while (&object->gray_list != &gray_list) { 1448 cond_resched(); 1449 1450 /* may add new objects to the list */ 1451 if (!scan_should_stop()) 1452 scan_object(object); 1453 1454 tmp = list_entry(object->gray_list.next, typeof(*object), 1455 gray_list); 1456 1457 /* remove the object from the list and release it */ 1458 list_del(&object->gray_list); 1459 put_object(object); 1460 1461 object = tmp; 1462 } 1463 WARN_ON(!list_empty(&gray_list)); 1464 } 1465 1466 /* 1467 * Scan data sections and all the referenced memory blocks allocated via the 1468 * kernel's standard allocators. This function must be called with the 1469 * scan_mutex held. 1470 */ 1471 static void kmemleak_scan(void) 1472 { 1473 unsigned long flags; 1474 struct kmemleak_object *object; 1475 int i; 1476 int new_leaks = 0; 1477 1478 jiffies_last_scan = jiffies; 1479 1480 /* prepare the kmemleak_object's */ 1481 rcu_read_lock(); 1482 list_for_each_entry_rcu(object, &object_list, object_list) { 1483 spin_lock_irqsave(&object->lock, flags); 1484 #ifdef DEBUG 1485 /* 1486 * With a few exceptions there should be a maximum of 1487 * 1 reference to any object at this point. 1488 */ 1489 if (atomic_read(&object->use_count) > 1) { 1490 pr_debug("object->use_count = %d\n", 1491 atomic_read(&object->use_count)); 1492 dump_object_info(object); 1493 } 1494 #endif 1495 /* reset the reference count (whiten the object) */ 1496 object->count = 0; 1497 if (color_gray(object) && get_object(object)) 1498 list_add_tail(&object->gray_list, &gray_list); 1499 1500 spin_unlock_irqrestore(&object->lock, flags); 1501 } 1502 rcu_read_unlock(); 1503 1504 /* data/bss scanning */ 1505 scan_large_block(_sdata, _edata); 1506 scan_large_block(__bss_start, __bss_stop); 1507 scan_large_block(__start_ro_after_init, __end_ro_after_init); 1508 1509 #ifdef CONFIG_SMP 1510 /* per-cpu sections scanning */ 1511 for_each_possible_cpu(i) 1512 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1513 __per_cpu_end + per_cpu_offset(i)); 1514 #endif 1515 1516 /* 1517 * Struct page scanning for each node. 1518 */ 1519 get_online_mems(); 1520 for_each_online_node(i) { 1521 unsigned long start_pfn = node_start_pfn(i); 1522 unsigned long end_pfn = node_end_pfn(i); 1523 unsigned long pfn; 1524 1525 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1526 struct page *page; 1527 1528 if (!pfn_valid(pfn)) 1529 continue; 1530 page = pfn_to_page(pfn); 1531 /* only scan if page is in use */ 1532 if (page_count(page) == 0) 1533 continue; 1534 scan_block(page, page + 1, NULL); 1535 } 1536 } 1537 put_online_mems(); 1538 1539 /* 1540 * Scanning the task stacks (may introduce false negatives). 1541 */ 1542 if (kmemleak_stack_scan) { 1543 struct task_struct *p, *g; 1544 1545 read_lock(&tasklist_lock); 1546 do_each_thread(g, p) { 1547 void *stack = try_get_task_stack(p); 1548 if (stack) { 1549 scan_block(stack, stack + THREAD_SIZE, NULL); 1550 put_task_stack(p); 1551 } 1552 } while_each_thread(g, p); 1553 read_unlock(&tasklist_lock); 1554 } 1555 1556 /* 1557 * Scan the objects already referenced from the sections scanned 1558 * above. 1559 */ 1560 scan_gray_list(); 1561 1562 /* 1563 * Check for new or unreferenced objects modified since the previous 1564 * scan and color them gray until the next scan. 1565 */ 1566 rcu_read_lock(); 1567 list_for_each_entry_rcu(object, &object_list, object_list) { 1568 spin_lock_irqsave(&object->lock, flags); 1569 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1570 && update_checksum(object) && get_object(object)) { 1571 /* color it gray temporarily */ 1572 object->count = object->min_count; 1573 list_add_tail(&object->gray_list, &gray_list); 1574 } 1575 spin_unlock_irqrestore(&object->lock, flags); 1576 } 1577 rcu_read_unlock(); 1578 1579 /* 1580 * Re-scan the gray list for modified unreferenced objects. 1581 */ 1582 scan_gray_list(); 1583 1584 /* 1585 * If scanning was stopped do not report any new unreferenced objects. 1586 */ 1587 if (scan_should_stop()) 1588 return; 1589 1590 /* 1591 * Scanning result reporting. 1592 */ 1593 rcu_read_lock(); 1594 list_for_each_entry_rcu(object, &object_list, object_list) { 1595 spin_lock_irqsave(&object->lock, flags); 1596 if (unreferenced_object(object) && 1597 !(object->flags & OBJECT_REPORTED)) { 1598 object->flags |= OBJECT_REPORTED; 1599 new_leaks++; 1600 } 1601 spin_unlock_irqrestore(&object->lock, flags); 1602 } 1603 rcu_read_unlock(); 1604 1605 if (new_leaks) { 1606 kmemleak_found_leaks = true; 1607 1608 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1609 new_leaks); 1610 } 1611 1612 } 1613 1614 /* 1615 * Thread function performing automatic memory scanning. Unreferenced objects 1616 * at the end of a memory scan are reported but only the first time. 1617 */ 1618 static int kmemleak_scan_thread(void *arg) 1619 { 1620 static int first_run = 1; 1621 1622 pr_info("Automatic memory scanning thread started\n"); 1623 set_user_nice(current, 10); 1624 1625 /* 1626 * Wait before the first scan to allow the system to fully initialize. 1627 */ 1628 if (first_run) { 1629 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); 1630 first_run = 0; 1631 while (timeout && !kthread_should_stop()) 1632 timeout = schedule_timeout_interruptible(timeout); 1633 } 1634 1635 while (!kthread_should_stop()) { 1636 signed long timeout = jiffies_scan_wait; 1637 1638 mutex_lock(&scan_mutex); 1639 kmemleak_scan(); 1640 mutex_unlock(&scan_mutex); 1641 1642 /* wait before the next scan */ 1643 while (timeout && !kthread_should_stop()) 1644 timeout = schedule_timeout_interruptible(timeout); 1645 } 1646 1647 pr_info("Automatic memory scanning thread ended\n"); 1648 1649 return 0; 1650 } 1651 1652 /* 1653 * Start the automatic memory scanning thread. This function must be called 1654 * with the scan_mutex held. 1655 */ 1656 static void start_scan_thread(void) 1657 { 1658 if (scan_thread) 1659 return; 1660 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1661 if (IS_ERR(scan_thread)) { 1662 pr_warn("Failed to create the scan thread\n"); 1663 scan_thread = NULL; 1664 } 1665 } 1666 1667 /* 1668 * Stop the automatic memory scanning thread. This function must be called 1669 * with the scan_mutex held. 1670 */ 1671 static void stop_scan_thread(void) 1672 { 1673 if (scan_thread) { 1674 kthread_stop(scan_thread); 1675 scan_thread = NULL; 1676 } 1677 } 1678 1679 /* 1680 * Iterate over the object_list and return the first valid object at or after 1681 * the required position with its use_count incremented. The function triggers 1682 * a memory scanning when the pos argument points to the first position. 1683 */ 1684 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1685 { 1686 struct kmemleak_object *object; 1687 loff_t n = *pos; 1688 int err; 1689 1690 err = mutex_lock_interruptible(&scan_mutex); 1691 if (err < 0) 1692 return ERR_PTR(err); 1693 1694 rcu_read_lock(); 1695 list_for_each_entry_rcu(object, &object_list, object_list) { 1696 if (n-- > 0) 1697 continue; 1698 if (get_object(object)) 1699 goto out; 1700 } 1701 object = NULL; 1702 out: 1703 return object; 1704 } 1705 1706 /* 1707 * Return the next object in the object_list. The function decrements the 1708 * use_count of the previous object and increases that of the next one. 1709 */ 1710 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1711 { 1712 struct kmemleak_object *prev_obj = v; 1713 struct kmemleak_object *next_obj = NULL; 1714 struct kmemleak_object *obj = prev_obj; 1715 1716 ++(*pos); 1717 1718 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1719 if (get_object(obj)) { 1720 next_obj = obj; 1721 break; 1722 } 1723 } 1724 1725 put_object(prev_obj); 1726 return next_obj; 1727 } 1728 1729 /* 1730 * Decrement the use_count of the last object required, if any. 1731 */ 1732 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1733 { 1734 if (!IS_ERR(v)) { 1735 /* 1736 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1737 * waiting was interrupted, so only release it if !IS_ERR. 1738 */ 1739 rcu_read_unlock(); 1740 mutex_unlock(&scan_mutex); 1741 if (v) 1742 put_object(v); 1743 } 1744 } 1745 1746 /* 1747 * Print the information for an unreferenced object to the seq file. 1748 */ 1749 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1750 { 1751 struct kmemleak_object *object = v; 1752 unsigned long flags; 1753 1754 spin_lock_irqsave(&object->lock, flags); 1755 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1756 print_unreferenced(seq, object); 1757 spin_unlock_irqrestore(&object->lock, flags); 1758 return 0; 1759 } 1760 1761 static const struct seq_operations kmemleak_seq_ops = { 1762 .start = kmemleak_seq_start, 1763 .next = kmemleak_seq_next, 1764 .stop = kmemleak_seq_stop, 1765 .show = kmemleak_seq_show, 1766 }; 1767 1768 static int kmemleak_open(struct inode *inode, struct file *file) 1769 { 1770 return seq_open(file, &kmemleak_seq_ops); 1771 } 1772 1773 static int dump_str_object_info(const char *str) 1774 { 1775 unsigned long flags; 1776 struct kmemleak_object *object; 1777 unsigned long addr; 1778 1779 if (kstrtoul(str, 0, &addr)) 1780 return -EINVAL; 1781 object = find_and_get_object(addr, 0); 1782 if (!object) { 1783 pr_info("Unknown object at 0x%08lx\n", addr); 1784 return -EINVAL; 1785 } 1786 1787 spin_lock_irqsave(&object->lock, flags); 1788 dump_object_info(object); 1789 spin_unlock_irqrestore(&object->lock, flags); 1790 1791 put_object(object); 1792 return 0; 1793 } 1794 1795 /* 1796 * We use grey instead of black to ensure we can do future scans on the same 1797 * objects. If we did not do future scans these black objects could 1798 * potentially contain references to newly allocated objects in the future and 1799 * we'd end up with false positives. 1800 */ 1801 static void kmemleak_clear(void) 1802 { 1803 struct kmemleak_object *object; 1804 unsigned long flags; 1805 1806 rcu_read_lock(); 1807 list_for_each_entry_rcu(object, &object_list, object_list) { 1808 spin_lock_irqsave(&object->lock, flags); 1809 if ((object->flags & OBJECT_REPORTED) && 1810 unreferenced_object(object)) 1811 __paint_it(object, KMEMLEAK_GREY); 1812 spin_unlock_irqrestore(&object->lock, flags); 1813 } 1814 rcu_read_unlock(); 1815 1816 kmemleak_found_leaks = false; 1817 } 1818 1819 static void __kmemleak_do_cleanup(void); 1820 1821 /* 1822 * File write operation to configure kmemleak at run-time. The following 1823 * commands can be written to the /sys/kernel/debug/kmemleak file: 1824 * off - disable kmemleak (irreversible) 1825 * stack=on - enable the task stacks scanning 1826 * stack=off - disable the tasks stacks scanning 1827 * scan=on - start the automatic memory scanning thread 1828 * scan=off - stop the automatic memory scanning thread 1829 * scan=... - set the automatic memory scanning period in seconds (0 to 1830 * disable it) 1831 * scan - trigger a memory scan 1832 * clear - mark all current reported unreferenced kmemleak objects as 1833 * grey to ignore printing them, or free all kmemleak objects 1834 * if kmemleak has been disabled. 1835 * dump=... - dump information about the object found at the given address 1836 */ 1837 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1838 size_t size, loff_t *ppos) 1839 { 1840 char buf[64]; 1841 int buf_size; 1842 int ret; 1843 1844 buf_size = min(size, (sizeof(buf) - 1)); 1845 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1846 return -EFAULT; 1847 buf[buf_size] = 0; 1848 1849 ret = mutex_lock_interruptible(&scan_mutex); 1850 if (ret < 0) 1851 return ret; 1852 1853 if (strncmp(buf, "clear", 5) == 0) { 1854 if (kmemleak_enabled) 1855 kmemleak_clear(); 1856 else 1857 __kmemleak_do_cleanup(); 1858 goto out; 1859 } 1860 1861 if (!kmemleak_enabled) { 1862 ret = -EBUSY; 1863 goto out; 1864 } 1865 1866 if (strncmp(buf, "off", 3) == 0) 1867 kmemleak_disable(); 1868 else if (strncmp(buf, "stack=on", 8) == 0) 1869 kmemleak_stack_scan = 1; 1870 else if (strncmp(buf, "stack=off", 9) == 0) 1871 kmemleak_stack_scan = 0; 1872 else if (strncmp(buf, "scan=on", 7) == 0) 1873 start_scan_thread(); 1874 else if (strncmp(buf, "scan=off", 8) == 0) 1875 stop_scan_thread(); 1876 else if (strncmp(buf, "scan=", 5) == 0) { 1877 unsigned long secs; 1878 1879 ret = kstrtoul(buf + 5, 0, &secs); 1880 if (ret < 0) 1881 goto out; 1882 stop_scan_thread(); 1883 if (secs) { 1884 jiffies_scan_wait = msecs_to_jiffies(secs * 1000); 1885 start_scan_thread(); 1886 } 1887 } else if (strncmp(buf, "scan", 4) == 0) 1888 kmemleak_scan(); 1889 else if (strncmp(buf, "dump=", 5) == 0) 1890 ret = dump_str_object_info(buf + 5); 1891 else 1892 ret = -EINVAL; 1893 1894 out: 1895 mutex_unlock(&scan_mutex); 1896 if (ret < 0) 1897 return ret; 1898 1899 /* ignore the rest of the buffer, only one command at a time */ 1900 *ppos += size; 1901 return size; 1902 } 1903 1904 static const struct file_operations kmemleak_fops = { 1905 .owner = THIS_MODULE, 1906 .open = kmemleak_open, 1907 .read = seq_read, 1908 .write = kmemleak_write, 1909 .llseek = seq_lseek, 1910 .release = seq_release, 1911 }; 1912 1913 static void __kmemleak_do_cleanup(void) 1914 { 1915 struct kmemleak_object *object; 1916 1917 rcu_read_lock(); 1918 list_for_each_entry_rcu(object, &object_list, object_list) 1919 delete_object_full(object->pointer); 1920 rcu_read_unlock(); 1921 } 1922 1923 /* 1924 * Stop the memory scanning thread and free the kmemleak internal objects if 1925 * no previous scan thread (otherwise, kmemleak may still have some useful 1926 * information on memory leaks). 1927 */ 1928 static void kmemleak_do_cleanup(struct work_struct *work) 1929 { 1930 stop_scan_thread(); 1931 1932 /* 1933 * Once the scan thread has stopped, it is safe to no longer track 1934 * object freeing. Ordering of the scan thread stopping and the memory 1935 * accesses below is guaranteed by the kthread_stop() function. 1936 */ 1937 kmemleak_free_enabled = 0; 1938 1939 if (!kmemleak_found_leaks) 1940 __kmemleak_do_cleanup(); 1941 else 1942 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 1943 } 1944 1945 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 1946 1947 /* 1948 * Disable kmemleak. No memory allocation/freeing will be traced once this 1949 * function is called. Disabling kmemleak is an irreversible operation. 1950 */ 1951 static void kmemleak_disable(void) 1952 { 1953 /* atomically check whether it was already invoked */ 1954 if (cmpxchg(&kmemleak_error, 0, 1)) 1955 return; 1956 1957 /* stop any memory operation tracing */ 1958 kmemleak_enabled = 0; 1959 1960 /* check whether it is too early for a kernel thread */ 1961 if (kmemleak_initialized) 1962 schedule_work(&cleanup_work); 1963 else 1964 kmemleak_free_enabled = 0; 1965 1966 pr_info("Kernel memory leak detector disabled\n"); 1967 } 1968 1969 /* 1970 * Allow boot-time kmemleak disabling (enabled by default). 1971 */ 1972 static int kmemleak_boot_config(char *str) 1973 { 1974 if (!str) 1975 return -EINVAL; 1976 if (strcmp(str, "off") == 0) 1977 kmemleak_disable(); 1978 else if (strcmp(str, "on") == 0) 1979 kmemleak_skip_disable = 1; 1980 else 1981 return -EINVAL; 1982 return 0; 1983 } 1984 early_param("kmemleak", kmemleak_boot_config); 1985 1986 static void __init print_log_trace(struct early_log *log) 1987 { 1988 struct stack_trace trace; 1989 1990 trace.nr_entries = log->trace_len; 1991 trace.entries = log->trace; 1992 1993 pr_notice("Early log backtrace:\n"); 1994 print_stack_trace(&trace, 2); 1995 } 1996 1997 /* 1998 * Kmemleak initialization. 1999 */ 2000 void __init kmemleak_init(void) 2001 { 2002 int i; 2003 unsigned long flags; 2004 2005 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 2006 if (!kmemleak_skip_disable) { 2007 kmemleak_early_log = 0; 2008 kmemleak_disable(); 2009 return; 2010 } 2011 #endif 2012 2013 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 2014 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 2015 2016 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 2017 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 2018 2019 if (crt_early_log > ARRAY_SIZE(early_log)) 2020 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", 2021 crt_early_log); 2022 2023 /* the kernel is still in UP mode, so disabling the IRQs is enough */ 2024 local_irq_save(flags); 2025 kmemleak_early_log = 0; 2026 if (kmemleak_error) { 2027 local_irq_restore(flags); 2028 return; 2029 } else { 2030 kmemleak_enabled = 1; 2031 kmemleak_free_enabled = 1; 2032 } 2033 local_irq_restore(flags); 2034 2035 /* 2036 * This is the point where tracking allocations is safe. Automatic 2037 * scanning is started during the late initcall. Add the early logged 2038 * callbacks to the kmemleak infrastructure. 2039 */ 2040 for (i = 0; i < crt_early_log; i++) { 2041 struct early_log *log = &early_log[i]; 2042 2043 switch (log->op_type) { 2044 case KMEMLEAK_ALLOC: 2045 early_alloc(log); 2046 break; 2047 case KMEMLEAK_ALLOC_PERCPU: 2048 early_alloc_percpu(log); 2049 break; 2050 case KMEMLEAK_FREE: 2051 kmemleak_free(log->ptr); 2052 break; 2053 case KMEMLEAK_FREE_PART: 2054 kmemleak_free_part(log->ptr, log->size); 2055 break; 2056 case KMEMLEAK_FREE_PERCPU: 2057 kmemleak_free_percpu(log->ptr); 2058 break; 2059 case KMEMLEAK_NOT_LEAK: 2060 kmemleak_not_leak(log->ptr); 2061 break; 2062 case KMEMLEAK_IGNORE: 2063 kmemleak_ignore(log->ptr); 2064 break; 2065 case KMEMLEAK_SCAN_AREA: 2066 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL); 2067 break; 2068 case KMEMLEAK_NO_SCAN: 2069 kmemleak_no_scan(log->ptr); 2070 break; 2071 case KMEMLEAK_SET_EXCESS_REF: 2072 object_set_excess_ref((unsigned long)log->ptr, 2073 log->excess_ref); 2074 break; 2075 default: 2076 kmemleak_warn("Unknown early log operation: %d\n", 2077 log->op_type); 2078 } 2079 2080 if (kmemleak_warning) { 2081 print_log_trace(log); 2082 kmemleak_warning = 0; 2083 } 2084 } 2085 } 2086 2087 /* 2088 * Late initialization function. 2089 */ 2090 static int __init kmemleak_late_init(void) 2091 { 2092 struct dentry *dentry; 2093 2094 kmemleak_initialized = 1; 2095 2096 if (kmemleak_error) { 2097 /* 2098 * Some error occurred and kmemleak was disabled. There is a 2099 * small chance that kmemleak_disable() was called immediately 2100 * after setting kmemleak_initialized and we may end up with 2101 * two clean-up threads but serialized by scan_mutex. 2102 */ 2103 schedule_work(&cleanup_work); 2104 return -ENOMEM; 2105 } 2106 2107 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL, 2108 &kmemleak_fops); 2109 if (!dentry) 2110 pr_warn("Failed to create the debugfs kmemleak file\n"); 2111 mutex_lock(&scan_mutex); 2112 start_scan_thread(); 2113 mutex_unlock(&scan_mutex); 2114 2115 pr_info("Kernel memory leak detector initialized\n"); 2116 2117 return 0; 2118 } 2119 late_initcall(kmemleak_late_init); 2120