xref: /openbmc/linux/mm/kmemleak.c (revision 65ca668f)
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/kmemleak.txt.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a red black tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * Locks and mutexes are acquired/nested in the following order:
57  *
58  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59  *
60  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61  * regions.
62  *
63  * The kmemleak_object structures have a use_count incremented or decremented
64  * using the get_object()/put_object() functions. When the use_count becomes
65  * 0, this count can no longer be incremented and put_object() schedules the
66  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67  * function must be protected by rcu_read_lock() to avoid accessing a freed
68  * structure.
69  */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/init.h>
74 #include <linux/kernel.h>
75 #include <linux/list.h>
76 #include <linux/sched.h>
77 #include <linux/jiffies.h>
78 #include <linux/delay.h>
79 #include <linux/export.h>
80 #include <linux/kthread.h>
81 #include <linux/rbtree.h>
82 #include <linux/fs.h>
83 #include <linux/debugfs.h>
84 #include <linux/seq_file.h>
85 #include <linux/cpumask.h>
86 #include <linux/spinlock.h>
87 #include <linux/mutex.h>
88 #include <linux/rcupdate.h>
89 #include <linux/stacktrace.h>
90 #include <linux/cache.h>
91 #include <linux/percpu.h>
92 #include <linux/hardirq.h>
93 #include <linux/mmzone.h>
94 #include <linux/slab.h>
95 #include <linux/thread_info.h>
96 #include <linux/err.h>
97 #include <linux/uaccess.h>
98 #include <linux/string.h>
99 #include <linux/nodemask.h>
100 #include <linux/mm.h>
101 #include <linux/workqueue.h>
102 #include <linux/crc32.h>
103 
104 #include <asm/sections.h>
105 #include <asm/processor.h>
106 #include <linux/atomic.h>
107 
108 #include <linux/kasan.h>
109 #include <linux/kmemcheck.h>
110 #include <linux/kmemleak.h>
111 #include <linux/memory_hotplug.h>
112 
113 /*
114  * Kmemleak configuration and common defines.
115  */
116 #define MAX_TRACE		16	/* stack trace length */
117 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
118 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
119 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
120 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
121 
122 #define BYTES_PER_POINTER	sizeof(void *)
123 
124 /* GFP bitmask for kmemleak internal allocations */
125 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
126 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
127 				 __GFP_NOWARN)
128 
129 /* scanning area inside a memory block */
130 struct kmemleak_scan_area {
131 	struct hlist_node node;
132 	unsigned long start;
133 	size_t size;
134 };
135 
136 #define KMEMLEAK_GREY	0
137 #define KMEMLEAK_BLACK	-1
138 
139 /*
140  * Structure holding the metadata for each allocated memory block.
141  * Modifications to such objects should be made while holding the
142  * object->lock. Insertions or deletions from object_list, gray_list or
143  * rb_node are already protected by the corresponding locks or mutex (see
144  * the notes on locking above). These objects are reference-counted
145  * (use_count) and freed using the RCU mechanism.
146  */
147 struct kmemleak_object {
148 	spinlock_t lock;
149 	unsigned long flags;		/* object status flags */
150 	struct list_head object_list;
151 	struct list_head gray_list;
152 	struct rb_node rb_node;
153 	struct rcu_head rcu;		/* object_list lockless traversal */
154 	/* object usage count; object freed when use_count == 0 */
155 	atomic_t use_count;
156 	unsigned long pointer;
157 	size_t size;
158 	/* minimum number of a pointers found before it is considered leak */
159 	int min_count;
160 	/* the total number of pointers found pointing to this object */
161 	int count;
162 	/* checksum for detecting modified objects */
163 	u32 checksum;
164 	/* memory ranges to be scanned inside an object (empty for all) */
165 	struct hlist_head area_list;
166 	unsigned long trace[MAX_TRACE];
167 	unsigned int trace_len;
168 	unsigned long jiffies;		/* creation timestamp */
169 	pid_t pid;			/* pid of the current task */
170 	char comm[TASK_COMM_LEN];	/* executable name */
171 };
172 
173 /* flag representing the memory block allocation status */
174 #define OBJECT_ALLOCATED	(1 << 0)
175 /* flag set after the first reporting of an unreference object */
176 #define OBJECT_REPORTED		(1 << 1)
177 /* flag set to not scan the object */
178 #define OBJECT_NO_SCAN		(1 << 2)
179 
180 /* number of bytes to print per line; must be 16 or 32 */
181 #define HEX_ROW_SIZE		16
182 /* number of bytes to print at a time (1, 2, 4, 8) */
183 #define HEX_GROUP_SIZE		1
184 /* include ASCII after the hex output */
185 #define HEX_ASCII		1
186 /* max number of lines to be printed */
187 #define HEX_MAX_LINES		2
188 
189 /* the list of all allocated objects */
190 static LIST_HEAD(object_list);
191 /* the list of gray-colored objects (see color_gray comment below) */
192 static LIST_HEAD(gray_list);
193 /* search tree for object boundaries */
194 static struct rb_root object_tree_root = RB_ROOT;
195 /* rw_lock protecting the access to object_list and object_tree_root */
196 static DEFINE_RWLOCK(kmemleak_lock);
197 
198 /* allocation caches for kmemleak internal data */
199 static struct kmem_cache *object_cache;
200 static struct kmem_cache *scan_area_cache;
201 
202 /* set if tracing memory operations is enabled */
203 static int kmemleak_enabled;
204 /* same as above but only for the kmemleak_free() callback */
205 static int kmemleak_free_enabled;
206 /* set in the late_initcall if there were no errors */
207 static int kmemleak_initialized;
208 /* enables or disables early logging of the memory operations */
209 static int kmemleak_early_log = 1;
210 /* set if a kmemleak warning was issued */
211 static int kmemleak_warning;
212 /* set if a fatal kmemleak error has occurred */
213 static int kmemleak_error;
214 
215 /* minimum and maximum address that may be valid pointers */
216 static unsigned long min_addr = ULONG_MAX;
217 static unsigned long max_addr;
218 
219 static struct task_struct *scan_thread;
220 /* used to avoid reporting of recently allocated objects */
221 static unsigned long jiffies_min_age;
222 static unsigned long jiffies_last_scan;
223 /* delay between automatic memory scannings */
224 static signed long jiffies_scan_wait;
225 /* enables or disables the task stacks scanning */
226 static int kmemleak_stack_scan = 1;
227 /* protects the memory scanning, parameters and debug/kmemleak file access */
228 static DEFINE_MUTEX(scan_mutex);
229 /* setting kmemleak=on, will set this var, skipping the disable */
230 static int kmemleak_skip_disable;
231 /* If there are leaks that can be reported */
232 static bool kmemleak_found_leaks;
233 
234 /*
235  * Early object allocation/freeing logging. Kmemleak is initialized after the
236  * kernel allocator. However, both the kernel allocator and kmemleak may
237  * allocate memory blocks which need to be tracked. Kmemleak defines an
238  * arbitrary buffer to hold the allocation/freeing information before it is
239  * fully initialized.
240  */
241 
242 /* kmemleak operation type for early logging */
243 enum {
244 	KMEMLEAK_ALLOC,
245 	KMEMLEAK_ALLOC_PERCPU,
246 	KMEMLEAK_FREE,
247 	KMEMLEAK_FREE_PART,
248 	KMEMLEAK_FREE_PERCPU,
249 	KMEMLEAK_NOT_LEAK,
250 	KMEMLEAK_IGNORE,
251 	KMEMLEAK_SCAN_AREA,
252 	KMEMLEAK_NO_SCAN
253 };
254 
255 /*
256  * Structure holding the information passed to kmemleak callbacks during the
257  * early logging.
258  */
259 struct early_log {
260 	int op_type;			/* kmemleak operation type */
261 	const void *ptr;		/* allocated/freed memory block */
262 	size_t size;			/* memory block size */
263 	int min_count;			/* minimum reference count */
264 	unsigned long trace[MAX_TRACE];	/* stack trace */
265 	unsigned int trace_len;		/* stack trace length */
266 };
267 
268 /* early logging buffer and current position */
269 static struct early_log
270 	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
271 static int crt_early_log __initdata;
272 
273 static void kmemleak_disable(void);
274 
275 /*
276  * Print a warning and dump the stack trace.
277  */
278 #define kmemleak_warn(x...)	do {		\
279 	pr_warn(x);				\
280 	dump_stack();				\
281 	kmemleak_warning = 1;			\
282 } while (0)
283 
284 /*
285  * Macro invoked when a serious kmemleak condition occurred and cannot be
286  * recovered from. Kmemleak will be disabled and further allocation/freeing
287  * tracing no longer available.
288  */
289 #define kmemleak_stop(x...)	do {	\
290 	kmemleak_warn(x);		\
291 	kmemleak_disable();		\
292 } while (0)
293 
294 /*
295  * Printing of the objects hex dump to the seq file. The number of lines to be
296  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
297  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
298  * with the object->lock held.
299  */
300 static void hex_dump_object(struct seq_file *seq,
301 			    struct kmemleak_object *object)
302 {
303 	const u8 *ptr = (const u8 *)object->pointer;
304 	size_t len;
305 
306 	/* limit the number of lines to HEX_MAX_LINES */
307 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
308 
309 	seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
310 	kasan_disable_current();
311 	seq_hex_dump(seq, "    ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
312 		     HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
313 	kasan_enable_current();
314 }
315 
316 /*
317  * Object colors, encoded with count and min_count:
318  * - white - orphan object, not enough references to it (count < min_count)
319  * - gray  - not orphan, not marked as false positive (min_count == 0) or
320  *		sufficient references to it (count >= min_count)
321  * - black - ignore, it doesn't contain references (e.g. text section)
322  *		(min_count == -1). No function defined for this color.
323  * Newly created objects don't have any color assigned (object->count == -1)
324  * before the next memory scan when they become white.
325  */
326 static bool color_white(const struct kmemleak_object *object)
327 {
328 	return object->count != KMEMLEAK_BLACK &&
329 		object->count < object->min_count;
330 }
331 
332 static bool color_gray(const struct kmemleak_object *object)
333 {
334 	return object->min_count != KMEMLEAK_BLACK &&
335 		object->count >= object->min_count;
336 }
337 
338 /*
339  * Objects are considered unreferenced only if their color is white, they have
340  * not be deleted and have a minimum age to avoid false positives caused by
341  * pointers temporarily stored in CPU registers.
342  */
343 static bool unreferenced_object(struct kmemleak_object *object)
344 {
345 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
346 		time_before_eq(object->jiffies + jiffies_min_age,
347 			       jiffies_last_scan);
348 }
349 
350 /*
351  * Printing of the unreferenced objects information to the seq file. The
352  * print_unreferenced function must be called with the object->lock held.
353  */
354 static void print_unreferenced(struct seq_file *seq,
355 			       struct kmemleak_object *object)
356 {
357 	int i;
358 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
359 
360 	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
361 		   object->pointer, object->size);
362 	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
363 		   object->comm, object->pid, object->jiffies,
364 		   msecs_age / 1000, msecs_age % 1000);
365 	hex_dump_object(seq, object);
366 	seq_printf(seq, "  backtrace:\n");
367 
368 	for (i = 0; i < object->trace_len; i++) {
369 		void *ptr = (void *)object->trace[i];
370 		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
371 	}
372 }
373 
374 /*
375  * Print the kmemleak_object information. This function is used mainly for
376  * debugging special cases when kmemleak operations. It must be called with
377  * the object->lock held.
378  */
379 static void dump_object_info(struct kmemleak_object *object)
380 {
381 	struct stack_trace trace;
382 
383 	trace.nr_entries = object->trace_len;
384 	trace.entries = object->trace;
385 
386 	pr_notice("Object 0x%08lx (size %zu):\n",
387 		  object->pointer, object->size);
388 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
389 		  object->comm, object->pid, object->jiffies);
390 	pr_notice("  min_count = %d\n", object->min_count);
391 	pr_notice("  count = %d\n", object->count);
392 	pr_notice("  flags = 0x%lx\n", object->flags);
393 	pr_notice("  checksum = %u\n", object->checksum);
394 	pr_notice("  backtrace:\n");
395 	print_stack_trace(&trace, 4);
396 }
397 
398 /*
399  * Look-up a memory block metadata (kmemleak_object) in the object search
400  * tree based on a pointer value. If alias is 0, only values pointing to the
401  * beginning of the memory block are allowed. The kmemleak_lock must be held
402  * when calling this function.
403  */
404 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
405 {
406 	struct rb_node *rb = object_tree_root.rb_node;
407 
408 	while (rb) {
409 		struct kmemleak_object *object =
410 			rb_entry(rb, struct kmemleak_object, rb_node);
411 		if (ptr < object->pointer)
412 			rb = object->rb_node.rb_left;
413 		else if (object->pointer + object->size <= ptr)
414 			rb = object->rb_node.rb_right;
415 		else if (object->pointer == ptr || alias)
416 			return object;
417 		else {
418 			kmemleak_warn("Found object by alias at 0x%08lx\n",
419 				      ptr);
420 			dump_object_info(object);
421 			break;
422 		}
423 	}
424 	return NULL;
425 }
426 
427 /*
428  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
429  * that once an object's use_count reached 0, the RCU freeing was already
430  * registered and the object should no longer be used. This function must be
431  * called under the protection of rcu_read_lock().
432  */
433 static int get_object(struct kmemleak_object *object)
434 {
435 	return atomic_inc_not_zero(&object->use_count);
436 }
437 
438 /*
439  * RCU callback to free a kmemleak_object.
440  */
441 static void free_object_rcu(struct rcu_head *rcu)
442 {
443 	struct hlist_node *tmp;
444 	struct kmemleak_scan_area *area;
445 	struct kmemleak_object *object =
446 		container_of(rcu, struct kmemleak_object, rcu);
447 
448 	/*
449 	 * Once use_count is 0 (guaranteed by put_object), there is no other
450 	 * code accessing this object, hence no need for locking.
451 	 */
452 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
453 		hlist_del(&area->node);
454 		kmem_cache_free(scan_area_cache, area);
455 	}
456 	kmem_cache_free(object_cache, object);
457 }
458 
459 /*
460  * Decrement the object use_count. Once the count is 0, free the object using
461  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
462  * delete_object() path, the delayed RCU freeing ensures that there is no
463  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
464  * is also possible.
465  */
466 static void put_object(struct kmemleak_object *object)
467 {
468 	if (!atomic_dec_and_test(&object->use_count))
469 		return;
470 
471 	/* should only get here after delete_object was called */
472 	WARN_ON(object->flags & OBJECT_ALLOCATED);
473 
474 	call_rcu(&object->rcu, free_object_rcu);
475 }
476 
477 /*
478  * Look up an object in the object search tree and increase its use_count.
479  */
480 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
481 {
482 	unsigned long flags;
483 	struct kmemleak_object *object;
484 
485 	rcu_read_lock();
486 	read_lock_irqsave(&kmemleak_lock, flags);
487 	object = lookup_object(ptr, alias);
488 	read_unlock_irqrestore(&kmemleak_lock, flags);
489 
490 	/* check whether the object is still available */
491 	if (object && !get_object(object))
492 		object = NULL;
493 	rcu_read_unlock();
494 
495 	return object;
496 }
497 
498 /*
499  * Look up an object in the object search tree and remove it from both
500  * object_tree_root and object_list. The returned object's use_count should be
501  * at least 1, as initially set by create_object().
502  */
503 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
504 {
505 	unsigned long flags;
506 	struct kmemleak_object *object;
507 
508 	write_lock_irqsave(&kmemleak_lock, flags);
509 	object = lookup_object(ptr, alias);
510 	if (object) {
511 		rb_erase(&object->rb_node, &object_tree_root);
512 		list_del_rcu(&object->object_list);
513 	}
514 	write_unlock_irqrestore(&kmemleak_lock, flags);
515 
516 	return object;
517 }
518 
519 /*
520  * Save stack trace to the given array of MAX_TRACE size.
521  */
522 static int __save_stack_trace(unsigned long *trace)
523 {
524 	struct stack_trace stack_trace;
525 
526 	stack_trace.max_entries = MAX_TRACE;
527 	stack_trace.nr_entries = 0;
528 	stack_trace.entries = trace;
529 	stack_trace.skip = 2;
530 	save_stack_trace(&stack_trace);
531 
532 	return stack_trace.nr_entries;
533 }
534 
535 /*
536  * Create the metadata (struct kmemleak_object) corresponding to an allocated
537  * memory block and add it to the object_list and object_tree_root.
538  */
539 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
540 					     int min_count, gfp_t gfp)
541 {
542 	unsigned long flags;
543 	struct kmemleak_object *object, *parent;
544 	struct rb_node **link, *rb_parent;
545 
546 	object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
547 	if (!object) {
548 		pr_warn("Cannot allocate a kmemleak_object structure\n");
549 		kmemleak_disable();
550 		return NULL;
551 	}
552 
553 	INIT_LIST_HEAD(&object->object_list);
554 	INIT_LIST_HEAD(&object->gray_list);
555 	INIT_HLIST_HEAD(&object->area_list);
556 	spin_lock_init(&object->lock);
557 	atomic_set(&object->use_count, 1);
558 	object->flags = OBJECT_ALLOCATED;
559 	object->pointer = ptr;
560 	object->size = size;
561 	object->min_count = min_count;
562 	object->count = 0;			/* white color initially */
563 	object->jiffies = jiffies;
564 	object->checksum = 0;
565 
566 	/* task information */
567 	if (in_irq()) {
568 		object->pid = 0;
569 		strncpy(object->comm, "hardirq", sizeof(object->comm));
570 	} else if (in_softirq()) {
571 		object->pid = 0;
572 		strncpy(object->comm, "softirq", sizeof(object->comm));
573 	} else {
574 		object->pid = current->pid;
575 		/*
576 		 * There is a small chance of a race with set_task_comm(),
577 		 * however using get_task_comm() here may cause locking
578 		 * dependency issues with current->alloc_lock. In the worst
579 		 * case, the command line is not correct.
580 		 */
581 		strncpy(object->comm, current->comm, sizeof(object->comm));
582 	}
583 
584 	/* kernel backtrace */
585 	object->trace_len = __save_stack_trace(object->trace);
586 
587 	write_lock_irqsave(&kmemleak_lock, flags);
588 
589 	min_addr = min(min_addr, ptr);
590 	max_addr = max(max_addr, ptr + size);
591 	link = &object_tree_root.rb_node;
592 	rb_parent = NULL;
593 	while (*link) {
594 		rb_parent = *link;
595 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
596 		if (ptr + size <= parent->pointer)
597 			link = &parent->rb_node.rb_left;
598 		else if (parent->pointer + parent->size <= ptr)
599 			link = &parent->rb_node.rb_right;
600 		else {
601 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
602 				      ptr);
603 			/*
604 			 * No need for parent->lock here since "parent" cannot
605 			 * be freed while the kmemleak_lock is held.
606 			 */
607 			dump_object_info(parent);
608 			kmem_cache_free(object_cache, object);
609 			object = NULL;
610 			goto out;
611 		}
612 	}
613 	rb_link_node(&object->rb_node, rb_parent, link);
614 	rb_insert_color(&object->rb_node, &object_tree_root);
615 
616 	list_add_tail_rcu(&object->object_list, &object_list);
617 out:
618 	write_unlock_irqrestore(&kmemleak_lock, flags);
619 	return object;
620 }
621 
622 /*
623  * Mark the object as not allocated and schedule RCU freeing via put_object().
624  */
625 static void __delete_object(struct kmemleak_object *object)
626 {
627 	unsigned long flags;
628 
629 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
630 	WARN_ON(atomic_read(&object->use_count) < 1);
631 
632 	/*
633 	 * Locking here also ensures that the corresponding memory block
634 	 * cannot be freed when it is being scanned.
635 	 */
636 	spin_lock_irqsave(&object->lock, flags);
637 	object->flags &= ~OBJECT_ALLOCATED;
638 	spin_unlock_irqrestore(&object->lock, flags);
639 	put_object(object);
640 }
641 
642 /*
643  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
644  * delete it.
645  */
646 static void delete_object_full(unsigned long ptr)
647 {
648 	struct kmemleak_object *object;
649 
650 	object = find_and_remove_object(ptr, 0);
651 	if (!object) {
652 #ifdef DEBUG
653 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
654 			      ptr);
655 #endif
656 		return;
657 	}
658 	__delete_object(object);
659 }
660 
661 /*
662  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
663  * delete it. If the memory block is partially freed, the function may create
664  * additional metadata for the remaining parts of the block.
665  */
666 static void delete_object_part(unsigned long ptr, size_t size)
667 {
668 	struct kmemleak_object *object;
669 	unsigned long start, end;
670 
671 	object = find_and_remove_object(ptr, 1);
672 	if (!object) {
673 #ifdef DEBUG
674 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
675 			      ptr, size);
676 #endif
677 		return;
678 	}
679 
680 	/*
681 	 * Create one or two objects that may result from the memory block
682 	 * split. Note that partial freeing is only done by free_bootmem() and
683 	 * this happens before kmemleak_init() is called. The path below is
684 	 * only executed during early log recording in kmemleak_init(), so
685 	 * GFP_KERNEL is enough.
686 	 */
687 	start = object->pointer;
688 	end = object->pointer + object->size;
689 	if (ptr > start)
690 		create_object(start, ptr - start, object->min_count,
691 			      GFP_KERNEL);
692 	if (ptr + size < end)
693 		create_object(ptr + size, end - ptr - size, object->min_count,
694 			      GFP_KERNEL);
695 
696 	__delete_object(object);
697 }
698 
699 static void __paint_it(struct kmemleak_object *object, int color)
700 {
701 	object->min_count = color;
702 	if (color == KMEMLEAK_BLACK)
703 		object->flags |= OBJECT_NO_SCAN;
704 }
705 
706 static void paint_it(struct kmemleak_object *object, int color)
707 {
708 	unsigned long flags;
709 
710 	spin_lock_irqsave(&object->lock, flags);
711 	__paint_it(object, color);
712 	spin_unlock_irqrestore(&object->lock, flags);
713 }
714 
715 static void paint_ptr(unsigned long ptr, int color)
716 {
717 	struct kmemleak_object *object;
718 
719 	object = find_and_get_object(ptr, 0);
720 	if (!object) {
721 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
722 			      ptr,
723 			      (color == KMEMLEAK_GREY) ? "Grey" :
724 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
725 		return;
726 	}
727 	paint_it(object, color);
728 	put_object(object);
729 }
730 
731 /*
732  * Mark an object permanently as gray-colored so that it can no longer be
733  * reported as a leak. This is used in general to mark a false positive.
734  */
735 static void make_gray_object(unsigned long ptr)
736 {
737 	paint_ptr(ptr, KMEMLEAK_GREY);
738 }
739 
740 /*
741  * Mark the object as black-colored so that it is ignored from scans and
742  * reporting.
743  */
744 static void make_black_object(unsigned long ptr)
745 {
746 	paint_ptr(ptr, KMEMLEAK_BLACK);
747 }
748 
749 /*
750  * Add a scanning area to the object. If at least one such area is added,
751  * kmemleak will only scan these ranges rather than the whole memory block.
752  */
753 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
754 {
755 	unsigned long flags;
756 	struct kmemleak_object *object;
757 	struct kmemleak_scan_area *area;
758 
759 	object = find_and_get_object(ptr, 1);
760 	if (!object) {
761 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
762 			      ptr);
763 		return;
764 	}
765 
766 	area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
767 	if (!area) {
768 		pr_warn("Cannot allocate a scan area\n");
769 		goto out;
770 	}
771 
772 	spin_lock_irqsave(&object->lock, flags);
773 	if (size == SIZE_MAX) {
774 		size = object->pointer + object->size - ptr;
775 	} else if (ptr + size > object->pointer + object->size) {
776 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
777 		dump_object_info(object);
778 		kmem_cache_free(scan_area_cache, area);
779 		goto out_unlock;
780 	}
781 
782 	INIT_HLIST_NODE(&area->node);
783 	area->start = ptr;
784 	area->size = size;
785 
786 	hlist_add_head(&area->node, &object->area_list);
787 out_unlock:
788 	spin_unlock_irqrestore(&object->lock, flags);
789 out:
790 	put_object(object);
791 }
792 
793 /*
794  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
795  * pointer. Such object will not be scanned by kmemleak but references to it
796  * are searched.
797  */
798 static void object_no_scan(unsigned long ptr)
799 {
800 	unsigned long flags;
801 	struct kmemleak_object *object;
802 
803 	object = find_and_get_object(ptr, 0);
804 	if (!object) {
805 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
806 		return;
807 	}
808 
809 	spin_lock_irqsave(&object->lock, flags);
810 	object->flags |= OBJECT_NO_SCAN;
811 	spin_unlock_irqrestore(&object->lock, flags);
812 	put_object(object);
813 }
814 
815 /*
816  * Log an early kmemleak_* call to the early_log buffer. These calls will be
817  * processed later once kmemleak is fully initialized.
818  */
819 static void __init log_early(int op_type, const void *ptr, size_t size,
820 			     int min_count)
821 {
822 	unsigned long flags;
823 	struct early_log *log;
824 
825 	if (kmemleak_error) {
826 		/* kmemleak stopped recording, just count the requests */
827 		crt_early_log++;
828 		return;
829 	}
830 
831 	if (crt_early_log >= ARRAY_SIZE(early_log)) {
832 		crt_early_log++;
833 		kmemleak_disable();
834 		return;
835 	}
836 
837 	/*
838 	 * There is no need for locking since the kernel is still in UP mode
839 	 * at this stage. Disabling the IRQs is enough.
840 	 */
841 	local_irq_save(flags);
842 	log = &early_log[crt_early_log];
843 	log->op_type = op_type;
844 	log->ptr = ptr;
845 	log->size = size;
846 	log->min_count = min_count;
847 	log->trace_len = __save_stack_trace(log->trace);
848 	crt_early_log++;
849 	local_irq_restore(flags);
850 }
851 
852 /*
853  * Log an early allocated block and populate the stack trace.
854  */
855 static void early_alloc(struct early_log *log)
856 {
857 	struct kmemleak_object *object;
858 	unsigned long flags;
859 	int i;
860 
861 	if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
862 		return;
863 
864 	/*
865 	 * RCU locking needed to ensure object is not freed via put_object().
866 	 */
867 	rcu_read_lock();
868 	object = create_object((unsigned long)log->ptr, log->size,
869 			       log->min_count, GFP_ATOMIC);
870 	if (!object)
871 		goto out;
872 	spin_lock_irqsave(&object->lock, flags);
873 	for (i = 0; i < log->trace_len; i++)
874 		object->trace[i] = log->trace[i];
875 	object->trace_len = log->trace_len;
876 	spin_unlock_irqrestore(&object->lock, flags);
877 out:
878 	rcu_read_unlock();
879 }
880 
881 /*
882  * Log an early allocated block and populate the stack trace.
883  */
884 static void early_alloc_percpu(struct early_log *log)
885 {
886 	unsigned int cpu;
887 	const void __percpu *ptr = log->ptr;
888 
889 	for_each_possible_cpu(cpu) {
890 		log->ptr = per_cpu_ptr(ptr, cpu);
891 		early_alloc(log);
892 	}
893 }
894 
895 /**
896  * kmemleak_alloc - register a newly allocated object
897  * @ptr:	pointer to beginning of the object
898  * @size:	size of the object
899  * @min_count:	minimum number of references to this object. If during memory
900  *		scanning a number of references less than @min_count is found,
901  *		the object is reported as a memory leak. If @min_count is 0,
902  *		the object is never reported as a leak. If @min_count is -1,
903  *		the object is ignored (not scanned and not reported as a leak)
904  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
905  *
906  * This function is called from the kernel allocators when a new object
907  * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
908  */
909 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
910 			  gfp_t gfp)
911 {
912 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
913 
914 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
915 		create_object((unsigned long)ptr, size, min_count, gfp);
916 	else if (kmemleak_early_log)
917 		log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
918 }
919 EXPORT_SYMBOL_GPL(kmemleak_alloc);
920 
921 /**
922  * kmemleak_alloc_percpu - register a newly allocated __percpu object
923  * @ptr:	__percpu pointer to beginning of the object
924  * @size:	size of the object
925  * @gfp:	flags used for kmemleak internal memory allocations
926  *
927  * This function is called from the kernel percpu allocator when a new object
928  * (memory block) is allocated (alloc_percpu).
929  */
930 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
931 				 gfp_t gfp)
932 {
933 	unsigned int cpu;
934 
935 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
936 
937 	/*
938 	 * Percpu allocations are only scanned and not reported as leaks
939 	 * (min_count is set to 0).
940 	 */
941 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
942 		for_each_possible_cpu(cpu)
943 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
944 				      size, 0, gfp);
945 	else if (kmemleak_early_log)
946 		log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
947 }
948 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
949 
950 /**
951  * kmemleak_free - unregister a previously registered object
952  * @ptr:	pointer to beginning of the object
953  *
954  * This function is called from the kernel allocators when an object (memory
955  * block) is freed (kmem_cache_free, kfree, vfree etc.).
956  */
957 void __ref kmemleak_free(const void *ptr)
958 {
959 	pr_debug("%s(0x%p)\n", __func__, ptr);
960 
961 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
962 		delete_object_full((unsigned long)ptr);
963 	else if (kmemleak_early_log)
964 		log_early(KMEMLEAK_FREE, ptr, 0, 0);
965 }
966 EXPORT_SYMBOL_GPL(kmemleak_free);
967 
968 /**
969  * kmemleak_free_part - partially unregister a previously registered object
970  * @ptr:	pointer to the beginning or inside the object. This also
971  *		represents the start of the range to be freed
972  * @size:	size to be unregistered
973  *
974  * This function is called when only a part of a memory block is freed
975  * (usually from the bootmem allocator).
976  */
977 void __ref kmemleak_free_part(const void *ptr, size_t size)
978 {
979 	pr_debug("%s(0x%p)\n", __func__, ptr);
980 
981 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
982 		delete_object_part((unsigned long)ptr, size);
983 	else if (kmemleak_early_log)
984 		log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
985 }
986 EXPORT_SYMBOL_GPL(kmemleak_free_part);
987 
988 /**
989  * kmemleak_free_percpu - unregister a previously registered __percpu object
990  * @ptr:	__percpu pointer to beginning of the object
991  *
992  * This function is called from the kernel percpu allocator when an object
993  * (memory block) is freed (free_percpu).
994  */
995 void __ref kmemleak_free_percpu(const void __percpu *ptr)
996 {
997 	unsigned int cpu;
998 
999 	pr_debug("%s(0x%p)\n", __func__, ptr);
1000 
1001 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1002 		for_each_possible_cpu(cpu)
1003 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
1004 								      cpu));
1005 	else if (kmemleak_early_log)
1006 		log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1007 }
1008 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1009 
1010 /**
1011  * kmemleak_update_trace - update object allocation stack trace
1012  * @ptr:	pointer to beginning of the object
1013  *
1014  * Override the object allocation stack trace for cases where the actual
1015  * allocation place is not always useful.
1016  */
1017 void __ref kmemleak_update_trace(const void *ptr)
1018 {
1019 	struct kmemleak_object *object;
1020 	unsigned long flags;
1021 
1022 	pr_debug("%s(0x%p)\n", __func__, ptr);
1023 
1024 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1025 		return;
1026 
1027 	object = find_and_get_object((unsigned long)ptr, 1);
1028 	if (!object) {
1029 #ifdef DEBUG
1030 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1031 			      ptr);
1032 #endif
1033 		return;
1034 	}
1035 
1036 	spin_lock_irqsave(&object->lock, flags);
1037 	object->trace_len = __save_stack_trace(object->trace);
1038 	spin_unlock_irqrestore(&object->lock, flags);
1039 
1040 	put_object(object);
1041 }
1042 EXPORT_SYMBOL(kmemleak_update_trace);
1043 
1044 /**
1045  * kmemleak_not_leak - mark an allocated object as false positive
1046  * @ptr:	pointer to beginning of the object
1047  *
1048  * Calling this function on an object will cause the memory block to no longer
1049  * be reported as leak and always be scanned.
1050  */
1051 void __ref kmemleak_not_leak(const void *ptr)
1052 {
1053 	pr_debug("%s(0x%p)\n", __func__, ptr);
1054 
1055 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1056 		make_gray_object((unsigned long)ptr);
1057 	else if (kmemleak_early_log)
1058 		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1059 }
1060 EXPORT_SYMBOL(kmemleak_not_leak);
1061 
1062 /**
1063  * kmemleak_ignore - ignore an allocated object
1064  * @ptr:	pointer to beginning of the object
1065  *
1066  * Calling this function on an object will cause the memory block to be
1067  * ignored (not scanned and not reported as a leak). This is usually done when
1068  * it is known that the corresponding block is not a leak and does not contain
1069  * any references to other allocated memory blocks.
1070  */
1071 void __ref kmemleak_ignore(const void *ptr)
1072 {
1073 	pr_debug("%s(0x%p)\n", __func__, ptr);
1074 
1075 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1076 		make_black_object((unsigned long)ptr);
1077 	else if (kmemleak_early_log)
1078 		log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1079 }
1080 EXPORT_SYMBOL(kmemleak_ignore);
1081 
1082 /**
1083  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1084  * @ptr:	pointer to beginning or inside the object. This also
1085  *		represents the start of the scan area
1086  * @size:	size of the scan area
1087  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1088  *
1089  * This function is used when it is known that only certain parts of an object
1090  * contain references to other objects. Kmemleak will only scan these areas
1091  * reducing the number false negatives.
1092  */
1093 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1094 {
1095 	pr_debug("%s(0x%p)\n", __func__, ptr);
1096 
1097 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1098 		add_scan_area((unsigned long)ptr, size, gfp);
1099 	else if (kmemleak_early_log)
1100 		log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1101 }
1102 EXPORT_SYMBOL(kmemleak_scan_area);
1103 
1104 /**
1105  * kmemleak_no_scan - do not scan an allocated object
1106  * @ptr:	pointer to beginning of the object
1107  *
1108  * This function notifies kmemleak not to scan the given memory block. Useful
1109  * in situations where it is known that the given object does not contain any
1110  * references to other objects. Kmemleak will not scan such objects reducing
1111  * the number of false negatives.
1112  */
1113 void __ref kmemleak_no_scan(const void *ptr)
1114 {
1115 	pr_debug("%s(0x%p)\n", __func__, ptr);
1116 
1117 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1118 		object_no_scan((unsigned long)ptr);
1119 	else if (kmemleak_early_log)
1120 		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1121 }
1122 EXPORT_SYMBOL(kmemleak_no_scan);
1123 
1124 /*
1125  * Update an object's checksum and return true if it was modified.
1126  */
1127 static bool update_checksum(struct kmemleak_object *object)
1128 {
1129 	u32 old_csum = object->checksum;
1130 
1131 	if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1132 		return false;
1133 
1134 	kasan_disable_current();
1135 	object->checksum = crc32(0, (void *)object->pointer, object->size);
1136 	kasan_enable_current();
1137 
1138 	return object->checksum != old_csum;
1139 }
1140 
1141 /*
1142  * Memory scanning is a long process and it needs to be interruptable. This
1143  * function checks whether such interrupt condition occurred.
1144  */
1145 static int scan_should_stop(void)
1146 {
1147 	if (!kmemleak_enabled)
1148 		return 1;
1149 
1150 	/*
1151 	 * This function may be called from either process or kthread context,
1152 	 * hence the need to check for both stop conditions.
1153 	 */
1154 	if (current->mm)
1155 		return signal_pending(current);
1156 	else
1157 		return kthread_should_stop();
1158 
1159 	return 0;
1160 }
1161 
1162 /*
1163  * Scan a memory block (exclusive range) for valid pointers and add those
1164  * found to the gray list.
1165  */
1166 static void scan_block(void *_start, void *_end,
1167 		       struct kmemleak_object *scanned)
1168 {
1169 	unsigned long *ptr;
1170 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1171 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1172 	unsigned long flags;
1173 
1174 	read_lock_irqsave(&kmemleak_lock, flags);
1175 	for (ptr = start; ptr < end; ptr++) {
1176 		struct kmemleak_object *object;
1177 		unsigned long pointer;
1178 
1179 		if (scan_should_stop())
1180 			break;
1181 
1182 		/* don't scan uninitialized memory */
1183 		if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1184 						  BYTES_PER_POINTER))
1185 			continue;
1186 
1187 		kasan_disable_current();
1188 		pointer = *ptr;
1189 		kasan_enable_current();
1190 
1191 		if (pointer < min_addr || pointer >= max_addr)
1192 			continue;
1193 
1194 		/*
1195 		 * No need for get_object() here since we hold kmemleak_lock.
1196 		 * object->use_count cannot be dropped to 0 while the object
1197 		 * is still present in object_tree_root and object_list
1198 		 * (with updates protected by kmemleak_lock).
1199 		 */
1200 		object = lookup_object(pointer, 1);
1201 		if (!object)
1202 			continue;
1203 		if (object == scanned)
1204 			/* self referenced, ignore */
1205 			continue;
1206 
1207 		/*
1208 		 * Avoid the lockdep recursive warning on object->lock being
1209 		 * previously acquired in scan_object(). These locks are
1210 		 * enclosed by scan_mutex.
1211 		 */
1212 		spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1213 		if (!color_white(object)) {
1214 			/* non-orphan, ignored or new */
1215 			spin_unlock(&object->lock);
1216 			continue;
1217 		}
1218 
1219 		/*
1220 		 * Increase the object's reference count (number of pointers
1221 		 * to the memory block). If this count reaches the required
1222 		 * minimum, the object's color will become gray and it will be
1223 		 * added to the gray_list.
1224 		 */
1225 		object->count++;
1226 		if (color_gray(object)) {
1227 			/* put_object() called when removing from gray_list */
1228 			WARN_ON(!get_object(object));
1229 			list_add_tail(&object->gray_list, &gray_list);
1230 		}
1231 		spin_unlock(&object->lock);
1232 	}
1233 	read_unlock_irqrestore(&kmemleak_lock, flags);
1234 }
1235 
1236 /*
1237  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1238  */
1239 static void scan_large_block(void *start, void *end)
1240 {
1241 	void *next;
1242 
1243 	while (start < end) {
1244 		next = min(start + MAX_SCAN_SIZE, end);
1245 		scan_block(start, next, NULL);
1246 		start = next;
1247 		cond_resched();
1248 	}
1249 }
1250 
1251 /*
1252  * Scan a memory block corresponding to a kmemleak_object. A condition is
1253  * that object->use_count >= 1.
1254  */
1255 static void scan_object(struct kmemleak_object *object)
1256 {
1257 	struct kmemleak_scan_area *area;
1258 	unsigned long flags;
1259 
1260 	/*
1261 	 * Once the object->lock is acquired, the corresponding memory block
1262 	 * cannot be freed (the same lock is acquired in delete_object).
1263 	 */
1264 	spin_lock_irqsave(&object->lock, flags);
1265 	if (object->flags & OBJECT_NO_SCAN)
1266 		goto out;
1267 	if (!(object->flags & OBJECT_ALLOCATED))
1268 		/* already freed object */
1269 		goto out;
1270 	if (hlist_empty(&object->area_list)) {
1271 		void *start = (void *)object->pointer;
1272 		void *end = (void *)(object->pointer + object->size);
1273 		void *next;
1274 
1275 		do {
1276 			next = min(start + MAX_SCAN_SIZE, end);
1277 			scan_block(start, next, object);
1278 
1279 			start = next;
1280 			if (start >= end)
1281 				break;
1282 
1283 			spin_unlock_irqrestore(&object->lock, flags);
1284 			cond_resched();
1285 			spin_lock_irqsave(&object->lock, flags);
1286 		} while (object->flags & OBJECT_ALLOCATED);
1287 	} else
1288 		hlist_for_each_entry(area, &object->area_list, node)
1289 			scan_block((void *)area->start,
1290 				   (void *)(area->start + area->size),
1291 				   object);
1292 out:
1293 	spin_unlock_irqrestore(&object->lock, flags);
1294 }
1295 
1296 /*
1297  * Scan the objects already referenced (gray objects). More objects will be
1298  * referenced and, if there are no memory leaks, all the objects are scanned.
1299  */
1300 static void scan_gray_list(void)
1301 {
1302 	struct kmemleak_object *object, *tmp;
1303 
1304 	/*
1305 	 * The list traversal is safe for both tail additions and removals
1306 	 * from inside the loop. The kmemleak objects cannot be freed from
1307 	 * outside the loop because their use_count was incremented.
1308 	 */
1309 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1310 	while (&object->gray_list != &gray_list) {
1311 		cond_resched();
1312 
1313 		/* may add new objects to the list */
1314 		if (!scan_should_stop())
1315 			scan_object(object);
1316 
1317 		tmp = list_entry(object->gray_list.next, typeof(*object),
1318 				 gray_list);
1319 
1320 		/* remove the object from the list and release it */
1321 		list_del(&object->gray_list);
1322 		put_object(object);
1323 
1324 		object = tmp;
1325 	}
1326 	WARN_ON(!list_empty(&gray_list));
1327 }
1328 
1329 /*
1330  * Scan data sections and all the referenced memory blocks allocated via the
1331  * kernel's standard allocators. This function must be called with the
1332  * scan_mutex held.
1333  */
1334 static void kmemleak_scan(void)
1335 {
1336 	unsigned long flags;
1337 	struct kmemleak_object *object;
1338 	int i;
1339 	int new_leaks = 0;
1340 
1341 	jiffies_last_scan = jiffies;
1342 
1343 	/* prepare the kmemleak_object's */
1344 	rcu_read_lock();
1345 	list_for_each_entry_rcu(object, &object_list, object_list) {
1346 		spin_lock_irqsave(&object->lock, flags);
1347 #ifdef DEBUG
1348 		/*
1349 		 * With a few exceptions there should be a maximum of
1350 		 * 1 reference to any object at this point.
1351 		 */
1352 		if (atomic_read(&object->use_count) > 1) {
1353 			pr_debug("object->use_count = %d\n",
1354 				 atomic_read(&object->use_count));
1355 			dump_object_info(object);
1356 		}
1357 #endif
1358 		/* reset the reference count (whiten the object) */
1359 		object->count = 0;
1360 		if (color_gray(object) && get_object(object))
1361 			list_add_tail(&object->gray_list, &gray_list);
1362 
1363 		spin_unlock_irqrestore(&object->lock, flags);
1364 	}
1365 	rcu_read_unlock();
1366 
1367 	/* data/bss scanning */
1368 	scan_large_block(_sdata, _edata);
1369 	scan_large_block(__bss_start, __bss_stop);
1370 
1371 #ifdef CONFIG_SMP
1372 	/* per-cpu sections scanning */
1373 	for_each_possible_cpu(i)
1374 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1375 				 __per_cpu_end + per_cpu_offset(i));
1376 #endif
1377 
1378 	/*
1379 	 * Struct page scanning for each node.
1380 	 */
1381 	get_online_mems();
1382 	for_each_online_node(i) {
1383 		unsigned long start_pfn = node_start_pfn(i);
1384 		unsigned long end_pfn = node_end_pfn(i);
1385 		unsigned long pfn;
1386 
1387 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1388 			struct page *page;
1389 
1390 			if (!pfn_valid(pfn))
1391 				continue;
1392 			page = pfn_to_page(pfn);
1393 			/* only scan if page is in use */
1394 			if (page_count(page) == 0)
1395 				continue;
1396 			scan_block(page, page + 1, NULL);
1397 		}
1398 	}
1399 	put_online_mems();
1400 
1401 	/*
1402 	 * Scanning the task stacks (may introduce false negatives).
1403 	 */
1404 	if (kmemleak_stack_scan) {
1405 		struct task_struct *p, *g;
1406 
1407 		read_lock(&tasklist_lock);
1408 		do_each_thread(g, p) {
1409 			scan_block(task_stack_page(p), task_stack_page(p) +
1410 				   THREAD_SIZE, NULL);
1411 		} while_each_thread(g, p);
1412 		read_unlock(&tasklist_lock);
1413 	}
1414 
1415 	/*
1416 	 * Scan the objects already referenced from the sections scanned
1417 	 * above.
1418 	 */
1419 	scan_gray_list();
1420 
1421 	/*
1422 	 * Check for new or unreferenced objects modified since the previous
1423 	 * scan and color them gray until the next scan.
1424 	 */
1425 	rcu_read_lock();
1426 	list_for_each_entry_rcu(object, &object_list, object_list) {
1427 		spin_lock_irqsave(&object->lock, flags);
1428 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1429 		    && update_checksum(object) && get_object(object)) {
1430 			/* color it gray temporarily */
1431 			object->count = object->min_count;
1432 			list_add_tail(&object->gray_list, &gray_list);
1433 		}
1434 		spin_unlock_irqrestore(&object->lock, flags);
1435 	}
1436 	rcu_read_unlock();
1437 
1438 	/*
1439 	 * Re-scan the gray list for modified unreferenced objects.
1440 	 */
1441 	scan_gray_list();
1442 
1443 	/*
1444 	 * If scanning was stopped do not report any new unreferenced objects.
1445 	 */
1446 	if (scan_should_stop())
1447 		return;
1448 
1449 	/*
1450 	 * Scanning result reporting.
1451 	 */
1452 	rcu_read_lock();
1453 	list_for_each_entry_rcu(object, &object_list, object_list) {
1454 		spin_lock_irqsave(&object->lock, flags);
1455 		if (unreferenced_object(object) &&
1456 		    !(object->flags & OBJECT_REPORTED)) {
1457 			object->flags |= OBJECT_REPORTED;
1458 			new_leaks++;
1459 		}
1460 		spin_unlock_irqrestore(&object->lock, flags);
1461 	}
1462 	rcu_read_unlock();
1463 
1464 	if (new_leaks) {
1465 		kmemleak_found_leaks = true;
1466 
1467 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1468 			new_leaks);
1469 	}
1470 
1471 }
1472 
1473 /*
1474  * Thread function performing automatic memory scanning. Unreferenced objects
1475  * at the end of a memory scan are reported but only the first time.
1476  */
1477 static int kmemleak_scan_thread(void *arg)
1478 {
1479 	static int first_run = 1;
1480 
1481 	pr_info("Automatic memory scanning thread started\n");
1482 	set_user_nice(current, 10);
1483 
1484 	/*
1485 	 * Wait before the first scan to allow the system to fully initialize.
1486 	 */
1487 	if (first_run) {
1488 		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1489 		first_run = 0;
1490 		while (timeout && !kthread_should_stop())
1491 			timeout = schedule_timeout_interruptible(timeout);
1492 	}
1493 
1494 	while (!kthread_should_stop()) {
1495 		signed long timeout = jiffies_scan_wait;
1496 
1497 		mutex_lock(&scan_mutex);
1498 		kmemleak_scan();
1499 		mutex_unlock(&scan_mutex);
1500 
1501 		/* wait before the next scan */
1502 		while (timeout && !kthread_should_stop())
1503 			timeout = schedule_timeout_interruptible(timeout);
1504 	}
1505 
1506 	pr_info("Automatic memory scanning thread ended\n");
1507 
1508 	return 0;
1509 }
1510 
1511 /*
1512  * Start the automatic memory scanning thread. This function must be called
1513  * with the scan_mutex held.
1514  */
1515 static void start_scan_thread(void)
1516 {
1517 	if (scan_thread)
1518 		return;
1519 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1520 	if (IS_ERR(scan_thread)) {
1521 		pr_warn("Failed to create the scan thread\n");
1522 		scan_thread = NULL;
1523 	}
1524 }
1525 
1526 /*
1527  * Stop the automatic memory scanning thread. This function must be called
1528  * with the scan_mutex held.
1529  */
1530 static void stop_scan_thread(void)
1531 {
1532 	if (scan_thread) {
1533 		kthread_stop(scan_thread);
1534 		scan_thread = NULL;
1535 	}
1536 }
1537 
1538 /*
1539  * Iterate over the object_list and return the first valid object at or after
1540  * the required position with its use_count incremented. The function triggers
1541  * a memory scanning when the pos argument points to the first position.
1542  */
1543 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1544 {
1545 	struct kmemleak_object *object;
1546 	loff_t n = *pos;
1547 	int err;
1548 
1549 	err = mutex_lock_interruptible(&scan_mutex);
1550 	if (err < 0)
1551 		return ERR_PTR(err);
1552 
1553 	rcu_read_lock();
1554 	list_for_each_entry_rcu(object, &object_list, object_list) {
1555 		if (n-- > 0)
1556 			continue;
1557 		if (get_object(object))
1558 			goto out;
1559 	}
1560 	object = NULL;
1561 out:
1562 	return object;
1563 }
1564 
1565 /*
1566  * Return the next object in the object_list. The function decrements the
1567  * use_count of the previous object and increases that of the next one.
1568  */
1569 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1570 {
1571 	struct kmemleak_object *prev_obj = v;
1572 	struct kmemleak_object *next_obj = NULL;
1573 	struct kmemleak_object *obj = prev_obj;
1574 
1575 	++(*pos);
1576 
1577 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1578 		if (get_object(obj)) {
1579 			next_obj = obj;
1580 			break;
1581 		}
1582 	}
1583 
1584 	put_object(prev_obj);
1585 	return next_obj;
1586 }
1587 
1588 /*
1589  * Decrement the use_count of the last object required, if any.
1590  */
1591 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1592 {
1593 	if (!IS_ERR(v)) {
1594 		/*
1595 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1596 		 * waiting was interrupted, so only release it if !IS_ERR.
1597 		 */
1598 		rcu_read_unlock();
1599 		mutex_unlock(&scan_mutex);
1600 		if (v)
1601 			put_object(v);
1602 	}
1603 }
1604 
1605 /*
1606  * Print the information for an unreferenced object to the seq file.
1607  */
1608 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1609 {
1610 	struct kmemleak_object *object = v;
1611 	unsigned long flags;
1612 
1613 	spin_lock_irqsave(&object->lock, flags);
1614 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1615 		print_unreferenced(seq, object);
1616 	spin_unlock_irqrestore(&object->lock, flags);
1617 	return 0;
1618 }
1619 
1620 static const struct seq_operations kmemleak_seq_ops = {
1621 	.start = kmemleak_seq_start,
1622 	.next  = kmemleak_seq_next,
1623 	.stop  = kmemleak_seq_stop,
1624 	.show  = kmemleak_seq_show,
1625 };
1626 
1627 static int kmemleak_open(struct inode *inode, struct file *file)
1628 {
1629 	return seq_open(file, &kmemleak_seq_ops);
1630 }
1631 
1632 static int dump_str_object_info(const char *str)
1633 {
1634 	unsigned long flags;
1635 	struct kmemleak_object *object;
1636 	unsigned long addr;
1637 
1638 	if (kstrtoul(str, 0, &addr))
1639 		return -EINVAL;
1640 	object = find_and_get_object(addr, 0);
1641 	if (!object) {
1642 		pr_info("Unknown object at 0x%08lx\n", addr);
1643 		return -EINVAL;
1644 	}
1645 
1646 	spin_lock_irqsave(&object->lock, flags);
1647 	dump_object_info(object);
1648 	spin_unlock_irqrestore(&object->lock, flags);
1649 
1650 	put_object(object);
1651 	return 0;
1652 }
1653 
1654 /*
1655  * We use grey instead of black to ensure we can do future scans on the same
1656  * objects. If we did not do future scans these black objects could
1657  * potentially contain references to newly allocated objects in the future and
1658  * we'd end up with false positives.
1659  */
1660 static void kmemleak_clear(void)
1661 {
1662 	struct kmemleak_object *object;
1663 	unsigned long flags;
1664 
1665 	rcu_read_lock();
1666 	list_for_each_entry_rcu(object, &object_list, object_list) {
1667 		spin_lock_irqsave(&object->lock, flags);
1668 		if ((object->flags & OBJECT_REPORTED) &&
1669 		    unreferenced_object(object))
1670 			__paint_it(object, KMEMLEAK_GREY);
1671 		spin_unlock_irqrestore(&object->lock, flags);
1672 	}
1673 	rcu_read_unlock();
1674 
1675 	kmemleak_found_leaks = false;
1676 }
1677 
1678 static void __kmemleak_do_cleanup(void);
1679 
1680 /*
1681  * File write operation to configure kmemleak at run-time. The following
1682  * commands can be written to the /sys/kernel/debug/kmemleak file:
1683  *   off	- disable kmemleak (irreversible)
1684  *   stack=on	- enable the task stacks scanning
1685  *   stack=off	- disable the tasks stacks scanning
1686  *   scan=on	- start the automatic memory scanning thread
1687  *   scan=off	- stop the automatic memory scanning thread
1688  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1689  *		  disable it)
1690  *   scan	- trigger a memory scan
1691  *   clear	- mark all current reported unreferenced kmemleak objects as
1692  *		  grey to ignore printing them, or free all kmemleak objects
1693  *		  if kmemleak has been disabled.
1694  *   dump=...	- dump information about the object found at the given address
1695  */
1696 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1697 			      size_t size, loff_t *ppos)
1698 {
1699 	char buf[64];
1700 	int buf_size;
1701 	int ret;
1702 
1703 	buf_size = min(size, (sizeof(buf) - 1));
1704 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1705 		return -EFAULT;
1706 	buf[buf_size] = 0;
1707 
1708 	ret = mutex_lock_interruptible(&scan_mutex);
1709 	if (ret < 0)
1710 		return ret;
1711 
1712 	if (strncmp(buf, "clear", 5) == 0) {
1713 		if (kmemleak_enabled)
1714 			kmemleak_clear();
1715 		else
1716 			__kmemleak_do_cleanup();
1717 		goto out;
1718 	}
1719 
1720 	if (!kmemleak_enabled) {
1721 		ret = -EBUSY;
1722 		goto out;
1723 	}
1724 
1725 	if (strncmp(buf, "off", 3) == 0)
1726 		kmemleak_disable();
1727 	else if (strncmp(buf, "stack=on", 8) == 0)
1728 		kmemleak_stack_scan = 1;
1729 	else if (strncmp(buf, "stack=off", 9) == 0)
1730 		kmemleak_stack_scan = 0;
1731 	else if (strncmp(buf, "scan=on", 7) == 0)
1732 		start_scan_thread();
1733 	else if (strncmp(buf, "scan=off", 8) == 0)
1734 		stop_scan_thread();
1735 	else if (strncmp(buf, "scan=", 5) == 0) {
1736 		unsigned long secs;
1737 
1738 		ret = kstrtoul(buf + 5, 0, &secs);
1739 		if (ret < 0)
1740 			goto out;
1741 		stop_scan_thread();
1742 		if (secs) {
1743 			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1744 			start_scan_thread();
1745 		}
1746 	} else if (strncmp(buf, "scan", 4) == 0)
1747 		kmemleak_scan();
1748 	else if (strncmp(buf, "dump=", 5) == 0)
1749 		ret = dump_str_object_info(buf + 5);
1750 	else
1751 		ret = -EINVAL;
1752 
1753 out:
1754 	mutex_unlock(&scan_mutex);
1755 	if (ret < 0)
1756 		return ret;
1757 
1758 	/* ignore the rest of the buffer, only one command at a time */
1759 	*ppos += size;
1760 	return size;
1761 }
1762 
1763 static const struct file_operations kmemleak_fops = {
1764 	.owner		= THIS_MODULE,
1765 	.open		= kmemleak_open,
1766 	.read		= seq_read,
1767 	.write		= kmemleak_write,
1768 	.llseek		= seq_lseek,
1769 	.release	= seq_release,
1770 };
1771 
1772 static void __kmemleak_do_cleanup(void)
1773 {
1774 	struct kmemleak_object *object;
1775 
1776 	rcu_read_lock();
1777 	list_for_each_entry_rcu(object, &object_list, object_list)
1778 		delete_object_full(object->pointer);
1779 	rcu_read_unlock();
1780 }
1781 
1782 /*
1783  * Stop the memory scanning thread and free the kmemleak internal objects if
1784  * no previous scan thread (otherwise, kmemleak may still have some useful
1785  * information on memory leaks).
1786  */
1787 static void kmemleak_do_cleanup(struct work_struct *work)
1788 {
1789 	stop_scan_thread();
1790 
1791 	/*
1792 	 * Once the scan thread has stopped, it is safe to no longer track
1793 	 * object freeing. Ordering of the scan thread stopping and the memory
1794 	 * accesses below is guaranteed by the kthread_stop() function.
1795 	 */
1796 	kmemleak_free_enabled = 0;
1797 
1798 	if (!kmemleak_found_leaks)
1799 		__kmemleak_do_cleanup();
1800 	else
1801 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1802 }
1803 
1804 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1805 
1806 /*
1807  * Disable kmemleak. No memory allocation/freeing will be traced once this
1808  * function is called. Disabling kmemleak is an irreversible operation.
1809  */
1810 static void kmemleak_disable(void)
1811 {
1812 	/* atomically check whether it was already invoked */
1813 	if (cmpxchg(&kmemleak_error, 0, 1))
1814 		return;
1815 
1816 	/* stop any memory operation tracing */
1817 	kmemleak_enabled = 0;
1818 
1819 	/* check whether it is too early for a kernel thread */
1820 	if (kmemleak_initialized)
1821 		schedule_work(&cleanup_work);
1822 	else
1823 		kmemleak_free_enabled = 0;
1824 
1825 	pr_info("Kernel memory leak detector disabled\n");
1826 }
1827 
1828 /*
1829  * Allow boot-time kmemleak disabling (enabled by default).
1830  */
1831 static int kmemleak_boot_config(char *str)
1832 {
1833 	if (!str)
1834 		return -EINVAL;
1835 	if (strcmp(str, "off") == 0)
1836 		kmemleak_disable();
1837 	else if (strcmp(str, "on") == 0)
1838 		kmemleak_skip_disable = 1;
1839 	else
1840 		return -EINVAL;
1841 	return 0;
1842 }
1843 early_param("kmemleak", kmemleak_boot_config);
1844 
1845 static void __init print_log_trace(struct early_log *log)
1846 {
1847 	struct stack_trace trace;
1848 
1849 	trace.nr_entries = log->trace_len;
1850 	trace.entries = log->trace;
1851 
1852 	pr_notice("Early log backtrace:\n");
1853 	print_stack_trace(&trace, 2);
1854 }
1855 
1856 /*
1857  * Kmemleak initialization.
1858  */
1859 void __init kmemleak_init(void)
1860 {
1861 	int i;
1862 	unsigned long flags;
1863 
1864 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1865 	if (!kmemleak_skip_disable) {
1866 		kmemleak_early_log = 0;
1867 		kmemleak_disable();
1868 		return;
1869 	}
1870 #endif
1871 
1872 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1873 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1874 
1875 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1876 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1877 
1878 	if (crt_early_log > ARRAY_SIZE(early_log))
1879 		pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
1880 			crt_early_log);
1881 
1882 	/* the kernel is still in UP mode, so disabling the IRQs is enough */
1883 	local_irq_save(flags);
1884 	kmemleak_early_log = 0;
1885 	if (kmemleak_error) {
1886 		local_irq_restore(flags);
1887 		return;
1888 	} else {
1889 		kmemleak_enabled = 1;
1890 		kmemleak_free_enabled = 1;
1891 	}
1892 	local_irq_restore(flags);
1893 
1894 	/*
1895 	 * This is the point where tracking allocations is safe. Automatic
1896 	 * scanning is started during the late initcall. Add the early logged
1897 	 * callbacks to the kmemleak infrastructure.
1898 	 */
1899 	for (i = 0; i < crt_early_log; i++) {
1900 		struct early_log *log = &early_log[i];
1901 
1902 		switch (log->op_type) {
1903 		case KMEMLEAK_ALLOC:
1904 			early_alloc(log);
1905 			break;
1906 		case KMEMLEAK_ALLOC_PERCPU:
1907 			early_alloc_percpu(log);
1908 			break;
1909 		case KMEMLEAK_FREE:
1910 			kmemleak_free(log->ptr);
1911 			break;
1912 		case KMEMLEAK_FREE_PART:
1913 			kmemleak_free_part(log->ptr, log->size);
1914 			break;
1915 		case KMEMLEAK_FREE_PERCPU:
1916 			kmemleak_free_percpu(log->ptr);
1917 			break;
1918 		case KMEMLEAK_NOT_LEAK:
1919 			kmemleak_not_leak(log->ptr);
1920 			break;
1921 		case KMEMLEAK_IGNORE:
1922 			kmemleak_ignore(log->ptr);
1923 			break;
1924 		case KMEMLEAK_SCAN_AREA:
1925 			kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1926 			break;
1927 		case KMEMLEAK_NO_SCAN:
1928 			kmemleak_no_scan(log->ptr);
1929 			break;
1930 		default:
1931 			kmemleak_warn("Unknown early log operation: %d\n",
1932 				      log->op_type);
1933 		}
1934 
1935 		if (kmemleak_warning) {
1936 			print_log_trace(log);
1937 			kmemleak_warning = 0;
1938 		}
1939 	}
1940 }
1941 
1942 /*
1943  * Late initialization function.
1944  */
1945 static int __init kmemleak_late_init(void)
1946 {
1947 	struct dentry *dentry;
1948 
1949 	kmemleak_initialized = 1;
1950 
1951 	if (kmemleak_error) {
1952 		/*
1953 		 * Some error occurred and kmemleak was disabled. There is a
1954 		 * small chance that kmemleak_disable() was called immediately
1955 		 * after setting kmemleak_initialized and we may end up with
1956 		 * two clean-up threads but serialized by scan_mutex.
1957 		 */
1958 		schedule_work(&cleanup_work);
1959 		return -ENOMEM;
1960 	}
1961 
1962 	dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1963 				     &kmemleak_fops);
1964 	if (!dentry)
1965 		pr_warn("Failed to create the debugfs kmemleak file\n");
1966 	mutex_lock(&scan_mutex);
1967 	start_scan_thread();
1968 	mutex_unlock(&scan_mutex);
1969 
1970 	pr_info("Kernel memory leak detector initialized\n");
1971 
1972 	return 0;
1973 }
1974 late_initcall(kmemleak_late_init);
1975