xref: /openbmc/linux/mm/kmemleak.c (revision 5fac5f55)
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/kmemleak.txt.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a red black tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * The kmemleak_object structures have a use_count incremented or decremented
57  * using the get_object()/put_object() functions. When the use_count becomes
58  * 0, this count can no longer be incremented and put_object() schedules the
59  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60  * function must be protected by rcu_read_lock() to avoid accessing a freed
61  * structure.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 
66 #include <linux/init.h>
67 #include <linux/kernel.h>
68 #include <linux/list.h>
69 #include <linux/sched.h>
70 #include <linux/jiffies.h>
71 #include <linux/delay.h>
72 #include <linux/export.h>
73 #include <linux/kthread.h>
74 #include <linux/rbtree.h>
75 #include <linux/fs.h>
76 #include <linux/debugfs.h>
77 #include <linux/seq_file.h>
78 #include <linux/cpumask.h>
79 #include <linux/spinlock.h>
80 #include <linux/mutex.h>
81 #include <linux/rcupdate.h>
82 #include <linux/stacktrace.h>
83 #include <linux/cache.h>
84 #include <linux/percpu.h>
85 #include <linux/hardirq.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96 
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
100 
101 #include <linux/kasan.h>
102 #include <linux/kmemcheck.h>
103 #include <linux/kmemleak.h>
104 #include <linux/memory_hotplug.h>
105 
106 /*
107  * Kmemleak configuration and common defines.
108  */
109 #define MAX_TRACE		16	/* stack trace length */
110 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
111 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
112 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
113 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
114 
115 #define BYTES_PER_POINTER	sizeof(void *)
116 
117 /* GFP bitmask for kmemleak internal allocations */
118 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
119 					   __GFP_NOACCOUNT)) | \
120 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
121 				 __GFP_NOWARN)
122 
123 /* scanning area inside a memory block */
124 struct kmemleak_scan_area {
125 	struct hlist_node node;
126 	unsigned long start;
127 	size_t size;
128 };
129 
130 #define KMEMLEAK_GREY	0
131 #define KMEMLEAK_BLACK	-1
132 
133 /*
134  * Structure holding the metadata for each allocated memory block.
135  * Modifications to such objects should be made while holding the
136  * object->lock. Insertions or deletions from object_list, gray_list or
137  * rb_node are already protected by the corresponding locks or mutex (see
138  * the notes on locking above). These objects are reference-counted
139  * (use_count) and freed using the RCU mechanism.
140  */
141 struct kmemleak_object {
142 	spinlock_t lock;
143 	unsigned long flags;		/* object status flags */
144 	struct list_head object_list;
145 	struct list_head gray_list;
146 	struct rb_node rb_node;
147 	struct rcu_head rcu;		/* object_list lockless traversal */
148 	/* object usage count; object freed when use_count == 0 */
149 	atomic_t use_count;
150 	unsigned long pointer;
151 	size_t size;
152 	/* minimum number of a pointers found before it is considered leak */
153 	int min_count;
154 	/* the total number of pointers found pointing to this object */
155 	int count;
156 	/* checksum for detecting modified objects */
157 	u32 checksum;
158 	/* memory ranges to be scanned inside an object (empty for all) */
159 	struct hlist_head area_list;
160 	unsigned long trace[MAX_TRACE];
161 	unsigned int trace_len;
162 	unsigned long jiffies;		/* creation timestamp */
163 	pid_t pid;			/* pid of the current task */
164 	char comm[TASK_COMM_LEN];	/* executable name */
165 };
166 
167 /* flag representing the memory block allocation status */
168 #define OBJECT_ALLOCATED	(1 << 0)
169 /* flag set after the first reporting of an unreference object */
170 #define OBJECT_REPORTED		(1 << 1)
171 /* flag set to not scan the object */
172 #define OBJECT_NO_SCAN		(1 << 2)
173 
174 /* number of bytes to print per line; must be 16 or 32 */
175 #define HEX_ROW_SIZE		16
176 /* number of bytes to print at a time (1, 2, 4, 8) */
177 #define HEX_GROUP_SIZE		1
178 /* include ASCII after the hex output */
179 #define HEX_ASCII		1
180 /* max number of lines to be printed */
181 #define HEX_MAX_LINES		2
182 
183 /* the list of all allocated objects */
184 static LIST_HEAD(object_list);
185 /* the list of gray-colored objects (see color_gray comment below) */
186 static LIST_HEAD(gray_list);
187 /* search tree for object boundaries */
188 static struct rb_root object_tree_root = RB_ROOT;
189 /* rw_lock protecting the access to object_list and object_tree_root */
190 static DEFINE_RWLOCK(kmemleak_lock);
191 
192 /* allocation caches for kmemleak internal data */
193 static struct kmem_cache *object_cache;
194 static struct kmem_cache *scan_area_cache;
195 
196 /* set if tracing memory operations is enabled */
197 static int kmemleak_enabled;
198 /* set in the late_initcall if there were no errors */
199 static int kmemleak_initialized;
200 /* enables or disables early logging of the memory operations */
201 static int kmemleak_early_log = 1;
202 /* set if a kmemleak warning was issued */
203 static int kmemleak_warning;
204 /* set if a fatal kmemleak error has occurred */
205 static int kmemleak_error;
206 
207 /* minimum and maximum address that may be valid pointers */
208 static unsigned long min_addr = ULONG_MAX;
209 static unsigned long max_addr;
210 
211 static struct task_struct *scan_thread;
212 /* used to avoid reporting of recently allocated objects */
213 static unsigned long jiffies_min_age;
214 static unsigned long jiffies_last_scan;
215 /* delay between automatic memory scannings */
216 static signed long jiffies_scan_wait;
217 /* enables or disables the task stacks scanning */
218 static int kmemleak_stack_scan = 1;
219 /* protects the memory scanning, parameters and debug/kmemleak file access */
220 static DEFINE_MUTEX(scan_mutex);
221 /* setting kmemleak=on, will set this var, skipping the disable */
222 static int kmemleak_skip_disable;
223 /* If there are leaks that can be reported */
224 static bool kmemleak_found_leaks;
225 
226 /*
227  * Early object allocation/freeing logging. Kmemleak is initialized after the
228  * kernel allocator. However, both the kernel allocator and kmemleak may
229  * allocate memory blocks which need to be tracked. Kmemleak defines an
230  * arbitrary buffer to hold the allocation/freeing information before it is
231  * fully initialized.
232  */
233 
234 /* kmemleak operation type for early logging */
235 enum {
236 	KMEMLEAK_ALLOC,
237 	KMEMLEAK_ALLOC_PERCPU,
238 	KMEMLEAK_FREE,
239 	KMEMLEAK_FREE_PART,
240 	KMEMLEAK_FREE_PERCPU,
241 	KMEMLEAK_NOT_LEAK,
242 	KMEMLEAK_IGNORE,
243 	KMEMLEAK_SCAN_AREA,
244 	KMEMLEAK_NO_SCAN
245 };
246 
247 /*
248  * Structure holding the information passed to kmemleak callbacks during the
249  * early logging.
250  */
251 struct early_log {
252 	int op_type;			/* kmemleak operation type */
253 	const void *ptr;		/* allocated/freed memory block */
254 	size_t size;			/* memory block size */
255 	int min_count;			/* minimum reference count */
256 	unsigned long trace[MAX_TRACE];	/* stack trace */
257 	unsigned int trace_len;		/* stack trace length */
258 };
259 
260 /* early logging buffer and current position */
261 static struct early_log
262 	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
263 static int crt_early_log __initdata;
264 
265 static void kmemleak_disable(void);
266 
267 /*
268  * Print a warning and dump the stack trace.
269  */
270 #define kmemleak_warn(x...)	do {		\
271 	pr_warning(x);				\
272 	dump_stack();				\
273 	kmemleak_warning = 1;			\
274 } while (0)
275 
276 /*
277  * Macro invoked when a serious kmemleak condition occurred and cannot be
278  * recovered from. Kmemleak will be disabled and further allocation/freeing
279  * tracing no longer available.
280  */
281 #define kmemleak_stop(x...)	do {	\
282 	kmemleak_warn(x);		\
283 	kmemleak_disable();		\
284 } while (0)
285 
286 /*
287  * Printing of the objects hex dump to the seq file. The number of lines to be
288  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
289  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
290  * with the object->lock held.
291  */
292 static void hex_dump_object(struct seq_file *seq,
293 			    struct kmemleak_object *object)
294 {
295 	const u8 *ptr = (const u8 *)object->pointer;
296 	int i, len, remaining;
297 	unsigned char linebuf[HEX_ROW_SIZE * 5];
298 
299 	/* limit the number of lines to HEX_MAX_LINES */
300 	remaining = len =
301 		min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
302 
303 	seq_printf(seq, "  hex dump (first %d bytes):\n", len);
304 	for (i = 0; i < len; i += HEX_ROW_SIZE) {
305 		int linelen = min(remaining, HEX_ROW_SIZE);
306 
307 		remaining -= HEX_ROW_SIZE;
308 		hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
309 				   HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
310 				   HEX_ASCII);
311 		seq_printf(seq, "    %s\n", linebuf);
312 	}
313 }
314 
315 /*
316  * Object colors, encoded with count and min_count:
317  * - white - orphan object, not enough references to it (count < min_count)
318  * - gray  - not orphan, not marked as false positive (min_count == 0) or
319  *		sufficient references to it (count >= min_count)
320  * - black - ignore, it doesn't contain references (e.g. text section)
321  *		(min_count == -1). No function defined for this color.
322  * Newly created objects don't have any color assigned (object->count == -1)
323  * before the next memory scan when they become white.
324  */
325 static bool color_white(const struct kmemleak_object *object)
326 {
327 	return object->count != KMEMLEAK_BLACK &&
328 		object->count < object->min_count;
329 }
330 
331 static bool color_gray(const struct kmemleak_object *object)
332 {
333 	return object->min_count != KMEMLEAK_BLACK &&
334 		object->count >= object->min_count;
335 }
336 
337 /*
338  * Objects are considered unreferenced only if their color is white, they have
339  * not be deleted and have a minimum age to avoid false positives caused by
340  * pointers temporarily stored in CPU registers.
341  */
342 static bool unreferenced_object(struct kmemleak_object *object)
343 {
344 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
345 		time_before_eq(object->jiffies + jiffies_min_age,
346 			       jiffies_last_scan);
347 }
348 
349 /*
350  * Printing of the unreferenced objects information to the seq file. The
351  * print_unreferenced function must be called with the object->lock held.
352  */
353 static void print_unreferenced(struct seq_file *seq,
354 			       struct kmemleak_object *object)
355 {
356 	int i;
357 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
358 
359 	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
360 		   object->pointer, object->size);
361 	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
362 		   object->comm, object->pid, object->jiffies,
363 		   msecs_age / 1000, msecs_age % 1000);
364 	hex_dump_object(seq, object);
365 	seq_printf(seq, "  backtrace:\n");
366 
367 	for (i = 0; i < object->trace_len; i++) {
368 		void *ptr = (void *)object->trace[i];
369 		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
370 	}
371 }
372 
373 /*
374  * Print the kmemleak_object information. This function is used mainly for
375  * debugging special cases when kmemleak operations. It must be called with
376  * the object->lock held.
377  */
378 static void dump_object_info(struct kmemleak_object *object)
379 {
380 	struct stack_trace trace;
381 
382 	trace.nr_entries = object->trace_len;
383 	trace.entries = object->trace;
384 
385 	pr_notice("Object 0x%08lx (size %zu):\n",
386 		  object->pointer, object->size);
387 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
388 		  object->comm, object->pid, object->jiffies);
389 	pr_notice("  min_count = %d\n", object->min_count);
390 	pr_notice("  count = %d\n", object->count);
391 	pr_notice("  flags = 0x%lx\n", object->flags);
392 	pr_notice("  checksum = %u\n", object->checksum);
393 	pr_notice("  backtrace:\n");
394 	print_stack_trace(&trace, 4);
395 }
396 
397 /*
398  * Look-up a memory block metadata (kmemleak_object) in the object search
399  * tree based on a pointer value. If alias is 0, only values pointing to the
400  * beginning of the memory block are allowed. The kmemleak_lock must be held
401  * when calling this function.
402  */
403 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
404 {
405 	struct rb_node *rb = object_tree_root.rb_node;
406 
407 	while (rb) {
408 		struct kmemleak_object *object =
409 			rb_entry(rb, struct kmemleak_object, rb_node);
410 		if (ptr < object->pointer)
411 			rb = object->rb_node.rb_left;
412 		else if (object->pointer + object->size <= ptr)
413 			rb = object->rb_node.rb_right;
414 		else if (object->pointer == ptr || alias)
415 			return object;
416 		else {
417 			kmemleak_warn("Found object by alias at 0x%08lx\n",
418 				      ptr);
419 			dump_object_info(object);
420 			break;
421 		}
422 	}
423 	return NULL;
424 }
425 
426 /*
427  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
428  * that once an object's use_count reached 0, the RCU freeing was already
429  * registered and the object should no longer be used. This function must be
430  * called under the protection of rcu_read_lock().
431  */
432 static int get_object(struct kmemleak_object *object)
433 {
434 	return atomic_inc_not_zero(&object->use_count);
435 }
436 
437 /*
438  * RCU callback to free a kmemleak_object.
439  */
440 static void free_object_rcu(struct rcu_head *rcu)
441 {
442 	struct hlist_node *tmp;
443 	struct kmemleak_scan_area *area;
444 	struct kmemleak_object *object =
445 		container_of(rcu, struct kmemleak_object, rcu);
446 
447 	/*
448 	 * Once use_count is 0 (guaranteed by put_object), there is no other
449 	 * code accessing this object, hence no need for locking.
450 	 */
451 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
452 		hlist_del(&area->node);
453 		kmem_cache_free(scan_area_cache, area);
454 	}
455 	kmem_cache_free(object_cache, object);
456 }
457 
458 /*
459  * Decrement the object use_count. Once the count is 0, free the object using
460  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
461  * delete_object() path, the delayed RCU freeing ensures that there is no
462  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
463  * is also possible.
464  */
465 static void put_object(struct kmemleak_object *object)
466 {
467 	if (!atomic_dec_and_test(&object->use_count))
468 		return;
469 
470 	/* should only get here after delete_object was called */
471 	WARN_ON(object->flags & OBJECT_ALLOCATED);
472 
473 	call_rcu(&object->rcu, free_object_rcu);
474 }
475 
476 /*
477  * Look up an object in the object search tree and increase its use_count.
478  */
479 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
480 {
481 	unsigned long flags;
482 	struct kmemleak_object *object = NULL;
483 
484 	rcu_read_lock();
485 	read_lock_irqsave(&kmemleak_lock, flags);
486 	if (ptr >= min_addr && ptr < max_addr)
487 		object = lookup_object(ptr, alias);
488 	read_unlock_irqrestore(&kmemleak_lock, flags);
489 
490 	/* check whether the object is still available */
491 	if (object && !get_object(object))
492 		object = NULL;
493 	rcu_read_unlock();
494 
495 	return object;
496 }
497 
498 /*
499  * Save stack trace to the given array of MAX_TRACE size.
500  */
501 static int __save_stack_trace(unsigned long *trace)
502 {
503 	struct stack_trace stack_trace;
504 
505 	stack_trace.max_entries = MAX_TRACE;
506 	stack_trace.nr_entries = 0;
507 	stack_trace.entries = trace;
508 	stack_trace.skip = 2;
509 	save_stack_trace(&stack_trace);
510 
511 	return stack_trace.nr_entries;
512 }
513 
514 /*
515  * Create the metadata (struct kmemleak_object) corresponding to an allocated
516  * memory block and add it to the object_list and object_tree_root.
517  */
518 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
519 					     int min_count, gfp_t gfp)
520 {
521 	unsigned long flags;
522 	struct kmemleak_object *object, *parent;
523 	struct rb_node **link, *rb_parent;
524 
525 	object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
526 	if (!object) {
527 		pr_warning("Cannot allocate a kmemleak_object structure\n");
528 		kmemleak_disable();
529 		return NULL;
530 	}
531 
532 	INIT_LIST_HEAD(&object->object_list);
533 	INIT_LIST_HEAD(&object->gray_list);
534 	INIT_HLIST_HEAD(&object->area_list);
535 	spin_lock_init(&object->lock);
536 	atomic_set(&object->use_count, 1);
537 	object->flags = OBJECT_ALLOCATED;
538 	object->pointer = ptr;
539 	object->size = size;
540 	object->min_count = min_count;
541 	object->count = 0;			/* white color initially */
542 	object->jiffies = jiffies;
543 	object->checksum = 0;
544 
545 	/* task information */
546 	if (in_irq()) {
547 		object->pid = 0;
548 		strncpy(object->comm, "hardirq", sizeof(object->comm));
549 	} else if (in_softirq()) {
550 		object->pid = 0;
551 		strncpy(object->comm, "softirq", sizeof(object->comm));
552 	} else {
553 		object->pid = current->pid;
554 		/*
555 		 * There is a small chance of a race with set_task_comm(),
556 		 * however using get_task_comm() here may cause locking
557 		 * dependency issues with current->alloc_lock. In the worst
558 		 * case, the command line is not correct.
559 		 */
560 		strncpy(object->comm, current->comm, sizeof(object->comm));
561 	}
562 
563 	/* kernel backtrace */
564 	object->trace_len = __save_stack_trace(object->trace);
565 
566 	write_lock_irqsave(&kmemleak_lock, flags);
567 
568 	min_addr = min(min_addr, ptr);
569 	max_addr = max(max_addr, ptr + size);
570 	link = &object_tree_root.rb_node;
571 	rb_parent = NULL;
572 	while (*link) {
573 		rb_parent = *link;
574 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
575 		if (ptr + size <= parent->pointer)
576 			link = &parent->rb_node.rb_left;
577 		else if (parent->pointer + parent->size <= ptr)
578 			link = &parent->rb_node.rb_right;
579 		else {
580 			kmemleak_stop("Cannot insert 0x%lx into the object "
581 				      "search tree (overlaps existing)\n",
582 				      ptr);
583 			kmem_cache_free(object_cache, object);
584 			object = parent;
585 			spin_lock(&object->lock);
586 			dump_object_info(object);
587 			spin_unlock(&object->lock);
588 			goto out;
589 		}
590 	}
591 	rb_link_node(&object->rb_node, rb_parent, link);
592 	rb_insert_color(&object->rb_node, &object_tree_root);
593 
594 	list_add_tail_rcu(&object->object_list, &object_list);
595 out:
596 	write_unlock_irqrestore(&kmemleak_lock, flags);
597 	return object;
598 }
599 
600 /*
601  * Remove the metadata (struct kmemleak_object) for a memory block from the
602  * object_list and object_tree_root and decrement its use_count.
603  */
604 static void __delete_object(struct kmemleak_object *object)
605 {
606 	unsigned long flags;
607 
608 	write_lock_irqsave(&kmemleak_lock, flags);
609 	rb_erase(&object->rb_node, &object_tree_root);
610 	list_del_rcu(&object->object_list);
611 	write_unlock_irqrestore(&kmemleak_lock, flags);
612 
613 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
614 	WARN_ON(atomic_read(&object->use_count) < 2);
615 
616 	/*
617 	 * Locking here also ensures that the corresponding memory block
618 	 * cannot be freed when it is being scanned.
619 	 */
620 	spin_lock_irqsave(&object->lock, flags);
621 	object->flags &= ~OBJECT_ALLOCATED;
622 	spin_unlock_irqrestore(&object->lock, flags);
623 	put_object(object);
624 }
625 
626 /*
627  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
628  * delete it.
629  */
630 static void delete_object_full(unsigned long ptr)
631 {
632 	struct kmemleak_object *object;
633 
634 	object = find_and_get_object(ptr, 0);
635 	if (!object) {
636 #ifdef DEBUG
637 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
638 			      ptr);
639 #endif
640 		return;
641 	}
642 	__delete_object(object);
643 	put_object(object);
644 }
645 
646 /*
647  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
648  * delete it. If the memory block is partially freed, the function may create
649  * additional metadata for the remaining parts of the block.
650  */
651 static void delete_object_part(unsigned long ptr, size_t size)
652 {
653 	struct kmemleak_object *object;
654 	unsigned long start, end;
655 
656 	object = find_and_get_object(ptr, 1);
657 	if (!object) {
658 #ifdef DEBUG
659 		kmemleak_warn("Partially freeing unknown object at 0x%08lx "
660 			      "(size %zu)\n", ptr, size);
661 #endif
662 		return;
663 	}
664 	__delete_object(object);
665 
666 	/*
667 	 * Create one or two objects that may result from the memory block
668 	 * split. Note that partial freeing is only done by free_bootmem() and
669 	 * this happens before kmemleak_init() is called. The path below is
670 	 * only executed during early log recording in kmemleak_init(), so
671 	 * GFP_KERNEL is enough.
672 	 */
673 	start = object->pointer;
674 	end = object->pointer + object->size;
675 	if (ptr > start)
676 		create_object(start, ptr - start, object->min_count,
677 			      GFP_KERNEL);
678 	if (ptr + size < end)
679 		create_object(ptr + size, end - ptr - size, object->min_count,
680 			      GFP_KERNEL);
681 
682 	put_object(object);
683 }
684 
685 static void __paint_it(struct kmemleak_object *object, int color)
686 {
687 	object->min_count = color;
688 	if (color == KMEMLEAK_BLACK)
689 		object->flags |= OBJECT_NO_SCAN;
690 }
691 
692 static void paint_it(struct kmemleak_object *object, int color)
693 {
694 	unsigned long flags;
695 
696 	spin_lock_irqsave(&object->lock, flags);
697 	__paint_it(object, color);
698 	spin_unlock_irqrestore(&object->lock, flags);
699 }
700 
701 static void paint_ptr(unsigned long ptr, int color)
702 {
703 	struct kmemleak_object *object;
704 
705 	object = find_and_get_object(ptr, 0);
706 	if (!object) {
707 		kmemleak_warn("Trying to color unknown object "
708 			      "at 0x%08lx as %s\n", ptr,
709 			      (color == KMEMLEAK_GREY) ? "Grey" :
710 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
711 		return;
712 	}
713 	paint_it(object, color);
714 	put_object(object);
715 }
716 
717 /*
718  * Mark an object permanently as gray-colored so that it can no longer be
719  * reported as a leak. This is used in general to mark a false positive.
720  */
721 static void make_gray_object(unsigned long ptr)
722 {
723 	paint_ptr(ptr, KMEMLEAK_GREY);
724 }
725 
726 /*
727  * Mark the object as black-colored so that it is ignored from scans and
728  * reporting.
729  */
730 static void make_black_object(unsigned long ptr)
731 {
732 	paint_ptr(ptr, KMEMLEAK_BLACK);
733 }
734 
735 /*
736  * Add a scanning area to the object. If at least one such area is added,
737  * kmemleak will only scan these ranges rather than the whole memory block.
738  */
739 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
740 {
741 	unsigned long flags;
742 	struct kmemleak_object *object;
743 	struct kmemleak_scan_area *area;
744 
745 	object = find_and_get_object(ptr, 1);
746 	if (!object) {
747 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
748 			      ptr);
749 		return;
750 	}
751 
752 	area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
753 	if (!area) {
754 		pr_warning("Cannot allocate a scan area\n");
755 		goto out;
756 	}
757 
758 	spin_lock_irqsave(&object->lock, flags);
759 	if (size == SIZE_MAX) {
760 		size = object->pointer + object->size - ptr;
761 	} else if (ptr + size > object->pointer + object->size) {
762 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
763 		dump_object_info(object);
764 		kmem_cache_free(scan_area_cache, area);
765 		goto out_unlock;
766 	}
767 
768 	INIT_HLIST_NODE(&area->node);
769 	area->start = ptr;
770 	area->size = size;
771 
772 	hlist_add_head(&area->node, &object->area_list);
773 out_unlock:
774 	spin_unlock_irqrestore(&object->lock, flags);
775 out:
776 	put_object(object);
777 }
778 
779 /*
780  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
781  * pointer. Such object will not be scanned by kmemleak but references to it
782  * are searched.
783  */
784 static void object_no_scan(unsigned long ptr)
785 {
786 	unsigned long flags;
787 	struct kmemleak_object *object;
788 
789 	object = find_and_get_object(ptr, 0);
790 	if (!object) {
791 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
792 		return;
793 	}
794 
795 	spin_lock_irqsave(&object->lock, flags);
796 	object->flags |= OBJECT_NO_SCAN;
797 	spin_unlock_irqrestore(&object->lock, flags);
798 	put_object(object);
799 }
800 
801 /*
802  * Log an early kmemleak_* call to the early_log buffer. These calls will be
803  * processed later once kmemleak is fully initialized.
804  */
805 static void __init log_early(int op_type, const void *ptr, size_t size,
806 			     int min_count)
807 {
808 	unsigned long flags;
809 	struct early_log *log;
810 
811 	if (kmemleak_error) {
812 		/* kmemleak stopped recording, just count the requests */
813 		crt_early_log++;
814 		return;
815 	}
816 
817 	if (crt_early_log >= ARRAY_SIZE(early_log)) {
818 		kmemleak_disable();
819 		return;
820 	}
821 
822 	/*
823 	 * There is no need for locking since the kernel is still in UP mode
824 	 * at this stage. Disabling the IRQs is enough.
825 	 */
826 	local_irq_save(flags);
827 	log = &early_log[crt_early_log];
828 	log->op_type = op_type;
829 	log->ptr = ptr;
830 	log->size = size;
831 	log->min_count = min_count;
832 	log->trace_len = __save_stack_trace(log->trace);
833 	crt_early_log++;
834 	local_irq_restore(flags);
835 }
836 
837 /*
838  * Log an early allocated block and populate the stack trace.
839  */
840 static void early_alloc(struct early_log *log)
841 {
842 	struct kmemleak_object *object;
843 	unsigned long flags;
844 	int i;
845 
846 	if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
847 		return;
848 
849 	/*
850 	 * RCU locking needed to ensure object is not freed via put_object().
851 	 */
852 	rcu_read_lock();
853 	object = create_object((unsigned long)log->ptr, log->size,
854 			       log->min_count, GFP_ATOMIC);
855 	if (!object)
856 		goto out;
857 	spin_lock_irqsave(&object->lock, flags);
858 	for (i = 0; i < log->trace_len; i++)
859 		object->trace[i] = log->trace[i];
860 	object->trace_len = log->trace_len;
861 	spin_unlock_irqrestore(&object->lock, flags);
862 out:
863 	rcu_read_unlock();
864 }
865 
866 /*
867  * Log an early allocated block and populate the stack trace.
868  */
869 static void early_alloc_percpu(struct early_log *log)
870 {
871 	unsigned int cpu;
872 	const void __percpu *ptr = log->ptr;
873 
874 	for_each_possible_cpu(cpu) {
875 		log->ptr = per_cpu_ptr(ptr, cpu);
876 		early_alloc(log);
877 	}
878 }
879 
880 /**
881  * kmemleak_alloc - register a newly allocated object
882  * @ptr:	pointer to beginning of the object
883  * @size:	size of the object
884  * @min_count:	minimum number of references to this object. If during memory
885  *		scanning a number of references less than @min_count is found,
886  *		the object is reported as a memory leak. If @min_count is 0,
887  *		the object is never reported as a leak. If @min_count is -1,
888  *		the object is ignored (not scanned and not reported as a leak)
889  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
890  *
891  * This function is called from the kernel allocators when a new object
892  * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
893  */
894 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
895 			  gfp_t gfp)
896 {
897 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
898 
899 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
900 		create_object((unsigned long)ptr, size, min_count, gfp);
901 	else if (kmemleak_early_log)
902 		log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
903 }
904 EXPORT_SYMBOL_GPL(kmemleak_alloc);
905 
906 /**
907  * kmemleak_alloc_percpu - register a newly allocated __percpu object
908  * @ptr:	__percpu pointer to beginning of the object
909  * @size:	size of the object
910  *
911  * This function is called from the kernel percpu allocator when a new object
912  * (memory block) is allocated (alloc_percpu). It assumes GFP_KERNEL
913  * allocation.
914  */
915 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size)
916 {
917 	unsigned int cpu;
918 
919 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
920 
921 	/*
922 	 * Percpu allocations are only scanned and not reported as leaks
923 	 * (min_count is set to 0).
924 	 */
925 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
926 		for_each_possible_cpu(cpu)
927 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
928 				      size, 0, GFP_KERNEL);
929 	else if (kmemleak_early_log)
930 		log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
931 }
932 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
933 
934 /**
935  * kmemleak_free - unregister a previously registered object
936  * @ptr:	pointer to beginning of the object
937  *
938  * This function is called from the kernel allocators when an object (memory
939  * block) is freed (kmem_cache_free, kfree, vfree etc.).
940  */
941 void __ref kmemleak_free(const void *ptr)
942 {
943 	pr_debug("%s(0x%p)\n", __func__, ptr);
944 
945 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
946 		delete_object_full((unsigned long)ptr);
947 	else if (kmemleak_early_log)
948 		log_early(KMEMLEAK_FREE, ptr, 0, 0);
949 }
950 EXPORT_SYMBOL_GPL(kmemleak_free);
951 
952 /**
953  * kmemleak_free_part - partially unregister a previously registered object
954  * @ptr:	pointer to the beginning or inside the object. This also
955  *		represents the start of the range to be freed
956  * @size:	size to be unregistered
957  *
958  * This function is called when only a part of a memory block is freed
959  * (usually from the bootmem allocator).
960  */
961 void __ref kmemleak_free_part(const void *ptr, size_t size)
962 {
963 	pr_debug("%s(0x%p)\n", __func__, ptr);
964 
965 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
966 		delete_object_part((unsigned long)ptr, size);
967 	else if (kmemleak_early_log)
968 		log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
969 }
970 EXPORT_SYMBOL_GPL(kmemleak_free_part);
971 
972 /**
973  * kmemleak_free_percpu - unregister a previously registered __percpu object
974  * @ptr:	__percpu pointer to beginning of the object
975  *
976  * This function is called from the kernel percpu allocator when an object
977  * (memory block) is freed (free_percpu).
978  */
979 void __ref kmemleak_free_percpu(const void __percpu *ptr)
980 {
981 	unsigned int cpu;
982 
983 	pr_debug("%s(0x%p)\n", __func__, ptr);
984 
985 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
986 		for_each_possible_cpu(cpu)
987 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
988 								      cpu));
989 	else if (kmemleak_early_log)
990 		log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
991 }
992 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
993 
994 /**
995  * kmemleak_update_trace - update object allocation stack trace
996  * @ptr:	pointer to beginning of the object
997  *
998  * Override the object allocation stack trace for cases where the actual
999  * allocation place is not always useful.
1000  */
1001 void __ref kmemleak_update_trace(const void *ptr)
1002 {
1003 	struct kmemleak_object *object;
1004 	unsigned long flags;
1005 
1006 	pr_debug("%s(0x%p)\n", __func__, ptr);
1007 
1008 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1009 		return;
1010 
1011 	object = find_and_get_object((unsigned long)ptr, 1);
1012 	if (!object) {
1013 #ifdef DEBUG
1014 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1015 			      ptr);
1016 #endif
1017 		return;
1018 	}
1019 
1020 	spin_lock_irqsave(&object->lock, flags);
1021 	object->trace_len = __save_stack_trace(object->trace);
1022 	spin_unlock_irqrestore(&object->lock, flags);
1023 
1024 	put_object(object);
1025 }
1026 EXPORT_SYMBOL(kmemleak_update_trace);
1027 
1028 /**
1029  * kmemleak_not_leak - mark an allocated object as false positive
1030  * @ptr:	pointer to beginning of the object
1031  *
1032  * Calling this function on an object will cause the memory block to no longer
1033  * be reported as leak and always be scanned.
1034  */
1035 void __ref kmemleak_not_leak(const void *ptr)
1036 {
1037 	pr_debug("%s(0x%p)\n", __func__, ptr);
1038 
1039 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1040 		make_gray_object((unsigned long)ptr);
1041 	else if (kmemleak_early_log)
1042 		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1043 }
1044 EXPORT_SYMBOL(kmemleak_not_leak);
1045 
1046 /**
1047  * kmemleak_ignore - ignore an allocated object
1048  * @ptr:	pointer to beginning of the object
1049  *
1050  * Calling this function on an object will cause the memory block to be
1051  * ignored (not scanned and not reported as a leak). This is usually done when
1052  * it is known that the corresponding block is not a leak and does not contain
1053  * any references to other allocated memory blocks.
1054  */
1055 void __ref kmemleak_ignore(const void *ptr)
1056 {
1057 	pr_debug("%s(0x%p)\n", __func__, ptr);
1058 
1059 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1060 		make_black_object((unsigned long)ptr);
1061 	else if (kmemleak_early_log)
1062 		log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1063 }
1064 EXPORT_SYMBOL(kmemleak_ignore);
1065 
1066 /**
1067  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1068  * @ptr:	pointer to beginning or inside the object. This also
1069  *		represents the start of the scan area
1070  * @size:	size of the scan area
1071  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1072  *
1073  * This function is used when it is known that only certain parts of an object
1074  * contain references to other objects. Kmemleak will only scan these areas
1075  * reducing the number false negatives.
1076  */
1077 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1078 {
1079 	pr_debug("%s(0x%p)\n", __func__, ptr);
1080 
1081 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1082 		add_scan_area((unsigned long)ptr, size, gfp);
1083 	else if (kmemleak_early_log)
1084 		log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1085 }
1086 EXPORT_SYMBOL(kmemleak_scan_area);
1087 
1088 /**
1089  * kmemleak_no_scan - do not scan an allocated object
1090  * @ptr:	pointer to beginning of the object
1091  *
1092  * This function notifies kmemleak not to scan the given memory block. Useful
1093  * in situations where it is known that the given object does not contain any
1094  * references to other objects. Kmemleak will not scan such objects reducing
1095  * the number of false negatives.
1096  */
1097 void __ref kmemleak_no_scan(const void *ptr)
1098 {
1099 	pr_debug("%s(0x%p)\n", __func__, ptr);
1100 
1101 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1102 		object_no_scan((unsigned long)ptr);
1103 	else if (kmemleak_early_log)
1104 		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1105 }
1106 EXPORT_SYMBOL(kmemleak_no_scan);
1107 
1108 /*
1109  * Update an object's checksum and return true if it was modified.
1110  */
1111 static bool update_checksum(struct kmemleak_object *object)
1112 {
1113 	u32 old_csum = object->checksum;
1114 
1115 	if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1116 		return false;
1117 
1118 	kasan_disable_current();
1119 	object->checksum = crc32(0, (void *)object->pointer, object->size);
1120 	kasan_enable_current();
1121 
1122 	return object->checksum != old_csum;
1123 }
1124 
1125 /*
1126  * Memory scanning is a long process and it needs to be interruptable. This
1127  * function checks whether such interrupt condition occurred.
1128  */
1129 static int scan_should_stop(void)
1130 {
1131 	if (!kmemleak_enabled)
1132 		return 1;
1133 
1134 	/*
1135 	 * This function may be called from either process or kthread context,
1136 	 * hence the need to check for both stop conditions.
1137 	 */
1138 	if (current->mm)
1139 		return signal_pending(current);
1140 	else
1141 		return kthread_should_stop();
1142 
1143 	return 0;
1144 }
1145 
1146 /*
1147  * Scan a memory block (exclusive range) for valid pointers and add those
1148  * found to the gray list.
1149  */
1150 static void scan_block(void *_start, void *_end,
1151 		       struct kmemleak_object *scanned, int allow_resched)
1152 {
1153 	unsigned long *ptr;
1154 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1155 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1156 
1157 	for (ptr = start; ptr < end; ptr++) {
1158 		struct kmemleak_object *object;
1159 		unsigned long flags;
1160 		unsigned long pointer;
1161 
1162 		if (allow_resched)
1163 			cond_resched();
1164 		if (scan_should_stop())
1165 			break;
1166 
1167 		/* don't scan uninitialized memory */
1168 		if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1169 						  BYTES_PER_POINTER))
1170 			continue;
1171 
1172 		kasan_disable_current();
1173 		pointer = *ptr;
1174 		kasan_enable_current();
1175 
1176 		object = find_and_get_object(pointer, 1);
1177 		if (!object)
1178 			continue;
1179 		if (object == scanned) {
1180 			/* self referenced, ignore */
1181 			put_object(object);
1182 			continue;
1183 		}
1184 
1185 		/*
1186 		 * Avoid the lockdep recursive warning on object->lock being
1187 		 * previously acquired in scan_object(). These locks are
1188 		 * enclosed by scan_mutex.
1189 		 */
1190 		spin_lock_irqsave_nested(&object->lock, flags,
1191 					 SINGLE_DEPTH_NESTING);
1192 		if (!color_white(object)) {
1193 			/* non-orphan, ignored or new */
1194 			spin_unlock_irqrestore(&object->lock, flags);
1195 			put_object(object);
1196 			continue;
1197 		}
1198 
1199 		/*
1200 		 * Increase the object's reference count (number of pointers
1201 		 * to the memory block). If this count reaches the required
1202 		 * minimum, the object's color will become gray and it will be
1203 		 * added to the gray_list.
1204 		 */
1205 		object->count++;
1206 		if (color_gray(object)) {
1207 			list_add_tail(&object->gray_list, &gray_list);
1208 			spin_unlock_irqrestore(&object->lock, flags);
1209 			continue;
1210 		}
1211 
1212 		spin_unlock_irqrestore(&object->lock, flags);
1213 		put_object(object);
1214 	}
1215 }
1216 
1217 /*
1218  * Scan a memory block corresponding to a kmemleak_object. A condition is
1219  * that object->use_count >= 1.
1220  */
1221 static void scan_object(struct kmemleak_object *object)
1222 {
1223 	struct kmemleak_scan_area *area;
1224 	unsigned long flags;
1225 
1226 	/*
1227 	 * Once the object->lock is acquired, the corresponding memory block
1228 	 * cannot be freed (the same lock is acquired in delete_object).
1229 	 */
1230 	spin_lock_irqsave(&object->lock, flags);
1231 	if (object->flags & OBJECT_NO_SCAN)
1232 		goto out;
1233 	if (!(object->flags & OBJECT_ALLOCATED))
1234 		/* already freed object */
1235 		goto out;
1236 	if (hlist_empty(&object->area_list)) {
1237 		void *start = (void *)object->pointer;
1238 		void *end = (void *)(object->pointer + object->size);
1239 
1240 		while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1241 		       !(object->flags & OBJECT_NO_SCAN)) {
1242 			scan_block(start, min(start + MAX_SCAN_SIZE, end),
1243 				   object, 0);
1244 			start += MAX_SCAN_SIZE;
1245 
1246 			spin_unlock_irqrestore(&object->lock, flags);
1247 			cond_resched();
1248 			spin_lock_irqsave(&object->lock, flags);
1249 		}
1250 	} else
1251 		hlist_for_each_entry(area, &object->area_list, node)
1252 			scan_block((void *)area->start,
1253 				   (void *)(area->start + area->size),
1254 				   object, 0);
1255 out:
1256 	spin_unlock_irqrestore(&object->lock, flags);
1257 }
1258 
1259 /*
1260  * Scan the objects already referenced (gray objects). More objects will be
1261  * referenced and, if there are no memory leaks, all the objects are scanned.
1262  */
1263 static void scan_gray_list(void)
1264 {
1265 	struct kmemleak_object *object, *tmp;
1266 
1267 	/*
1268 	 * The list traversal is safe for both tail additions and removals
1269 	 * from inside the loop. The kmemleak objects cannot be freed from
1270 	 * outside the loop because their use_count was incremented.
1271 	 */
1272 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1273 	while (&object->gray_list != &gray_list) {
1274 		cond_resched();
1275 
1276 		/* may add new objects to the list */
1277 		if (!scan_should_stop())
1278 			scan_object(object);
1279 
1280 		tmp = list_entry(object->gray_list.next, typeof(*object),
1281 				 gray_list);
1282 
1283 		/* remove the object from the list and release it */
1284 		list_del(&object->gray_list);
1285 		put_object(object);
1286 
1287 		object = tmp;
1288 	}
1289 	WARN_ON(!list_empty(&gray_list));
1290 }
1291 
1292 /*
1293  * Scan data sections and all the referenced memory blocks allocated via the
1294  * kernel's standard allocators. This function must be called with the
1295  * scan_mutex held.
1296  */
1297 static void kmemleak_scan(void)
1298 {
1299 	unsigned long flags;
1300 	struct kmemleak_object *object;
1301 	int i;
1302 	int new_leaks = 0;
1303 
1304 	jiffies_last_scan = jiffies;
1305 
1306 	/* prepare the kmemleak_object's */
1307 	rcu_read_lock();
1308 	list_for_each_entry_rcu(object, &object_list, object_list) {
1309 		spin_lock_irqsave(&object->lock, flags);
1310 #ifdef DEBUG
1311 		/*
1312 		 * With a few exceptions there should be a maximum of
1313 		 * 1 reference to any object at this point.
1314 		 */
1315 		if (atomic_read(&object->use_count) > 1) {
1316 			pr_debug("object->use_count = %d\n",
1317 				 atomic_read(&object->use_count));
1318 			dump_object_info(object);
1319 		}
1320 #endif
1321 		/* reset the reference count (whiten the object) */
1322 		object->count = 0;
1323 		if (color_gray(object) && get_object(object))
1324 			list_add_tail(&object->gray_list, &gray_list);
1325 
1326 		spin_unlock_irqrestore(&object->lock, flags);
1327 	}
1328 	rcu_read_unlock();
1329 
1330 	/* data/bss scanning */
1331 	scan_block(_sdata, _edata, NULL, 1);
1332 	scan_block(__bss_start, __bss_stop, NULL, 1);
1333 
1334 #ifdef CONFIG_SMP
1335 	/* per-cpu sections scanning */
1336 	for_each_possible_cpu(i)
1337 		scan_block(__per_cpu_start + per_cpu_offset(i),
1338 			   __per_cpu_end + per_cpu_offset(i), NULL, 1);
1339 #endif
1340 
1341 	/*
1342 	 * Struct page scanning for each node.
1343 	 */
1344 	get_online_mems();
1345 	for_each_online_node(i) {
1346 		unsigned long start_pfn = node_start_pfn(i);
1347 		unsigned long end_pfn = node_end_pfn(i);
1348 		unsigned long pfn;
1349 
1350 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1351 			struct page *page;
1352 
1353 			if (!pfn_valid(pfn))
1354 				continue;
1355 			page = pfn_to_page(pfn);
1356 			/* only scan if page is in use */
1357 			if (page_count(page) == 0)
1358 				continue;
1359 			scan_block(page, page + 1, NULL, 1);
1360 		}
1361 	}
1362 	put_online_mems();
1363 
1364 	/*
1365 	 * Scanning the task stacks (may introduce false negatives).
1366 	 */
1367 	if (kmemleak_stack_scan) {
1368 		struct task_struct *p, *g;
1369 
1370 		read_lock(&tasklist_lock);
1371 		do_each_thread(g, p) {
1372 			scan_block(task_stack_page(p), task_stack_page(p) +
1373 				   THREAD_SIZE, NULL, 0);
1374 		} while_each_thread(g, p);
1375 		read_unlock(&tasklist_lock);
1376 	}
1377 
1378 	/*
1379 	 * Scan the objects already referenced from the sections scanned
1380 	 * above.
1381 	 */
1382 	scan_gray_list();
1383 
1384 	/*
1385 	 * Check for new or unreferenced objects modified since the previous
1386 	 * scan and color them gray until the next scan.
1387 	 */
1388 	rcu_read_lock();
1389 	list_for_each_entry_rcu(object, &object_list, object_list) {
1390 		spin_lock_irqsave(&object->lock, flags);
1391 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1392 		    && update_checksum(object) && get_object(object)) {
1393 			/* color it gray temporarily */
1394 			object->count = object->min_count;
1395 			list_add_tail(&object->gray_list, &gray_list);
1396 		}
1397 		spin_unlock_irqrestore(&object->lock, flags);
1398 	}
1399 	rcu_read_unlock();
1400 
1401 	/*
1402 	 * Re-scan the gray list for modified unreferenced objects.
1403 	 */
1404 	scan_gray_list();
1405 
1406 	/*
1407 	 * If scanning was stopped do not report any new unreferenced objects.
1408 	 */
1409 	if (scan_should_stop())
1410 		return;
1411 
1412 	/*
1413 	 * Scanning result reporting.
1414 	 */
1415 	rcu_read_lock();
1416 	list_for_each_entry_rcu(object, &object_list, object_list) {
1417 		spin_lock_irqsave(&object->lock, flags);
1418 		if (unreferenced_object(object) &&
1419 		    !(object->flags & OBJECT_REPORTED)) {
1420 			object->flags |= OBJECT_REPORTED;
1421 			new_leaks++;
1422 		}
1423 		spin_unlock_irqrestore(&object->lock, flags);
1424 	}
1425 	rcu_read_unlock();
1426 
1427 	if (new_leaks) {
1428 		kmemleak_found_leaks = true;
1429 
1430 		pr_info("%d new suspected memory leaks (see "
1431 			"/sys/kernel/debug/kmemleak)\n", new_leaks);
1432 	}
1433 
1434 }
1435 
1436 /*
1437  * Thread function performing automatic memory scanning. Unreferenced objects
1438  * at the end of a memory scan are reported but only the first time.
1439  */
1440 static int kmemleak_scan_thread(void *arg)
1441 {
1442 	static int first_run = 1;
1443 
1444 	pr_info("Automatic memory scanning thread started\n");
1445 	set_user_nice(current, 10);
1446 
1447 	/*
1448 	 * Wait before the first scan to allow the system to fully initialize.
1449 	 */
1450 	if (first_run) {
1451 		first_run = 0;
1452 		ssleep(SECS_FIRST_SCAN);
1453 	}
1454 
1455 	while (!kthread_should_stop()) {
1456 		signed long timeout = jiffies_scan_wait;
1457 
1458 		mutex_lock(&scan_mutex);
1459 		kmemleak_scan();
1460 		mutex_unlock(&scan_mutex);
1461 
1462 		/* wait before the next scan */
1463 		while (timeout && !kthread_should_stop())
1464 			timeout = schedule_timeout_interruptible(timeout);
1465 	}
1466 
1467 	pr_info("Automatic memory scanning thread ended\n");
1468 
1469 	return 0;
1470 }
1471 
1472 /*
1473  * Start the automatic memory scanning thread. This function must be called
1474  * with the scan_mutex held.
1475  */
1476 static void start_scan_thread(void)
1477 {
1478 	if (scan_thread)
1479 		return;
1480 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1481 	if (IS_ERR(scan_thread)) {
1482 		pr_warning("Failed to create the scan thread\n");
1483 		scan_thread = NULL;
1484 	}
1485 }
1486 
1487 /*
1488  * Stop the automatic memory scanning thread. This function must be called
1489  * with the scan_mutex held.
1490  */
1491 static void stop_scan_thread(void)
1492 {
1493 	if (scan_thread) {
1494 		kthread_stop(scan_thread);
1495 		scan_thread = NULL;
1496 	}
1497 }
1498 
1499 /*
1500  * Iterate over the object_list and return the first valid object at or after
1501  * the required position with its use_count incremented. The function triggers
1502  * a memory scanning when the pos argument points to the first position.
1503  */
1504 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1505 {
1506 	struct kmemleak_object *object;
1507 	loff_t n = *pos;
1508 	int err;
1509 
1510 	err = mutex_lock_interruptible(&scan_mutex);
1511 	if (err < 0)
1512 		return ERR_PTR(err);
1513 
1514 	rcu_read_lock();
1515 	list_for_each_entry_rcu(object, &object_list, object_list) {
1516 		if (n-- > 0)
1517 			continue;
1518 		if (get_object(object))
1519 			goto out;
1520 	}
1521 	object = NULL;
1522 out:
1523 	return object;
1524 }
1525 
1526 /*
1527  * Return the next object in the object_list. The function decrements the
1528  * use_count of the previous object and increases that of the next one.
1529  */
1530 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1531 {
1532 	struct kmemleak_object *prev_obj = v;
1533 	struct kmemleak_object *next_obj = NULL;
1534 	struct kmemleak_object *obj = prev_obj;
1535 
1536 	++(*pos);
1537 
1538 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1539 		if (get_object(obj)) {
1540 			next_obj = obj;
1541 			break;
1542 		}
1543 	}
1544 
1545 	put_object(prev_obj);
1546 	return next_obj;
1547 }
1548 
1549 /*
1550  * Decrement the use_count of the last object required, if any.
1551  */
1552 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1553 {
1554 	if (!IS_ERR(v)) {
1555 		/*
1556 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1557 		 * waiting was interrupted, so only release it if !IS_ERR.
1558 		 */
1559 		rcu_read_unlock();
1560 		mutex_unlock(&scan_mutex);
1561 		if (v)
1562 			put_object(v);
1563 	}
1564 }
1565 
1566 /*
1567  * Print the information for an unreferenced object to the seq file.
1568  */
1569 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1570 {
1571 	struct kmemleak_object *object = v;
1572 	unsigned long flags;
1573 
1574 	spin_lock_irqsave(&object->lock, flags);
1575 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1576 		print_unreferenced(seq, object);
1577 	spin_unlock_irqrestore(&object->lock, flags);
1578 	return 0;
1579 }
1580 
1581 static const struct seq_operations kmemleak_seq_ops = {
1582 	.start = kmemleak_seq_start,
1583 	.next  = kmemleak_seq_next,
1584 	.stop  = kmemleak_seq_stop,
1585 	.show  = kmemleak_seq_show,
1586 };
1587 
1588 static int kmemleak_open(struct inode *inode, struct file *file)
1589 {
1590 	return seq_open(file, &kmemleak_seq_ops);
1591 }
1592 
1593 static int dump_str_object_info(const char *str)
1594 {
1595 	unsigned long flags;
1596 	struct kmemleak_object *object;
1597 	unsigned long addr;
1598 
1599 	if (kstrtoul(str, 0, &addr))
1600 		return -EINVAL;
1601 	object = find_and_get_object(addr, 0);
1602 	if (!object) {
1603 		pr_info("Unknown object at 0x%08lx\n", addr);
1604 		return -EINVAL;
1605 	}
1606 
1607 	spin_lock_irqsave(&object->lock, flags);
1608 	dump_object_info(object);
1609 	spin_unlock_irqrestore(&object->lock, flags);
1610 
1611 	put_object(object);
1612 	return 0;
1613 }
1614 
1615 /*
1616  * We use grey instead of black to ensure we can do future scans on the same
1617  * objects. If we did not do future scans these black objects could
1618  * potentially contain references to newly allocated objects in the future and
1619  * we'd end up with false positives.
1620  */
1621 static void kmemleak_clear(void)
1622 {
1623 	struct kmemleak_object *object;
1624 	unsigned long flags;
1625 
1626 	rcu_read_lock();
1627 	list_for_each_entry_rcu(object, &object_list, object_list) {
1628 		spin_lock_irqsave(&object->lock, flags);
1629 		if ((object->flags & OBJECT_REPORTED) &&
1630 		    unreferenced_object(object))
1631 			__paint_it(object, KMEMLEAK_GREY);
1632 		spin_unlock_irqrestore(&object->lock, flags);
1633 	}
1634 	rcu_read_unlock();
1635 
1636 	kmemleak_found_leaks = false;
1637 }
1638 
1639 static void __kmemleak_do_cleanup(void);
1640 
1641 /*
1642  * File write operation to configure kmemleak at run-time. The following
1643  * commands can be written to the /sys/kernel/debug/kmemleak file:
1644  *   off	- disable kmemleak (irreversible)
1645  *   stack=on	- enable the task stacks scanning
1646  *   stack=off	- disable the tasks stacks scanning
1647  *   scan=on	- start the automatic memory scanning thread
1648  *   scan=off	- stop the automatic memory scanning thread
1649  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1650  *		  disable it)
1651  *   scan	- trigger a memory scan
1652  *   clear	- mark all current reported unreferenced kmemleak objects as
1653  *		  grey to ignore printing them, or free all kmemleak objects
1654  *		  if kmemleak has been disabled.
1655  *   dump=...	- dump information about the object found at the given address
1656  */
1657 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1658 			      size_t size, loff_t *ppos)
1659 {
1660 	char buf[64];
1661 	int buf_size;
1662 	int ret;
1663 
1664 	buf_size = min(size, (sizeof(buf) - 1));
1665 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1666 		return -EFAULT;
1667 	buf[buf_size] = 0;
1668 
1669 	ret = mutex_lock_interruptible(&scan_mutex);
1670 	if (ret < 0)
1671 		return ret;
1672 
1673 	if (strncmp(buf, "clear", 5) == 0) {
1674 		if (kmemleak_enabled)
1675 			kmemleak_clear();
1676 		else
1677 			__kmemleak_do_cleanup();
1678 		goto out;
1679 	}
1680 
1681 	if (!kmemleak_enabled) {
1682 		ret = -EBUSY;
1683 		goto out;
1684 	}
1685 
1686 	if (strncmp(buf, "off", 3) == 0)
1687 		kmemleak_disable();
1688 	else if (strncmp(buf, "stack=on", 8) == 0)
1689 		kmemleak_stack_scan = 1;
1690 	else if (strncmp(buf, "stack=off", 9) == 0)
1691 		kmemleak_stack_scan = 0;
1692 	else if (strncmp(buf, "scan=on", 7) == 0)
1693 		start_scan_thread();
1694 	else if (strncmp(buf, "scan=off", 8) == 0)
1695 		stop_scan_thread();
1696 	else if (strncmp(buf, "scan=", 5) == 0) {
1697 		unsigned long secs;
1698 
1699 		ret = kstrtoul(buf + 5, 0, &secs);
1700 		if (ret < 0)
1701 			goto out;
1702 		stop_scan_thread();
1703 		if (secs) {
1704 			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1705 			start_scan_thread();
1706 		}
1707 	} else if (strncmp(buf, "scan", 4) == 0)
1708 		kmemleak_scan();
1709 	else if (strncmp(buf, "dump=", 5) == 0)
1710 		ret = dump_str_object_info(buf + 5);
1711 	else
1712 		ret = -EINVAL;
1713 
1714 out:
1715 	mutex_unlock(&scan_mutex);
1716 	if (ret < 0)
1717 		return ret;
1718 
1719 	/* ignore the rest of the buffer, only one command at a time */
1720 	*ppos += size;
1721 	return size;
1722 }
1723 
1724 static const struct file_operations kmemleak_fops = {
1725 	.owner		= THIS_MODULE,
1726 	.open		= kmemleak_open,
1727 	.read		= seq_read,
1728 	.write		= kmemleak_write,
1729 	.llseek		= seq_lseek,
1730 	.release	= seq_release,
1731 };
1732 
1733 static void __kmemleak_do_cleanup(void)
1734 {
1735 	struct kmemleak_object *object;
1736 
1737 	rcu_read_lock();
1738 	list_for_each_entry_rcu(object, &object_list, object_list)
1739 		delete_object_full(object->pointer);
1740 	rcu_read_unlock();
1741 }
1742 
1743 /*
1744  * Stop the memory scanning thread and free the kmemleak internal objects if
1745  * no previous scan thread (otherwise, kmemleak may still have some useful
1746  * information on memory leaks).
1747  */
1748 static void kmemleak_do_cleanup(struct work_struct *work)
1749 {
1750 	mutex_lock(&scan_mutex);
1751 	stop_scan_thread();
1752 
1753 	if (!kmemleak_found_leaks)
1754 		__kmemleak_do_cleanup();
1755 	else
1756 		pr_info("Kmemleak disabled without freeing internal data. "
1757 			"Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\"\n");
1758 	mutex_unlock(&scan_mutex);
1759 }
1760 
1761 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1762 
1763 /*
1764  * Disable kmemleak. No memory allocation/freeing will be traced once this
1765  * function is called. Disabling kmemleak is an irreversible operation.
1766  */
1767 static void kmemleak_disable(void)
1768 {
1769 	/* atomically check whether it was already invoked */
1770 	if (cmpxchg(&kmemleak_error, 0, 1))
1771 		return;
1772 
1773 	/* stop any memory operation tracing */
1774 	kmemleak_enabled = 0;
1775 
1776 	/* check whether it is too early for a kernel thread */
1777 	if (kmemleak_initialized)
1778 		schedule_work(&cleanup_work);
1779 
1780 	pr_info("Kernel memory leak detector disabled\n");
1781 }
1782 
1783 /*
1784  * Allow boot-time kmemleak disabling (enabled by default).
1785  */
1786 static int kmemleak_boot_config(char *str)
1787 {
1788 	if (!str)
1789 		return -EINVAL;
1790 	if (strcmp(str, "off") == 0)
1791 		kmemleak_disable();
1792 	else if (strcmp(str, "on") == 0)
1793 		kmemleak_skip_disable = 1;
1794 	else
1795 		return -EINVAL;
1796 	return 0;
1797 }
1798 early_param("kmemleak", kmemleak_boot_config);
1799 
1800 static void __init print_log_trace(struct early_log *log)
1801 {
1802 	struct stack_trace trace;
1803 
1804 	trace.nr_entries = log->trace_len;
1805 	trace.entries = log->trace;
1806 
1807 	pr_notice("Early log backtrace:\n");
1808 	print_stack_trace(&trace, 2);
1809 }
1810 
1811 /*
1812  * Kmemleak initialization.
1813  */
1814 void __init kmemleak_init(void)
1815 {
1816 	int i;
1817 	unsigned long flags;
1818 
1819 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1820 	if (!kmemleak_skip_disable) {
1821 		kmemleak_early_log = 0;
1822 		kmemleak_disable();
1823 		return;
1824 	}
1825 #endif
1826 
1827 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1828 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1829 
1830 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1831 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1832 
1833 	if (crt_early_log >= ARRAY_SIZE(early_log))
1834 		pr_warning("Early log buffer exceeded (%d), please increase "
1835 			   "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
1836 
1837 	/* the kernel is still in UP mode, so disabling the IRQs is enough */
1838 	local_irq_save(flags);
1839 	kmemleak_early_log = 0;
1840 	if (kmemleak_error) {
1841 		local_irq_restore(flags);
1842 		return;
1843 	} else
1844 		kmemleak_enabled = 1;
1845 	local_irq_restore(flags);
1846 
1847 	/*
1848 	 * This is the point where tracking allocations is safe. Automatic
1849 	 * scanning is started during the late initcall. Add the early logged
1850 	 * callbacks to the kmemleak infrastructure.
1851 	 */
1852 	for (i = 0; i < crt_early_log; i++) {
1853 		struct early_log *log = &early_log[i];
1854 
1855 		switch (log->op_type) {
1856 		case KMEMLEAK_ALLOC:
1857 			early_alloc(log);
1858 			break;
1859 		case KMEMLEAK_ALLOC_PERCPU:
1860 			early_alloc_percpu(log);
1861 			break;
1862 		case KMEMLEAK_FREE:
1863 			kmemleak_free(log->ptr);
1864 			break;
1865 		case KMEMLEAK_FREE_PART:
1866 			kmemleak_free_part(log->ptr, log->size);
1867 			break;
1868 		case KMEMLEAK_FREE_PERCPU:
1869 			kmemleak_free_percpu(log->ptr);
1870 			break;
1871 		case KMEMLEAK_NOT_LEAK:
1872 			kmemleak_not_leak(log->ptr);
1873 			break;
1874 		case KMEMLEAK_IGNORE:
1875 			kmemleak_ignore(log->ptr);
1876 			break;
1877 		case KMEMLEAK_SCAN_AREA:
1878 			kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1879 			break;
1880 		case KMEMLEAK_NO_SCAN:
1881 			kmemleak_no_scan(log->ptr);
1882 			break;
1883 		default:
1884 			kmemleak_warn("Unknown early log operation: %d\n",
1885 				      log->op_type);
1886 		}
1887 
1888 		if (kmemleak_warning) {
1889 			print_log_trace(log);
1890 			kmemleak_warning = 0;
1891 		}
1892 	}
1893 }
1894 
1895 /*
1896  * Late initialization function.
1897  */
1898 static int __init kmemleak_late_init(void)
1899 {
1900 	struct dentry *dentry;
1901 
1902 	kmemleak_initialized = 1;
1903 
1904 	if (kmemleak_error) {
1905 		/*
1906 		 * Some error occurred and kmemleak was disabled. There is a
1907 		 * small chance that kmemleak_disable() was called immediately
1908 		 * after setting kmemleak_initialized and we may end up with
1909 		 * two clean-up threads but serialized by scan_mutex.
1910 		 */
1911 		schedule_work(&cleanup_work);
1912 		return -ENOMEM;
1913 	}
1914 
1915 	dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1916 				     &kmemleak_fops);
1917 	if (!dentry)
1918 		pr_warning("Failed to create the debugfs kmemleak file\n");
1919 	mutex_lock(&scan_mutex);
1920 	start_scan_thread();
1921 	mutex_unlock(&scan_mutex);
1922 
1923 	pr_info("Kernel memory leak detector initialized\n");
1924 
1925 	return 0;
1926 }
1927 late_initcall(kmemleak_late_init);
1928