xref: /openbmc/linux/mm/kmemleak.c (revision 61f4d204)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <catalin.marinas@arm.com>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17  *   del_state modifications and accesses to the object_tree_root (or
18  *   object_phys_tree_root). The object_list is the main list holding the
19  *   metadata (struct kmemleak_object) for the allocated memory blocks.
20  *   The object_tree_root and object_phys_tree_root are red
21  *   black trees used to look-up metadata based on a pointer to the
22  *   corresponding memory block. The object_phys_tree_root is for objects
23  *   allocated with physical address. The kmemleak_object structures are
24  *   added to the object_list and object_tree_root (or object_phys_tree_root)
25  *   in the create_object() function called from the kmemleak_alloc() (or
26  *   kmemleak_alloc_phys()) callback and removed in delete_object() called from
27  *   the kmemleak_free() callback
28  * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
29  *   Accesses to the metadata (e.g. count) are protected by this lock. Note
30  *   that some members of this structure may be protected by other means
31  *   (atomic or kmemleak_lock). This lock is also held when scanning the
32  *   corresponding memory block to avoid the kernel freeing it via the
33  *   kmemleak_free() callback. This is less heavyweight than holding a global
34  *   lock like kmemleak_lock during scanning.
35  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
36  *   unreferenced objects at a time. The gray_list contains the objects which
37  *   are already referenced or marked as false positives and need to be
38  *   scanned. This list is only modified during a scanning episode when the
39  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
40  *   Note that the kmemleak_object.use_count is incremented when an object is
41  *   added to the gray_list and therefore cannot be freed. This mutex also
42  *   prevents multiple users of the "kmemleak" debugfs file together with
43  *   modifications to the memory scanning parameters including the scan_thread
44  *   pointer
45  *
46  * Locks and mutexes are acquired/nested in the following order:
47  *
48  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
49  *
50  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
51  * regions.
52  *
53  * The kmemleak_object structures have a use_count incremented or decremented
54  * using the get_object()/put_object() functions. When the use_count becomes
55  * 0, this count can no longer be incremented and put_object() schedules the
56  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
57  * function must be protected by rcu_read_lock() to avoid accessing a freed
58  * structure.
59  */
60 
61 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62 
63 #include <linux/init.h>
64 #include <linux/kernel.h>
65 #include <linux/list.h>
66 #include <linux/sched/signal.h>
67 #include <linux/sched/task.h>
68 #include <linux/sched/task_stack.h>
69 #include <linux/jiffies.h>
70 #include <linux/delay.h>
71 #include <linux/export.h>
72 #include <linux/kthread.h>
73 #include <linux/rbtree.h>
74 #include <linux/fs.h>
75 #include <linux/debugfs.h>
76 #include <linux/seq_file.h>
77 #include <linux/cpumask.h>
78 #include <linux/spinlock.h>
79 #include <linux/module.h>
80 #include <linux/mutex.h>
81 #include <linux/rcupdate.h>
82 #include <linux/stacktrace.h>
83 #include <linux/stackdepot.h>
84 #include <linux/cache.h>
85 #include <linux/percpu.h>
86 #include <linux/memblock.h>
87 #include <linux/pfn.h>
88 #include <linux/mmzone.h>
89 #include <linux/slab.h>
90 #include <linux/thread_info.h>
91 #include <linux/err.h>
92 #include <linux/uaccess.h>
93 #include <linux/string.h>
94 #include <linux/nodemask.h>
95 #include <linux/mm.h>
96 #include <linux/workqueue.h>
97 #include <linux/crc32.h>
98 
99 #include <asm/sections.h>
100 #include <asm/processor.h>
101 #include <linux/atomic.h>
102 
103 #include <linux/kasan.h>
104 #include <linux/kfence.h>
105 #include <linux/kmemleak.h>
106 #include <linux/memory_hotplug.h>
107 
108 /*
109  * Kmemleak configuration and common defines.
110  */
111 #define MAX_TRACE		16	/* stack trace length */
112 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
113 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
114 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
115 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
116 
117 #define BYTES_PER_POINTER	sizeof(void *)
118 
119 /* GFP bitmask for kmemleak internal allocations */
120 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
121 					   __GFP_NOLOCKDEP)) | \
122 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
123 				 __GFP_NOWARN)
124 
125 /* scanning area inside a memory block */
126 struct kmemleak_scan_area {
127 	struct hlist_node node;
128 	unsigned long start;
129 	size_t size;
130 };
131 
132 #define KMEMLEAK_GREY	0
133 #define KMEMLEAK_BLACK	-1
134 
135 /*
136  * Structure holding the metadata for each allocated memory block.
137  * Modifications to such objects should be made while holding the
138  * object->lock. Insertions or deletions from object_list, gray_list or
139  * rb_node are already protected by the corresponding locks or mutex (see
140  * the notes on locking above). These objects are reference-counted
141  * (use_count) and freed using the RCU mechanism.
142  */
143 struct kmemleak_object {
144 	raw_spinlock_t lock;
145 	unsigned int flags;		/* object status flags */
146 	struct list_head object_list;
147 	struct list_head gray_list;
148 	struct rb_node rb_node;
149 	struct rcu_head rcu;		/* object_list lockless traversal */
150 	/* object usage count; object freed when use_count == 0 */
151 	atomic_t use_count;
152 	unsigned int del_state;		/* deletion state */
153 	unsigned long pointer;
154 	size_t size;
155 	/* pass surplus references to this pointer */
156 	unsigned long excess_ref;
157 	/* minimum number of a pointers found before it is considered leak */
158 	int min_count;
159 	/* the total number of pointers found pointing to this object */
160 	int count;
161 	/* checksum for detecting modified objects */
162 	u32 checksum;
163 	/* memory ranges to be scanned inside an object (empty for all) */
164 	struct hlist_head area_list;
165 	depot_stack_handle_t trace_handle;
166 	unsigned long jiffies;		/* creation timestamp */
167 	pid_t pid;			/* pid of the current task */
168 	char comm[TASK_COMM_LEN];	/* executable name */
169 };
170 
171 /* flag representing the memory block allocation status */
172 #define OBJECT_ALLOCATED	(1 << 0)
173 /* flag set after the first reporting of an unreference object */
174 #define OBJECT_REPORTED		(1 << 1)
175 /* flag set to not scan the object */
176 #define OBJECT_NO_SCAN		(1 << 2)
177 /* flag set to fully scan the object when scan_area allocation failed */
178 #define OBJECT_FULL_SCAN	(1 << 3)
179 /* flag set for object allocated with physical address */
180 #define OBJECT_PHYS		(1 << 4)
181 
182 /* set when __remove_object() called */
183 #define DELSTATE_REMOVED	(1 << 0)
184 /* set to temporarily prevent deletion from object_list */
185 #define DELSTATE_NO_DELETE	(1 << 1)
186 
187 #define HEX_PREFIX		"    "
188 /* number of bytes to print per line; must be 16 or 32 */
189 #define HEX_ROW_SIZE		16
190 /* number of bytes to print at a time (1, 2, 4, 8) */
191 #define HEX_GROUP_SIZE		1
192 /* include ASCII after the hex output */
193 #define HEX_ASCII		1
194 /* max number of lines to be printed */
195 #define HEX_MAX_LINES		2
196 
197 /* the list of all allocated objects */
198 static LIST_HEAD(object_list);
199 /* the list of gray-colored objects (see color_gray comment below) */
200 static LIST_HEAD(gray_list);
201 /* memory pool allocation */
202 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
203 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
204 static LIST_HEAD(mem_pool_free_list);
205 /* search tree for object boundaries */
206 static struct rb_root object_tree_root = RB_ROOT;
207 /* search tree for object (with OBJECT_PHYS flag) boundaries */
208 static struct rb_root object_phys_tree_root = RB_ROOT;
209 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
210 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
211 
212 /* allocation caches for kmemleak internal data */
213 static struct kmem_cache *object_cache;
214 static struct kmem_cache *scan_area_cache;
215 
216 /* set if tracing memory operations is enabled */
217 static int kmemleak_enabled = 1;
218 /* same as above but only for the kmemleak_free() callback */
219 static int kmemleak_free_enabled = 1;
220 /* set in the late_initcall if there were no errors */
221 static int kmemleak_initialized;
222 /* set if a kmemleak warning was issued */
223 static int kmemleak_warning;
224 /* set if a fatal kmemleak error has occurred */
225 static int kmemleak_error;
226 
227 /* minimum and maximum address that may be valid pointers */
228 static unsigned long min_addr = ULONG_MAX;
229 static unsigned long max_addr;
230 
231 static struct task_struct *scan_thread;
232 /* used to avoid reporting of recently allocated objects */
233 static unsigned long jiffies_min_age;
234 static unsigned long jiffies_last_scan;
235 /* delay between automatic memory scannings */
236 static unsigned long jiffies_scan_wait;
237 /* enables or disables the task stacks scanning */
238 static int kmemleak_stack_scan = 1;
239 /* protects the memory scanning, parameters and debug/kmemleak file access */
240 static DEFINE_MUTEX(scan_mutex);
241 /* setting kmemleak=on, will set this var, skipping the disable */
242 static int kmemleak_skip_disable;
243 /* If there are leaks that can be reported */
244 static bool kmemleak_found_leaks;
245 
246 static bool kmemleak_verbose;
247 module_param_named(verbose, kmemleak_verbose, bool, 0600);
248 
249 static void kmemleak_disable(void);
250 
251 /*
252  * Print a warning and dump the stack trace.
253  */
254 #define kmemleak_warn(x...)	do {		\
255 	pr_warn(x);				\
256 	dump_stack();				\
257 	kmemleak_warning = 1;			\
258 } while (0)
259 
260 /*
261  * Macro invoked when a serious kmemleak condition occurred and cannot be
262  * recovered from. Kmemleak will be disabled and further allocation/freeing
263  * tracing no longer available.
264  */
265 #define kmemleak_stop(x...)	do {	\
266 	kmemleak_warn(x);		\
267 	kmemleak_disable();		\
268 } while (0)
269 
270 #define warn_or_seq_printf(seq, fmt, ...)	do {	\
271 	if (seq)					\
272 		seq_printf(seq, fmt, ##__VA_ARGS__);	\
273 	else						\
274 		pr_warn(fmt, ##__VA_ARGS__);		\
275 } while (0)
276 
277 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
278 				 int rowsize, int groupsize, const void *buf,
279 				 size_t len, bool ascii)
280 {
281 	if (seq)
282 		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
283 			     buf, len, ascii);
284 	else
285 		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
286 			       rowsize, groupsize, buf, len, ascii);
287 }
288 
289 /*
290  * Printing of the objects hex dump to the seq file. The number of lines to be
291  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
292  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
293  * with the object->lock held.
294  */
295 static void hex_dump_object(struct seq_file *seq,
296 			    struct kmemleak_object *object)
297 {
298 	const u8 *ptr = (const u8 *)object->pointer;
299 	size_t len;
300 
301 	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
302 		return;
303 
304 	/* limit the number of lines to HEX_MAX_LINES */
305 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
306 
307 	warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
308 	kasan_disable_current();
309 	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
310 			     HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
311 	kasan_enable_current();
312 }
313 
314 /*
315  * Object colors, encoded with count and min_count:
316  * - white - orphan object, not enough references to it (count < min_count)
317  * - gray  - not orphan, not marked as false positive (min_count == 0) or
318  *		sufficient references to it (count >= min_count)
319  * - black - ignore, it doesn't contain references (e.g. text section)
320  *		(min_count == -1). No function defined for this color.
321  * Newly created objects don't have any color assigned (object->count == -1)
322  * before the next memory scan when they become white.
323  */
324 static bool color_white(const struct kmemleak_object *object)
325 {
326 	return object->count != KMEMLEAK_BLACK &&
327 		object->count < object->min_count;
328 }
329 
330 static bool color_gray(const struct kmemleak_object *object)
331 {
332 	return object->min_count != KMEMLEAK_BLACK &&
333 		object->count >= object->min_count;
334 }
335 
336 /*
337  * Objects are considered unreferenced only if their color is white, they have
338  * not be deleted and have a minimum age to avoid false positives caused by
339  * pointers temporarily stored in CPU registers.
340  */
341 static bool unreferenced_object(struct kmemleak_object *object)
342 {
343 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
344 		time_before_eq(object->jiffies + jiffies_min_age,
345 			       jiffies_last_scan);
346 }
347 
348 /*
349  * Printing of the unreferenced objects information to the seq file. The
350  * print_unreferenced function must be called with the object->lock held.
351  */
352 static void print_unreferenced(struct seq_file *seq,
353 			       struct kmemleak_object *object)
354 {
355 	int i;
356 	unsigned long *entries;
357 	unsigned int nr_entries;
358 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
359 
360 	nr_entries = stack_depot_fetch(object->trace_handle, &entries);
361 	warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
362 			  object->pointer, object->size);
363 	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
364 			   object->comm, object->pid, object->jiffies,
365 			   msecs_age / 1000, msecs_age % 1000);
366 	hex_dump_object(seq, object);
367 	warn_or_seq_printf(seq, "  backtrace:\n");
368 
369 	for (i = 0; i < nr_entries; i++) {
370 		void *ptr = (void *)entries[i];
371 		warn_or_seq_printf(seq, "    [<%pK>] %pS\n", ptr, ptr);
372 	}
373 }
374 
375 /*
376  * Print the kmemleak_object information. This function is used mainly for
377  * debugging special cases when kmemleak operations. It must be called with
378  * the object->lock held.
379  */
380 static void dump_object_info(struct kmemleak_object *object)
381 {
382 	pr_notice("Object 0x%08lx (size %zu):\n",
383 			object->pointer, object->size);
384 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
385 			object->comm, object->pid, object->jiffies);
386 	pr_notice("  min_count = %d\n", object->min_count);
387 	pr_notice("  count = %d\n", object->count);
388 	pr_notice("  flags = 0x%x\n", object->flags);
389 	pr_notice("  checksum = %u\n", object->checksum);
390 	pr_notice("  backtrace:\n");
391 	if (object->trace_handle)
392 		stack_depot_print(object->trace_handle);
393 }
394 
395 /*
396  * Look-up a memory block metadata (kmemleak_object) in the object search
397  * tree based on a pointer value. If alias is 0, only values pointing to the
398  * beginning of the memory block are allowed. The kmemleak_lock must be held
399  * when calling this function.
400  */
401 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
402 					       bool is_phys)
403 {
404 	struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node :
405 			     object_tree_root.rb_node;
406 	unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
407 
408 	while (rb) {
409 		struct kmemleak_object *object;
410 		unsigned long untagged_objp;
411 
412 		object = rb_entry(rb, struct kmemleak_object, rb_node);
413 		untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
414 
415 		if (untagged_ptr < untagged_objp)
416 			rb = object->rb_node.rb_left;
417 		else if (untagged_objp + object->size <= untagged_ptr)
418 			rb = object->rb_node.rb_right;
419 		else if (untagged_objp == untagged_ptr || alias)
420 			return object;
421 		else {
422 			kmemleak_warn("Found object by alias at 0x%08lx\n",
423 				      ptr);
424 			dump_object_info(object);
425 			break;
426 		}
427 	}
428 	return NULL;
429 }
430 
431 /* Look-up a kmemleak object which allocated with virtual address. */
432 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
433 {
434 	return __lookup_object(ptr, alias, false);
435 }
436 
437 /*
438  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
439  * that once an object's use_count reached 0, the RCU freeing was already
440  * registered and the object should no longer be used. This function must be
441  * called under the protection of rcu_read_lock().
442  */
443 static int get_object(struct kmemleak_object *object)
444 {
445 	return atomic_inc_not_zero(&object->use_count);
446 }
447 
448 /*
449  * Memory pool allocation and freeing. kmemleak_lock must not be held.
450  */
451 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
452 {
453 	unsigned long flags;
454 	struct kmemleak_object *object;
455 
456 	/* try the slab allocator first */
457 	if (object_cache) {
458 		object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
459 		if (object)
460 			return object;
461 	}
462 
463 	/* slab allocation failed, try the memory pool */
464 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
465 	object = list_first_entry_or_null(&mem_pool_free_list,
466 					  typeof(*object), object_list);
467 	if (object)
468 		list_del(&object->object_list);
469 	else if (mem_pool_free_count)
470 		object = &mem_pool[--mem_pool_free_count];
471 	else
472 		pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
473 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
474 
475 	return object;
476 }
477 
478 /*
479  * Return the object to either the slab allocator or the memory pool.
480  */
481 static void mem_pool_free(struct kmemleak_object *object)
482 {
483 	unsigned long flags;
484 
485 	if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
486 		kmem_cache_free(object_cache, object);
487 		return;
488 	}
489 
490 	/* add the object to the memory pool free list */
491 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
492 	list_add(&object->object_list, &mem_pool_free_list);
493 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
494 }
495 
496 /*
497  * RCU callback to free a kmemleak_object.
498  */
499 static void free_object_rcu(struct rcu_head *rcu)
500 {
501 	struct hlist_node *tmp;
502 	struct kmemleak_scan_area *area;
503 	struct kmemleak_object *object =
504 		container_of(rcu, struct kmemleak_object, rcu);
505 
506 	/*
507 	 * Once use_count is 0 (guaranteed by put_object), there is no other
508 	 * code accessing this object, hence no need for locking.
509 	 */
510 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
511 		hlist_del(&area->node);
512 		kmem_cache_free(scan_area_cache, area);
513 	}
514 	mem_pool_free(object);
515 }
516 
517 /*
518  * Decrement the object use_count. Once the count is 0, free the object using
519  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
520  * delete_object() path, the delayed RCU freeing ensures that there is no
521  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
522  * is also possible.
523  */
524 static void put_object(struct kmemleak_object *object)
525 {
526 	if (!atomic_dec_and_test(&object->use_count))
527 		return;
528 
529 	/* should only get here after delete_object was called */
530 	WARN_ON(object->flags & OBJECT_ALLOCATED);
531 
532 	/*
533 	 * It may be too early for the RCU callbacks, however, there is no
534 	 * concurrent object_list traversal when !object_cache and all objects
535 	 * came from the memory pool. Free the object directly.
536 	 */
537 	if (object_cache)
538 		call_rcu(&object->rcu, free_object_rcu);
539 	else
540 		free_object_rcu(&object->rcu);
541 }
542 
543 /*
544  * Look up an object in the object search tree and increase its use_count.
545  */
546 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
547 						     bool is_phys)
548 {
549 	unsigned long flags;
550 	struct kmemleak_object *object;
551 
552 	rcu_read_lock();
553 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
554 	object = __lookup_object(ptr, alias, is_phys);
555 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
556 
557 	/* check whether the object is still available */
558 	if (object && !get_object(object))
559 		object = NULL;
560 	rcu_read_unlock();
561 
562 	return object;
563 }
564 
565 /* Look up and get an object which allocated with virtual address. */
566 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
567 {
568 	return __find_and_get_object(ptr, alias, false);
569 }
570 
571 /*
572  * Remove an object from the object_tree_root (or object_phys_tree_root)
573  * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak
574  * is still enabled.
575  */
576 static void __remove_object(struct kmemleak_object *object)
577 {
578 	rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ?
579 				   &object_phys_tree_root :
580 				   &object_tree_root);
581 	if (!(object->del_state & DELSTATE_NO_DELETE))
582 		list_del_rcu(&object->object_list);
583 	object->del_state |= DELSTATE_REMOVED;
584 }
585 
586 /*
587  * Look up an object in the object search tree and remove it from both
588  * object_tree_root (or object_phys_tree_root) and object_list. The
589  * returned object's use_count should be at least 1, as initially set
590  * by create_object().
591  */
592 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
593 						      bool is_phys)
594 {
595 	unsigned long flags;
596 	struct kmemleak_object *object;
597 
598 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
599 	object = __lookup_object(ptr, alias, is_phys);
600 	if (object)
601 		__remove_object(object);
602 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
603 
604 	return object;
605 }
606 
607 static noinline depot_stack_handle_t set_track_prepare(void)
608 {
609 	depot_stack_handle_t trace_handle;
610 	unsigned long entries[MAX_TRACE];
611 	unsigned int nr_entries;
612 
613 	if (!kmemleak_initialized)
614 		return 0;
615 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
616 	trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
617 
618 	return trace_handle;
619 }
620 
621 /*
622  * Create the metadata (struct kmemleak_object) corresponding to an allocated
623  * memory block and add it to the object_list and object_tree_root (or
624  * object_phys_tree_root).
625  */
626 static void __create_object(unsigned long ptr, size_t size,
627 			    int min_count, gfp_t gfp, bool is_phys)
628 {
629 	unsigned long flags;
630 	struct kmemleak_object *object, *parent;
631 	struct rb_node **link, *rb_parent;
632 	unsigned long untagged_ptr;
633 	unsigned long untagged_objp;
634 
635 	object = mem_pool_alloc(gfp);
636 	if (!object) {
637 		pr_warn("Cannot allocate a kmemleak_object structure\n");
638 		kmemleak_disable();
639 		return;
640 	}
641 
642 	INIT_LIST_HEAD(&object->object_list);
643 	INIT_LIST_HEAD(&object->gray_list);
644 	INIT_HLIST_HEAD(&object->area_list);
645 	raw_spin_lock_init(&object->lock);
646 	atomic_set(&object->use_count, 1);
647 	object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0);
648 	object->pointer = ptr;
649 	object->size = kfence_ksize((void *)ptr) ?: size;
650 	object->excess_ref = 0;
651 	object->min_count = min_count;
652 	object->count = 0;			/* white color initially */
653 	object->jiffies = jiffies;
654 	object->checksum = 0;
655 	object->del_state = 0;
656 
657 	/* task information */
658 	if (in_hardirq()) {
659 		object->pid = 0;
660 		strncpy(object->comm, "hardirq", sizeof(object->comm));
661 	} else if (in_serving_softirq()) {
662 		object->pid = 0;
663 		strncpy(object->comm, "softirq", sizeof(object->comm));
664 	} else {
665 		object->pid = current->pid;
666 		/*
667 		 * There is a small chance of a race with set_task_comm(),
668 		 * however using get_task_comm() here may cause locking
669 		 * dependency issues with current->alloc_lock. In the worst
670 		 * case, the command line is not correct.
671 		 */
672 		strncpy(object->comm, current->comm, sizeof(object->comm));
673 	}
674 
675 	/* kernel backtrace */
676 	object->trace_handle = set_track_prepare();
677 
678 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
679 
680 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
681 	/*
682 	 * Only update min_addr and max_addr with object
683 	 * storing virtual address.
684 	 */
685 	if (!is_phys) {
686 		min_addr = min(min_addr, untagged_ptr);
687 		max_addr = max(max_addr, untagged_ptr + size);
688 	}
689 	link = is_phys ? &object_phys_tree_root.rb_node :
690 		&object_tree_root.rb_node;
691 	rb_parent = NULL;
692 	while (*link) {
693 		rb_parent = *link;
694 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
695 		untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
696 		if (untagged_ptr + size <= untagged_objp)
697 			link = &parent->rb_node.rb_left;
698 		else if (untagged_objp + parent->size <= untagged_ptr)
699 			link = &parent->rb_node.rb_right;
700 		else {
701 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
702 				      ptr);
703 			/*
704 			 * No need for parent->lock here since "parent" cannot
705 			 * be freed while the kmemleak_lock is held.
706 			 */
707 			dump_object_info(parent);
708 			kmem_cache_free(object_cache, object);
709 			goto out;
710 		}
711 	}
712 	rb_link_node(&object->rb_node, rb_parent, link);
713 	rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root :
714 					  &object_tree_root);
715 	list_add_tail_rcu(&object->object_list, &object_list);
716 out:
717 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
718 }
719 
720 /* Create kmemleak object which allocated with virtual address. */
721 static void create_object(unsigned long ptr, size_t size,
722 			  int min_count, gfp_t gfp)
723 {
724 	__create_object(ptr, size, min_count, gfp, false);
725 }
726 
727 /* Create kmemleak object which allocated with physical address. */
728 static void create_object_phys(unsigned long ptr, size_t size,
729 			       int min_count, gfp_t gfp)
730 {
731 	__create_object(ptr, size, min_count, gfp, true);
732 }
733 
734 /*
735  * Mark the object as not allocated and schedule RCU freeing via put_object().
736  */
737 static void __delete_object(struct kmemleak_object *object)
738 {
739 	unsigned long flags;
740 
741 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
742 	WARN_ON(atomic_read(&object->use_count) < 1);
743 
744 	/*
745 	 * Locking here also ensures that the corresponding memory block
746 	 * cannot be freed when it is being scanned.
747 	 */
748 	raw_spin_lock_irqsave(&object->lock, flags);
749 	object->flags &= ~OBJECT_ALLOCATED;
750 	raw_spin_unlock_irqrestore(&object->lock, flags);
751 	put_object(object);
752 }
753 
754 /*
755  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
756  * delete it.
757  */
758 static void delete_object_full(unsigned long ptr)
759 {
760 	struct kmemleak_object *object;
761 
762 	object = find_and_remove_object(ptr, 0, false);
763 	if (!object) {
764 #ifdef DEBUG
765 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
766 			      ptr);
767 #endif
768 		return;
769 	}
770 	__delete_object(object);
771 }
772 
773 /*
774  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
775  * delete it. If the memory block is partially freed, the function may create
776  * additional metadata for the remaining parts of the block.
777  */
778 static void delete_object_part(unsigned long ptr, size_t size, bool is_phys)
779 {
780 	struct kmemleak_object *object;
781 	unsigned long start, end;
782 
783 	object = find_and_remove_object(ptr, 1, is_phys);
784 	if (!object) {
785 #ifdef DEBUG
786 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
787 			      ptr, size);
788 #endif
789 		return;
790 	}
791 
792 	/*
793 	 * Create one or two objects that may result from the memory block
794 	 * split. Note that partial freeing is only done by free_bootmem() and
795 	 * this happens before kmemleak_init() is called.
796 	 */
797 	start = object->pointer;
798 	end = object->pointer + object->size;
799 	if (ptr > start)
800 		__create_object(start, ptr - start, object->min_count,
801 			      GFP_KERNEL, is_phys);
802 	if (ptr + size < end)
803 		__create_object(ptr + size, end - ptr - size, object->min_count,
804 			      GFP_KERNEL, is_phys);
805 
806 	__delete_object(object);
807 }
808 
809 static void __paint_it(struct kmemleak_object *object, int color)
810 {
811 	object->min_count = color;
812 	if (color == KMEMLEAK_BLACK)
813 		object->flags |= OBJECT_NO_SCAN;
814 }
815 
816 static void paint_it(struct kmemleak_object *object, int color)
817 {
818 	unsigned long flags;
819 
820 	raw_spin_lock_irqsave(&object->lock, flags);
821 	__paint_it(object, color);
822 	raw_spin_unlock_irqrestore(&object->lock, flags);
823 }
824 
825 static void paint_ptr(unsigned long ptr, int color, bool is_phys)
826 {
827 	struct kmemleak_object *object;
828 
829 	object = __find_and_get_object(ptr, 0, is_phys);
830 	if (!object) {
831 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
832 			      ptr,
833 			      (color == KMEMLEAK_GREY) ? "Grey" :
834 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
835 		return;
836 	}
837 	paint_it(object, color);
838 	put_object(object);
839 }
840 
841 /*
842  * Mark an object permanently as gray-colored so that it can no longer be
843  * reported as a leak. This is used in general to mark a false positive.
844  */
845 static void make_gray_object(unsigned long ptr)
846 {
847 	paint_ptr(ptr, KMEMLEAK_GREY, false);
848 }
849 
850 /*
851  * Mark the object as black-colored so that it is ignored from scans and
852  * reporting.
853  */
854 static void make_black_object(unsigned long ptr, bool is_phys)
855 {
856 	paint_ptr(ptr, KMEMLEAK_BLACK, is_phys);
857 }
858 
859 /*
860  * Add a scanning area to the object. If at least one such area is added,
861  * kmemleak will only scan these ranges rather than the whole memory block.
862  */
863 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
864 {
865 	unsigned long flags;
866 	struct kmemleak_object *object;
867 	struct kmemleak_scan_area *area = NULL;
868 	unsigned long untagged_ptr;
869 	unsigned long untagged_objp;
870 
871 	object = find_and_get_object(ptr, 1);
872 	if (!object) {
873 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
874 			      ptr);
875 		return;
876 	}
877 
878 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
879 	untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
880 
881 	if (scan_area_cache)
882 		area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
883 
884 	raw_spin_lock_irqsave(&object->lock, flags);
885 	if (!area) {
886 		pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
887 		/* mark the object for full scan to avoid false positives */
888 		object->flags |= OBJECT_FULL_SCAN;
889 		goto out_unlock;
890 	}
891 	if (size == SIZE_MAX) {
892 		size = untagged_objp + object->size - untagged_ptr;
893 	} else if (untagged_ptr + size > untagged_objp + object->size) {
894 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
895 		dump_object_info(object);
896 		kmem_cache_free(scan_area_cache, area);
897 		goto out_unlock;
898 	}
899 
900 	INIT_HLIST_NODE(&area->node);
901 	area->start = ptr;
902 	area->size = size;
903 
904 	hlist_add_head(&area->node, &object->area_list);
905 out_unlock:
906 	raw_spin_unlock_irqrestore(&object->lock, flags);
907 	put_object(object);
908 }
909 
910 /*
911  * Any surplus references (object already gray) to 'ptr' are passed to
912  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
913  * vm_struct may be used as an alternative reference to the vmalloc'ed object
914  * (see free_thread_stack()).
915  */
916 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
917 {
918 	unsigned long flags;
919 	struct kmemleak_object *object;
920 
921 	object = find_and_get_object(ptr, 0);
922 	if (!object) {
923 		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
924 			      ptr);
925 		return;
926 	}
927 
928 	raw_spin_lock_irqsave(&object->lock, flags);
929 	object->excess_ref = excess_ref;
930 	raw_spin_unlock_irqrestore(&object->lock, flags);
931 	put_object(object);
932 }
933 
934 /*
935  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
936  * pointer. Such object will not be scanned by kmemleak but references to it
937  * are searched.
938  */
939 static void object_no_scan(unsigned long ptr)
940 {
941 	unsigned long flags;
942 	struct kmemleak_object *object;
943 
944 	object = find_and_get_object(ptr, 0);
945 	if (!object) {
946 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
947 		return;
948 	}
949 
950 	raw_spin_lock_irqsave(&object->lock, flags);
951 	object->flags |= OBJECT_NO_SCAN;
952 	raw_spin_unlock_irqrestore(&object->lock, flags);
953 	put_object(object);
954 }
955 
956 /**
957  * kmemleak_alloc - register a newly allocated object
958  * @ptr:	pointer to beginning of the object
959  * @size:	size of the object
960  * @min_count:	minimum number of references to this object. If during memory
961  *		scanning a number of references less than @min_count is found,
962  *		the object is reported as a memory leak. If @min_count is 0,
963  *		the object is never reported as a leak. If @min_count is -1,
964  *		the object is ignored (not scanned and not reported as a leak)
965  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
966  *
967  * This function is called from the kernel allocators when a new object
968  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
969  */
970 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
971 			  gfp_t gfp)
972 {
973 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
974 
975 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
976 		create_object((unsigned long)ptr, size, min_count, gfp);
977 }
978 EXPORT_SYMBOL_GPL(kmemleak_alloc);
979 
980 /**
981  * kmemleak_alloc_percpu - register a newly allocated __percpu object
982  * @ptr:	__percpu pointer to beginning of the object
983  * @size:	size of the object
984  * @gfp:	flags used for kmemleak internal memory allocations
985  *
986  * This function is called from the kernel percpu allocator when a new object
987  * (memory block) is allocated (alloc_percpu).
988  */
989 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
990 				 gfp_t gfp)
991 {
992 	unsigned int cpu;
993 
994 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
995 
996 	/*
997 	 * Percpu allocations are only scanned and not reported as leaks
998 	 * (min_count is set to 0).
999 	 */
1000 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1001 		for_each_possible_cpu(cpu)
1002 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
1003 				      size, 0, gfp);
1004 }
1005 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1006 
1007 /**
1008  * kmemleak_vmalloc - register a newly vmalloc'ed object
1009  * @area:	pointer to vm_struct
1010  * @size:	size of the object
1011  * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
1012  *
1013  * This function is called from the vmalloc() kernel allocator when a new
1014  * object (memory block) is allocated.
1015  */
1016 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1017 {
1018 	pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1019 
1020 	/*
1021 	 * A min_count = 2 is needed because vm_struct contains a reference to
1022 	 * the virtual address of the vmalloc'ed block.
1023 	 */
1024 	if (kmemleak_enabled) {
1025 		create_object((unsigned long)area->addr, size, 2, gfp);
1026 		object_set_excess_ref((unsigned long)area,
1027 				      (unsigned long)area->addr);
1028 	}
1029 }
1030 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1031 
1032 /**
1033  * kmemleak_free - unregister a previously registered object
1034  * @ptr:	pointer to beginning of the object
1035  *
1036  * This function is called from the kernel allocators when an object (memory
1037  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1038  */
1039 void __ref kmemleak_free(const void *ptr)
1040 {
1041 	pr_debug("%s(0x%p)\n", __func__, ptr);
1042 
1043 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1044 		delete_object_full((unsigned long)ptr);
1045 }
1046 EXPORT_SYMBOL_GPL(kmemleak_free);
1047 
1048 /**
1049  * kmemleak_free_part - partially unregister a previously registered object
1050  * @ptr:	pointer to the beginning or inside the object. This also
1051  *		represents the start of the range to be freed
1052  * @size:	size to be unregistered
1053  *
1054  * This function is called when only a part of a memory block is freed
1055  * (usually from the bootmem allocator).
1056  */
1057 void __ref kmemleak_free_part(const void *ptr, size_t size)
1058 {
1059 	pr_debug("%s(0x%p)\n", __func__, ptr);
1060 
1061 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1062 		delete_object_part((unsigned long)ptr, size, false);
1063 }
1064 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1065 
1066 /**
1067  * kmemleak_free_percpu - unregister a previously registered __percpu object
1068  * @ptr:	__percpu pointer to beginning of the object
1069  *
1070  * This function is called from the kernel percpu allocator when an object
1071  * (memory block) is freed (free_percpu).
1072  */
1073 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1074 {
1075 	unsigned int cpu;
1076 
1077 	pr_debug("%s(0x%p)\n", __func__, ptr);
1078 
1079 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1080 		for_each_possible_cpu(cpu)
1081 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
1082 								      cpu));
1083 }
1084 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1085 
1086 /**
1087  * kmemleak_update_trace - update object allocation stack trace
1088  * @ptr:	pointer to beginning of the object
1089  *
1090  * Override the object allocation stack trace for cases where the actual
1091  * allocation place is not always useful.
1092  */
1093 void __ref kmemleak_update_trace(const void *ptr)
1094 {
1095 	struct kmemleak_object *object;
1096 	unsigned long flags;
1097 
1098 	pr_debug("%s(0x%p)\n", __func__, ptr);
1099 
1100 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1101 		return;
1102 
1103 	object = find_and_get_object((unsigned long)ptr, 1);
1104 	if (!object) {
1105 #ifdef DEBUG
1106 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1107 			      ptr);
1108 #endif
1109 		return;
1110 	}
1111 
1112 	raw_spin_lock_irqsave(&object->lock, flags);
1113 	object->trace_handle = set_track_prepare();
1114 	raw_spin_unlock_irqrestore(&object->lock, flags);
1115 
1116 	put_object(object);
1117 }
1118 EXPORT_SYMBOL(kmemleak_update_trace);
1119 
1120 /**
1121  * kmemleak_not_leak - mark an allocated object as false positive
1122  * @ptr:	pointer to beginning of the object
1123  *
1124  * Calling this function on an object will cause the memory block to no longer
1125  * be reported as leak and always be scanned.
1126  */
1127 void __ref kmemleak_not_leak(const void *ptr)
1128 {
1129 	pr_debug("%s(0x%p)\n", __func__, ptr);
1130 
1131 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1132 		make_gray_object((unsigned long)ptr);
1133 }
1134 EXPORT_SYMBOL(kmemleak_not_leak);
1135 
1136 /**
1137  * kmemleak_ignore - ignore an allocated object
1138  * @ptr:	pointer to beginning of the object
1139  *
1140  * Calling this function on an object will cause the memory block to be
1141  * ignored (not scanned and not reported as a leak). This is usually done when
1142  * it is known that the corresponding block is not a leak and does not contain
1143  * any references to other allocated memory blocks.
1144  */
1145 void __ref kmemleak_ignore(const void *ptr)
1146 {
1147 	pr_debug("%s(0x%p)\n", __func__, ptr);
1148 
1149 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1150 		make_black_object((unsigned long)ptr, false);
1151 }
1152 EXPORT_SYMBOL(kmemleak_ignore);
1153 
1154 /**
1155  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1156  * @ptr:	pointer to beginning or inside the object. This also
1157  *		represents the start of the scan area
1158  * @size:	size of the scan area
1159  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1160  *
1161  * This function is used when it is known that only certain parts of an object
1162  * contain references to other objects. Kmemleak will only scan these areas
1163  * reducing the number false negatives.
1164  */
1165 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1166 {
1167 	pr_debug("%s(0x%p)\n", __func__, ptr);
1168 
1169 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1170 		add_scan_area((unsigned long)ptr, size, gfp);
1171 }
1172 EXPORT_SYMBOL(kmemleak_scan_area);
1173 
1174 /**
1175  * kmemleak_no_scan - do not scan an allocated object
1176  * @ptr:	pointer to beginning of the object
1177  *
1178  * This function notifies kmemleak not to scan the given memory block. Useful
1179  * in situations where it is known that the given object does not contain any
1180  * references to other objects. Kmemleak will not scan such objects reducing
1181  * the number of false negatives.
1182  */
1183 void __ref kmemleak_no_scan(const void *ptr)
1184 {
1185 	pr_debug("%s(0x%p)\n", __func__, ptr);
1186 
1187 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1188 		object_no_scan((unsigned long)ptr);
1189 }
1190 EXPORT_SYMBOL(kmemleak_no_scan);
1191 
1192 /**
1193  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1194  *			 address argument
1195  * @phys:	physical address of the object
1196  * @size:	size of the object
1197  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1198  */
1199 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1200 {
1201 	pr_debug("%s(0x%pa, %zu)\n", __func__, &phys, size);
1202 
1203 	if (kmemleak_enabled)
1204 		/*
1205 		 * Create object with OBJECT_PHYS flag and
1206 		 * assume min_count 0.
1207 		 */
1208 		create_object_phys((unsigned long)phys, size, 0, gfp);
1209 }
1210 EXPORT_SYMBOL(kmemleak_alloc_phys);
1211 
1212 /**
1213  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1214  *			     physical address argument
1215  * @phys:	physical address if the beginning or inside an object. This
1216  *		also represents the start of the range to be freed
1217  * @size:	size to be unregistered
1218  */
1219 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1220 {
1221 	pr_debug("%s(0x%pa)\n", __func__, &phys);
1222 
1223 	if (kmemleak_enabled)
1224 		delete_object_part((unsigned long)phys, size, true);
1225 }
1226 EXPORT_SYMBOL(kmemleak_free_part_phys);
1227 
1228 /**
1229  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1230  *			  address argument
1231  * @phys:	physical address of the object
1232  */
1233 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1234 {
1235 	pr_debug("%s(0x%pa)\n", __func__, &phys);
1236 
1237 	if (kmemleak_enabled)
1238 		make_black_object((unsigned long)phys, true);
1239 }
1240 EXPORT_SYMBOL(kmemleak_ignore_phys);
1241 
1242 /*
1243  * Update an object's checksum and return true if it was modified.
1244  */
1245 static bool update_checksum(struct kmemleak_object *object)
1246 {
1247 	u32 old_csum = object->checksum;
1248 
1249 	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1250 		return false;
1251 
1252 	kasan_disable_current();
1253 	kcsan_disable_current();
1254 	object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1255 	kasan_enable_current();
1256 	kcsan_enable_current();
1257 
1258 	return object->checksum != old_csum;
1259 }
1260 
1261 /*
1262  * Update an object's references. object->lock must be held by the caller.
1263  */
1264 static void update_refs(struct kmemleak_object *object)
1265 {
1266 	if (!color_white(object)) {
1267 		/* non-orphan, ignored or new */
1268 		return;
1269 	}
1270 
1271 	/*
1272 	 * Increase the object's reference count (number of pointers to the
1273 	 * memory block). If this count reaches the required minimum, the
1274 	 * object's color will become gray and it will be added to the
1275 	 * gray_list.
1276 	 */
1277 	object->count++;
1278 	if (color_gray(object)) {
1279 		/* put_object() called when removing from gray_list */
1280 		WARN_ON(!get_object(object));
1281 		list_add_tail(&object->gray_list, &gray_list);
1282 	}
1283 }
1284 
1285 /*
1286  * Memory scanning is a long process and it needs to be interruptible. This
1287  * function checks whether such interrupt condition occurred.
1288  */
1289 static int scan_should_stop(void)
1290 {
1291 	if (!kmemleak_enabled)
1292 		return 1;
1293 
1294 	/*
1295 	 * This function may be called from either process or kthread context,
1296 	 * hence the need to check for both stop conditions.
1297 	 */
1298 	if (current->mm)
1299 		return signal_pending(current);
1300 	else
1301 		return kthread_should_stop();
1302 
1303 	return 0;
1304 }
1305 
1306 /*
1307  * Scan a memory block (exclusive range) for valid pointers and add those
1308  * found to the gray list.
1309  */
1310 static void scan_block(void *_start, void *_end,
1311 		       struct kmemleak_object *scanned)
1312 {
1313 	unsigned long *ptr;
1314 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1315 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1316 	unsigned long flags;
1317 	unsigned long untagged_ptr;
1318 
1319 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
1320 	for (ptr = start; ptr < end; ptr++) {
1321 		struct kmemleak_object *object;
1322 		unsigned long pointer;
1323 		unsigned long excess_ref;
1324 
1325 		if (scan_should_stop())
1326 			break;
1327 
1328 		kasan_disable_current();
1329 		pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1330 		kasan_enable_current();
1331 
1332 		untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1333 		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1334 			continue;
1335 
1336 		/*
1337 		 * No need for get_object() here since we hold kmemleak_lock.
1338 		 * object->use_count cannot be dropped to 0 while the object
1339 		 * is still present in object_tree_root and object_list
1340 		 * (with updates protected by kmemleak_lock).
1341 		 */
1342 		object = lookup_object(pointer, 1);
1343 		if (!object)
1344 			continue;
1345 		if (object == scanned)
1346 			/* self referenced, ignore */
1347 			continue;
1348 
1349 		/*
1350 		 * Avoid the lockdep recursive warning on object->lock being
1351 		 * previously acquired in scan_object(). These locks are
1352 		 * enclosed by scan_mutex.
1353 		 */
1354 		raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1355 		/* only pass surplus references (object already gray) */
1356 		if (color_gray(object)) {
1357 			excess_ref = object->excess_ref;
1358 			/* no need for update_refs() if object already gray */
1359 		} else {
1360 			excess_ref = 0;
1361 			update_refs(object);
1362 		}
1363 		raw_spin_unlock(&object->lock);
1364 
1365 		if (excess_ref) {
1366 			object = lookup_object(excess_ref, 0);
1367 			if (!object)
1368 				continue;
1369 			if (object == scanned)
1370 				/* circular reference, ignore */
1371 				continue;
1372 			raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1373 			update_refs(object);
1374 			raw_spin_unlock(&object->lock);
1375 		}
1376 	}
1377 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1378 }
1379 
1380 /*
1381  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1382  */
1383 #ifdef CONFIG_SMP
1384 static void scan_large_block(void *start, void *end)
1385 {
1386 	void *next;
1387 
1388 	while (start < end) {
1389 		next = min(start + MAX_SCAN_SIZE, end);
1390 		scan_block(start, next, NULL);
1391 		start = next;
1392 		cond_resched();
1393 	}
1394 }
1395 #endif
1396 
1397 /*
1398  * Scan a memory block corresponding to a kmemleak_object. A condition is
1399  * that object->use_count >= 1.
1400  */
1401 static void scan_object(struct kmemleak_object *object)
1402 {
1403 	struct kmemleak_scan_area *area;
1404 	unsigned long flags;
1405 	void *obj_ptr;
1406 
1407 	/*
1408 	 * Once the object->lock is acquired, the corresponding memory block
1409 	 * cannot be freed (the same lock is acquired in delete_object).
1410 	 */
1411 	raw_spin_lock_irqsave(&object->lock, flags);
1412 	if (object->flags & OBJECT_NO_SCAN)
1413 		goto out;
1414 	if (!(object->flags & OBJECT_ALLOCATED))
1415 		/* already freed object */
1416 		goto out;
1417 
1418 	obj_ptr = object->flags & OBJECT_PHYS ?
1419 		  __va((phys_addr_t)object->pointer) :
1420 		  (void *)object->pointer;
1421 
1422 	if (hlist_empty(&object->area_list) ||
1423 	    object->flags & OBJECT_FULL_SCAN) {
1424 		void *start = obj_ptr;
1425 		void *end = obj_ptr + object->size;
1426 		void *next;
1427 
1428 		do {
1429 			next = min(start + MAX_SCAN_SIZE, end);
1430 			scan_block(start, next, object);
1431 
1432 			start = next;
1433 			if (start >= end)
1434 				break;
1435 
1436 			raw_spin_unlock_irqrestore(&object->lock, flags);
1437 			cond_resched();
1438 			raw_spin_lock_irqsave(&object->lock, flags);
1439 		} while (object->flags & OBJECT_ALLOCATED);
1440 	} else
1441 		hlist_for_each_entry(area, &object->area_list, node)
1442 			scan_block((void *)area->start,
1443 				   (void *)(area->start + area->size),
1444 				   object);
1445 out:
1446 	raw_spin_unlock_irqrestore(&object->lock, flags);
1447 }
1448 
1449 /*
1450  * Scan the objects already referenced (gray objects). More objects will be
1451  * referenced and, if there are no memory leaks, all the objects are scanned.
1452  */
1453 static void scan_gray_list(void)
1454 {
1455 	struct kmemleak_object *object, *tmp;
1456 
1457 	/*
1458 	 * The list traversal is safe for both tail additions and removals
1459 	 * from inside the loop. The kmemleak objects cannot be freed from
1460 	 * outside the loop because their use_count was incremented.
1461 	 */
1462 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1463 	while (&object->gray_list != &gray_list) {
1464 		cond_resched();
1465 
1466 		/* may add new objects to the list */
1467 		if (!scan_should_stop())
1468 			scan_object(object);
1469 
1470 		tmp = list_entry(object->gray_list.next, typeof(*object),
1471 				 gray_list);
1472 
1473 		/* remove the object from the list and release it */
1474 		list_del(&object->gray_list);
1475 		put_object(object);
1476 
1477 		object = tmp;
1478 	}
1479 	WARN_ON(!list_empty(&gray_list));
1480 }
1481 
1482 /*
1483  * Conditionally call resched() in an object iteration loop while making sure
1484  * that the given object won't go away without RCU read lock by performing a
1485  * get_object() if necessaary.
1486  */
1487 static void kmemleak_cond_resched(struct kmemleak_object *object)
1488 {
1489 	if (!get_object(object))
1490 		return;	/* Try next object */
1491 
1492 	raw_spin_lock_irq(&kmemleak_lock);
1493 	if (object->del_state & DELSTATE_REMOVED)
1494 		goto unlock_put;	/* Object removed */
1495 	object->del_state |= DELSTATE_NO_DELETE;
1496 	raw_spin_unlock_irq(&kmemleak_lock);
1497 
1498 	rcu_read_unlock();
1499 	cond_resched();
1500 	rcu_read_lock();
1501 
1502 	raw_spin_lock_irq(&kmemleak_lock);
1503 	if (object->del_state & DELSTATE_REMOVED)
1504 		list_del_rcu(&object->object_list);
1505 	object->del_state &= ~DELSTATE_NO_DELETE;
1506 unlock_put:
1507 	raw_spin_unlock_irq(&kmemleak_lock);
1508 	put_object(object);
1509 }
1510 
1511 /*
1512  * Scan data sections and all the referenced memory blocks allocated via the
1513  * kernel's standard allocators. This function must be called with the
1514  * scan_mutex held.
1515  */
1516 static void kmemleak_scan(void)
1517 {
1518 	struct kmemleak_object *object;
1519 	struct zone *zone;
1520 	int __maybe_unused i;
1521 	int new_leaks = 0;
1522 
1523 	jiffies_last_scan = jiffies;
1524 
1525 	/* prepare the kmemleak_object's */
1526 	rcu_read_lock();
1527 	list_for_each_entry_rcu(object, &object_list, object_list) {
1528 		raw_spin_lock_irq(&object->lock);
1529 #ifdef DEBUG
1530 		/*
1531 		 * With a few exceptions there should be a maximum of
1532 		 * 1 reference to any object at this point.
1533 		 */
1534 		if (atomic_read(&object->use_count) > 1) {
1535 			pr_debug("object->use_count = %d\n",
1536 				 atomic_read(&object->use_count));
1537 			dump_object_info(object);
1538 		}
1539 #endif
1540 
1541 		/* ignore objects outside lowmem (paint them black) */
1542 		if ((object->flags & OBJECT_PHYS) &&
1543 		   !(object->flags & OBJECT_NO_SCAN)) {
1544 			unsigned long phys = object->pointer;
1545 
1546 			if (PHYS_PFN(phys) < min_low_pfn ||
1547 			    PHYS_PFN(phys + object->size) >= max_low_pfn)
1548 				__paint_it(object, KMEMLEAK_BLACK);
1549 		}
1550 
1551 		/* reset the reference count (whiten the object) */
1552 		object->count = 0;
1553 		if (color_gray(object) && get_object(object))
1554 			list_add_tail(&object->gray_list, &gray_list);
1555 
1556 		raw_spin_unlock_irq(&object->lock);
1557 
1558 		if (need_resched())
1559 			kmemleak_cond_resched(object);
1560 	}
1561 	rcu_read_unlock();
1562 
1563 #ifdef CONFIG_SMP
1564 	/* per-cpu sections scanning */
1565 	for_each_possible_cpu(i)
1566 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1567 				 __per_cpu_end + per_cpu_offset(i));
1568 #endif
1569 
1570 	/*
1571 	 * Struct page scanning for each node.
1572 	 */
1573 	get_online_mems();
1574 	for_each_populated_zone(zone) {
1575 		unsigned long start_pfn = zone->zone_start_pfn;
1576 		unsigned long end_pfn = zone_end_pfn(zone);
1577 		unsigned long pfn;
1578 
1579 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1580 			struct page *page = pfn_to_online_page(pfn);
1581 
1582 			if (!page)
1583 				continue;
1584 
1585 			/* only scan pages belonging to this zone */
1586 			if (page_zone(page) != zone)
1587 				continue;
1588 			/* only scan if page is in use */
1589 			if (page_count(page) == 0)
1590 				continue;
1591 			scan_block(page, page + 1, NULL);
1592 			if (!(pfn & 63))
1593 				cond_resched();
1594 		}
1595 	}
1596 	put_online_mems();
1597 
1598 	/*
1599 	 * Scanning the task stacks (may introduce false negatives).
1600 	 */
1601 	if (kmemleak_stack_scan) {
1602 		struct task_struct *p, *g;
1603 
1604 		rcu_read_lock();
1605 		for_each_process_thread(g, p) {
1606 			void *stack = try_get_task_stack(p);
1607 			if (stack) {
1608 				scan_block(stack, stack + THREAD_SIZE, NULL);
1609 				put_task_stack(p);
1610 			}
1611 		}
1612 		rcu_read_unlock();
1613 	}
1614 
1615 	/*
1616 	 * Scan the objects already referenced from the sections scanned
1617 	 * above.
1618 	 */
1619 	scan_gray_list();
1620 
1621 	/*
1622 	 * Check for new or unreferenced objects modified since the previous
1623 	 * scan and color them gray until the next scan.
1624 	 */
1625 	rcu_read_lock();
1626 	list_for_each_entry_rcu(object, &object_list, object_list) {
1627 		if (need_resched())
1628 			kmemleak_cond_resched(object);
1629 
1630 		/*
1631 		 * This is racy but we can save the overhead of lock/unlock
1632 		 * calls. The missed objects, if any, should be caught in
1633 		 * the next scan.
1634 		 */
1635 		if (!color_white(object))
1636 			continue;
1637 		raw_spin_lock_irq(&object->lock);
1638 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1639 		    && update_checksum(object) && get_object(object)) {
1640 			/* color it gray temporarily */
1641 			object->count = object->min_count;
1642 			list_add_tail(&object->gray_list, &gray_list);
1643 		}
1644 		raw_spin_unlock_irq(&object->lock);
1645 	}
1646 	rcu_read_unlock();
1647 
1648 	/*
1649 	 * Re-scan the gray list for modified unreferenced objects.
1650 	 */
1651 	scan_gray_list();
1652 
1653 	/*
1654 	 * If scanning was stopped do not report any new unreferenced objects.
1655 	 */
1656 	if (scan_should_stop())
1657 		return;
1658 
1659 	/*
1660 	 * Scanning result reporting.
1661 	 */
1662 	rcu_read_lock();
1663 	list_for_each_entry_rcu(object, &object_list, object_list) {
1664 		if (need_resched())
1665 			kmemleak_cond_resched(object);
1666 
1667 		/*
1668 		 * This is racy but we can save the overhead of lock/unlock
1669 		 * calls. The missed objects, if any, should be caught in
1670 		 * the next scan.
1671 		 */
1672 		if (!color_white(object))
1673 			continue;
1674 		raw_spin_lock_irq(&object->lock);
1675 		if (unreferenced_object(object) &&
1676 		    !(object->flags & OBJECT_REPORTED)) {
1677 			object->flags |= OBJECT_REPORTED;
1678 
1679 			if (kmemleak_verbose)
1680 				print_unreferenced(NULL, object);
1681 
1682 			new_leaks++;
1683 		}
1684 		raw_spin_unlock_irq(&object->lock);
1685 	}
1686 	rcu_read_unlock();
1687 
1688 	if (new_leaks) {
1689 		kmemleak_found_leaks = true;
1690 
1691 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1692 			new_leaks);
1693 	}
1694 
1695 }
1696 
1697 /*
1698  * Thread function performing automatic memory scanning. Unreferenced objects
1699  * at the end of a memory scan are reported but only the first time.
1700  */
1701 static int kmemleak_scan_thread(void *arg)
1702 {
1703 	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1704 
1705 	pr_info("Automatic memory scanning thread started\n");
1706 	set_user_nice(current, 10);
1707 
1708 	/*
1709 	 * Wait before the first scan to allow the system to fully initialize.
1710 	 */
1711 	if (first_run) {
1712 		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1713 		first_run = 0;
1714 		while (timeout && !kthread_should_stop())
1715 			timeout = schedule_timeout_interruptible(timeout);
1716 	}
1717 
1718 	while (!kthread_should_stop()) {
1719 		signed long timeout = READ_ONCE(jiffies_scan_wait);
1720 
1721 		mutex_lock(&scan_mutex);
1722 		kmemleak_scan();
1723 		mutex_unlock(&scan_mutex);
1724 
1725 		/* wait before the next scan */
1726 		while (timeout && !kthread_should_stop())
1727 			timeout = schedule_timeout_interruptible(timeout);
1728 	}
1729 
1730 	pr_info("Automatic memory scanning thread ended\n");
1731 
1732 	return 0;
1733 }
1734 
1735 /*
1736  * Start the automatic memory scanning thread. This function must be called
1737  * with the scan_mutex held.
1738  */
1739 static void start_scan_thread(void)
1740 {
1741 	if (scan_thread)
1742 		return;
1743 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1744 	if (IS_ERR(scan_thread)) {
1745 		pr_warn("Failed to create the scan thread\n");
1746 		scan_thread = NULL;
1747 	}
1748 }
1749 
1750 /*
1751  * Stop the automatic memory scanning thread.
1752  */
1753 static void stop_scan_thread(void)
1754 {
1755 	if (scan_thread) {
1756 		kthread_stop(scan_thread);
1757 		scan_thread = NULL;
1758 	}
1759 }
1760 
1761 /*
1762  * Iterate over the object_list and return the first valid object at or after
1763  * the required position with its use_count incremented. The function triggers
1764  * a memory scanning when the pos argument points to the first position.
1765  */
1766 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1767 {
1768 	struct kmemleak_object *object;
1769 	loff_t n = *pos;
1770 	int err;
1771 
1772 	err = mutex_lock_interruptible(&scan_mutex);
1773 	if (err < 0)
1774 		return ERR_PTR(err);
1775 
1776 	rcu_read_lock();
1777 	list_for_each_entry_rcu(object, &object_list, object_list) {
1778 		if (n-- > 0)
1779 			continue;
1780 		if (get_object(object))
1781 			goto out;
1782 	}
1783 	object = NULL;
1784 out:
1785 	return object;
1786 }
1787 
1788 /*
1789  * Return the next object in the object_list. The function decrements the
1790  * use_count of the previous object and increases that of the next one.
1791  */
1792 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1793 {
1794 	struct kmemleak_object *prev_obj = v;
1795 	struct kmemleak_object *next_obj = NULL;
1796 	struct kmemleak_object *obj = prev_obj;
1797 
1798 	++(*pos);
1799 
1800 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1801 		if (get_object(obj)) {
1802 			next_obj = obj;
1803 			break;
1804 		}
1805 	}
1806 
1807 	put_object(prev_obj);
1808 	return next_obj;
1809 }
1810 
1811 /*
1812  * Decrement the use_count of the last object required, if any.
1813  */
1814 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1815 {
1816 	if (!IS_ERR(v)) {
1817 		/*
1818 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1819 		 * waiting was interrupted, so only release it if !IS_ERR.
1820 		 */
1821 		rcu_read_unlock();
1822 		mutex_unlock(&scan_mutex);
1823 		if (v)
1824 			put_object(v);
1825 	}
1826 }
1827 
1828 /*
1829  * Print the information for an unreferenced object to the seq file.
1830  */
1831 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1832 {
1833 	struct kmemleak_object *object = v;
1834 	unsigned long flags;
1835 
1836 	raw_spin_lock_irqsave(&object->lock, flags);
1837 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1838 		print_unreferenced(seq, object);
1839 	raw_spin_unlock_irqrestore(&object->lock, flags);
1840 	return 0;
1841 }
1842 
1843 static const struct seq_operations kmemleak_seq_ops = {
1844 	.start = kmemleak_seq_start,
1845 	.next  = kmemleak_seq_next,
1846 	.stop  = kmemleak_seq_stop,
1847 	.show  = kmemleak_seq_show,
1848 };
1849 
1850 static int kmemleak_open(struct inode *inode, struct file *file)
1851 {
1852 	return seq_open(file, &kmemleak_seq_ops);
1853 }
1854 
1855 static int dump_str_object_info(const char *str)
1856 {
1857 	unsigned long flags;
1858 	struct kmemleak_object *object;
1859 	unsigned long addr;
1860 
1861 	if (kstrtoul(str, 0, &addr))
1862 		return -EINVAL;
1863 	object = find_and_get_object(addr, 0);
1864 	if (!object) {
1865 		pr_info("Unknown object at 0x%08lx\n", addr);
1866 		return -EINVAL;
1867 	}
1868 
1869 	raw_spin_lock_irqsave(&object->lock, flags);
1870 	dump_object_info(object);
1871 	raw_spin_unlock_irqrestore(&object->lock, flags);
1872 
1873 	put_object(object);
1874 	return 0;
1875 }
1876 
1877 /*
1878  * We use grey instead of black to ensure we can do future scans on the same
1879  * objects. If we did not do future scans these black objects could
1880  * potentially contain references to newly allocated objects in the future and
1881  * we'd end up with false positives.
1882  */
1883 static void kmemleak_clear(void)
1884 {
1885 	struct kmemleak_object *object;
1886 
1887 	rcu_read_lock();
1888 	list_for_each_entry_rcu(object, &object_list, object_list) {
1889 		raw_spin_lock_irq(&object->lock);
1890 		if ((object->flags & OBJECT_REPORTED) &&
1891 		    unreferenced_object(object))
1892 			__paint_it(object, KMEMLEAK_GREY);
1893 		raw_spin_unlock_irq(&object->lock);
1894 	}
1895 	rcu_read_unlock();
1896 
1897 	kmemleak_found_leaks = false;
1898 }
1899 
1900 static void __kmemleak_do_cleanup(void);
1901 
1902 /*
1903  * File write operation to configure kmemleak at run-time. The following
1904  * commands can be written to the /sys/kernel/debug/kmemleak file:
1905  *   off	- disable kmemleak (irreversible)
1906  *   stack=on	- enable the task stacks scanning
1907  *   stack=off	- disable the tasks stacks scanning
1908  *   scan=on	- start the automatic memory scanning thread
1909  *   scan=off	- stop the automatic memory scanning thread
1910  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1911  *		  disable it)
1912  *   scan	- trigger a memory scan
1913  *   clear	- mark all current reported unreferenced kmemleak objects as
1914  *		  grey to ignore printing them, or free all kmemleak objects
1915  *		  if kmemleak has been disabled.
1916  *   dump=...	- dump information about the object found at the given address
1917  */
1918 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1919 			      size_t size, loff_t *ppos)
1920 {
1921 	char buf[64];
1922 	int buf_size;
1923 	int ret;
1924 
1925 	buf_size = min(size, (sizeof(buf) - 1));
1926 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1927 		return -EFAULT;
1928 	buf[buf_size] = 0;
1929 
1930 	ret = mutex_lock_interruptible(&scan_mutex);
1931 	if (ret < 0)
1932 		return ret;
1933 
1934 	if (strncmp(buf, "clear", 5) == 0) {
1935 		if (kmemleak_enabled)
1936 			kmemleak_clear();
1937 		else
1938 			__kmemleak_do_cleanup();
1939 		goto out;
1940 	}
1941 
1942 	if (!kmemleak_enabled) {
1943 		ret = -EPERM;
1944 		goto out;
1945 	}
1946 
1947 	if (strncmp(buf, "off", 3) == 0)
1948 		kmemleak_disable();
1949 	else if (strncmp(buf, "stack=on", 8) == 0)
1950 		kmemleak_stack_scan = 1;
1951 	else if (strncmp(buf, "stack=off", 9) == 0)
1952 		kmemleak_stack_scan = 0;
1953 	else if (strncmp(buf, "scan=on", 7) == 0)
1954 		start_scan_thread();
1955 	else if (strncmp(buf, "scan=off", 8) == 0)
1956 		stop_scan_thread();
1957 	else if (strncmp(buf, "scan=", 5) == 0) {
1958 		unsigned secs;
1959 		unsigned long msecs;
1960 
1961 		ret = kstrtouint(buf + 5, 0, &secs);
1962 		if (ret < 0)
1963 			goto out;
1964 
1965 		msecs = secs * MSEC_PER_SEC;
1966 		if (msecs > UINT_MAX)
1967 			msecs = UINT_MAX;
1968 
1969 		stop_scan_thread();
1970 		if (msecs) {
1971 			WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
1972 			start_scan_thread();
1973 		}
1974 	} else if (strncmp(buf, "scan", 4) == 0)
1975 		kmemleak_scan();
1976 	else if (strncmp(buf, "dump=", 5) == 0)
1977 		ret = dump_str_object_info(buf + 5);
1978 	else
1979 		ret = -EINVAL;
1980 
1981 out:
1982 	mutex_unlock(&scan_mutex);
1983 	if (ret < 0)
1984 		return ret;
1985 
1986 	/* ignore the rest of the buffer, only one command at a time */
1987 	*ppos += size;
1988 	return size;
1989 }
1990 
1991 static const struct file_operations kmemleak_fops = {
1992 	.owner		= THIS_MODULE,
1993 	.open		= kmemleak_open,
1994 	.read		= seq_read,
1995 	.write		= kmemleak_write,
1996 	.llseek		= seq_lseek,
1997 	.release	= seq_release,
1998 };
1999 
2000 static void __kmemleak_do_cleanup(void)
2001 {
2002 	struct kmemleak_object *object, *tmp;
2003 
2004 	/*
2005 	 * Kmemleak has already been disabled, no need for RCU list traversal
2006 	 * or kmemleak_lock held.
2007 	 */
2008 	list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2009 		__remove_object(object);
2010 		__delete_object(object);
2011 	}
2012 }
2013 
2014 /*
2015  * Stop the memory scanning thread and free the kmemleak internal objects if
2016  * no previous scan thread (otherwise, kmemleak may still have some useful
2017  * information on memory leaks).
2018  */
2019 static void kmemleak_do_cleanup(struct work_struct *work)
2020 {
2021 	stop_scan_thread();
2022 
2023 	mutex_lock(&scan_mutex);
2024 	/*
2025 	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2026 	 * longer track object freeing. Ordering of the scan thread stopping and
2027 	 * the memory accesses below is guaranteed by the kthread_stop()
2028 	 * function.
2029 	 */
2030 	kmemleak_free_enabled = 0;
2031 	mutex_unlock(&scan_mutex);
2032 
2033 	if (!kmemleak_found_leaks)
2034 		__kmemleak_do_cleanup();
2035 	else
2036 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2037 }
2038 
2039 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2040 
2041 /*
2042  * Disable kmemleak. No memory allocation/freeing will be traced once this
2043  * function is called. Disabling kmemleak is an irreversible operation.
2044  */
2045 static void kmemleak_disable(void)
2046 {
2047 	/* atomically check whether it was already invoked */
2048 	if (cmpxchg(&kmemleak_error, 0, 1))
2049 		return;
2050 
2051 	/* stop any memory operation tracing */
2052 	kmemleak_enabled = 0;
2053 
2054 	/* check whether it is too early for a kernel thread */
2055 	if (kmemleak_initialized)
2056 		schedule_work(&cleanup_work);
2057 	else
2058 		kmemleak_free_enabled = 0;
2059 
2060 	pr_info("Kernel memory leak detector disabled\n");
2061 }
2062 
2063 /*
2064  * Allow boot-time kmemleak disabling (enabled by default).
2065  */
2066 static int __init kmemleak_boot_config(char *str)
2067 {
2068 	if (!str)
2069 		return -EINVAL;
2070 	if (strcmp(str, "off") == 0)
2071 		kmemleak_disable();
2072 	else if (strcmp(str, "on") == 0) {
2073 		kmemleak_skip_disable = 1;
2074 		stack_depot_request_early_init();
2075 	}
2076 	else
2077 		return -EINVAL;
2078 	return 0;
2079 }
2080 early_param("kmemleak", kmemleak_boot_config);
2081 
2082 /*
2083  * Kmemleak initialization.
2084  */
2085 void __init kmemleak_init(void)
2086 {
2087 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2088 	if (!kmemleak_skip_disable) {
2089 		kmemleak_disable();
2090 		return;
2091 	}
2092 #endif
2093 
2094 	if (kmemleak_error)
2095 		return;
2096 
2097 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2098 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2099 
2100 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2101 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2102 
2103 	/* register the data/bss sections */
2104 	create_object((unsigned long)_sdata, _edata - _sdata,
2105 		      KMEMLEAK_GREY, GFP_ATOMIC);
2106 	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2107 		      KMEMLEAK_GREY, GFP_ATOMIC);
2108 	/* only register .data..ro_after_init if not within .data */
2109 	if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2110 		create_object((unsigned long)__start_ro_after_init,
2111 			      __end_ro_after_init - __start_ro_after_init,
2112 			      KMEMLEAK_GREY, GFP_ATOMIC);
2113 }
2114 
2115 /*
2116  * Late initialization function.
2117  */
2118 static int __init kmemleak_late_init(void)
2119 {
2120 	kmemleak_initialized = 1;
2121 
2122 	debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2123 
2124 	if (kmemleak_error) {
2125 		/*
2126 		 * Some error occurred and kmemleak was disabled. There is a
2127 		 * small chance that kmemleak_disable() was called immediately
2128 		 * after setting kmemleak_initialized and we may end up with
2129 		 * two clean-up threads but serialized by scan_mutex.
2130 		 */
2131 		schedule_work(&cleanup_work);
2132 		return -ENOMEM;
2133 	}
2134 
2135 	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2136 		mutex_lock(&scan_mutex);
2137 		start_scan_thread();
2138 		mutex_unlock(&scan_mutex);
2139 	}
2140 
2141 	pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2142 		mem_pool_free_count);
2143 
2144 	return 0;
2145 }
2146 late_initcall(kmemleak_late_init);
2147