1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/kmemleak.c 4 * 5 * Copyright (C) 2008 ARM Limited 6 * Written by Catalin Marinas <catalin.marinas@arm.com> 7 * 8 * For more information on the algorithm and kmemleak usage, please see 9 * Documentation/dev-tools/kmemleak.rst. 10 * 11 * Notes on locking 12 * ---------------- 13 * 14 * The following locks and mutexes are used by kmemleak: 15 * 16 * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and 17 * accesses to the object_tree_root (or object_phys_tree_root). The 18 * object_list is the main list holding the metadata (struct kmemleak_object) 19 * for the allocated memory blocks. The object_tree_root and object_phys_tree_root 20 * are red black trees used to look-up metadata based on a pointer to the 21 * corresponding memory block. The object_phys_tree_root is for objects 22 * allocated with physical address. The kmemleak_object structures are 23 * added to the object_list and object_tree_root (or object_phys_tree_root) 24 * in the create_object() function called from the kmemleak_alloc() (or 25 * kmemleak_alloc_phys()) callback and removed in delete_object() called from 26 * the kmemleak_free() callback 27 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object. 28 * Accesses to the metadata (e.g. count) are protected by this lock. Note 29 * that some members of this structure may be protected by other means 30 * (atomic or kmemleak_lock). This lock is also held when scanning the 31 * corresponding memory block to avoid the kernel freeing it via the 32 * kmemleak_free() callback. This is less heavyweight than holding a global 33 * lock like kmemleak_lock during scanning. 34 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 35 * unreferenced objects at a time. The gray_list contains the objects which 36 * are already referenced or marked as false positives and need to be 37 * scanned. This list is only modified during a scanning episode when the 38 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 39 * Note that the kmemleak_object.use_count is incremented when an object is 40 * added to the gray_list and therefore cannot be freed. This mutex also 41 * prevents multiple users of the "kmemleak" debugfs file together with 42 * modifications to the memory scanning parameters including the scan_thread 43 * pointer 44 * 45 * Locks and mutexes are acquired/nested in the following order: 46 * 47 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 48 * 49 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 50 * regions. 51 * 52 * The kmemleak_object structures have a use_count incremented or decremented 53 * using the get_object()/put_object() functions. When the use_count becomes 54 * 0, this count can no longer be incremented and put_object() schedules the 55 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 56 * function must be protected by rcu_read_lock() to avoid accessing a freed 57 * structure. 58 */ 59 60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 61 62 #include <linux/init.h> 63 #include <linux/kernel.h> 64 #include <linux/list.h> 65 #include <linux/sched/signal.h> 66 #include <linux/sched/task.h> 67 #include <linux/sched/task_stack.h> 68 #include <linux/jiffies.h> 69 #include <linux/delay.h> 70 #include <linux/export.h> 71 #include <linux/kthread.h> 72 #include <linux/rbtree.h> 73 #include <linux/fs.h> 74 #include <linux/debugfs.h> 75 #include <linux/seq_file.h> 76 #include <linux/cpumask.h> 77 #include <linux/spinlock.h> 78 #include <linux/module.h> 79 #include <linux/mutex.h> 80 #include <linux/rcupdate.h> 81 #include <linux/stacktrace.h> 82 #include <linux/cache.h> 83 #include <linux/percpu.h> 84 #include <linux/memblock.h> 85 #include <linux/pfn.h> 86 #include <linux/mmzone.h> 87 #include <linux/slab.h> 88 #include <linux/thread_info.h> 89 #include <linux/err.h> 90 #include <linux/uaccess.h> 91 #include <linux/string.h> 92 #include <linux/nodemask.h> 93 #include <linux/mm.h> 94 #include <linux/workqueue.h> 95 #include <linux/crc32.h> 96 97 #include <asm/sections.h> 98 #include <asm/processor.h> 99 #include <linux/atomic.h> 100 101 #include <linux/kasan.h> 102 #include <linux/kfence.h> 103 #include <linux/kmemleak.h> 104 #include <linux/memory_hotplug.h> 105 106 /* 107 * Kmemleak configuration and common defines. 108 */ 109 #define MAX_TRACE 16 /* stack trace length */ 110 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 111 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 112 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 113 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 114 115 #define BYTES_PER_POINTER sizeof(void *) 116 117 /* GFP bitmask for kmemleak internal allocations */ 118 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \ 119 __GFP_NOLOCKDEP)) | \ 120 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 121 __GFP_NOWARN) 122 123 /* scanning area inside a memory block */ 124 struct kmemleak_scan_area { 125 struct hlist_node node; 126 unsigned long start; 127 size_t size; 128 }; 129 130 #define KMEMLEAK_GREY 0 131 #define KMEMLEAK_BLACK -1 132 133 /* 134 * Structure holding the metadata for each allocated memory block. 135 * Modifications to such objects should be made while holding the 136 * object->lock. Insertions or deletions from object_list, gray_list or 137 * rb_node are already protected by the corresponding locks or mutex (see 138 * the notes on locking above). These objects are reference-counted 139 * (use_count) and freed using the RCU mechanism. 140 */ 141 struct kmemleak_object { 142 raw_spinlock_t lock; 143 unsigned int flags; /* object status flags */ 144 struct list_head object_list; 145 struct list_head gray_list; 146 struct rb_node rb_node; 147 struct rcu_head rcu; /* object_list lockless traversal */ 148 /* object usage count; object freed when use_count == 0 */ 149 atomic_t use_count; 150 unsigned long pointer; 151 size_t size; 152 /* pass surplus references to this pointer */ 153 unsigned long excess_ref; 154 /* minimum number of a pointers found before it is considered leak */ 155 int min_count; 156 /* the total number of pointers found pointing to this object */ 157 int count; 158 /* checksum for detecting modified objects */ 159 u32 checksum; 160 /* memory ranges to be scanned inside an object (empty for all) */ 161 struct hlist_head area_list; 162 unsigned long trace[MAX_TRACE]; 163 unsigned int trace_len; 164 unsigned long jiffies; /* creation timestamp */ 165 pid_t pid; /* pid of the current task */ 166 char comm[TASK_COMM_LEN]; /* executable name */ 167 }; 168 169 /* flag representing the memory block allocation status */ 170 #define OBJECT_ALLOCATED (1 << 0) 171 /* flag set after the first reporting of an unreference object */ 172 #define OBJECT_REPORTED (1 << 1) 173 /* flag set to not scan the object */ 174 #define OBJECT_NO_SCAN (1 << 2) 175 /* flag set to fully scan the object when scan_area allocation failed */ 176 #define OBJECT_FULL_SCAN (1 << 3) 177 /* flag set for object allocated with physical address */ 178 #define OBJECT_PHYS (1 << 4) 179 180 #define HEX_PREFIX " " 181 /* number of bytes to print per line; must be 16 or 32 */ 182 #define HEX_ROW_SIZE 16 183 /* number of bytes to print at a time (1, 2, 4, 8) */ 184 #define HEX_GROUP_SIZE 1 185 /* include ASCII after the hex output */ 186 #define HEX_ASCII 1 187 /* max number of lines to be printed */ 188 #define HEX_MAX_LINES 2 189 190 /* the list of all allocated objects */ 191 static LIST_HEAD(object_list); 192 /* the list of gray-colored objects (see color_gray comment below) */ 193 static LIST_HEAD(gray_list); 194 /* memory pool allocation */ 195 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE]; 196 static int mem_pool_free_count = ARRAY_SIZE(mem_pool); 197 static LIST_HEAD(mem_pool_free_list); 198 /* search tree for object boundaries */ 199 static struct rb_root object_tree_root = RB_ROOT; 200 /* search tree for object (with OBJECT_PHYS flag) boundaries */ 201 static struct rb_root object_phys_tree_root = RB_ROOT; 202 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */ 203 static DEFINE_RAW_SPINLOCK(kmemleak_lock); 204 205 /* allocation caches for kmemleak internal data */ 206 static struct kmem_cache *object_cache; 207 static struct kmem_cache *scan_area_cache; 208 209 /* set if tracing memory operations is enabled */ 210 static int kmemleak_enabled = 1; 211 /* same as above but only for the kmemleak_free() callback */ 212 static int kmemleak_free_enabled = 1; 213 /* set in the late_initcall if there were no errors */ 214 static int kmemleak_initialized; 215 /* set if a kmemleak warning was issued */ 216 static int kmemleak_warning; 217 /* set if a fatal kmemleak error has occurred */ 218 static int kmemleak_error; 219 220 /* minimum and maximum address that may be valid pointers */ 221 static unsigned long min_addr = ULONG_MAX; 222 static unsigned long max_addr; 223 224 static struct task_struct *scan_thread; 225 /* used to avoid reporting of recently allocated objects */ 226 static unsigned long jiffies_min_age; 227 static unsigned long jiffies_last_scan; 228 /* delay between automatic memory scannings */ 229 static unsigned long jiffies_scan_wait; 230 /* enables or disables the task stacks scanning */ 231 static int kmemleak_stack_scan = 1; 232 /* protects the memory scanning, parameters and debug/kmemleak file access */ 233 static DEFINE_MUTEX(scan_mutex); 234 /* setting kmemleak=on, will set this var, skipping the disable */ 235 static int kmemleak_skip_disable; 236 /* If there are leaks that can be reported */ 237 static bool kmemleak_found_leaks; 238 239 static bool kmemleak_verbose; 240 module_param_named(verbose, kmemleak_verbose, bool, 0600); 241 242 static void kmemleak_disable(void); 243 244 /* 245 * Print a warning and dump the stack trace. 246 */ 247 #define kmemleak_warn(x...) do { \ 248 pr_warn(x); \ 249 dump_stack(); \ 250 kmemleak_warning = 1; \ 251 } while (0) 252 253 /* 254 * Macro invoked when a serious kmemleak condition occurred and cannot be 255 * recovered from. Kmemleak will be disabled and further allocation/freeing 256 * tracing no longer available. 257 */ 258 #define kmemleak_stop(x...) do { \ 259 kmemleak_warn(x); \ 260 kmemleak_disable(); \ 261 } while (0) 262 263 #define warn_or_seq_printf(seq, fmt, ...) do { \ 264 if (seq) \ 265 seq_printf(seq, fmt, ##__VA_ARGS__); \ 266 else \ 267 pr_warn(fmt, ##__VA_ARGS__); \ 268 } while (0) 269 270 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type, 271 int rowsize, int groupsize, const void *buf, 272 size_t len, bool ascii) 273 { 274 if (seq) 275 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize, 276 buf, len, ascii); 277 else 278 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type, 279 rowsize, groupsize, buf, len, ascii); 280 } 281 282 /* 283 * Printing of the objects hex dump to the seq file. The number of lines to be 284 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 285 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 286 * with the object->lock held. 287 */ 288 static void hex_dump_object(struct seq_file *seq, 289 struct kmemleak_object *object) 290 { 291 const u8 *ptr = (const u8 *)object->pointer; 292 size_t len; 293 294 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS)) 295 return; 296 297 /* limit the number of lines to HEX_MAX_LINES */ 298 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 299 300 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len); 301 kasan_disable_current(); 302 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE, 303 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII); 304 kasan_enable_current(); 305 } 306 307 /* 308 * Object colors, encoded with count and min_count: 309 * - white - orphan object, not enough references to it (count < min_count) 310 * - gray - not orphan, not marked as false positive (min_count == 0) or 311 * sufficient references to it (count >= min_count) 312 * - black - ignore, it doesn't contain references (e.g. text section) 313 * (min_count == -1). No function defined for this color. 314 * Newly created objects don't have any color assigned (object->count == -1) 315 * before the next memory scan when they become white. 316 */ 317 static bool color_white(const struct kmemleak_object *object) 318 { 319 return object->count != KMEMLEAK_BLACK && 320 object->count < object->min_count; 321 } 322 323 static bool color_gray(const struct kmemleak_object *object) 324 { 325 return object->min_count != KMEMLEAK_BLACK && 326 object->count >= object->min_count; 327 } 328 329 /* 330 * Objects are considered unreferenced only if their color is white, they have 331 * not be deleted and have a minimum age to avoid false positives caused by 332 * pointers temporarily stored in CPU registers. 333 */ 334 static bool unreferenced_object(struct kmemleak_object *object) 335 { 336 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 337 time_before_eq(object->jiffies + jiffies_min_age, 338 jiffies_last_scan); 339 } 340 341 /* 342 * Printing of the unreferenced objects information to the seq file. The 343 * print_unreferenced function must be called with the object->lock held. 344 */ 345 static void print_unreferenced(struct seq_file *seq, 346 struct kmemleak_object *object) 347 { 348 int i; 349 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 350 351 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 352 object->pointer, object->size); 353 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 354 object->comm, object->pid, object->jiffies, 355 msecs_age / 1000, msecs_age % 1000); 356 hex_dump_object(seq, object); 357 warn_or_seq_printf(seq, " backtrace:\n"); 358 359 for (i = 0; i < object->trace_len; i++) { 360 void *ptr = (void *)object->trace[i]; 361 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); 362 } 363 } 364 365 /* 366 * Print the kmemleak_object information. This function is used mainly for 367 * debugging special cases when kmemleak operations. It must be called with 368 * the object->lock held. 369 */ 370 static void dump_object_info(struct kmemleak_object *object) 371 { 372 pr_notice("Object 0x%08lx (size %zu):\n", 373 object->pointer, object->size); 374 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 375 object->comm, object->pid, object->jiffies); 376 pr_notice(" min_count = %d\n", object->min_count); 377 pr_notice(" count = %d\n", object->count); 378 pr_notice(" flags = 0x%x\n", object->flags); 379 pr_notice(" checksum = %u\n", object->checksum); 380 pr_notice(" backtrace:\n"); 381 stack_trace_print(object->trace, object->trace_len, 4); 382 } 383 384 /* 385 * Look-up a memory block metadata (kmemleak_object) in the object search 386 * tree based on a pointer value. If alias is 0, only values pointing to the 387 * beginning of the memory block are allowed. The kmemleak_lock must be held 388 * when calling this function. 389 */ 390 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias, 391 bool is_phys) 392 { 393 struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node : 394 object_tree_root.rb_node; 395 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 396 397 while (rb) { 398 struct kmemleak_object *object; 399 unsigned long untagged_objp; 400 401 object = rb_entry(rb, struct kmemleak_object, rb_node); 402 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 403 404 if (untagged_ptr < untagged_objp) 405 rb = object->rb_node.rb_left; 406 else if (untagged_objp + object->size <= untagged_ptr) 407 rb = object->rb_node.rb_right; 408 else if (untagged_objp == untagged_ptr || alias) 409 return object; 410 else { 411 kmemleak_warn("Found object by alias at 0x%08lx\n", 412 ptr); 413 dump_object_info(object); 414 break; 415 } 416 } 417 return NULL; 418 } 419 420 /* Look-up a kmemleak object which allocated with virtual address. */ 421 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 422 { 423 return __lookup_object(ptr, alias, false); 424 } 425 426 /* 427 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 428 * that once an object's use_count reached 0, the RCU freeing was already 429 * registered and the object should no longer be used. This function must be 430 * called under the protection of rcu_read_lock(). 431 */ 432 static int get_object(struct kmemleak_object *object) 433 { 434 return atomic_inc_not_zero(&object->use_count); 435 } 436 437 /* 438 * Memory pool allocation and freeing. kmemleak_lock must not be held. 439 */ 440 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp) 441 { 442 unsigned long flags; 443 struct kmemleak_object *object; 444 445 /* try the slab allocator first */ 446 if (object_cache) { 447 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 448 if (object) 449 return object; 450 } 451 452 /* slab allocation failed, try the memory pool */ 453 raw_spin_lock_irqsave(&kmemleak_lock, flags); 454 object = list_first_entry_or_null(&mem_pool_free_list, 455 typeof(*object), object_list); 456 if (object) 457 list_del(&object->object_list); 458 else if (mem_pool_free_count) 459 object = &mem_pool[--mem_pool_free_count]; 460 else 461 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n"); 462 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 463 464 return object; 465 } 466 467 /* 468 * Return the object to either the slab allocator or the memory pool. 469 */ 470 static void mem_pool_free(struct kmemleak_object *object) 471 { 472 unsigned long flags; 473 474 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) { 475 kmem_cache_free(object_cache, object); 476 return; 477 } 478 479 /* add the object to the memory pool free list */ 480 raw_spin_lock_irqsave(&kmemleak_lock, flags); 481 list_add(&object->object_list, &mem_pool_free_list); 482 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 483 } 484 485 /* 486 * RCU callback to free a kmemleak_object. 487 */ 488 static void free_object_rcu(struct rcu_head *rcu) 489 { 490 struct hlist_node *tmp; 491 struct kmemleak_scan_area *area; 492 struct kmemleak_object *object = 493 container_of(rcu, struct kmemleak_object, rcu); 494 495 /* 496 * Once use_count is 0 (guaranteed by put_object), there is no other 497 * code accessing this object, hence no need for locking. 498 */ 499 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 500 hlist_del(&area->node); 501 kmem_cache_free(scan_area_cache, area); 502 } 503 mem_pool_free(object); 504 } 505 506 /* 507 * Decrement the object use_count. Once the count is 0, free the object using 508 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 509 * delete_object() path, the delayed RCU freeing ensures that there is no 510 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 511 * is also possible. 512 */ 513 static void put_object(struct kmemleak_object *object) 514 { 515 if (!atomic_dec_and_test(&object->use_count)) 516 return; 517 518 /* should only get here after delete_object was called */ 519 WARN_ON(object->flags & OBJECT_ALLOCATED); 520 521 /* 522 * It may be too early for the RCU callbacks, however, there is no 523 * concurrent object_list traversal when !object_cache and all objects 524 * came from the memory pool. Free the object directly. 525 */ 526 if (object_cache) 527 call_rcu(&object->rcu, free_object_rcu); 528 else 529 free_object_rcu(&object->rcu); 530 } 531 532 /* 533 * Look up an object in the object search tree and increase its use_count. 534 */ 535 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias, 536 bool is_phys) 537 { 538 unsigned long flags; 539 struct kmemleak_object *object; 540 541 rcu_read_lock(); 542 raw_spin_lock_irqsave(&kmemleak_lock, flags); 543 object = __lookup_object(ptr, alias, is_phys); 544 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 545 546 /* check whether the object is still available */ 547 if (object && !get_object(object)) 548 object = NULL; 549 rcu_read_unlock(); 550 551 return object; 552 } 553 554 /* Look up and get an object which allocated with virtual address. */ 555 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 556 { 557 return __find_and_get_object(ptr, alias, false); 558 } 559 560 /* 561 * Remove an object from the object_tree_root (or object_phys_tree_root) 562 * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak 563 * is still enabled. 564 */ 565 static void __remove_object(struct kmemleak_object *object) 566 { 567 rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ? 568 &object_phys_tree_root : 569 &object_tree_root); 570 list_del_rcu(&object->object_list); 571 } 572 573 /* 574 * Look up an object in the object search tree and remove it from both 575 * object_tree_root (or object_phys_tree_root) and object_list. The 576 * returned object's use_count should be at least 1, as initially set 577 * by create_object(). 578 */ 579 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias, 580 bool is_phys) 581 { 582 unsigned long flags; 583 struct kmemleak_object *object; 584 585 raw_spin_lock_irqsave(&kmemleak_lock, flags); 586 object = __lookup_object(ptr, alias, is_phys); 587 if (object) 588 __remove_object(object); 589 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 590 591 return object; 592 } 593 594 /* 595 * Save stack trace to the given array of MAX_TRACE size. 596 */ 597 static int __save_stack_trace(unsigned long *trace) 598 { 599 return stack_trace_save(trace, MAX_TRACE, 2); 600 } 601 602 /* 603 * Create the metadata (struct kmemleak_object) corresponding to an allocated 604 * memory block and add it to the object_list and object_tree_root (or 605 * object_phys_tree_root). 606 */ 607 static struct kmemleak_object *__create_object(unsigned long ptr, size_t size, 608 int min_count, gfp_t gfp, 609 bool is_phys) 610 { 611 unsigned long flags; 612 struct kmemleak_object *object, *parent; 613 struct rb_node **link, *rb_parent; 614 unsigned long untagged_ptr; 615 unsigned long untagged_objp; 616 617 object = mem_pool_alloc(gfp); 618 if (!object) { 619 pr_warn("Cannot allocate a kmemleak_object structure\n"); 620 kmemleak_disable(); 621 return NULL; 622 } 623 624 INIT_LIST_HEAD(&object->object_list); 625 INIT_LIST_HEAD(&object->gray_list); 626 INIT_HLIST_HEAD(&object->area_list); 627 raw_spin_lock_init(&object->lock); 628 atomic_set(&object->use_count, 1); 629 object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0); 630 object->pointer = ptr; 631 object->size = kfence_ksize((void *)ptr) ?: size; 632 object->excess_ref = 0; 633 object->min_count = min_count; 634 object->count = 0; /* white color initially */ 635 object->jiffies = jiffies; 636 object->checksum = 0; 637 638 /* task information */ 639 if (in_hardirq()) { 640 object->pid = 0; 641 strncpy(object->comm, "hardirq", sizeof(object->comm)); 642 } else if (in_serving_softirq()) { 643 object->pid = 0; 644 strncpy(object->comm, "softirq", sizeof(object->comm)); 645 } else { 646 object->pid = current->pid; 647 /* 648 * There is a small chance of a race with set_task_comm(), 649 * however using get_task_comm() here may cause locking 650 * dependency issues with current->alloc_lock. In the worst 651 * case, the command line is not correct. 652 */ 653 strncpy(object->comm, current->comm, sizeof(object->comm)); 654 } 655 656 /* kernel backtrace */ 657 object->trace_len = __save_stack_trace(object->trace); 658 659 raw_spin_lock_irqsave(&kmemleak_lock, flags); 660 661 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 662 /* 663 * Only update min_addr and max_addr with object 664 * storing virtual address. 665 */ 666 if (!is_phys) { 667 min_addr = min(min_addr, untagged_ptr); 668 max_addr = max(max_addr, untagged_ptr + size); 669 } 670 link = is_phys ? &object_phys_tree_root.rb_node : 671 &object_tree_root.rb_node; 672 rb_parent = NULL; 673 while (*link) { 674 rb_parent = *link; 675 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 676 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer); 677 if (untagged_ptr + size <= untagged_objp) 678 link = &parent->rb_node.rb_left; 679 else if (untagged_objp + parent->size <= untagged_ptr) 680 link = &parent->rb_node.rb_right; 681 else { 682 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 683 ptr); 684 /* 685 * No need for parent->lock here since "parent" cannot 686 * be freed while the kmemleak_lock is held. 687 */ 688 dump_object_info(parent); 689 kmem_cache_free(object_cache, object); 690 object = NULL; 691 goto out; 692 } 693 } 694 rb_link_node(&object->rb_node, rb_parent, link); 695 rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root : 696 &object_tree_root); 697 698 list_add_tail_rcu(&object->object_list, &object_list); 699 out: 700 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 701 return object; 702 } 703 704 /* Create kmemleak object which allocated with virtual address. */ 705 static struct kmemleak_object *create_object(unsigned long ptr, size_t size, 706 int min_count, gfp_t gfp) 707 { 708 return __create_object(ptr, size, min_count, gfp, false); 709 } 710 711 /* Create kmemleak object which allocated with physical address. */ 712 static struct kmemleak_object *create_object_phys(unsigned long ptr, size_t size, 713 int min_count, gfp_t gfp) 714 { 715 return __create_object(ptr, size, min_count, gfp, true); 716 } 717 718 /* 719 * Mark the object as not allocated and schedule RCU freeing via put_object(). 720 */ 721 static void __delete_object(struct kmemleak_object *object) 722 { 723 unsigned long flags; 724 725 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 726 WARN_ON(atomic_read(&object->use_count) < 1); 727 728 /* 729 * Locking here also ensures that the corresponding memory block 730 * cannot be freed when it is being scanned. 731 */ 732 raw_spin_lock_irqsave(&object->lock, flags); 733 object->flags &= ~OBJECT_ALLOCATED; 734 raw_spin_unlock_irqrestore(&object->lock, flags); 735 put_object(object); 736 } 737 738 /* 739 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 740 * delete it. 741 */ 742 static void delete_object_full(unsigned long ptr) 743 { 744 struct kmemleak_object *object; 745 746 object = find_and_remove_object(ptr, 0, false); 747 if (!object) { 748 #ifdef DEBUG 749 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 750 ptr); 751 #endif 752 return; 753 } 754 __delete_object(object); 755 } 756 757 /* 758 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 759 * delete it. If the memory block is partially freed, the function may create 760 * additional metadata for the remaining parts of the block. 761 */ 762 static void delete_object_part(unsigned long ptr, size_t size, bool is_phys) 763 { 764 struct kmemleak_object *object; 765 unsigned long start, end; 766 767 object = find_and_remove_object(ptr, 1, is_phys); 768 if (!object) { 769 #ifdef DEBUG 770 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 771 ptr, size); 772 #endif 773 return; 774 } 775 776 /* 777 * Create one or two objects that may result from the memory block 778 * split. Note that partial freeing is only done by free_bootmem() and 779 * this happens before kmemleak_init() is called. 780 */ 781 start = object->pointer; 782 end = object->pointer + object->size; 783 if (ptr > start) 784 __create_object(start, ptr - start, object->min_count, 785 GFP_KERNEL, is_phys); 786 if (ptr + size < end) 787 __create_object(ptr + size, end - ptr - size, object->min_count, 788 GFP_KERNEL, is_phys); 789 790 __delete_object(object); 791 } 792 793 static void __paint_it(struct kmemleak_object *object, int color) 794 { 795 object->min_count = color; 796 if (color == KMEMLEAK_BLACK) 797 object->flags |= OBJECT_NO_SCAN; 798 } 799 800 static void paint_it(struct kmemleak_object *object, int color) 801 { 802 unsigned long flags; 803 804 raw_spin_lock_irqsave(&object->lock, flags); 805 __paint_it(object, color); 806 raw_spin_unlock_irqrestore(&object->lock, flags); 807 } 808 809 static void paint_ptr(unsigned long ptr, int color, bool is_phys) 810 { 811 struct kmemleak_object *object; 812 813 object = __find_and_get_object(ptr, 0, is_phys); 814 if (!object) { 815 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 816 ptr, 817 (color == KMEMLEAK_GREY) ? "Grey" : 818 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 819 return; 820 } 821 paint_it(object, color); 822 put_object(object); 823 } 824 825 /* 826 * Mark an object permanently as gray-colored so that it can no longer be 827 * reported as a leak. This is used in general to mark a false positive. 828 */ 829 static void make_gray_object(unsigned long ptr) 830 { 831 paint_ptr(ptr, KMEMLEAK_GREY, false); 832 } 833 834 /* 835 * Mark the object as black-colored so that it is ignored from scans and 836 * reporting. 837 */ 838 static void make_black_object(unsigned long ptr, bool is_phys) 839 { 840 paint_ptr(ptr, KMEMLEAK_BLACK, is_phys); 841 } 842 843 /* 844 * Add a scanning area to the object. If at least one such area is added, 845 * kmemleak will only scan these ranges rather than the whole memory block. 846 */ 847 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 848 { 849 unsigned long flags; 850 struct kmemleak_object *object; 851 struct kmemleak_scan_area *area = NULL; 852 unsigned long untagged_ptr; 853 unsigned long untagged_objp; 854 855 object = find_and_get_object(ptr, 1); 856 if (!object) { 857 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 858 ptr); 859 return; 860 } 861 862 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 863 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 864 865 if (scan_area_cache) 866 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 867 868 raw_spin_lock_irqsave(&object->lock, flags); 869 if (!area) { 870 pr_warn_once("Cannot allocate a scan area, scanning the full object\n"); 871 /* mark the object for full scan to avoid false positives */ 872 object->flags |= OBJECT_FULL_SCAN; 873 goto out_unlock; 874 } 875 if (size == SIZE_MAX) { 876 size = untagged_objp + object->size - untagged_ptr; 877 } else if (untagged_ptr + size > untagged_objp + object->size) { 878 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 879 dump_object_info(object); 880 kmem_cache_free(scan_area_cache, area); 881 goto out_unlock; 882 } 883 884 INIT_HLIST_NODE(&area->node); 885 area->start = ptr; 886 area->size = size; 887 888 hlist_add_head(&area->node, &object->area_list); 889 out_unlock: 890 raw_spin_unlock_irqrestore(&object->lock, flags); 891 put_object(object); 892 } 893 894 /* 895 * Any surplus references (object already gray) to 'ptr' are passed to 896 * 'excess_ref'. This is used in the vmalloc() case where a pointer to 897 * vm_struct may be used as an alternative reference to the vmalloc'ed object 898 * (see free_thread_stack()). 899 */ 900 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) 901 { 902 unsigned long flags; 903 struct kmemleak_object *object; 904 905 object = find_and_get_object(ptr, 0); 906 if (!object) { 907 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", 908 ptr); 909 return; 910 } 911 912 raw_spin_lock_irqsave(&object->lock, flags); 913 object->excess_ref = excess_ref; 914 raw_spin_unlock_irqrestore(&object->lock, flags); 915 put_object(object); 916 } 917 918 /* 919 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 920 * pointer. Such object will not be scanned by kmemleak but references to it 921 * are searched. 922 */ 923 static void object_no_scan(unsigned long ptr) 924 { 925 unsigned long flags; 926 struct kmemleak_object *object; 927 928 object = find_and_get_object(ptr, 0); 929 if (!object) { 930 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 931 return; 932 } 933 934 raw_spin_lock_irqsave(&object->lock, flags); 935 object->flags |= OBJECT_NO_SCAN; 936 raw_spin_unlock_irqrestore(&object->lock, flags); 937 put_object(object); 938 } 939 940 /** 941 * kmemleak_alloc - register a newly allocated object 942 * @ptr: pointer to beginning of the object 943 * @size: size of the object 944 * @min_count: minimum number of references to this object. If during memory 945 * scanning a number of references less than @min_count is found, 946 * the object is reported as a memory leak. If @min_count is 0, 947 * the object is never reported as a leak. If @min_count is -1, 948 * the object is ignored (not scanned and not reported as a leak) 949 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 950 * 951 * This function is called from the kernel allocators when a new object 952 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). 953 */ 954 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 955 gfp_t gfp) 956 { 957 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 958 959 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 960 create_object((unsigned long)ptr, size, min_count, gfp); 961 } 962 EXPORT_SYMBOL_GPL(kmemleak_alloc); 963 964 /** 965 * kmemleak_alloc_percpu - register a newly allocated __percpu object 966 * @ptr: __percpu pointer to beginning of the object 967 * @size: size of the object 968 * @gfp: flags used for kmemleak internal memory allocations 969 * 970 * This function is called from the kernel percpu allocator when a new object 971 * (memory block) is allocated (alloc_percpu). 972 */ 973 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 974 gfp_t gfp) 975 { 976 unsigned int cpu; 977 978 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); 979 980 /* 981 * Percpu allocations are only scanned and not reported as leaks 982 * (min_count is set to 0). 983 */ 984 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 985 for_each_possible_cpu(cpu) 986 create_object((unsigned long)per_cpu_ptr(ptr, cpu), 987 size, 0, gfp); 988 } 989 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 990 991 /** 992 * kmemleak_vmalloc - register a newly vmalloc'ed object 993 * @area: pointer to vm_struct 994 * @size: size of the object 995 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations 996 * 997 * This function is called from the vmalloc() kernel allocator when a new 998 * object (memory block) is allocated. 999 */ 1000 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) 1001 { 1002 pr_debug("%s(0x%p, %zu)\n", __func__, area, size); 1003 1004 /* 1005 * A min_count = 2 is needed because vm_struct contains a reference to 1006 * the virtual address of the vmalloc'ed block. 1007 */ 1008 if (kmemleak_enabled) { 1009 create_object((unsigned long)area->addr, size, 2, gfp); 1010 object_set_excess_ref((unsigned long)area, 1011 (unsigned long)area->addr); 1012 } 1013 } 1014 EXPORT_SYMBOL_GPL(kmemleak_vmalloc); 1015 1016 /** 1017 * kmemleak_free - unregister a previously registered object 1018 * @ptr: pointer to beginning of the object 1019 * 1020 * This function is called from the kernel allocators when an object (memory 1021 * block) is freed (kmem_cache_free, kfree, vfree etc.). 1022 */ 1023 void __ref kmemleak_free(const void *ptr) 1024 { 1025 pr_debug("%s(0x%p)\n", __func__, ptr); 1026 1027 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1028 delete_object_full((unsigned long)ptr); 1029 } 1030 EXPORT_SYMBOL_GPL(kmemleak_free); 1031 1032 /** 1033 * kmemleak_free_part - partially unregister a previously registered object 1034 * @ptr: pointer to the beginning or inside the object. This also 1035 * represents the start of the range to be freed 1036 * @size: size to be unregistered 1037 * 1038 * This function is called when only a part of a memory block is freed 1039 * (usually from the bootmem allocator). 1040 */ 1041 void __ref kmemleak_free_part(const void *ptr, size_t size) 1042 { 1043 pr_debug("%s(0x%p)\n", __func__, ptr); 1044 1045 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1046 delete_object_part((unsigned long)ptr, size, false); 1047 } 1048 EXPORT_SYMBOL_GPL(kmemleak_free_part); 1049 1050 /** 1051 * kmemleak_free_percpu - unregister a previously registered __percpu object 1052 * @ptr: __percpu pointer to beginning of the object 1053 * 1054 * This function is called from the kernel percpu allocator when an object 1055 * (memory block) is freed (free_percpu). 1056 */ 1057 void __ref kmemleak_free_percpu(const void __percpu *ptr) 1058 { 1059 unsigned int cpu; 1060 1061 pr_debug("%s(0x%p)\n", __func__, ptr); 1062 1063 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1064 for_each_possible_cpu(cpu) 1065 delete_object_full((unsigned long)per_cpu_ptr(ptr, 1066 cpu)); 1067 } 1068 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1069 1070 /** 1071 * kmemleak_update_trace - update object allocation stack trace 1072 * @ptr: pointer to beginning of the object 1073 * 1074 * Override the object allocation stack trace for cases where the actual 1075 * allocation place is not always useful. 1076 */ 1077 void __ref kmemleak_update_trace(const void *ptr) 1078 { 1079 struct kmemleak_object *object; 1080 unsigned long flags; 1081 1082 pr_debug("%s(0x%p)\n", __func__, ptr); 1083 1084 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1085 return; 1086 1087 object = find_and_get_object((unsigned long)ptr, 1); 1088 if (!object) { 1089 #ifdef DEBUG 1090 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1091 ptr); 1092 #endif 1093 return; 1094 } 1095 1096 raw_spin_lock_irqsave(&object->lock, flags); 1097 object->trace_len = __save_stack_trace(object->trace); 1098 raw_spin_unlock_irqrestore(&object->lock, flags); 1099 1100 put_object(object); 1101 } 1102 EXPORT_SYMBOL(kmemleak_update_trace); 1103 1104 /** 1105 * kmemleak_not_leak - mark an allocated object as false positive 1106 * @ptr: pointer to beginning of the object 1107 * 1108 * Calling this function on an object will cause the memory block to no longer 1109 * be reported as leak and always be scanned. 1110 */ 1111 void __ref kmemleak_not_leak(const void *ptr) 1112 { 1113 pr_debug("%s(0x%p)\n", __func__, ptr); 1114 1115 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1116 make_gray_object((unsigned long)ptr); 1117 } 1118 EXPORT_SYMBOL(kmemleak_not_leak); 1119 1120 /** 1121 * kmemleak_ignore - ignore an allocated object 1122 * @ptr: pointer to beginning of the object 1123 * 1124 * Calling this function on an object will cause the memory block to be 1125 * ignored (not scanned and not reported as a leak). This is usually done when 1126 * it is known that the corresponding block is not a leak and does not contain 1127 * any references to other allocated memory blocks. 1128 */ 1129 void __ref kmemleak_ignore(const void *ptr) 1130 { 1131 pr_debug("%s(0x%p)\n", __func__, ptr); 1132 1133 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1134 make_black_object((unsigned long)ptr, false); 1135 } 1136 EXPORT_SYMBOL(kmemleak_ignore); 1137 1138 /** 1139 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1140 * @ptr: pointer to beginning or inside the object. This also 1141 * represents the start of the scan area 1142 * @size: size of the scan area 1143 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1144 * 1145 * This function is used when it is known that only certain parts of an object 1146 * contain references to other objects. Kmemleak will only scan these areas 1147 * reducing the number false negatives. 1148 */ 1149 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1150 { 1151 pr_debug("%s(0x%p)\n", __func__, ptr); 1152 1153 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1154 add_scan_area((unsigned long)ptr, size, gfp); 1155 } 1156 EXPORT_SYMBOL(kmemleak_scan_area); 1157 1158 /** 1159 * kmemleak_no_scan - do not scan an allocated object 1160 * @ptr: pointer to beginning of the object 1161 * 1162 * This function notifies kmemleak not to scan the given memory block. Useful 1163 * in situations where it is known that the given object does not contain any 1164 * references to other objects. Kmemleak will not scan such objects reducing 1165 * the number of false negatives. 1166 */ 1167 void __ref kmemleak_no_scan(const void *ptr) 1168 { 1169 pr_debug("%s(0x%p)\n", __func__, ptr); 1170 1171 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1172 object_no_scan((unsigned long)ptr); 1173 } 1174 EXPORT_SYMBOL(kmemleak_no_scan); 1175 1176 /** 1177 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1178 * address argument 1179 * @phys: physical address of the object 1180 * @size: size of the object 1181 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1182 */ 1183 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp) 1184 { 1185 pr_debug("%s(0x%pa, %zu)\n", __func__, &phys, size); 1186 1187 if (kmemleak_enabled) 1188 /* 1189 * Create object with OBJECT_PHYS flag and 1190 * assume min_count 0. 1191 */ 1192 create_object_phys((unsigned long)phys, size, 0, gfp); 1193 } 1194 EXPORT_SYMBOL(kmemleak_alloc_phys); 1195 1196 /** 1197 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1198 * physical address argument 1199 * @phys: physical address if the beginning or inside an object. This 1200 * also represents the start of the range to be freed 1201 * @size: size to be unregistered 1202 */ 1203 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1204 { 1205 pr_debug("%s(0x%pa)\n", __func__, &phys); 1206 1207 if (kmemleak_enabled) 1208 delete_object_part((unsigned long)phys, size, true); 1209 } 1210 EXPORT_SYMBOL(kmemleak_free_part_phys); 1211 1212 /** 1213 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1214 * address argument 1215 * @phys: physical address of the object 1216 */ 1217 void __ref kmemleak_ignore_phys(phys_addr_t phys) 1218 { 1219 pr_debug("%s(0x%pa)\n", __func__, &phys); 1220 1221 if (kmemleak_enabled) 1222 make_black_object((unsigned long)phys, true); 1223 } 1224 EXPORT_SYMBOL(kmemleak_ignore_phys); 1225 1226 /* 1227 * Update an object's checksum and return true if it was modified. 1228 */ 1229 static bool update_checksum(struct kmemleak_object *object) 1230 { 1231 u32 old_csum = object->checksum; 1232 1233 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS)) 1234 return false; 1235 1236 kasan_disable_current(); 1237 kcsan_disable_current(); 1238 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size); 1239 kasan_enable_current(); 1240 kcsan_enable_current(); 1241 1242 return object->checksum != old_csum; 1243 } 1244 1245 /* 1246 * Update an object's references. object->lock must be held by the caller. 1247 */ 1248 static void update_refs(struct kmemleak_object *object) 1249 { 1250 if (!color_white(object)) { 1251 /* non-orphan, ignored or new */ 1252 return; 1253 } 1254 1255 /* 1256 * Increase the object's reference count (number of pointers to the 1257 * memory block). If this count reaches the required minimum, the 1258 * object's color will become gray and it will be added to the 1259 * gray_list. 1260 */ 1261 object->count++; 1262 if (color_gray(object)) { 1263 /* put_object() called when removing from gray_list */ 1264 WARN_ON(!get_object(object)); 1265 list_add_tail(&object->gray_list, &gray_list); 1266 } 1267 } 1268 1269 /* 1270 * Memory scanning is a long process and it needs to be interruptible. This 1271 * function checks whether such interrupt condition occurred. 1272 */ 1273 static int scan_should_stop(void) 1274 { 1275 if (!kmemleak_enabled) 1276 return 1; 1277 1278 /* 1279 * This function may be called from either process or kthread context, 1280 * hence the need to check for both stop conditions. 1281 */ 1282 if (current->mm) 1283 return signal_pending(current); 1284 else 1285 return kthread_should_stop(); 1286 1287 return 0; 1288 } 1289 1290 /* 1291 * Scan a memory block (exclusive range) for valid pointers and add those 1292 * found to the gray list. 1293 */ 1294 static void scan_block(void *_start, void *_end, 1295 struct kmemleak_object *scanned) 1296 { 1297 unsigned long *ptr; 1298 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1299 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1300 unsigned long flags; 1301 unsigned long untagged_ptr; 1302 1303 raw_spin_lock_irqsave(&kmemleak_lock, flags); 1304 for (ptr = start; ptr < end; ptr++) { 1305 struct kmemleak_object *object; 1306 unsigned long pointer; 1307 unsigned long excess_ref; 1308 1309 if (scan_should_stop()) 1310 break; 1311 1312 kasan_disable_current(); 1313 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr); 1314 kasan_enable_current(); 1315 1316 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer); 1317 if (untagged_ptr < min_addr || untagged_ptr >= max_addr) 1318 continue; 1319 1320 /* 1321 * No need for get_object() here since we hold kmemleak_lock. 1322 * object->use_count cannot be dropped to 0 while the object 1323 * is still present in object_tree_root and object_list 1324 * (with updates protected by kmemleak_lock). 1325 */ 1326 object = lookup_object(pointer, 1); 1327 if (!object) 1328 continue; 1329 if (object == scanned) 1330 /* self referenced, ignore */ 1331 continue; 1332 1333 /* 1334 * Avoid the lockdep recursive warning on object->lock being 1335 * previously acquired in scan_object(). These locks are 1336 * enclosed by scan_mutex. 1337 */ 1338 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1339 /* only pass surplus references (object already gray) */ 1340 if (color_gray(object)) { 1341 excess_ref = object->excess_ref; 1342 /* no need for update_refs() if object already gray */ 1343 } else { 1344 excess_ref = 0; 1345 update_refs(object); 1346 } 1347 raw_spin_unlock(&object->lock); 1348 1349 if (excess_ref) { 1350 object = lookup_object(excess_ref, 0); 1351 if (!object) 1352 continue; 1353 if (object == scanned) 1354 /* circular reference, ignore */ 1355 continue; 1356 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1357 update_refs(object); 1358 raw_spin_unlock(&object->lock); 1359 } 1360 } 1361 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 1362 } 1363 1364 /* 1365 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1366 */ 1367 #ifdef CONFIG_SMP 1368 static void scan_large_block(void *start, void *end) 1369 { 1370 void *next; 1371 1372 while (start < end) { 1373 next = min(start + MAX_SCAN_SIZE, end); 1374 scan_block(start, next, NULL); 1375 start = next; 1376 cond_resched(); 1377 } 1378 } 1379 #endif 1380 1381 /* 1382 * Scan a memory block corresponding to a kmemleak_object. A condition is 1383 * that object->use_count >= 1. 1384 */ 1385 static void scan_object(struct kmemleak_object *object) 1386 { 1387 struct kmemleak_scan_area *area; 1388 unsigned long flags; 1389 void *obj_ptr; 1390 1391 /* 1392 * Once the object->lock is acquired, the corresponding memory block 1393 * cannot be freed (the same lock is acquired in delete_object). 1394 */ 1395 raw_spin_lock_irqsave(&object->lock, flags); 1396 if (object->flags & OBJECT_NO_SCAN) 1397 goto out; 1398 if (!(object->flags & OBJECT_ALLOCATED)) 1399 /* already freed object */ 1400 goto out; 1401 1402 obj_ptr = object->flags & OBJECT_PHYS ? 1403 __va((phys_addr_t)object->pointer) : 1404 (void *)object->pointer; 1405 1406 if (hlist_empty(&object->area_list) || 1407 object->flags & OBJECT_FULL_SCAN) { 1408 void *start = obj_ptr; 1409 void *end = obj_ptr + object->size; 1410 void *next; 1411 1412 do { 1413 next = min(start + MAX_SCAN_SIZE, end); 1414 scan_block(start, next, object); 1415 1416 start = next; 1417 if (start >= end) 1418 break; 1419 1420 raw_spin_unlock_irqrestore(&object->lock, flags); 1421 cond_resched(); 1422 raw_spin_lock_irqsave(&object->lock, flags); 1423 } while (object->flags & OBJECT_ALLOCATED); 1424 } else 1425 hlist_for_each_entry(area, &object->area_list, node) 1426 scan_block((void *)area->start, 1427 (void *)(area->start + area->size), 1428 object); 1429 out: 1430 raw_spin_unlock_irqrestore(&object->lock, flags); 1431 } 1432 1433 /* 1434 * Scan the objects already referenced (gray objects). More objects will be 1435 * referenced and, if there are no memory leaks, all the objects are scanned. 1436 */ 1437 static void scan_gray_list(void) 1438 { 1439 struct kmemleak_object *object, *tmp; 1440 1441 /* 1442 * The list traversal is safe for both tail additions and removals 1443 * from inside the loop. The kmemleak objects cannot be freed from 1444 * outside the loop because their use_count was incremented. 1445 */ 1446 object = list_entry(gray_list.next, typeof(*object), gray_list); 1447 while (&object->gray_list != &gray_list) { 1448 cond_resched(); 1449 1450 /* may add new objects to the list */ 1451 if (!scan_should_stop()) 1452 scan_object(object); 1453 1454 tmp = list_entry(object->gray_list.next, typeof(*object), 1455 gray_list); 1456 1457 /* remove the object from the list and release it */ 1458 list_del(&object->gray_list); 1459 put_object(object); 1460 1461 object = tmp; 1462 } 1463 WARN_ON(!list_empty(&gray_list)); 1464 } 1465 1466 /* 1467 * Scan data sections and all the referenced memory blocks allocated via the 1468 * kernel's standard allocators. This function must be called with the 1469 * scan_mutex held. 1470 */ 1471 static void kmemleak_scan(void) 1472 { 1473 struct kmemleak_object *object; 1474 struct zone *zone; 1475 int __maybe_unused i; 1476 int new_leaks = 0; 1477 int loop1_cnt = 0; 1478 1479 jiffies_last_scan = jiffies; 1480 1481 /* prepare the kmemleak_object's */ 1482 rcu_read_lock(); 1483 list_for_each_entry_rcu(object, &object_list, object_list) { 1484 bool obj_pinned = false; 1485 1486 loop1_cnt++; 1487 raw_spin_lock_irq(&object->lock); 1488 #ifdef DEBUG 1489 /* 1490 * With a few exceptions there should be a maximum of 1491 * 1 reference to any object at this point. 1492 */ 1493 if (atomic_read(&object->use_count) > 1) { 1494 pr_debug("object->use_count = %d\n", 1495 atomic_read(&object->use_count)); 1496 dump_object_info(object); 1497 } 1498 #endif 1499 1500 /* ignore objects outside lowmem (paint them black) */ 1501 if ((object->flags & OBJECT_PHYS) && 1502 !(object->flags & OBJECT_NO_SCAN)) { 1503 unsigned long phys = object->pointer; 1504 1505 if (PHYS_PFN(phys) < min_low_pfn || 1506 PHYS_PFN(phys + object->size) >= max_low_pfn) 1507 __paint_it(object, KMEMLEAK_BLACK); 1508 } 1509 1510 /* reset the reference count (whiten the object) */ 1511 object->count = 0; 1512 if (color_gray(object) && get_object(object)) { 1513 list_add_tail(&object->gray_list, &gray_list); 1514 obj_pinned = true; 1515 } 1516 1517 raw_spin_unlock_irq(&object->lock); 1518 1519 /* 1520 * Do a cond_resched() to avoid soft lockup every 64k objects. 1521 * Make sure a reference has been taken so that the object 1522 * won't go away without RCU read lock. 1523 */ 1524 if (!(loop1_cnt & 0xffff)) { 1525 if (!obj_pinned && !get_object(object)) { 1526 /* Try the next object instead */ 1527 loop1_cnt--; 1528 continue; 1529 } 1530 1531 rcu_read_unlock(); 1532 cond_resched(); 1533 rcu_read_lock(); 1534 1535 if (!obj_pinned) 1536 put_object(object); 1537 } 1538 } 1539 rcu_read_unlock(); 1540 1541 #ifdef CONFIG_SMP 1542 /* per-cpu sections scanning */ 1543 for_each_possible_cpu(i) 1544 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1545 __per_cpu_end + per_cpu_offset(i)); 1546 #endif 1547 1548 /* 1549 * Struct page scanning for each node. 1550 */ 1551 get_online_mems(); 1552 for_each_populated_zone(zone) { 1553 unsigned long start_pfn = zone->zone_start_pfn; 1554 unsigned long end_pfn = zone_end_pfn(zone); 1555 unsigned long pfn; 1556 1557 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1558 struct page *page = pfn_to_online_page(pfn); 1559 1560 if (!page) 1561 continue; 1562 1563 /* only scan pages belonging to this zone */ 1564 if (page_zone(page) != zone) 1565 continue; 1566 /* only scan if page is in use */ 1567 if (page_count(page) == 0) 1568 continue; 1569 scan_block(page, page + 1, NULL); 1570 if (!(pfn & 63)) 1571 cond_resched(); 1572 } 1573 } 1574 put_online_mems(); 1575 1576 /* 1577 * Scanning the task stacks (may introduce false negatives). 1578 */ 1579 if (kmemleak_stack_scan) { 1580 struct task_struct *p, *g; 1581 1582 rcu_read_lock(); 1583 for_each_process_thread(g, p) { 1584 void *stack = try_get_task_stack(p); 1585 if (stack) { 1586 scan_block(stack, stack + THREAD_SIZE, NULL); 1587 put_task_stack(p); 1588 } 1589 } 1590 rcu_read_unlock(); 1591 } 1592 1593 /* 1594 * Scan the objects already referenced from the sections scanned 1595 * above. 1596 */ 1597 scan_gray_list(); 1598 1599 /* 1600 * Check for new or unreferenced objects modified since the previous 1601 * scan and color them gray until the next scan. 1602 */ 1603 rcu_read_lock(); 1604 list_for_each_entry_rcu(object, &object_list, object_list) { 1605 /* 1606 * This is racy but we can save the overhead of lock/unlock 1607 * calls. The missed objects, if any, should be caught in 1608 * the next scan. 1609 */ 1610 if (!color_white(object)) 1611 continue; 1612 raw_spin_lock_irq(&object->lock); 1613 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1614 && update_checksum(object) && get_object(object)) { 1615 /* color it gray temporarily */ 1616 object->count = object->min_count; 1617 list_add_tail(&object->gray_list, &gray_list); 1618 } 1619 raw_spin_unlock_irq(&object->lock); 1620 } 1621 rcu_read_unlock(); 1622 1623 /* 1624 * Re-scan the gray list for modified unreferenced objects. 1625 */ 1626 scan_gray_list(); 1627 1628 /* 1629 * If scanning was stopped do not report any new unreferenced objects. 1630 */ 1631 if (scan_should_stop()) 1632 return; 1633 1634 /* 1635 * Scanning result reporting. 1636 */ 1637 rcu_read_lock(); 1638 list_for_each_entry_rcu(object, &object_list, object_list) { 1639 /* 1640 * This is racy but we can save the overhead of lock/unlock 1641 * calls. The missed objects, if any, should be caught in 1642 * the next scan. 1643 */ 1644 if (!color_white(object)) 1645 continue; 1646 raw_spin_lock_irq(&object->lock); 1647 if (unreferenced_object(object) && 1648 !(object->flags & OBJECT_REPORTED)) { 1649 object->flags |= OBJECT_REPORTED; 1650 1651 if (kmemleak_verbose) 1652 print_unreferenced(NULL, object); 1653 1654 new_leaks++; 1655 } 1656 raw_spin_unlock_irq(&object->lock); 1657 } 1658 rcu_read_unlock(); 1659 1660 if (new_leaks) { 1661 kmemleak_found_leaks = true; 1662 1663 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1664 new_leaks); 1665 } 1666 1667 } 1668 1669 /* 1670 * Thread function performing automatic memory scanning. Unreferenced objects 1671 * at the end of a memory scan are reported but only the first time. 1672 */ 1673 static int kmemleak_scan_thread(void *arg) 1674 { 1675 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN); 1676 1677 pr_info("Automatic memory scanning thread started\n"); 1678 set_user_nice(current, 10); 1679 1680 /* 1681 * Wait before the first scan to allow the system to fully initialize. 1682 */ 1683 if (first_run) { 1684 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); 1685 first_run = 0; 1686 while (timeout && !kthread_should_stop()) 1687 timeout = schedule_timeout_interruptible(timeout); 1688 } 1689 1690 while (!kthread_should_stop()) { 1691 signed long timeout = READ_ONCE(jiffies_scan_wait); 1692 1693 mutex_lock(&scan_mutex); 1694 kmemleak_scan(); 1695 mutex_unlock(&scan_mutex); 1696 1697 /* wait before the next scan */ 1698 while (timeout && !kthread_should_stop()) 1699 timeout = schedule_timeout_interruptible(timeout); 1700 } 1701 1702 pr_info("Automatic memory scanning thread ended\n"); 1703 1704 return 0; 1705 } 1706 1707 /* 1708 * Start the automatic memory scanning thread. This function must be called 1709 * with the scan_mutex held. 1710 */ 1711 static void start_scan_thread(void) 1712 { 1713 if (scan_thread) 1714 return; 1715 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1716 if (IS_ERR(scan_thread)) { 1717 pr_warn("Failed to create the scan thread\n"); 1718 scan_thread = NULL; 1719 } 1720 } 1721 1722 /* 1723 * Stop the automatic memory scanning thread. 1724 */ 1725 static void stop_scan_thread(void) 1726 { 1727 if (scan_thread) { 1728 kthread_stop(scan_thread); 1729 scan_thread = NULL; 1730 } 1731 } 1732 1733 /* 1734 * Iterate over the object_list and return the first valid object at or after 1735 * the required position with its use_count incremented. The function triggers 1736 * a memory scanning when the pos argument points to the first position. 1737 */ 1738 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1739 { 1740 struct kmemleak_object *object; 1741 loff_t n = *pos; 1742 int err; 1743 1744 err = mutex_lock_interruptible(&scan_mutex); 1745 if (err < 0) 1746 return ERR_PTR(err); 1747 1748 rcu_read_lock(); 1749 list_for_each_entry_rcu(object, &object_list, object_list) { 1750 if (n-- > 0) 1751 continue; 1752 if (get_object(object)) 1753 goto out; 1754 } 1755 object = NULL; 1756 out: 1757 return object; 1758 } 1759 1760 /* 1761 * Return the next object in the object_list. The function decrements the 1762 * use_count of the previous object and increases that of the next one. 1763 */ 1764 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1765 { 1766 struct kmemleak_object *prev_obj = v; 1767 struct kmemleak_object *next_obj = NULL; 1768 struct kmemleak_object *obj = prev_obj; 1769 1770 ++(*pos); 1771 1772 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1773 if (get_object(obj)) { 1774 next_obj = obj; 1775 break; 1776 } 1777 } 1778 1779 put_object(prev_obj); 1780 return next_obj; 1781 } 1782 1783 /* 1784 * Decrement the use_count of the last object required, if any. 1785 */ 1786 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1787 { 1788 if (!IS_ERR(v)) { 1789 /* 1790 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1791 * waiting was interrupted, so only release it if !IS_ERR. 1792 */ 1793 rcu_read_unlock(); 1794 mutex_unlock(&scan_mutex); 1795 if (v) 1796 put_object(v); 1797 } 1798 } 1799 1800 /* 1801 * Print the information for an unreferenced object to the seq file. 1802 */ 1803 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1804 { 1805 struct kmemleak_object *object = v; 1806 unsigned long flags; 1807 1808 raw_spin_lock_irqsave(&object->lock, flags); 1809 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1810 print_unreferenced(seq, object); 1811 raw_spin_unlock_irqrestore(&object->lock, flags); 1812 return 0; 1813 } 1814 1815 static const struct seq_operations kmemleak_seq_ops = { 1816 .start = kmemleak_seq_start, 1817 .next = kmemleak_seq_next, 1818 .stop = kmemleak_seq_stop, 1819 .show = kmemleak_seq_show, 1820 }; 1821 1822 static int kmemleak_open(struct inode *inode, struct file *file) 1823 { 1824 return seq_open(file, &kmemleak_seq_ops); 1825 } 1826 1827 static int dump_str_object_info(const char *str) 1828 { 1829 unsigned long flags; 1830 struct kmemleak_object *object; 1831 unsigned long addr; 1832 1833 if (kstrtoul(str, 0, &addr)) 1834 return -EINVAL; 1835 object = find_and_get_object(addr, 0); 1836 if (!object) { 1837 pr_info("Unknown object at 0x%08lx\n", addr); 1838 return -EINVAL; 1839 } 1840 1841 raw_spin_lock_irqsave(&object->lock, flags); 1842 dump_object_info(object); 1843 raw_spin_unlock_irqrestore(&object->lock, flags); 1844 1845 put_object(object); 1846 return 0; 1847 } 1848 1849 /* 1850 * We use grey instead of black to ensure we can do future scans on the same 1851 * objects. If we did not do future scans these black objects could 1852 * potentially contain references to newly allocated objects in the future and 1853 * we'd end up with false positives. 1854 */ 1855 static void kmemleak_clear(void) 1856 { 1857 struct kmemleak_object *object; 1858 1859 rcu_read_lock(); 1860 list_for_each_entry_rcu(object, &object_list, object_list) { 1861 raw_spin_lock_irq(&object->lock); 1862 if ((object->flags & OBJECT_REPORTED) && 1863 unreferenced_object(object)) 1864 __paint_it(object, KMEMLEAK_GREY); 1865 raw_spin_unlock_irq(&object->lock); 1866 } 1867 rcu_read_unlock(); 1868 1869 kmemleak_found_leaks = false; 1870 } 1871 1872 static void __kmemleak_do_cleanup(void); 1873 1874 /* 1875 * File write operation to configure kmemleak at run-time. The following 1876 * commands can be written to the /sys/kernel/debug/kmemleak file: 1877 * off - disable kmemleak (irreversible) 1878 * stack=on - enable the task stacks scanning 1879 * stack=off - disable the tasks stacks scanning 1880 * scan=on - start the automatic memory scanning thread 1881 * scan=off - stop the automatic memory scanning thread 1882 * scan=... - set the automatic memory scanning period in seconds (0 to 1883 * disable it) 1884 * scan - trigger a memory scan 1885 * clear - mark all current reported unreferenced kmemleak objects as 1886 * grey to ignore printing them, or free all kmemleak objects 1887 * if kmemleak has been disabled. 1888 * dump=... - dump information about the object found at the given address 1889 */ 1890 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1891 size_t size, loff_t *ppos) 1892 { 1893 char buf[64]; 1894 int buf_size; 1895 int ret; 1896 1897 buf_size = min(size, (sizeof(buf) - 1)); 1898 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1899 return -EFAULT; 1900 buf[buf_size] = 0; 1901 1902 ret = mutex_lock_interruptible(&scan_mutex); 1903 if (ret < 0) 1904 return ret; 1905 1906 if (strncmp(buf, "clear", 5) == 0) { 1907 if (kmemleak_enabled) 1908 kmemleak_clear(); 1909 else 1910 __kmemleak_do_cleanup(); 1911 goto out; 1912 } 1913 1914 if (!kmemleak_enabled) { 1915 ret = -EPERM; 1916 goto out; 1917 } 1918 1919 if (strncmp(buf, "off", 3) == 0) 1920 kmemleak_disable(); 1921 else if (strncmp(buf, "stack=on", 8) == 0) 1922 kmemleak_stack_scan = 1; 1923 else if (strncmp(buf, "stack=off", 9) == 0) 1924 kmemleak_stack_scan = 0; 1925 else if (strncmp(buf, "scan=on", 7) == 0) 1926 start_scan_thread(); 1927 else if (strncmp(buf, "scan=off", 8) == 0) 1928 stop_scan_thread(); 1929 else if (strncmp(buf, "scan=", 5) == 0) { 1930 unsigned secs; 1931 unsigned long msecs; 1932 1933 ret = kstrtouint(buf + 5, 0, &secs); 1934 if (ret < 0) 1935 goto out; 1936 1937 msecs = secs * MSEC_PER_SEC; 1938 if (msecs > UINT_MAX) 1939 msecs = UINT_MAX; 1940 1941 stop_scan_thread(); 1942 if (msecs) { 1943 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs)); 1944 start_scan_thread(); 1945 } 1946 } else if (strncmp(buf, "scan", 4) == 0) 1947 kmemleak_scan(); 1948 else if (strncmp(buf, "dump=", 5) == 0) 1949 ret = dump_str_object_info(buf + 5); 1950 else 1951 ret = -EINVAL; 1952 1953 out: 1954 mutex_unlock(&scan_mutex); 1955 if (ret < 0) 1956 return ret; 1957 1958 /* ignore the rest of the buffer, only one command at a time */ 1959 *ppos += size; 1960 return size; 1961 } 1962 1963 static const struct file_operations kmemleak_fops = { 1964 .owner = THIS_MODULE, 1965 .open = kmemleak_open, 1966 .read = seq_read, 1967 .write = kmemleak_write, 1968 .llseek = seq_lseek, 1969 .release = seq_release, 1970 }; 1971 1972 static void __kmemleak_do_cleanup(void) 1973 { 1974 struct kmemleak_object *object, *tmp; 1975 1976 /* 1977 * Kmemleak has already been disabled, no need for RCU list traversal 1978 * or kmemleak_lock held. 1979 */ 1980 list_for_each_entry_safe(object, tmp, &object_list, object_list) { 1981 __remove_object(object); 1982 __delete_object(object); 1983 } 1984 } 1985 1986 /* 1987 * Stop the memory scanning thread and free the kmemleak internal objects if 1988 * no previous scan thread (otherwise, kmemleak may still have some useful 1989 * information on memory leaks). 1990 */ 1991 static void kmemleak_do_cleanup(struct work_struct *work) 1992 { 1993 stop_scan_thread(); 1994 1995 mutex_lock(&scan_mutex); 1996 /* 1997 * Once it is made sure that kmemleak_scan has stopped, it is safe to no 1998 * longer track object freeing. Ordering of the scan thread stopping and 1999 * the memory accesses below is guaranteed by the kthread_stop() 2000 * function. 2001 */ 2002 kmemleak_free_enabled = 0; 2003 mutex_unlock(&scan_mutex); 2004 2005 if (!kmemleak_found_leaks) 2006 __kmemleak_do_cleanup(); 2007 else 2008 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 2009 } 2010 2011 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 2012 2013 /* 2014 * Disable kmemleak. No memory allocation/freeing will be traced once this 2015 * function is called. Disabling kmemleak is an irreversible operation. 2016 */ 2017 static void kmemleak_disable(void) 2018 { 2019 /* atomically check whether it was already invoked */ 2020 if (cmpxchg(&kmemleak_error, 0, 1)) 2021 return; 2022 2023 /* stop any memory operation tracing */ 2024 kmemleak_enabled = 0; 2025 2026 /* check whether it is too early for a kernel thread */ 2027 if (kmemleak_initialized) 2028 schedule_work(&cleanup_work); 2029 else 2030 kmemleak_free_enabled = 0; 2031 2032 pr_info("Kernel memory leak detector disabled\n"); 2033 } 2034 2035 /* 2036 * Allow boot-time kmemleak disabling (enabled by default). 2037 */ 2038 static int __init kmemleak_boot_config(char *str) 2039 { 2040 if (!str) 2041 return -EINVAL; 2042 if (strcmp(str, "off") == 0) 2043 kmemleak_disable(); 2044 else if (strcmp(str, "on") == 0) 2045 kmemleak_skip_disable = 1; 2046 else 2047 return -EINVAL; 2048 return 0; 2049 } 2050 early_param("kmemleak", kmemleak_boot_config); 2051 2052 /* 2053 * Kmemleak initialization. 2054 */ 2055 void __init kmemleak_init(void) 2056 { 2057 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 2058 if (!kmemleak_skip_disable) { 2059 kmemleak_disable(); 2060 return; 2061 } 2062 #endif 2063 2064 if (kmemleak_error) 2065 return; 2066 2067 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 2068 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 2069 2070 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 2071 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 2072 2073 /* register the data/bss sections */ 2074 create_object((unsigned long)_sdata, _edata - _sdata, 2075 KMEMLEAK_GREY, GFP_ATOMIC); 2076 create_object((unsigned long)__bss_start, __bss_stop - __bss_start, 2077 KMEMLEAK_GREY, GFP_ATOMIC); 2078 /* only register .data..ro_after_init if not within .data */ 2079 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata) 2080 create_object((unsigned long)__start_ro_after_init, 2081 __end_ro_after_init - __start_ro_after_init, 2082 KMEMLEAK_GREY, GFP_ATOMIC); 2083 } 2084 2085 /* 2086 * Late initialization function. 2087 */ 2088 static int __init kmemleak_late_init(void) 2089 { 2090 kmemleak_initialized = 1; 2091 2092 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops); 2093 2094 if (kmemleak_error) { 2095 /* 2096 * Some error occurred and kmemleak was disabled. There is a 2097 * small chance that kmemleak_disable() was called immediately 2098 * after setting kmemleak_initialized and we may end up with 2099 * two clean-up threads but serialized by scan_mutex. 2100 */ 2101 schedule_work(&cleanup_work); 2102 return -ENOMEM; 2103 } 2104 2105 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) { 2106 mutex_lock(&scan_mutex); 2107 start_scan_thread(); 2108 mutex_unlock(&scan_mutex); 2109 } 2110 2111 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n", 2112 mem_pool_free_count); 2113 2114 return 0; 2115 } 2116 late_initcall(kmemleak_late_init); 2117