1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/kmemleak.c 4 * 5 * Copyright (C) 2008 ARM Limited 6 * Written by Catalin Marinas <catalin.marinas@arm.com> 7 * 8 * For more information on the algorithm and kmemleak usage, please see 9 * Documentation/dev-tools/kmemleak.rst. 10 * 11 * Notes on locking 12 * ---------------- 13 * 14 * The following locks and mutexes are used by kmemleak: 15 * 16 * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as 17 * del_state modifications and accesses to the object_tree_root (or 18 * object_phys_tree_root). The object_list is the main list holding the 19 * metadata (struct kmemleak_object) for the allocated memory blocks. 20 * The object_tree_root and object_phys_tree_root are red 21 * black trees used to look-up metadata based on a pointer to the 22 * corresponding memory block. The object_phys_tree_root is for objects 23 * allocated with physical address. The kmemleak_object structures are 24 * added to the object_list and object_tree_root (or object_phys_tree_root) 25 * in the create_object() function called from the kmemleak_alloc() (or 26 * kmemleak_alloc_phys()) callback and removed in delete_object() called from 27 * the kmemleak_free() callback 28 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object. 29 * Accesses to the metadata (e.g. count) are protected by this lock. Note 30 * that some members of this structure may be protected by other means 31 * (atomic or kmemleak_lock). This lock is also held when scanning the 32 * corresponding memory block to avoid the kernel freeing it via the 33 * kmemleak_free() callback. This is less heavyweight than holding a global 34 * lock like kmemleak_lock during scanning. 35 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 36 * unreferenced objects at a time. The gray_list contains the objects which 37 * are already referenced or marked as false positives and need to be 38 * scanned. This list is only modified during a scanning episode when the 39 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 40 * Note that the kmemleak_object.use_count is incremented when an object is 41 * added to the gray_list and therefore cannot be freed. This mutex also 42 * prevents multiple users of the "kmemleak" debugfs file together with 43 * modifications to the memory scanning parameters including the scan_thread 44 * pointer 45 * 46 * Locks and mutexes are acquired/nested in the following order: 47 * 48 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 49 * 50 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 51 * regions. 52 * 53 * The kmemleak_object structures have a use_count incremented or decremented 54 * using the get_object()/put_object() functions. When the use_count becomes 55 * 0, this count can no longer be incremented and put_object() schedules the 56 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 57 * function must be protected by rcu_read_lock() to avoid accessing a freed 58 * structure. 59 */ 60 61 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 62 63 #include <linux/init.h> 64 #include <linux/kernel.h> 65 #include <linux/list.h> 66 #include <linux/sched/signal.h> 67 #include <linux/sched/task.h> 68 #include <linux/sched/task_stack.h> 69 #include <linux/jiffies.h> 70 #include <linux/delay.h> 71 #include <linux/export.h> 72 #include <linux/kthread.h> 73 #include <linux/rbtree.h> 74 #include <linux/fs.h> 75 #include <linux/debugfs.h> 76 #include <linux/seq_file.h> 77 #include <linux/cpumask.h> 78 #include <linux/spinlock.h> 79 #include <linux/module.h> 80 #include <linux/mutex.h> 81 #include <linux/rcupdate.h> 82 #include <linux/stacktrace.h> 83 #include <linux/stackdepot.h> 84 #include <linux/cache.h> 85 #include <linux/percpu.h> 86 #include <linux/memblock.h> 87 #include <linux/pfn.h> 88 #include <linux/mmzone.h> 89 #include <linux/slab.h> 90 #include <linux/thread_info.h> 91 #include <linux/err.h> 92 #include <linux/uaccess.h> 93 #include <linux/string.h> 94 #include <linux/nodemask.h> 95 #include <linux/mm.h> 96 #include <linux/workqueue.h> 97 #include <linux/crc32.h> 98 99 #include <asm/sections.h> 100 #include <asm/processor.h> 101 #include <linux/atomic.h> 102 103 #include <linux/kasan.h> 104 #include <linux/kfence.h> 105 #include <linux/kmemleak.h> 106 #include <linux/memory_hotplug.h> 107 108 /* 109 * Kmemleak configuration and common defines. 110 */ 111 #define MAX_TRACE 16 /* stack trace length */ 112 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 113 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 114 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 115 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 116 117 #define BYTES_PER_POINTER sizeof(void *) 118 119 /* GFP bitmask for kmemleak internal allocations */ 120 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \ 121 __GFP_NOLOCKDEP)) | \ 122 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 123 __GFP_NOWARN) 124 125 /* scanning area inside a memory block */ 126 struct kmemleak_scan_area { 127 struct hlist_node node; 128 unsigned long start; 129 size_t size; 130 }; 131 132 #define KMEMLEAK_GREY 0 133 #define KMEMLEAK_BLACK -1 134 135 /* 136 * Structure holding the metadata for each allocated memory block. 137 * Modifications to such objects should be made while holding the 138 * object->lock. Insertions or deletions from object_list, gray_list or 139 * rb_node are already protected by the corresponding locks or mutex (see 140 * the notes on locking above). These objects are reference-counted 141 * (use_count) and freed using the RCU mechanism. 142 */ 143 struct kmemleak_object { 144 raw_spinlock_t lock; 145 unsigned int flags; /* object status flags */ 146 struct list_head object_list; 147 struct list_head gray_list; 148 struct rb_node rb_node; 149 struct rcu_head rcu; /* object_list lockless traversal */ 150 /* object usage count; object freed when use_count == 0 */ 151 atomic_t use_count; 152 unsigned int del_state; /* deletion state */ 153 unsigned long pointer; 154 size_t size; 155 /* pass surplus references to this pointer */ 156 unsigned long excess_ref; 157 /* minimum number of a pointers found before it is considered leak */ 158 int min_count; 159 /* the total number of pointers found pointing to this object */ 160 int count; 161 /* checksum for detecting modified objects */ 162 u32 checksum; 163 /* memory ranges to be scanned inside an object (empty for all) */ 164 struct hlist_head area_list; 165 depot_stack_handle_t trace_handle; 166 unsigned long jiffies; /* creation timestamp */ 167 pid_t pid; /* pid of the current task */ 168 char comm[TASK_COMM_LEN]; /* executable name */ 169 }; 170 171 /* flag representing the memory block allocation status */ 172 #define OBJECT_ALLOCATED (1 << 0) 173 /* flag set after the first reporting of an unreference object */ 174 #define OBJECT_REPORTED (1 << 1) 175 /* flag set to not scan the object */ 176 #define OBJECT_NO_SCAN (1 << 2) 177 /* flag set to fully scan the object when scan_area allocation failed */ 178 #define OBJECT_FULL_SCAN (1 << 3) 179 /* flag set for object allocated with physical address */ 180 #define OBJECT_PHYS (1 << 4) 181 182 /* set when __remove_object() called */ 183 #define DELSTATE_REMOVED (1 << 0) 184 /* set to temporarily prevent deletion from object_list */ 185 #define DELSTATE_NO_DELETE (1 << 1) 186 187 #define HEX_PREFIX " " 188 /* number of bytes to print per line; must be 16 or 32 */ 189 #define HEX_ROW_SIZE 16 190 /* number of bytes to print at a time (1, 2, 4, 8) */ 191 #define HEX_GROUP_SIZE 1 192 /* include ASCII after the hex output */ 193 #define HEX_ASCII 1 194 /* max number of lines to be printed */ 195 #define HEX_MAX_LINES 2 196 197 /* the list of all allocated objects */ 198 static LIST_HEAD(object_list); 199 /* the list of gray-colored objects (see color_gray comment below) */ 200 static LIST_HEAD(gray_list); 201 /* memory pool allocation */ 202 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE]; 203 static int mem_pool_free_count = ARRAY_SIZE(mem_pool); 204 static LIST_HEAD(mem_pool_free_list); 205 /* search tree for object boundaries */ 206 static struct rb_root object_tree_root = RB_ROOT; 207 /* search tree for object (with OBJECT_PHYS flag) boundaries */ 208 static struct rb_root object_phys_tree_root = RB_ROOT; 209 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */ 210 static DEFINE_RAW_SPINLOCK(kmemleak_lock); 211 212 /* allocation caches for kmemleak internal data */ 213 static struct kmem_cache *object_cache; 214 static struct kmem_cache *scan_area_cache; 215 216 /* set if tracing memory operations is enabled */ 217 static int kmemleak_enabled = 1; 218 /* same as above but only for the kmemleak_free() callback */ 219 static int kmemleak_free_enabled = 1; 220 /* set in the late_initcall if there were no errors */ 221 static int kmemleak_late_initialized; 222 /* set if a kmemleak warning was issued */ 223 static int kmemleak_warning; 224 /* set if a fatal kmemleak error has occurred */ 225 static int kmemleak_error; 226 227 /* minimum and maximum address that may be valid pointers */ 228 static unsigned long min_addr = ULONG_MAX; 229 static unsigned long max_addr; 230 231 static struct task_struct *scan_thread; 232 /* used to avoid reporting of recently allocated objects */ 233 static unsigned long jiffies_min_age; 234 static unsigned long jiffies_last_scan; 235 /* delay between automatic memory scannings */ 236 static unsigned long jiffies_scan_wait; 237 /* enables or disables the task stacks scanning */ 238 static int kmemleak_stack_scan = 1; 239 /* protects the memory scanning, parameters and debug/kmemleak file access */ 240 static DEFINE_MUTEX(scan_mutex); 241 /* setting kmemleak=on, will set this var, skipping the disable */ 242 static int kmemleak_skip_disable; 243 /* If there are leaks that can be reported */ 244 static bool kmemleak_found_leaks; 245 246 static bool kmemleak_verbose; 247 module_param_named(verbose, kmemleak_verbose, bool, 0600); 248 249 static void kmemleak_disable(void); 250 251 /* 252 * Print a warning and dump the stack trace. 253 */ 254 #define kmemleak_warn(x...) do { \ 255 pr_warn(x); \ 256 dump_stack(); \ 257 kmemleak_warning = 1; \ 258 } while (0) 259 260 /* 261 * Macro invoked when a serious kmemleak condition occurred and cannot be 262 * recovered from. Kmemleak will be disabled and further allocation/freeing 263 * tracing no longer available. 264 */ 265 #define kmemleak_stop(x...) do { \ 266 kmemleak_warn(x); \ 267 kmemleak_disable(); \ 268 } while (0) 269 270 #define warn_or_seq_printf(seq, fmt, ...) do { \ 271 if (seq) \ 272 seq_printf(seq, fmt, ##__VA_ARGS__); \ 273 else \ 274 pr_warn(fmt, ##__VA_ARGS__); \ 275 } while (0) 276 277 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type, 278 int rowsize, int groupsize, const void *buf, 279 size_t len, bool ascii) 280 { 281 if (seq) 282 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize, 283 buf, len, ascii); 284 else 285 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type, 286 rowsize, groupsize, buf, len, ascii); 287 } 288 289 /* 290 * Printing of the objects hex dump to the seq file. The number of lines to be 291 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 292 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 293 * with the object->lock held. 294 */ 295 static void hex_dump_object(struct seq_file *seq, 296 struct kmemleak_object *object) 297 { 298 const u8 *ptr = (const u8 *)object->pointer; 299 size_t len; 300 301 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS)) 302 return; 303 304 /* limit the number of lines to HEX_MAX_LINES */ 305 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 306 307 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len); 308 kasan_disable_current(); 309 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE, 310 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII); 311 kasan_enable_current(); 312 } 313 314 /* 315 * Object colors, encoded with count and min_count: 316 * - white - orphan object, not enough references to it (count < min_count) 317 * - gray - not orphan, not marked as false positive (min_count == 0) or 318 * sufficient references to it (count >= min_count) 319 * - black - ignore, it doesn't contain references (e.g. text section) 320 * (min_count == -1). No function defined for this color. 321 * Newly created objects don't have any color assigned (object->count == -1) 322 * before the next memory scan when they become white. 323 */ 324 static bool color_white(const struct kmemleak_object *object) 325 { 326 return object->count != KMEMLEAK_BLACK && 327 object->count < object->min_count; 328 } 329 330 static bool color_gray(const struct kmemleak_object *object) 331 { 332 return object->min_count != KMEMLEAK_BLACK && 333 object->count >= object->min_count; 334 } 335 336 /* 337 * Objects are considered unreferenced only if their color is white, they have 338 * not be deleted and have a minimum age to avoid false positives caused by 339 * pointers temporarily stored in CPU registers. 340 */ 341 static bool unreferenced_object(struct kmemleak_object *object) 342 { 343 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 344 time_before_eq(object->jiffies + jiffies_min_age, 345 jiffies_last_scan); 346 } 347 348 /* 349 * Printing of the unreferenced objects information to the seq file. The 350 * print_unreferenced function must be called with the object->lock held. 351 */ 352 static void print_unreferenced(struct seq_file *seq, 353 struct kmemleak_object *object) 354 { 355 int i; 356 unsigned long *entries; 357 unsigned int nr_entries; 358 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 359 360 nr_entries = stack_depot_fetch(object->trace_handle, &entries); 361 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 362 object->pointer, object->size); 363 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 364 object->comm, object->pid, object->jiffies, 365 msecs_age / 1000, msecs_age % 1000); 366 hex_dump_object(seq, object); 367 warn_or_seq_printf(seq, " backtrace:\n"); 368 369 for (i = 0; i < nr_entries; i++) { 370 void *ptr = (void *)entries[i]; 371 warn_or_seq_printf(seq, " [<%pK>] %pS\n", ptr, ptr); 372 } 373 } 374 375 /* 376 * Print the kmemleak_object information. This function is used mainly for 377 * debugging special cases when kmemleak operations. It must be called with 378 * the object->lock held. 379 */ 380 static void dump_object_info(struct kmemleak_object *object) 381 { 382 pr_notice("Object 0x%08lx (size %zu):\n", 383 object->pointer, object->size); 384 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 385 object->comm, object->pid, object->jiffies); 386 pr_notice(" min_count = %d\n", object->min_count); 387 pr_notice(" count = %d\n", object->count); 388 pr_notice(" flags = 0x%x\n", object->flags); 389 pr_notice(" checksum = %u\n", object->checksum); 390 pr_notice(" backtrace:\n"); 391 if (object->trace_handle) 392 stack_depot_print(object->trace_handle); 393 } 394 395 /* 396 * Look-up a memory block metadata (kmemleak_object) in the object search 397 * tree based on a pointer value. If alias is 0, only values pointing to the 398 * beginning of the memory block are allowed. The kmemleak_lock must be held 399 * when calling this function. 400 */ 401 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias, 402 bool is_phys) 403 { 404 struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node : 405 object_tree_root.rb_node; 406 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 407 408 while (rb) { 409 struct kmemleak_object *object; 410 unsigned long untagged_objp; 411 412 object = rb_entry(rb, struct kmemleak_object, rb_node); 413 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 414 415 if (untagged_ptr < untagged_objp) 416 rb = object->rb_node.rb_left; 417 else if (untagged_objp + object->size <= untagged_ptr) 418 rb = object->rb_node.rb_right; 419 else if (untagged_objp == untagged_ptr || alias) 420 return object; 421 else { 422 kmemleak_warn("Found object by alias at 0x%08lx\n", 423 ptr); 424 dump_object_info(object); 425 break; 426 } 427 } 428 return NULL; 429 } 430 431 /* Look-up a kmemleak object which allocated with virtual address. */ 432 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 433 { 434 return __lookup_object(ptr, alias, false); 435 } 436 437 /* 438 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 439 * that once an object's use_count reached 0, the RCU freeing was already 440 * registered and the object should no longer be used. This function must be 441 * called under the protection of rcu_read_lock(). 442 */ 443 static int get_object(struct kmemleak_object *object) 444 { 445 return atomic_inc_not_zero(&object->use_count); 446 } 447 448 /* 449 * Memory pool allocation and freeing. kmemleak_lock must not be held. 450 */ 451 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp) 452 { 453 unsigned long flags; 454 struct kmemleak_object *object; 455 456 /* try the slab allocator first */ 457 if (object_cache) { 458 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 459 if (object) 460 return object; 461 } 462 463 /* slab allocation failed, try the memory pool */ 464 raw_spin_lock_irqsave(&kmemleak_lock, flags); 465 object = list_first_entry_or_null(&mem_pool_free_list, 466 typeof(*object), object_list); 467 if (object) 468 list_del(&object->object_list); 469 else if (mem_pool_free_count) 470 object = &mem_pool[--mem_pool_free_count]; 471 else 472 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n"); 473 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 474 475 return object; 476 } 477 478 /* 479 * Return the object to either the slab allocator or the memory pool. 480 */ 481 static void mem_pool_free(struct kmemleak_object *object) 482 { 483 unsigned long flags; 484 485 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) { 486 kmem_cache_free(object_cache, object); 487 return; 488 } 489 490 /* add the object to the memory pool free list */ 491 raw_spin_lock_irqsave(&kmemleak_lock, flags); 492 list_add(&object->object_list, &mem_pool_free_list); 493 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 494 } 495 496 /* 497 * RCU callback to free a kmemleak_object. 498 */ 499 static void free_object_rcu(struct rcu_head *rcu) 500 { 501 struct hlist_node *tmp; 502 struct kmemleak_scan_area *area; 503 struct kmemleak_object *object = 504 container_of(rcu, struct kmemleak_object, rcu); 505 506 /* 507 * Once use_count is 0 (guaranteed by put_object), there is no other 508 * code accessing this object, hence no need for locking. 509 */ 510 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 511 hlist_del(&area->node); 512 kmem_cache_free(scan_area_cache, area); 513 } 514 mem_pool_free(object); 515 } 516 517 /* 518 * Decrement the object use_count. Once the count is 0, free the object using 519 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 520 * delete_object() path, the delayed RCU freeing ensures that there is no 521 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 522 * is also possible. 523 */ 524 static void put_object(struct kmemleak_object *object) 525 { 526 if (!atomic_dec_and_test(&object->use_count)) 527 return; 528 529 /* should only get here after delete_object was called */ 530 WARN_ON(object->flags & OBJECT_ALLOCATED); 531 532 /* 533 * It may be too early for the RCU callbacks, however, there is no 534 * concurrent object_list traversal when !object_cache and all objects 535 * came from the memory pool. Free the object directly. 536 */ 537 if (object_cache) 538 call_rcu(&object->rcu, free_object_rcu); 539 else 540 free_object_rcu(&object->rcu); 541 } 542 543 /* 544 * Look up an object in the object search tree and increase its use_count. 545 */ 546 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias, 547 bool is_phys) 548 { 549 unsigned long flags; 550 struct kmemleak_object *object; 551 552 rcu_read_lock(); 553 raw_spin_lock_irqsave(&kmemleak_lock, flags); 554 object = __lookup_object(ptr, alias, is_phys); 555 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 556 557 /* check whether the object is still available */ 558 if (object && !get_object(object)) 559 object = NULL; 560 rcu_read_unlock(); 561 562 return object; 563 } 564 565 /* Look up and get an object which allocated with virtual address. */ 566 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 567 { 568 return __find_and_get_object(ptr, alias, false); 569 } 570 571 /* 572 * Remove an object from the object_tree_root (or object_phys_tree_root) 573 * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak 574 * is still enabled. 575 */ 576 static void __remove_object(struct kmemleak_object *object) 577 { 578 rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ? 579 &object_phys_tree_root : 580 &object_tree_root); 581 if (!(object->del_state & DELSTATE_NO_DELETE)) 582 list_del_rcu(&object->object_list); 583 object->del_state |= DELSTATE_REMOVED; 584 } 585 586 /* 587 * Look up an object in the object search tree and remove it from both 588 * object_tree_root (or object_phys_tree_root) and object_list. The 589 * returned object's use_count should be at least 1, as initially set 590 * by create_object(). 591 */ 592 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias, 593 bool is_phys) 594 { 595 unsigned long flags; 596 struct kmemleak_object *object; 597 598 raw_spin_lock_irqsave(&kmemleak_lock, flags); 599 object = __lookup_object(ptr, alias, is_phys); 600 if (object) 601 __remove_object(object); 602 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 603 604 return object; 605 } 606 607 static noinline depot_stack_handle_t set_track_prepare(void) 608 { 609 depot_stack_handle_t trace_handle; 610 unsigned long entries[MAX_TRACE]; 611 unsigned int nr_entries; 612 613 /* 614 * Use object_cache to determine whether kmemleak_init() has 615 * been invoked. stack_depot_early_init() is called before 616 * kmemleak_init() in mm_core_init(). 617 */ 618 if (!object_cache) 619 return 0; 620 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 621 trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 622 623 return trace_handle; 624 } 625 626 /* 627 * Create the metadata (struct kmemleak_object) corresponding to an allocated 628 * memory block and add it to the object_list and object_tree_root (or 629 * object_phys_tree_root). 630 */ 631 static void __create_object(unsigned long ptr, size_t size, 632 int min_count, gfp_t gfp, bool is_phys) 633 { 634 unsigned long flags; 635 struct kmemleak_object *object, *parent; 636 struct rb_node **link, *rb_parent; 637 unsigned long untagged_ptr; 638 unsigned long untagged_objp; 639 640 object = mem_pool_alloc(gfp); 641 if (!object) { 642 pr_warn("Cannot allocate a kmemleak_object structure\n"); 643 kmemleak_disable(); 644 return; 645 } 646 647 INIT_LIST_HEAD(&object->object_list); 648 INIT_LIST_HEAD(&object->gray_list); 649 INIT_HLIST_HEAD(&object->area_list); 650 raw_spin_lock_init(&object->lock); 651 atomic_set(&object->use_count, 1); 652 object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0); 653 object->pointer = ptr; 654 object->size = kfence_ksize((void *)ptr) ?: size; 655 object->excess_ref = 0; 656 object->min_count = min_count; 657 object->count = 0; /* white color initially */ 658 object->jiffies = jiffies; 659 object->checksum = 0; 660 object->del_state = 0; 661 662 /* task information */ 663 if (in_hardirq()) { 664 object->pid = 0; 665 strncpy(object->comm, "hardirq", sizeof(object->comm)); 666 } else if (in_serving_softirq()) { 667 object->pid = 0; 668 strncpy(object->comm, "softirq", sizeof(object->comm)); 669 } else { 670 object->pid = current->pid; 671 /* 672 * There is a small chance of a race with set_task_comm(), 673 * however using get_task_comm() here may cause locking 674 * dependency issues with current->alloc_lock. In the worst 675 * case, the command line is not correct. 676 */ 677 strncpy(object->comm, current->comm, sizeof(object->comm)); 678 } 679 680 /* kernel backtrace */ 681 object->trace_handle = set_track_prepare(); 682 683 raw_spin_lock_irqsave(&kmemleak_lock, flags); 684 685 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 686 /* 687 * Only update min_addr and max_addr with object 688 * storing virtual address. 689 */ 690 if (!is_phys) { 691 min_addr = min(min_addr, untagged_ptr); 692 max_addr = max(max_addr, untagged_ptr + size); 693 } 694 link = is_phys ? &object_phys_tree_root.rb_node : 695 &object_tree_root.rb_node; 696 rb_parent = NULL; 697 while (*link) { 698 rb_parent = *link; 699 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 700 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer); 701 if (untagged_ptr + size <= untagged_objp) 702 link = &parent->rb_node.rb_left; 703 else if (untagged_objp + parent->size <= untagged_ptr) 704 link = &parent->rb_node.rb_right; 705 else { 706 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 707 ptr); 708 /* 709 * No need for parent->lock here since "parent" cannot 710 * be freed while the kmemleak_lock is held. 711 */ 712 dump_object_info(parent); 713 kmem_cache_free(object_cache, object); 714 goto out; 715 } 716 } 717 rb_link_node(&object->rb_node, rb_parent, link); 718 rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root : 719 &object_tree_root); 720 list_add_tail_rcu(&object->object_list, &object_list); 721 out: 722 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 723 } 724 725 /* Create kmemleak object which allocated with virtual address. */ 726 static void create_object(unsigned long ptr, size_t size, 727 int min_count, gfp_t gfp) 728 { 729 __create_object(ptr, size, min_count, gfp, false); 730 } 731 732 /* Create kmemleak object which allocated with physical address. */ 733 static void create_object_phys(unsigned long ptr, size_t size, 734 int min_count, gfp_t gfp) 735 { 736 __create_object(ptr, size, min_count, gfp, true); 737 } 738 739 /* 740 * Mark the object as not allocated and schedule RCU freeing via put_object(). 741 */ 742 static void __delete_object(struct kmemleak_object *object) 743 { 744 unsigned long flags; 745 746 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 747 WARN_ON(atomic_read(&object->use_count) < 1); 748 749 /* 750 * Locking here also ensures that the corresponding memory block 751 * cannot be freed when it is being scanned. 752 */ 753 raw_spin_lock_irqsave(&object->lock, flags); 754 object->flags &= ~OBJECT_ALLOCATED; 755 raw_spin_unlock_irqrestore(&object->lock, flags); 756 put_object(object); 757 } 758 759 /* 760 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 761 * delete it. 762 */ 763 static void delete_object_full(unsigned long ptr) 764 { 765 struct kmemleak_object *object; 766 767 object = find_and_remove_object(ptr, 0, false); 768 if (!object) { 769 #ifdef DEBUG 770 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 771 ptr); 772 #endif 773 return; 774 } 775 __delete_object(object); 776 } 777 778 /* 779 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 780 * delete it. If the memory block is partially freed, the function may create 781 * additional metadata for the remaining parts of the block. 782 */ 783 static void delete_object_part(unsigned long ptr, size_t size, bool is_phys) 784 { 785 struct kmemleak_object *object; 786 unsigned long start, end; 787 788 object = find_and_remove_object(ptr, 1, is_phys); 789 if (!object) { 790 #ifdef DEBUG 791 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 792 ptr, size); 793 #endif 794 return; 795 } 796 797 /* 798 * Create one or two objects that may result from the memory block 799 * split. Note that partial freeing is only done by free_bootmem() and 800 * this happens before kmemleak_init() is called. 801 */ 802 start = object->pointer; 803 end = object->pointer + object->size; 804 if (ptr > start) 805 __create_object(start, ptr - start, object->min_count, 806 GFP_KERNEL, is_phys); 807 if (ptr + size < end) 808 __create_object(ptr + size, end - ptr - size, object->min_count, 809 GFP_KERNEL, is_phys); 810 811 __delete_object(object); 812 } 813 814 static void __paint_it(struct kmemleak_object *object, int color) 815 { 816 object->min_count = color; 817 if (color == KMEMLEAK_BLACK) 818 object->flags |= OBJECT_NO_SCAN; 819 } 820 821 static void paint_it(struct kmemleak_object *object, int color) 822 { 823 unsigned long flags; 824 825 raw_spin_lock_irqsave(&object->lock, flags); 826 __paint_it(object, color); 827 raw_spin_unlock_irqrestore(&object->lock, flags); 828 } 829 830 static void paint_ptr(unsigned long ptr, int color, bool is_phys) 831 { 832 struct kmemleak_object *object; 833 834 object = __find_and_get_object(ptr, 0, is_phys); 835 if (!object) { 836 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 837 ptr, 838 (color == KMEMLEAK_GREY) ? "Grey" : 839 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 840 return; 841 } 842 paint_it(object, color); 843 put_object(object); 844 } 845 846 /* 847 * Mark an object permanently as gray-colored so that it can no longer be 848 * reported as a leak. This is used in general to mark a false positive. 849 */ 850 static void make_gray_object(unsigned long ptr) 851 { 852 paint_ptr(ptr, KMEMLEAK_GREY, false); 853 } 854 855 /* 856 * Mark the object as black-colored so that it is ignored from scans and 857 * reporting. 858 */ 859 static void make_black_object(unsigned long ptr, bool is_phys) 860 { 861 paint_ptr(ptr, KMEMLEAK_BLACK, is_phys); 862 } 863 864 /* 865 * Add a scanning area to the object. If at least one such area is added, 866 * kmemleak will only scan these ranges rather than the whole memory block. 867 */ 868 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 869 { 870 unsigned long flags; 871 struct kmemleak_object *object; 872 struct kmemleak_scan_area *area = NULL; 873 unsigned long untagged_ptr; 874 unsigned long untagged_objp; 875 876 object = find_and_get_object(ptr, 1); 877 if (!object) { 878 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 879 ptr); 880 return; 881 } 882 883 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 884 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 885 886 if (scan_area_cache) 887 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 888 889 raw_spin_lock_irqsave(&object->lock, flags); 890 if (!area) { 891 pr_warn_once("Cannot allocate a scan area, scanning the full object\n"); 892 /* mark the object for full scan to avoid false positives */ 893 object->flags |= OBJECT_FULL_SCAN; 894 goto out_unlock; 895 } 896 if (size == SIZE_MAX) { 897 size = untagged_objp + object->size - untagged_ptr; 898 } else if (untagged_ptr + size > untagged_objp + object->size) { 899 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 900 dump_object_info(object); 901 kmem_cache_free(scan_area_cache, area); 902 goto out_unlock; 903 } 904 905 INIT_HLIST_NODE(&area->node); 906 area->start = ptr; 907 area->size = size; 908 909 hlist_add_head(&area->node, &object->area_list); 910 out_unlock: 911 raw_spin_unlock_irqrestore(&object->lock, flags); 912 put_object(object); 913 } 914 915 /* 916 * Any surplus references (object already gray) to 'ptr' are passed to 917 * 'excess_ref'. This is used in the vmalloc() case where a pointer to 918 * vm_struct may be used as an alternative reference to the vmalloc'ed object 919 * (see free_thread_stack()). 920 */ 921 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) 922 { 923 unsigned long flags; 924 struct kmemleak_object *object; 925 926 object = find_and_get_object(ptr, 0); 927 if (!object) { 928 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", 929 ptr); 930 return; 931 } 932 933 raw_spin_lock_irqsave(&object->lock, flags); 934 object->excess_ref = excess_ref; 935 raw_spin_unlock_irqrestore(&object->lock, flags); 936 put_object(object); 937 } 938 939 /* 940 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 941 * pointer. Such object will not be scanned by kmemleak but references to it 942 * are searched. 943 */ 944 static void object_no_scan(unsigned long ptr) 945 { 946 unsigned long flags; 947 struct kmemleak_object *object; 948 949 object = find_and_get_object(ptr, 0); 950 if (!object) { 951 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 952 return; 953 } 954 955 raw_spin_lock_irqsave(&object->lock, flags); 956 object->flags |= OBJECT_NO_SCAN; 957 raw_spin_unlock_irqrestore(&object->lock, flags); 958 put_object(object); 959 } 960 961 /** 962 * kmemleak_alloc - register a newly allocated object 963 * @ptr: pointer to beginning of the object 964 * @size: size of the object 965 * @min_count: minimum number of references to this object. If during memory 966 * scanning a number of references less than @min_count is found, 967 * the object is reported as a memory leak. If @min_count is 0, 968 * the object is never reported as a leak. If @min_count is -1, 969 * the object is ignored (not scanned and not reported as a leak) 970 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 971 * 972 * This function is called from the kernel allocators when a new object 973 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). 974 */ 975 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 976 gfp_t gfp) 977 { 978 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 979 980 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 981 create_object((unsigned long)ptr, size, min_count, gfp); 982 } 983 EXPORT_SYMBOL_GPL(kmemleak_alloc); 984 985 /** 986 * kmemleak_alloc_percpu - register a newly allocated __percpu object 987 * @ptr: __percpu pointer to beginning of the object 988 * @size: size of the object 989 * @gfp: flags used for kmemleak internal memory allocations 990 * 991 * This function is called from the kernel percpu allocator when a new object 992 * (memory block) is allocated (alloc_percpu). 993 */ 994 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 995 gfp_t gfp) 996 { 997 unsigned int cpu; 998 999 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); 1000 1001 /* 1002 * Percpu allocations are only scanned and not reported as leaks 1003 * (min_count is set to 0). 1004 */ 1005 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1006 for_each_possible_cpu(cpu) 1007 create_object((unsigned long)per_cpu_ptr(ptr, cpu), 1008 size, 0, gfp); 1009 } 1010 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 1011 1012 /** 1013 * kmemleak_vmalloc - register a newly vmalloc'ed object 1014 * @area: pointer to vm_struct 1015 * @size: size of the object 1016 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations 1017 * 1018 * This function is called from the vmalloc() kernel allocator when a new 1019 * object (memory block) is allocated. 1020 */ 1021 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) 1022 { 1023 pr_debug("%s(0x%p, %zu)\n", __func__, area, size); 1024 1025 /* 1026 * A min_count = 2 is needed because vm_struct contains a reference to 1027 * the virtual address of the vmalloc'ed block. 1028 */ 1029 if (kmemleak_enabled) { 1030 create_object((unsigned long)area->addr, size, 2, gfp); 1031 object_set_excess_ref((unsigned long)area, 1032 (unsigned long)area->addr); 1033 } 1034 } 1035 EXPORT_SYMBOL_GPL(kmemleak_vmalloc); 1036 1037 /** 1038 * kmemleak_free - unregister a previously registered object 1039 * @ptr: pointer to beginning of the object 1040 * 1041 * This function is called from the kernel allocators when an object (memory 1042 * block) is freed (kmem_cache_free, kfree, vfree etc.). 1043 */ 1044 void __ref kmemleak_free(const void *ptr) 1045 { 1046 pr_debug("%s(0x%p)\n", __func__, ptr); 1047 1048 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1049 delete_object_full((unsigned long)ptr); 1050 } 1051 EXPORT_SYMBOL_GPL(kmemleak_free); 1052 1053 /** 1054 * kmemleak_free_part - partially unregister a previously registered object 1055 * @ptr: pointer to the beginning or inside the object. This also 1056 * represents the start of the range to be freed 1057 * @size: size to be unregistered 1058 * 1059 * This function is called when only a part of a memory block is freed 1060 * (usually from the bootmem allocator). 1061 */ 1062 void __ref kmemleak_free_part(const void *ptr, size_t size) 1063 { 1064 pr_debug("%s(0x%p)\n", __func__, ptr); 1065 1066 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1067 delete_object_part((unsigned long)ptr, size, false); 1068 } 1069 EXPORT_SYMBOL_GPL(kmemleak_free_part); 1070 1071 /** 1072 * kmemleak_free_percpu - unregister a previously registered __percpu object 1073 * @ptr: __percpu pointer to beginning of the object 1074 * 1075 * This function is called from the kernel percpu allocator when an object 1076 * (memory block) is freed (free_percpu). 1077 */ 1078 void __ref kmemleak_free_percpu(const void __percpu *ptr) 1079 { 1080 unsigned int cpu; 1081 1082 pr_debug("%s(0x%p)\n", __func__, ptr); 1083 1084 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1085 for_each_possible_cpu(cpu) 1086 delete_object_full((unsigned long)per_cpu_ptr(ptr, 1087 cpu)); 1088 } 1089 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1090 1091 /** 1092 * kmemleak_update_trace - update object allocation stack trace 1093 * @ptr: pointer to beginning of the object 1094 * 1095 * Override the object allocation stack trace for cases where the actual 1096 * allocation place is not always useful. 1097 */ 1098 void __ref kmemleak_update_trace(const void *ptr) 1099 { 1100 struct kmemleak_object *object; 1101 unsigned long flags; 1102 1103 pr_debug("%s(0x%p)\n", __func__, ptr); 1104 1105 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1106 return; 1107 1108 object = find_and_get_object((unsigned long)ptr, 1); 1109 if (!object) { 1110 #ifdef DEBUG 1111 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1112 ptr); 1113 #endif 1114 return; 1115 } 1116 1117 raw_spin_lock_irqsave(&object->lock, flags); 1118 object->trace_handle = set_track_prepare(); 1119 raw_spin_unlock_irqrestore(&object->lock, flags); 1120 1121 put_object(object); 1122 } 1123 EXPORT_SYMBOL(kmemleak_update_trace); 1124 1125 /** 1126 * kmemleak_not_leak - mark an allocated object as false positive 1127 * @ptr: pointer to beginning of the object 1128 * 1129 * Calling this function on an object will cause the memory block to no longer 1130 * be reported as leak and always be scanned. 1131 */ 1132 void __ref kmemleak_not_leak(const void *ptr) 1133 { 1134 pr_debug("%s(0x%p)\n", __func__, ptr); 1135 1136 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1137 make_gray_object((unsigned long)ptr); 1138 } 1139 EXPORT_SYMBOL(kmemleak_not_leak); 1140 1141 /** 1142 * kmemleak_ignore - ignore an allocated object 1143 * @ptr: pointer to beginning of the object 1144 * 1145 * Calling this function on an object will cause the memory block to be 1146 * ignored (not scanned and not reported as a leak). This is usually done when 1147 * it is known that the corresponding block is not a leak and does not contain 1148 * any references to other allocated memory blocks. 1149 */ 1150 void __ref kmemleak_ignore(const void *ptr) 1151 { 1152 pr_debug("%s(0x%p)\n", __func__, ptr); 1153 1154 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1155 make_black_object((unsigned long)ptr, false); 1156 } 1157 EXPORT_SYMBOL(kmemleak_ignore); 1158 1159 /** 1160 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1161 * @ptr: pointer to beginning or inside the object. This also 1162 * represents the start of the scan area 1163 * @size: size of the scan area 1164 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1165 * 1166 * This function is used when it is known that only certain parts of an object 1167 * contain references to other objects. Kmemleak will only scan these areas 1168 * reducing the number false negatives. 1169 */ 1170 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1171 { 1172 pr_debug("%s(0x%p)\n", __func__, ptr); 1173 1174 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1175 add_scan_area((unsigned long)ptr, size, gfp); 1176 } 1177 EXPORT_SYMBOL(kmemleak_scan_area); 1178 1179 /** 1180 * kmemleak_no_scan - do not scan an allocated object 1181 * @ptr: pointer to beginning of the object 1182 * 1183 * This function notifies kmemleak not to scan the given memory block. Useful 1184 * in situations where it is known that the given object does not contain any 1185 * references to other objects. Kmemleak will not scan such objects reducing 1186 * the number of false negatives. 1187 */ 1188 void __ref kmemleak_no_scan(const void *ptr) 1189 { 1190 pr_debug("%s(0x%p)\n", __func__, ptr); 1191 1192 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1193 object_no_scan((unsigned long)ptr); 1194 } 1195 EXPORT_SYMBOL(kmemleak_no_scan); 1196 1197 /** 1198 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1199 * address argument 1200 * @phys: physical address of the object 1201 * @size: size of the object 1202 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1203 */ 1204 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp) 1205 { 1206 pr_debug("%s(0x%pa, %zu)\n", __func__, &phys, size); 1207 1208 if (kmemleak_enabled) 1209 /* 1210 * Create object with OBJECT_PHYS flag and 1211 * assume min_count 0. 1212 */ 1213 create_object_phys((unsigned long)phys, size, 0, gfp); 1214 } 1215 EXPORT_SYMBOL(kmemleak_alloc_phys); 1216 1217 /** 1218 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1219 * physical address argument 1220 * @phys: physical address if the beginning or inside an object. This 1221 * also represents the start of the range to be freed 1222 * @size: size to be unregistered 1223 */ 1224 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1225 { 1226 pr_debug("%s(0x%pa)\n", __func__, &phys); 1227 1228 if (kmemleak_enabled) 1229 delete_object_part((unsigned long)phys, size, true); 1230 } 1231 EXPORT_SYMBOL(kmemleak_free_part_phys); 1232 1233 /** 1234 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1235 * address argument 1236 * @phys: physical address of the object 1237 */ 1238 void __ref kmemleak_ignore_phys(phys_addr_t phys) 1239 { 1240 pr_debug("%s(0x%pa)\n", __func__, &phys); 1241 1242 if (kmemleak_enabled) 1243 make_black_object((unsigned long)phys, true); 1244 } 1245 EXPORT_SYMBOL(kmemleak_ignore_phys); 1246 1247 /* 1248 * Update an object's checksum and return true if it was modified. 1249 */ 1250 static bool update_checksum(struct kmemleak_object *object) 1251 { 1252 u32 old_csum = object->checksum; 1253 1254 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS)) 1255 return false; 1256 1257 kasan_disable_current(); 1258 kcsan_disable_current(); 1259 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size); 1260 kasan_enable_current(); 1261 kcsan_enable_current(); 1262 1263 return object->checksum != old_csum; 1264 } 1265 1266 /* 1267 * Update an object's references. object->lock must be held by the caller. 1268 */ 1269 static void update_refs(struct kmemleak_object *object) 1270 { 1271 if (!color_white(object)) { 1272 /* non-orphan, ignored or new */ 1273 return; 1274 } 1275 1276 /* 1277 * Increase the object's reference count (number of pointers to the 1278 * memory block). If this count reaches the required minimum, the 1279 * object's color will become gray and it will be added to the 1280 * gray_list. 1281 */ 1282 object->count++; 1283 if (color_gray(object)) { 1284 /* put_object() called when removing from gray_list */ 1285 WARN_ON(!get_object(object)); 1286 list_add_tail(&object->gray_list, &gray_list); 1287 } 1288 } 1289 1290 /* 1291 * Memory scanning is a long process and it needs to be interruptible. This 1292 * function checks whether such interrupt condition occurred. 1293 */ 1294 static int scan_should_stop(void) 1295 { 1296 if (!kmemleak_enabled) 1297 return 1; 1298 1299 /* 1300 * This function may be called from either process or kthread context, 1301 * hence the need to check for both stop conditions. 1302 */ 1303 if (current->mm) 1304 return signal_pending(current); 1305 else 1306 return kthread_should_stop(); 1307 1308 return 0; 1309 } 1310 1311 /* 1312 * Scan a memory block (exclusive range) for valid pointers and add those 1313 * found to the gray list. 1314 */ 1315 static void scan_block(void *_start, void *_end, 1316 struct kmemleak_object *scanned) 1317 { 1318 unsigned long *ptr; 1319 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1320 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1321 unsigned long flags; 1322 unsigned long untagged_ptr; 1323 1324 raw_spin_lock_irqsave(&kmemleak_lock, flags); 1325 for (ptr = start; ptr < end; ptr++) { 1326 struct kmemleak_object *object; 1327 unsigned long pointer; 1328 unsigned long excess_ref; 1329 1330 if (scan_should_stop()) 1331 break; 1332 1333 kasan_disable_current(); 1334 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr); 1335 kasan_enable_current(); 1336 1337 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer); 1338 if (untagged_ptr < min_addr || untagged_ptr >= max_addr) 1339 continue; 1340 1341 /* 1342 * No need for get_object() here since we hold kmemleak_lock. 1343 * object->use_count cannot be dropped to 0 while the object 1344 * is still present in object_tree_root and object_list 1345 * (with updates protected by kmemleak_lock). 1346 */ 1347 object = lookup_object(pointer, 1); 1348 if (!object) 1349 continue; 1350 if (object == scanned) 1351 /* self referenced, ignore */ 1352 continue; 1353 1354 /* 1355 * Avoid the lockdep recursive warning on object->lock being 1356 * previously acquired in scan_object(). These locks are 1357 * enclosed by scan_mutex. 1358 */ 1359 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1360 /* only pass surplus references (object already gray) */ 1361 if (color_gray(object)) { 1362 excess_ref = object->excess_ref; 1363 /* no need for update_refs() if object already gray */ 1364 } else { 1365 excess_ref = 0; 1366 update_refs(object); 1367 } 1368 raw_spin_unlock(&object->lock); 1369 1370 if (excess_ref) { 1371 object = lookup_object(excess_ref, 0); 1372 if (!object) 1373 continue; 1374 if (object == scanned) 1375 /* circular reference, ignore */ 1376 continue; 1377 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1378 update_refs(object); 1379 raw_spin_unlock(&object->lock); 1380 } 1381 } 1382 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 1383 } 1384 1385 /* 1386 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1387 */ 1388 #ifdef CONFIG_SMP 1389 static void scan_large_block(void *start, void *end) 1390 { 1391 void *next; 1392 1393 while (start < end) { 1394 next = min(start + MAX_SCAN_SIZE, end); 1395 scan_block(start, next, NULL); 1396 start = next; 1397 cond_resched(); 1398 } 1399 } 1400 #endif 1401 1402 /* 1403 * Scan a memory block corresponding to a kmemleak_object. A condition is 1404 * that object->use_count >= 1. 1405 */ 1406 static void scan_object(struct kmemleak_object *object) 1407 { 1408 struct kmemleak_scan_area *area; 1409 unsigned long flags; 1410 void *obj_ptr; 1411 1412 /* 1413 * Once the object->lock is acquired, the corresponding memory block 1414 * cannot be freed (the same lock is acquired in delete_object). 1415 */ 1416 raw_spin_lock_irqsave(&object->lock, flags); 1417 if (object->flags & OBJECT_NO_SCAN) 1418 goto out; 1419 if (!(object->flags & OBJECT_ALLOCATED)) 1420 /* already freed object */ 1421 goto out; 1422 1423 obj_ptr = object->flags & OBJECT_PHYS ? 1424 __va((phys_addr_t)object->pointer) : 1425 (void *)object->pointer; 1426 1427 if (hlist_empty(&object->area_list) || 1428 object->flags & OBJECT_FULL_SCAN) { 1429 void *start = obj_ptr; 1430 void *end = obj_ptr + object->size; 1431 void *next; 1432 1433 do { 1434 next = min(start + MAX_SCAN_SIZE, end); 1435 scan_block(start, next, object); 1436 1437 start = next; 1438 if (start >= end) 1439 break; 1440 1441 raw_spin_unlock_irqrestore(&object->lock, flags); 1442 cond_resched(); 1443 raw_spin_lock_irqsave(&object->lock, flags); 1444 } while (object->flags & OBJECT_ALLOCATED); 1445 } else 1446 hlist_for_each_entry(area, &object->area_list, node) 1447 scan_block((void *)area->start, 1448 (void *)(area->start + area->size), 1449 object); 1450 out: 1451 raw_spin_unlock_irqrestore(&object->lock, flags); 1452 } 1453 1454 /* 1455 * Scan the objects already referenced (gray objects). More objects will be 1456 * referenced and, if there are no memory leaks, all the objects are scanned. 1457 */ 1458 static void scan_gray_list(void) 1459 { 1460 struct kmemleak_object *object, *tmp; 1461 1462 /* 1463 * The list traversal is safe for both tail additions and removals 1464 * from inside the loop. The kmemleak objects cannot be freed from 1465 * outside the loop because their use_count was incremented. 1466 */ 1467 object = list_entry(gray_list.next, typeof(*object), gray_list); 1468 while (&object->gray_list != &gray_list) { 1469 cond_resched(); 1470 1471 /* may add new objects to the list */ 1472 if (!scan_should_stop()) 1473 scan_object(object); 1474 1475 tmp = list_entry(object->gray_list.next, typeof(*object), 1476 gray_list); 1477 1478 /* remove the object from the list and release it */ 1479 list_del(&object->gray_list); 1480 put_object(object); 1481 1482 object = tmp; 1483 } 1484 WARN_ON(!list_empty(&gray_list)); 1485 } 1486 1487 /* 1488 * Conditionally call resched() in an object iteration loop while making sure 1489 * that the given object won't go away without RCU read lock by performing a 1490 * get_object() if necessaary. 1491 */ 1492 static void kmemleak_cond_resched(struct kmemleak_object *object) 1493 { 1494 if (!get_object(object)) 1495 return; /* Try next object */ 1496 1497 raw_spin_lock_irq(&kmemleak_lock); 1498 if (object->del_state & DELSTATE_REMOVED) 1499 goto unlock_put; /* Object removed */ 1500 object->del_state |= DELSTATE_NO_DELETE; 1501 raw_spin_unlock_irq(&kmemleak_lock); 1502 1503 rcu_read_unlock(); 1504 cond_resched(); 1505 rcu_read_lock(); 1506 1507 raw_spin_lock_irq(&kmemleak_lock); 1508 if (object->del_state & DELSTATE_REMOVED) 1509 list_del_rcu(&object->object_list); 1510 object->del_state &= ~DELSTATE_NO_DELETE; 1511 unlock_put: 1512 raw_spin_unlock_irq(&kmemleak_lock); 1513 put_object(object); 1514 } 1515 1516 /* 1517 * Scan data sections and all the referenced memory blocks allocated via the 1518 * kernel's standard allocators. This function must be called with the 1519 * scan_mutex held. 1520 */ 1521 static void kmemleak_scan(void) 1522 { 1523 struct kmemleak_object *object; 1524 struct zone *zone; 1525 int __maybe_unused i; 1526 int new_leaks = 0; 1527 1528 jiffies_last_scan = jiffies; 1529 1530 /* prepare the kmemleak_object's */ 1531 rcu_read_lock(); 1532 list_for_each_entry_rcu(object, &object_list, object_list) { 1533 raw_spin_lock_irq(&object->lock); 1534 #ifdef DEBUG 1535 /* 1536 * With a few exceptions there should be a maximum of 1537 * 1 reference to any object at this point. 1538 */ 1539 if (atomic_read(&object->use_count) > 1) { 1540 pr_debug("object->use_count = %d\n", 1541 atomic_read(&object->use_count)); 1542 dump_object_info(object); 1543 } 1544 #endif 1545 1546 /* ignore objects outside lowmem (paint them black) */ 1547 if ((object->flags & OBJECT_PHYS) && 1548 !(object->flags & OBJECT_NO_SCAN)) { 1549 unsigned long phys = object->pointer; 1550 1551 if (PHYS_PFN(phys) < min_low_pfn || 1552 PHYS_PFN(phys + object->size) >= max_low_pfn) 1553 __paint_it(object, KMEMLEAK_BLACK); 1554 } 1555 1556 /* reset the reference count (whiten the object) */ 1557 object->count = 0; 1558 if (color_gray(object) && get_object(object)) 1559 list_add_tail(&object->gray_list, &gray_list); 1560 1561 raw_spin_unlock_irq(&object->lock); 1562 1563 if (need_resched()) 1564 kmemleak_cond_resched(object); 1565 } 1566 rcu_read_unlock(); 1567 1568 #ifdef CONFIG_SMP 1569 /* per-cpu sections scanning */ 1570 for_each_possible_cpu(i) 1571 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1572 __per_cpu_end + per_cpu_offset(i)); 1573 #endif 1574 1575 /* 1576 * Struct page scanning for each node. 1577 */ 1578 get_online_mems(); 1579 for_each_populated_zone(zone) { 1580 unsigned long start_pfn = zone->zone_start_pfn; 1581 unsigned long end_pfn = zone_end_pfn(zone); 1582 unsigned long pfn; 1583 1584 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1585 struct page *page = pfn_to_online_page(pfn); 1586 1587 if (!(pfn & 63)) 1588 cond_resched(); 1589 1590 if (!page) 1591 continue; 1592 1593 /* only scan pages belonging to this zone */ 1594 if (page_zone(page) != zone) 1595 continue; 1596 /* only scan if page is in use */ 1597 if (page_count(page) == 0) 1598 continue; 1599 scan_block(page, page + 1, NULL); 1600 } 1601 } 1602 put_online_mems(); 1603 1604 /* 1605 * Scanning the task stacks (may introduce false negatives). 1606 */ 1607 if (kmemleak_stack_scan) { 1608 struct task_struct *p, *g; 1609 1610 rcu_read_lock(); 1611 for_each_process_thread(g, p) { 1612 void *stack = try_get_task_stack(p); 1613 if (stack) { 1614 scan_block(stack, stack + THREAD_SIZE, NULL); 1615 put_task_stack(p); 1616 } 1617 } 1618 rcu_read_unlock(); 1619 } 1620 1621 /* 1622 * Scan the objects already referenced from the sections scanned 1623 * above. 1624 */ 1625 scan_gray_list(); 1626 1627 /* 1628 * Check for new or unreferenced objects modified since the previous 1629 * scan and color them gray until the next scan. 1630 */ 1631 rcu_read_lock(); 1632 list_for_each_entry_rcu(object, &object_list, object_list) { 1633 if (need_resched()) 1634 kmemleak_cond_resched(object); 1635 1636 /* 1637 * This is racy but we can save the overhead of lock/unlock 1638 * calls. The missed objects, if any, should be caught in 1639 * the next scan. 1640 */ 1641 if (!color_white(object)) 1642 continue; 1643 raw_spin_lock_irq(&object->lock); 1644 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1645 && update_checksum(object) && get_object(object)) { 1646 /* color it gray temporarily */ 1647 object->count = object->min_count; 1648 list_add_tail(&object->gray_list, &gray_list); 1649 } 1650 raw_spin_unlock_irq(&object->lock); 1651 } 1652 rcu_read_unlock(); 1653 1654 /* 1655 * Re-scan the gray list for modified unreferenced objects. 1656 */ 1657 scan_gray_list(); 1658 1659 /* 1660 * If scanning was stopped do not report any new unreferenced objects. 1661 */ 1662 if (scan_should_stop()) 1663 return; 1664 1665 /* 1666 * Scanning result reporting. 1667 */ 1668 rcu_read_lock(); 1669 list_for_each_entry_rcu(object, &object_list, object_list) { 1670 if (need_resched()) 1671 kmemleak_cond_resched(object); 1672 1673 /* 1674 * This is racy but we can save the overhead of lock/unlock 1675 * calls. The missed objects, if any, should be caught in 1676 * the next scan. 1677 */ 1678 if (!color_white(object)) 1679 continue; 1680 raw_spin_lock_irq(&object->lock); 1681 if (unreferenced_object(object) && 1682 !(object->flags & OBJECT_REPORTED)) { 1683 object->flags |= OBJECT_REPORTED; 1684 1685 if (kmemleak_verbose) 1686 print_unreferenced(NULL, object); 1687 1688 new_leaks++; 1689 } 1690 raw_spin_unlock_irq(&object->lock); 1691 } 1692 rcu_read_unlock(); 1693 1694 if (new_leaks) { 1695 kmemleak_found_leaks = true; 1696 1697 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1698 new_leaks); 1699 } 1700 1701 } 1702 1703 /* 1704 * Thread function performing automatic memory scanning. Unreferenced objects 1705 * at the end of a memory scan are reported but only the first time. 1706 */ 1707 static int kmemleak_scan_thread(void *arg) 1708 { 1709 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN); 1710 1711 pr_info("Automatic memory scanning thread started\n"); 1712 set_user_nice(current, 10); 1713 1714 /* 1715 * Wait before the first scan to allow the system to fully initialize. 1716 */ 1717 if (first_run) { 1718 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); 1719 first_run = 0; 1720 while (timeout && !kthread_should_stop()) 1721 timeout = schedule_timeout_interruptible(timeout); 1722 } 1723 1724 while (!kthread_should_stop()) { 1725 signed long timeout = READ_ONCE(jiffies_scan_wait); 1726 1727 mutex_lock(&scan_mutex); 1728 kmemleak_scan(); 1729 mutex_unlock(&scan_mutex); 1730 1731 /* wait before the next scan */ 1732 while (timeout && !kthread_should_stop()) 1733 timeout = schedule_timeout_interruptible(timeout); 1734 } 1735 1736 pr_info("Automatic memory scanning thread ended\n"); 1737 1738 return 0; 1739 } 1740 1741 /* 1742 * Start the automatic memory scanning thread. This function must be called 1743 * with the scan_mutex held. 1744 */ 1745 static void start_scan_thread(void) 1746 { 1747 if (scan_thread) 1748 return; 1749 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1750 if (IS_ERR(scan_thread)) { 1751 pr_warn("Failed to create the scan thread\n"); 1752 scan_thread = NULL; 1753 } 1754 } 1755 1756 /* 1757 * Stop the automatic memory scanning thread. 1758 */ 1759 static void stop_scan_thread(void) 1760 { 1761 if (scan_thread) { 1762 kthread_stop(scan_thread); 1763 scan_thread = NULL; 1764 } 1765 } 1766 1767 /* 1768 * Iterate over the object_list and return the first valid object at or after 1769 * the required position with its use_count incremented. The function triggers 1770 * a memory scanning when the pos argument points to the first position. 1771 */ 1772 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1773 { 1774 struct kmemleak_object *object; 1775 loff_t n = *pos; 1776 int err; 1777 1778 err = mutex_lock_interruptible(&scan_mutex); 1779 if (err < 0) 1780 return ERR_PTR(err); 1781 1782 rcu_read_lock(); 1783 list_for_each_entry_rcu(object, &object_list, object_list) { 1784 if (n-- > 0) 1785 continue; 1786 if (get_object(object)) 1787 goto out; 1788 } 1789 object = NULL; 1790 out: 1791 return object; 1792 } 1793 1794 /* 1795 * Return the next object in the object_list. The function decrements the 1796 * use_count of the previous object and increases that of the next one. 1797 */ 1798 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1799 { 1800 struct kmemleak_object *prev_obj = v; 1801 struct kmemleak_object *next_obj = NULL; 1802 struct kmemleak_object *obj = prev_obj; 1803 1804 ++(*pos); 1805 1806 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1807 if (get_object(obj)) { 1808 next_obj = obj; 1809 break; 1810 } 1811 } 1812 1813 put_object(prev_obj); 1814 return next_obj; 1815 } 1816 1817 /* 1818 * Decrement the use_count of the last object required, if any. 1819 */ 1820 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1821 { 1822 if (!IS_ERR(v)) { 1823 /* 1824 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1825 * waiting was interrupted, so only release it if !IS_ERR. 1826 */ 1827 rcu_read_unlock(); 1828 mutex_unlock(&scan_mutex); 1829 if (v) 1830 put_object(v); 1831 } 1832 } 1833 1834 /* 1835 * Print the information for an unreferenced object to the seq file. 1836 */ 1837 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1838 { 1839 struct kmemleak_object *object = v; 1840 unsigned long flags; 1841 1842 raw_spin_lock_irqsave(&object->lock, flags); 1843 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1844 print_unreferenced(seq, object); 1845 raw_spin_unlock_irqrestore(&object->lock, flags); 1846 return 0; 1847 } 1848 1849 static const struct seq_operations kmemleak_seq_ops = { 1850 .start = kmemleak_seq_start, 1851 .next = kmemleak_seq_next, 1852 .stop = kmemleak_seq_stop, 1853 .show = kmemleak_seq_show, 1854 }; 1855 1856 static int kmemleak_open(struct inode *inode, struct file *file) 1857 { 1858 return seq_open(file, &kmemleak_seq_ops); 1859 } 1860 1861 static int dump_str_object_info(const char *str) 1862 { 1863 unsigned long flags; 1864 struct kmemleak_object *object; 1865 unsigned long addr; 1866 1867 if (kstrtoul(str, 0, &addr)) 1868 return -EINVAL; 1869 object = find_and_get_object(addr, 0); 1870 if (!object) { 1871 pr_info("Unknown object at 0x%08lx\n", addr); 1872 return -EINVAL; 1873 } 1874 1875 raw_spin_lock_irqsave(&object->lock, flags); 1876 dump_object_info(object); 1877 raw_spin_unlock_irqrestore(&object->lock, flags); 1878 1879 put_object(object); 1880 return 0; 1881 } 1882 1883 /* 1884 * We use grey instead of black to ensure we can do future scans on the same 1885 * objects. If we did not do future scans these black objects could 1886 * potentially contain references to newly allocated objects in the future and 1887 * we'd end up with false positives. 1888 */ 1889 static void kmemleak_clear(void) 1890 { 1891 struct kmemleak_object *object; 1892 1893 rcu_read_lock(); 1894 list_for_each_entry_rcu(object, &object_list, object_list) { 1895 raw_spin_lock_irq(&object->lock); 1896 if ((object->flags & OBJECT_REPORTED) && 1897 unreferenced_object(object)) 1898 __paint_it(object, KMEMLEAK_GREY); 1899 raw_spin_unlock_irq(&object->lock); 1900 } 1901 rcu_read_unlock(); 1902 1903 kmemleak_found_leaks = false; 1904 } 1905 1906 static void __kmemleak_do_cleanup(void); 1907 1908 /* 1909 * File write operation to configure kmemleak at run-time. The following 1910 * commands can be written to the /sys/kernel/debug/kmemleak file: 1911 * off - disable kmemleak (irreversible) 1912 * stack=on - enable the task stacks scanning 1913 * stack=off - disable the tasks stacks scanning 1914 * scan=on - start the automatic memory scanning thread 1915 * scan=off - stop the automatic memory scanning thread 1916 * scan=... - set the automatic memory scanning period in seconds (0 to 1917 * disable it) 1918 * scan - trigger a memory scan 1919 * clear - mark all current reported unreferenced kmemleak objects as 1920 * grey to ignore printing them, or free all kmemleak objects 1921 * if kmemleak has been disabled. 1922 * dump=... - dump information about the object found at the given address 1923 */ 1924 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1925 size_t size, loff_t *ppos) 1926 { 1927 char buf[64]; 1928 int buf_size; 1929 int ret; 1930 1931 buf_size = min(size, (sizeof(buf) - 1)); 1932 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1933 return -EFAULT; 1934 buf[buf_size] = 0; 1935 1936 ret = mutex_lock_interruptible(&scan_mutex); 1937 if (ret < 0) 1938 return ret; 1939 1940 if (strncmp(buf, "clear", 5) == 0) { 1941 if (kmemleak_enabled) 1942 kmemleak_clear(); 1943 else 1944 __kmemleak_do_cleanup(); 1945 goto out; 1946 } 1947 1948 if (!kmemleak_enabled) { 1949 ret = -EPERM; 1950 goto out; 1951 } 1952 1953 if (strncmp(buf, "off", 3) == 0) 1954 kmemleak_disable(); 1955 else if (strncmp(buf, "stack=on", 8) == 0) 1956 kmemleak_stack_scan = 1; 1957 else if (strncmp(buf, "stack=off", 9) == 0) 1958 kmemleak_stack_scan = 0; 1959 else if (strncmp(buf, "scan=on", 7) == 0) 1960 start_scan_thread(); 1961 else if (strncmp(buf, "scan=off", 8) == 0) 1962 stop_scan_thread(); 1963 else if (strncmp(buf, "scan=", 5) == 0) { 1964 unsigned secs; 1965 unsigned long msecs; 1966 1967 ret = kstrtouint(buf + 5, 0, &secs); 1968 if (ret < 0) 1969 goto out; 1970 1971 msecs = secs * MSEC_PER_SEC; 1972 if (msecs > UINT_MAX) 1973 msecs = UINT_MAX; 1974 1975 stop_scan_thread(); 1976 if (msecs) { 1977 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs)); 1978 start_scan_thread(); 1979 } 1980 } else if (strncmp(buf, "scan", 4) == 0) 1981 kmemleak_scan(); 1982 else if (strncmp(buf, "dump=", 5) == 0) 1983 ret = dump_str_object_info(buf + 5); 1984 else 1985 ret = -EINVAL; 1986 1987 out: 1988 mutex_unlock(&scan_mutex); 1989 if (ret < 0) 1990 return ret; 1991 1992 /* ignore the rest of the buffer, only one command at a time */ 1993 *ppos += size; 1994 return size; 1995 } 1996 1997 static const struct file_operations kmemleak_fops = { 1998 .owner = THIS_MODULE, 1999 .open = kmemleak_open, 2000 .read = seq_read, 2001 .write = kmemleak_write, 2002 .llseek = seq_lseek, 2003 .release = seq_release, 2004 }; 2005 2006 static void __kmemleak_do_cleanup(void) 2007 { 2008 struct kmemleak_object *object, *tmp; 2009 2010 /* 2011 * Kmemleak has already been disabled, no need for RCU list traversal 2012 * or kmemleak_lock held. 2013 */ 2014 list_for_each_entry_safe(object, tmp, &object_list, object_list) { 2015 __remove_object(object); 2016 __delete_object(object); 2017 } 2018 } 2019 2020 /* 2021 * Stop the memory scanning thread and free the kmemleak internal objects if 2022 * no previous scan thread (otherwise, kmemleak may still have some useful 2023 * information on memory leaks). 2024 */ 2025 static void kmemleak_do_cleanup(struct work_struct *work) 2026 { 2027 stop_scan_thread(); 2028 2029 mutex_lock(&scan_mutex); 2030 /* 2031 * Once it is made sure that kmemleak_scan has stopped, it is safe to no 2032 * longer track object freeing. Ordering of the scan thread stopping and 2033 * the memory accesses below is guaranteed by the kthread_stop() 2034 * function. 2035 */ 2036 kmemleak_free_enabled = 0; 2037 mutex_unlock(&scan_mutex); 2038 2039 if (!kmemleak_found_leaks) 2040 __kmemleak_do_cleanup(); 2041 else 2042 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 2043 } 2044 2045 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 2046 2047 /* 2048 * Disable kmemleak. No memory allocation/freeing will be traced once this 2049 * function is called. Disabling kmemleak is an irreversible operation. 2050 */ 2051 static void kmemleak_disable(void) 2052 { 2053 /* atomically check whether it was already invoked */ 2054 if (cmpxchg(&kmemleak_error, 0, 1)) 2055 return; 2056 2057 /* stop any memory operation tracing */ 2058 kmemleak_enabled = 0; 2059 2060 /* check whether it is too early for a kernel thread */ 2061 if (kmemleak_late_initialized) 2062 schedule_work(&cleanup_work); 2063 else 2064 kmemleak_free_enabled = 0; 2065 2066 pr_info("Kernel memory leak detector disabled\n"); 2067 } 2068 2069 /* 2070 * Allow boot-time kmemleak disabling (enabled by default). 2071 */ 2072 static int __init kmemleak_boot_config(char *str) 2073 { 2074 if (!str) 2075 return -EINVAL; 2076 if (strcmp(str, "off") == 0) 2077 kmemleak_disable(); 2078 else if (strcmp(str, "on") == 0) { 2079 kmemleak_skip_disable = 1; 2080 stack_depot_request_early_init(); 2081 } 2082 else 2083 return -EINVAL; 2084 return 0; 2085 } 2086 early_param("kmemleak", kmemleak_boot_config); 2087 2088 /* 2089 * Kmemleak initialization. 2090 */ 2091 void __init kmemleak_init(void) 2092 { 2093 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 2094 if (!kmemleak_skip_disable) { 2095 kmemleak_disable(); 2096 return; 2097 } 2098 #endif 2099 2100 if (kmemleak_error) 2101 return; 2102 2103 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 2104 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 2105 2106 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 2107 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 2108 2109 /* register the data/bss sections */ 2110 create_object((unsigned long)_sdata, _edata - _sdata, 2111 KMEMLEAK_GREY, GFP_ATOMIC); 2112 create_object((unsigned long)__bss_start, __bss_stop - __bss_start, 2113 KMEMLEAK_GREY, GFP_ATOMIC); 2114 /* only register .data..ro_after_init if not within .data */ 2115 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata) 2116 create_object((unsigned long)__start_ro_after_init, 2117 __end_ro_after_init - __start_ro_after_init, 2118 KMEMLEAK_GREY, GFP_ATOMIC); 2119 } 2120 2121 /* 2122 * Late initialization function. 2123 */ 2124 static int __init kmemleak_late_init(void) 2125 { 2126 kmemleak_late_initialized = 1; 2127 2128 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops); 2129 2130 if (kmemleak_error) { 2131 /* 2132 * Some error occurred and kmemleak was disabled. There is a 2133 * small chance that kmemleak_disable() was called immediately 2134 * after setting kmemleak_late_initialized and we may end up with 2135 * two clean-up threads but serialized by scan_mutex. 2136 */ 2137 schedule_work(&cleanup_work); 2138 return -ENOMEM; 2139 } 2140 2141 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) { 2142 mutex_lock(&scan_mutex); 2143 start_scan_thread(); 2144 mutex_unlock(&scan_mutex); 2145 } 2146 2147 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n", 2148 mem_pool_free_count); 2149 2150 return 0; 2151 } 2152 late_initcall(kmemleak_late_init); 2153