1 /* 2 * mm/kmemleak.c 3 * 4 * Copyright (C) 2008 ARM Limited 5 * Written by Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 * 21 * For more information on the algorithm and kmemleak usage, please see 22 * Documentation/dev-tools/kmemleak.rst. 23 * 24 * Notes on locking 25 * ---------------- 26 * 27 * The following locks and mutexes are used by kmemleak: 28 * 29 * - kmemleak_lock (rwlock): protects the object_list modifications and 30 * accesses to the object_tree_root. The object_list is the main list 31 * holding the metadata (struct kmemleak_object) for the allocated memory 32 * blocks. The object_tree_root is a red black tree used to look-up 33 * metadata based on a pointer to the corresponding memory block. The 34 * kmemleak_object structures are added to the object_list and 35 * object_tree_root in the create_object() function called from the 36 * kmemleak_alloc() callback and removed in delete_object() called from the 37 * kmemleak_free() callback 38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to 39 * the metadata (e.g. count) are protected by this lock. Note that some 40 * members of this structure may be protected by other means (atomic or 41 * kmemleak_lock). This lock is also held when scanning the corresponding 42 * memory block to avoid the kernel freeing it via the kmemleak_free() 43 * callback. This is less heavyweight than holding a global lock like 44 * kmemleak_lock during scanning 45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 46 * unreferenced objects at a time. The gray_list contains the objects which 47 * are already referenced or marked as false positives and need to be 48 * scanned. This list is only modified during a scanning episode when the 49 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 50 * Note that the kmemleak_object.use_count is incremented when an object is 51 * added to the gray_list and therefore cannot be freed. This mutex also 52 * prevents multiple users of the "kmemleak" debugfs file together with 53 * modifications to the memory scanning parameters including the scan_thread 54 * pointer 55 * 56 * Locks and mutexes are acquired/nested in the following order: 57 * 58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 59 * 60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 61 * regions. 62 * 63 * The kmemleak_object structures have a use_count incremented or decremented 64 * using the get_object()/put_object() functions. When the use_count becomes 65 * 0, this count can no longer be incremented and put_object() schedules the 66 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 67 * function must be protected by rcu_read_lock() to avoid accessing a freed 68 * structure. 69 */ 70 71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 72 73 #include <linux/init.h> 74 #include <linux/kernel.h> 75 #include <linux/list.h> 76 #include <linux/sched/signal.h> 77 #include <linux/sched/task.h> 78 #include <linux/sched/task_stack.h> 79 #include <linux/jiffies.h> 80 #include <linux/delay.h> 81 #include <linux/export.h> 82 #include <linux/kthread.h> 83 #include <linux/rbtree.h> 84 #include <linux/fs.h> 85 #include <linux/debugfs.h> 86 #include <linux/seq_file.h> 87 #include <linux/cpumask.h> 88 #include <linux/spinlock.h> 89 #include <linux/mutex.h> 90 #include <linux/rcupdate.h> 91 #include <linux/stacktrace.h> 92 #include <linux/cache.h> 93 #include <linux/percpu.h> 94 #include <linux/hardirq.h> 95 #include <linux/bootmem.h> 96 #include <linux/pfn.h> 97 #include <linux/mmzone.h> 98 #include <linux/slab.h> 99 #include <linux/thread_info.h> 100 #include <linux/err.h> 101 #include <linux/uaccess.h> 102 #include <linux/string.h> 103 #include <linux/nodemask.h> 104 #include <linux/mm.h> 105 #include <linux/workqueue.h> 106 #include <linux/crc32.h> 107 108 #include <asm/sections.h> 109 #include <asm/processor.h> 110 #include <linux/atomic.h> 111 112 #include <linux/kasan.h> 113 #include <linux/kmemcheck.h> 114 #include <linux/kmemleak.h> 115 #include <linux/memory_hotplug.h> 116 117 /* 118 * Kmemleak configuration and common defines. 119 */ 120 #define MAX_TRACE 16 /* stack trace length */ 121 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 122 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 123 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 124 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 125 126 #define BYTES_PER_POINTER sizeof(void *) 127 128 /* GFP bitmask for kmemleak internal allocations */ 129 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \ 130 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 131 __GFP_NOWARN) 132 133 /* scanning area inside a memory block */ 134 struct kmemleak_scan_area { 135 struct hlist_node node; 136 unsigned long start; 137 size_t size; 138 }; 139 140 #define KMEMLEAK_GREY 0 141 #define KMEMLEAK_BLACK -1 142 143 /* 144 * Structure holding the metadata for each allocated memory block. 145 * Modifications to such objects should be made while holding the 146 * object->lock. Insertions or deletions from object_list, gray_list or 147 * rb_node are already protected by the corresponding locks or mutex (see 148 * the notes on locking above). These objects are reference-counted 149 * (use_count) and freed using the RCU mechanism. 150 */ 151 struct kmemleak_object { 152 spinlock_t lock; 153 unsigned long flags; /* object status flags */ 154 struct list_head object_list; 155 struct list_head gray_list; 156 struct rb_node rb_node; 157 struct rcu_head rcu; /* object_list lockless traversal */ 158 /* object usage count; object freed when use_count == 0 */ 159 atomic_t use_count; 160 unsigned long pointer; 161 size_t size; 162 /* minimum number of a pointers found before it is considered leak */ 163 int min_count; 164 /* the total number of pointers found pointing to this object */ 165 int count; 166 /* checksum for detecting modified objects */ 167 u32 checksum; 168 /* memory ranges to be scanned inside an object (empty for all) */ 169 struct hlist_head area_list; 170 unsigned long trace[MAX_TRACE]; 171 unsigned int trace_len; 172 unsigned long jiffies; /* creation timestamp */ 173 pid_t pid; /* pid of the current task */ 174 char comm[TASK_COMM_LEN]; /* executable name */ 175 }; 176 177 /* flag representing the memory block allocation status */ 178 #define OBJECT_ALLOCATED (1 << 0) 179 /* flag set after the first reporting of an unreference object */ 180 #define OBJECT_REPORTED (1 << 1) 181 /* flag set to not scan the object */ 182 #define OBJECT_NO_SCAN (1 << 2) 183 184 /* number of bytes to print per line; must be 16 or 32 */ 185 #define HEX_ROW_SIZE 16 186 /* number of bytes to print at a time (1, 2, 4, 8) */ 187 #define HEX_GROUP_SIZE 1 188 /* include ASCII after the hex output */ 189 #define HEX_ASCII 1 190 /* max number of lines to be printed */ 191 #define HEX_MAX_LINES 2 192 193 /* the list of all allocated objects */ 194 static LIST_HEAD(object_list); 195 /* the list of gray-colored objects (see color_gray comment below) */ 196 static LIST_HEAD(gray_list); 197 /* search tree for object boundaries */ 198 static struct rb_root object_tree_root = RB_ROOT; 199 /* rw_lock protecting the access to object_list and object_tree_root */ 200 static DEFINE_RWLOCK(kmemleak_lock); 201 202 /* allocation caches for kmemleak internal data */ 203 static struct kmem_cache *object_cache; 204 static struct kmem_cache *scan_area_cache; 205 206 /* set if tracing memory operations is enabled */ 207 static int kmemleak_enabled; 208 /* same as above but only for the kmemleak_free() callback */ 209 static int kmemleak_free_enabled; 210 /* set in the late_initcall if there were no errors */ 211 static int kmemleak_initialized; 212 /* enables or disables early logging of the memory operations */ 213 static int kmemleak_early_log = 1; 214 /* set if a kmemleak warning was issued */ 215 static int kmemleak_warning; 216 /* set if a fatal kmemleak error has occurred */ 217 static int kmemleak_error; 218 219 /* minimum and maximum address that may be valid pointers */ 220 static unsigned long min_addr = ULONG_MAX; 221 static unsigned long max_addr; 222 223 static struct task_struct *scan_thread; 224 /* used to avoid reporting of recently allocated objects */ 225 static unsigned long jiffies_min_age; 226 static unsigned long jiffies_last_scan; 227 /* delay between automatic memory scannings */ 228 static signed long jiffies_scan_wait; 229 /* enables or disables the task stacks scanning */ 230 static int kmemleak_stack_scan = 1; 231 /* protects the memory scanning, parameters and debug/kmemleak file access */ 232 static DEFINE_MUTEX(scan_mutex); 233 /* setting kmemleak=on, will set this var, skipping the disable */ 234 static int kmemleak_skip_disable; 235 /* If there are leaks that can be reported */ 236 static bool kmemleak_found_leaks; 237 238 /* 239 * Early object allocation/freeing logging. Kmemleak is initialized after the 240 * kernel allocator. However, both the kernel allocator and kmemleak may 241 * allocate memory blocks which need to be tracked. Kmemleak defines an 242 * arbitrary buffer to hold the allocation/freeing information before it is 243 * fully initialized. 244 */ 245 246 /* kmemleak operation type for early logging */ 247 enum { 248 KMEMLEAK_ALLOC, 249 KMEMLEAK_ALLOC_PERCPU, 250 KMEMLEAK_FREE, 251 KMEMLEAK_FREE_PART, 252 KMEMLEAK_FREE_PERCPU, 253 KMEMLEAK_NOT_LEAK, 254 KMEMLEAK_IGNORE, 255 KMEMLEAK_SCAN_AREA, 256 KMEMLEAK_NO_SCAN 257 }; 258 259 /* 260 * Structure holding the information passed to kmemleak callbacks during the 261 * early logging. 262 */ 263 struct early_log { 264 int op_type; /* kmemleak operation type */ 265 const void *ptr; /* allocated/freed memory block */ 266 size_t size; /* memory block size */ 267 int min_count; /* minimum reference count */ 268 unsigned long trace[MAX_TRACE]; /* stack trace */ 269 unsigned int trace_len; /* stack trace length */ 270 }; 271 272 /* early logging buffer and current position */ 273 static struct early_log 274 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata; 275 static int crt_early_log __initdata; 276 277 static void kmemleak_disable(void); 278 279 /* 280 * Print a warning and dump the stack trace. 281 */ 282 #define kmemleak_warn(x...) do { \ 283 pr_warn(x); \ 284 dump_stack(); \ 285 kmemleak_warning = 1; \ 286 } while (0) 287 288 /* 289 * Macro invoked when a serious kmemleak condition occurred and cannot be 290 * recovered from. Kmemleak will be disabled and further allocation/freeing 291 * tracing no longer available. 292 */ 293 #define kmemleak_stop(x...) do { \ 294 kmemleak_warn(x); \ 295 kmemleak_disable(); \ 296 } while (0) 297 298 /* 299 * Printing of the objects hex dump to the seq file. The number of lines to be 300 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 301 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 302 * with the object->lock held. 303 */ 304 static void hex_dump_object(struct seq_file *seq, 305 struct kmemleak_object *object) 306 { 307 const u8 *ptr = (const u8 *)object->pointer; 308 size_t len; 309 310 /* limit the number of lines to HEX_MAX_LINES */ 311 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 312 313 seq_printf(seq, " hex dump (first %zu bytes):\n", len); 314 kasan_disable_current(); 315 seq_hex_dump(seq, " ", DUMP_PREFIX_NONE, HEX_ROW_SIZE, 316 HEX_GROUP_SIZE, ptr, len, HEX_ASCII); 317 kasan_enable_current(); 318 } 319 320 /* 321 * Object colors, encoded with count and min_count: 322 * - white - orphan object, not enough references to it (count < min_count) 323 * - gray - not orphan, not marked as false positive (min_count == 0) or 324 * sufficient references to it (count >= min_count) 325 * - black - ignore, it doesn't contain references (e.g. text section) 326 * (min_count == -1). No function defined for this color. 327 * Newly created objects don't have any color assigned (object->count == -1) 328 * before the next memory scan when they become white. 329 */ 330 static bool color_white(const struct kmemleak_object *object) 331 { 332 return object->count != KMEMLEAK_BLACK && 333 object->count < object->min_count; 334 } 335 336 static bool color_gray(const struct kmemleak_object *object) 337 { 338 return object->min_count != KMEMLEAK_BLACK && 339 object->count >= object->min_count; 340 } 341 342 /* 343 * Objects are considered unreferenced only if their color is white, they have 344 * not be deleted and have a minimum age to avoid false positives caused by 345 * pointers temporarily stored in CPU registers. 346 */ 347 static bool unreferenced_object(struct kmemleak_object *object) 348 { 349 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 350 time_before_eq(object->jiffies + jiffies_min_age, 351 jiffies_last_scan); 352 } 353 354 /* 355 * Printing of the unreferenced objects information to the seq file. The 356 * print_unreferenced function must be called with the object->lock held. 357 */ 358 static void print_unreferenced(struct seq_file *seq, 359 struct kmemleak_object *object) 360 { 361 int i; 362 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 363 364 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 365 object->pointer, object->size); 366 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 367 object->comm, object->pid, object->jiffies, 368 msecs_age / 1000, msecs_age % 1000); 369 hex_dump_object(seq, object); 370 seq_printf(seq, " backtrace:\n"); 371 372 for (i = 0; i < object->trace_len; i++) { 373 void *ptr = (void *)object->trace[i]; 374 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); 375 } 376 } 377 378 /* 379 * Print the kmemleak_object information. This function is used mainly for 380 * debugging special cases when kmemleak operations. It must be called with 381 * the object->lock held. 382 */ 383 static void dump_object_info(struct kmemleak_object *object) 384 { 385 struct stack_trace trace; 386 387 trace.nr_entries = object->trace_len; 388 trace.entries = object->trace; 389 390 pr_notice("Object 0x%08lx (size %zu):\n", 391 object->pointer, object->size); 392 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 393 object->comm, object->pid, object->jiffies); 394 pr_notice(" min_count = %d\n", object->min_count); 395 pr_notice(" count = %d\n", object->count); 396 pr_notice(" flags = 0x%lx\n", object->flags); 397 pr_notice(" checksum = %u\n", object->checksum); 398 pr_notice(" backtrace:\n"); 399 print_stack_trace(&trace, 4); 400 } 401 402 /* 403 * Look-up a memory block metadata (kmemleak_object) in the object search 404 * tree based on a pointer value. If alias is 0, only values pointing to the 405 * beginning of the memory block are allowed. The kmemleak_lock must be held 406 * when calling this function. 407 */ 408 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 409 { 410 struct rb_node *rb = object_tree_root.rb_node; 411 412 while (rb) { 413 struct kmemleak_object *object = 414 rb_entry(rb, struct kmemleak_object, rb_node); 415 if (ptr < object->pointer) 416 rb = object->rb_node.rb_left; 417 else if (object->pointer + object->size <= ptr) 418 rb = object->rb_node.rb_right; 419 else if (object->pointer == ptr || alias) 420 return object; 421 else { 422 kmemleak_warn("Found object by alias at 0x%08lx\n", 423 ptr); 424 dump_object_info(object); 425 break; 426 } 427 } 428 return NULL; 429 } 430 431 /* 432 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 433 * that once an object's use_count reached 0, the RCU freeing was already 434 * registered and the object should no longer be used. This function must be 435 * called under the protection of rcu_read_lock(). 436 */ 437 static int get_object(struct kmemleak_object *object) 438 { 439 return atomic_inc_not_zero(&object->use_count); 440 } 441 442 /* 443 * RCU callback to free a kmemleak_object. 444 */ 445 static void free_object_rcu(struct rcu_head *rcu) 446 { 447 struct hlist_node *tmp; 448 struct kmemleak_scan_area *area; 449 struct kmemleak_object *object = 450 container_of(rcu, struct kmemleak_object, rcu); 451 452 /* 453 * Once use_count is 0 (guaranteed by put_object), there is no other 454 * code accessing this object, hence no need for locking. 455 */ 456 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 457 hlist_del(&area->node); 458 kmem_cache_free(scan_area_cache, area); 459 } 460 kmem_cache_free(object_cache, object); 461 } 462 463 /* 464 * Decrement the object use_count. Once the count is 0, free the object using 465 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 466 * delete_object() path, the delayed RCU freeing ensures that there is no 467 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 468 * is also possible. 469 */ 470 static void put_object(struct kmemleak_object *object) 471 { 472 if (!atomic_dec_and_test(&object->use_count)) 473 return; 474 475 /* should only get here after delete_object was called */ 476 WARN_ON(object->flags & OBJECT_ALLOCATED); 477 478 call_rcu(&object->rcu, free_object_rcu); 479 } 480 481 /* 482 * Look up an object in the object search tree and increase its use_count. 483 */ 484 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 485 { 486 unsigned long flags; 487 struct kmemleak_object *object; 488 489 rcu_read_lock(); 490 read_lock_irqsave(&kmemleak_lock, flags); 491 object = lookup_object(ptr, alias); 492 read_unlock_irqrestore(&kmemleak_lock, flags); 493 494 /* check whether the object is still available */ 495 if (object && !get_object(object)) 496 object = NULL; 497 rcu_read_unlock(); 498 499 return object; 500 } 501 502 /* 503 * Look up an object in the object search tree and remove it from both 504 * object_tree_root and object_list. The returned object's use_count should be 505 * at least 1, as initially set by create_object(). 506 */ 507 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias) 508 { 509 unsigned long flags; 510 struct kmemleak_object *object; 511 512 write_lock_irqsave(&kmemleak_lock, flags); 513 object = lookup_object(ptr, alias); 514 if (object) { 515 rb_erase(&object->rb_node, &object_tree_root); 516 list_del_rcu(&object->object_list); 517 } 518 write_unlock_irqrestore(&kmemleak_lock, flags); 519 520 return object; 521 } 522 523 /* 524 * Save stack trace to the given array of MAX_TRACE size. 525 */ 526 static int __save_stack_trace(unsigned long *trace) 527 { 528 struct stack_trace stack_trace; 529 530 stack_trace.max_entries = MAX_TRACE; 531 stack_trace.nr_entries = 0; 532 stack_trace.entries = trace; 533 stack_trace.skip = 2; 534 save_stack_trace(&stack_trace); 535 536 return stack_trace.nr_entries; 537 } 538 539 /* 540 * Create the metadata (struct kmemleak_object) corresponding to an allocated 541 * memory block and add it to the object_list and object_tree_root. 542 */ 543 static struct kmemleak_object *create_object(unsigned long ptr, size_t size, 544 int min_count, gfp_t gfp) 545 { 546 unsigned long flags; 547 struct kmemleak_object *object, *parent; 548 struct rb_node **link, *rb_parent; 549 550 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 551 if (!object) { 552 pr_warn("Cannot allocate a kmemleak_object structure\n"); 553 kmemleak_disable(); 554 return NULL; 555 } 556 557 INIT_LIST_HEAD(&object->object_list); 558 INIT_LIST_HEAD(&object->gray_list); 559 INIT_HLIST_HEAD(&object->area_list); 560 spin_lock_init(&object->lock); 561 atomic_set(&object->use_count, 1); 562 object->flags = OBJECT_ALLOCATED; 563 object->pointer = ptr; 564 object->size = size; 565 object->min_count = min_count; 566 object->count = 0; /* white color initially */ 567 object->jiffies = jiffies; 568 object->checksum = 0; 569 570 /* task information */ 571 if (in_irq()) { 572 object->pid = 0; 573 strncpy(object->comm, "hardirq", sizeof(object->comm)); 574 } else if (in_softirq()) { 575 object->pid = 0; 576 strncpy(object->comm, "softirq", sizeof(object->comm)); 577 } else { 578 object->pid = current->pid; 579 /* 580 * There is a small chance of a race with set_task_comm(), 581 * however using get_task_comm() here may cause locking 582 * dependency issues with current->alloc_lock. In the worst 583 * case, the command line is not correct. 584 */ 585 strncpy(object->comm, current->comm, sizeof(object->comm)); 586 } 587 588 /* kernel backtrace */ 589 object->trace_len = __save_stack_trace(object->trace); 590 591 write_lock_irqsave(&kmemleak_lock, flags); 592 593 min_addr = min(min_addr, ptr); 594 max_addr = max(max_addr, ptr + size); 595 link = &object_tree_root.rb_node; 596 rb_parent = NULL; 597 while (*link) { 598 rb_parent = *link; 599 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 600 if (ptr + size <= parent->pointer) 601 link = &parent->rb_node.rb_left; 602 else if (parent->pointer + parent->size <= ptr) 603 link = &parent->rb_node.rb_right; 604 else { 605 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 606 ptr); 607 /* 608 * No need for parent->lock here since "parent" cannot 609 * be freed while the kmemleak_lock is held. 610 */ 611 dump_object_info(parent); 612 kmem_cache_free(object_cache, object); 613 object = NULL; 614 goto out; 615 } 616 } 617 rb_link_node(&object->rb_node, rb_parent, link); 618 rb_insert_color(&object->rb_node, &object_tree_root); 619 620 list_add_tail_rcu(&object->object_list, &object_list); 621 out: 622 write_unlock_irqrestore(&kmemleak_lock, flags); 623 return object; 624 } 625 626 /* 627 * Mark the object as not allocated and schedule RCU freeing via put_object(). 628 */ 629 static void __delete_object(struct kmemleak_object *object) 630 { 631 unsigned long flags; 632 633 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 634 WARN_ON(atomic_read(&object->use_count) < 1); 635 636 /* 637 * Locking here also ensures that the corresponding memory block 638 * cannot be freed when it is being scanned. 639 */ 640 spin_lock_irqsave(&object->lock, flags); 641 object->flags &= ~OBJECT_ALLOCATED; 642 spin_unlock_irqrestore(&object->lock, flags); 643 put_object(object); 644 } 645 646 /* 647 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 648 * delete it. 649 */ 650 static void delete_object_full(unsigned long ptr) 651 { 652 struct kmemleak_object *object; 653 654 object = find_and_remove_object(ptr, 0); 655 if (!object) { 656 #ifdef DEBUG 657 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 658 ptr); 659 #endif 660 return; 661 } 662 __delete_object(object); 663 } 664 665 /* 666 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 667 * delete it. If the memory block is partially freed, the function may create 668 * additional metadata for the remaining parts of the block. 669 */ 670 static void delete_object_part(unsigned long ptr, size_t size) 671 { 672 struct kmemleak_object *object; 673 unsigned long start, end; 674 675 object = find_and_remove_object(ptr, 1); 676 if (!object) { 677 #ifdef DEBUG 678 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 679 ptr, size); 680 #endif 681 return; 682 } 683 684 /* 685 * Create one or two objects that may result from the memory block 686 * split. Note that partial freeing is only done by free_bootmem() and 687 * this happens before kmemleak_init() is called. The path below is 688 * only executed during early log recording in kmemleak_init(), so 689 * GFP_KERNEL is enough. 690 */ 691 start = object->pointer; 692 end = object->pointer + object->size; 693 if (ptr > start) 694 create_object(start, ptr - start, object->min_count, 695 GFP_KERNEL); 696 if (ptr + size < end) 697 create_object(ptr + size, end - ptr - size, object->min_count, 698 GFP_KERNEL); 699 700 __delete_object(object); 701 } 702 703 static void __paint_it(struct kmemleak_object *object, int color) 704 { 705 object->min_count = color; 706 if (color == KMEMLEAK_BLACK) 707 object->flags |= OBJECT_NO_SCAN; 708 } 709 710 static void paint_it(struct kmemleak_object *object, int color) 711 { 712 unsigned long flags; 713 714 spin_lock_irqsave(&object->lock, flags); 715 __paint_it(object, color); 716 spin_unlock_irqrestore(&object->lock, flags); 717 } 718 719 static void paint_ptr(unsigned long ptr, int color) 720 { 721 struct kmemleak_object *object; 722 723 object = find_and_get_object(ptr, 0); 724 if (!object) { 725 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 726 ptr, 727 (color == KMEMLEAK_GREY) ? "Grey" : 728 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 729 return; 730 } 731 paint_it(object, color); 732 put_object(object); 733 } 734 735 /* 736 * Mark an object permanently as gray-colored so that it can no longer be 737 * reported as a leak. This is used in general to mark a false positive. 738 */ 739 static void make_gray_object(unsigned long ptr) 740 { 741 paint_ptr(ptr, KMEMLEAK_GREY); 742 } 743 744 /* 745 * Mark the object as black-colored so that it is ignored from scans and 746 * reporting. 747 */ 748 static void make_black_object(unsigned long ptr) 749 { 750 paint_ptr(ptr, KMEMLEAK_BLACK); 751 } 752 753 /* 754 * Add a scanning area to the object. If at least one such area is added, 755 * kmemleak will only scan these ranges rather than the whole memory block. 756 */ 757 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 758 { 759 unsigned long flags; 760 struct kmemleak_object *object; 761 struct kmemleak_scan_area *area; 762 763 object = find_and_get_object(ptr, 1); 764 if (!object) { 765 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 766 ptr); 767 return; 768 } 769 770 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 771 if (!area) { 772 pr_warn("Cannot allocate a scan area\n"); 773 goto out; 774 } 775 776 spin_lock_irqsave(&object->lock, flags); 777 if (size == SIZE_MAX) { 778 size = object->pointer + object->size - ptr; 779 } else if (ptr + size > object->pointer + object->size) { 780 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 781 dump_object_info(object); 782 kmem_cache_free(scan_area_cache, area); 783 goto out_unlock; 784 } 785 786 INIT_HLIST_NODE(&area->node); 787 area->start = ptr; 788 area->size = size; 789 790 hlist_add_head(&area->node, &object->area_list); 791 out_unlock: 792 spin_unlock_irqrestore(&object->lock, flags); 793 out: 794 put_object(object); 795 } 796 797 /* 798 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 799 * pointer. Such object will not be scanned by kmemleak but references to it 800 * are searched. 801 */ 802 static void object_no_scan(unsigned long ptr) 803 { 804 unsigned long flags; 805 struct kmemleak_object *object; 806 807 object = find_and_get_object(ptr, 0); 808 if (!object) { 809 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 810 return; 811 } 812 813 spin_lock_irqsave(&object->lock, flags); 814 object->flags |= OBJECT_NO_SCAN; 815 spin_unlock_irqrestore(&object->lock, flags); 816 put_object(object); 817 } 818 819 /* 820 * Log an early kmemleak_* call to the early_log buffer. These calls will be 821 * processed later once kmemleak is fully initialized. 822 */ 823 static void __init log_early(int op_type, const void *ptr, size_t size, 824 int min_count) 825 { 826 unsigned long flags; 827 struct early_log *log; 828 829 if (kmemleak_error) { 830 /* kmemleak stopped recording, just count the requests */ 831 crt_early_log++; 832 return; 833 } 834 835 if (crt_early_log >= ARRAY_SIZE(early_log)) { 836 crt_early_log++; 837 kmemleak_disable(); 838 return; 839 } 840 841 /* 842 * There is no need for locking since the kernel is still in UP mode 843 * at this stage. Disabling the IRQs is enough. 844 */ 845 local_irq_save(flags); 846 log = &early_log[crt_early_log]; 847 log->op_type = op_type; 848 log->ptr = ptr; 849 log->size = size; 850 log->min_count = min_count; 851 log->trace_len = __save_stack_trace(log->trace); 852 crt_early_log++; 853 local_irq_restore(flags); 854 } 855 856 /* 857 * Log an early allocated block and populate the stack trace. 858 */ 859 static void early_alloc(struct early_log *log) 860 { 861 struct kmemleak_object *object; 862 unsigned long flags; 863 int i; 864 865 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr)) 866 return; 867 868 /* 869 * RCU locking needed to ensure object is not freed via put_object(). 870 */ 871 rcu_read_lock(); 872 object = create_object((unsigned long)log->ptr, log->size, 873 log->min_count, GFP_ATOMIC); 874 if (!object) 875 goto out; 876 spin_lock_irqsave(&object->lock, flags); 877 for (i = 0; i < log->trace_len; i++) 878 object->trace[i] = log->trace[i]; 879 object->trace_len = log->trace_len; 880 spin_unlock_irqrestore(&object->lock, flags); 881 out: 882 rcu_read_unlock(); 883 } 884 885 /* 886 * Log an early allocated block and populate the stack trace. 887 */ 888 static void early_alloc_percpu(struct early_log *log) 889 { 890 unsigned int cpu; 891 const void __percpu *ptr = log->ptr; 892 893 for_each_possible_cpu(cpu) { 894 log->ptr = per_cpu_ptr(ptr, cpu); 895 early_alloc(log); 896 } 897 } 898 899 /** 900 * kmemleak_alloc - register a newly allocated object 901 * @ptr: pointer to beginning of the object 902 * @size: size of the object 903 * @min_count: minimum number of references to this object. If during memory 904 * scanning a number of references less than @min_count is found, 905 * the object is reported as a memory leak. If @min_count is 0, 906 * the object is never reported as a leak. If @min_count is -1, 907 * the object is ignored (not scanned and not reported as a leak) 908 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 909 * 910 * This function is called from the kernel allocators when a new object 911 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.). 912 */ 913 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 914 gfp_t gfp) 915 { 916 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 917 918 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 919 create_object((unsigned long)ptr, size, min_count, gfp); 920 else if (kmemleak_early_log) 921 log_early(KMEMLEAK_ALLOC, ptr, size, min_count); 922 } 923 EXPORT_SYMBOL_GPL(kmemleak_alloc); 924 925 /** 926 * kmemleak_alloc_percpu - register a newly allocated __percpu object 927 * @ptr: __percpu pointer to beginning of the object 928 * @size: size of the object 929 * @gfp: flags used for kmemleak internal memory allocations 930 * 931 * This function is called from the kernel percpu allocator when a new object 932 * (memory block) is allocated (alloc_percpu). 933 */ 934 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 935 gfp_t gfp) 936 { 937 unsigned int cpu; 938 939 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); 940 941 /* 942 * Percpu allocations are only scanned and not reported as leaks 943 * (min_count is set to 0). 944 */ 945 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 946 for_each_possible_cpu(cpu) 947 create_object((unsigned long)per_cpu_ptr(ptr, cpu), 948 size, 0, gfp); 949 else if (kmemleak_early_log) 950 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0); 951 } 952 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 953 954 /** 955 * kmemleak_free - unregister a previously registered object 956 * @ptr: pointer to beginning of the object 957 * 958 * This function is called from the kernel allocators when an object (memory 959 * block) is freed (kmem_cache_free, kfree, vfree etc.). 960 */ 961 void __ref kmemleak_free(const void *ptr) 962 { 963 pr_debug("%s(0x%p)\n", __func__, ptr); 964 965 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 966 delete_object_full((unsigned long)ptr); 967 else if (kmemleak_early_log) 968 log_early(KMEMLEAK_FREE, ptr, 0, 0); 969 } 970 EXPORT_SYMBOL_GPL(kmemleak_free); 971 972 /** 973 * kmemleak_free_part - partially unregister a previously registered object 974 * @ptr: pointer to the beginning or inside the object. This also 975 * represents the start of the range to be freed 976 * @size: size to be unregistered 977 * 978 * This function is called when only a part of a memory block is freed 979 * (usually from the bootmem allocator). 980 */ 981 void __ref kmemleak_free_part(const void *ptr, size_t size) 982 { 983 pr_debug("%s(0x%p)\n", __func__, ptr); 984 985 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 986 delete_object_part((unsigned long)ptr, size); 987 else if (kmemleak_early_log) 988 log_early(KMEMLEAK_FREE_PART, ptr, size, 0); 989 } 990 EXPORT_SYMBOL_GPL(kmemleak_free_part); 991 992 /** 993 * kmemleak_free_percpu - unregister a previously registered __percpu object 994 * @ptr: __percpu pointer to beginning of the object 995 * 996 * This function is called from the kernel percpu allocator when an object 997 * (memory block) is freed (free_percpu). 998 */ 999 void __ref kmemleak_free_percpu(const void __percpu *ptr) 1000 { 1001 unsigned int cpu; 1002 1003 pr_debug("%s(0x%p)\n", __func__, ptr); 1004 1005 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1006 for_each_possible_cpu(cpu) 1007 delete_object_full((unsigned long)per_cpu_ptr(ptr, 1008 cpu)); 1009 else if (kmemleak_early_log) 1010 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0); 1011 } 1012 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1013 1014 /** 1015 * kmemleak_update_trace - update object allocation stack trace 1016 * @ptr: pointer to beginning of the object 1017 * 1018 * Override the object allocation stack trace for cases where the actual 1019 * allocation place is not always useful. 1020 */ 1021 void __ref kmemleak_update_trace(const void *ptr) 1022 { 1023 struct kmemleak_object *object; 1024 unsigned long flags; 1025 1026 pr_debug("%s(0x%p)\n", __func__, ptr); 1027 1028 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1029 return; 1030 1031 object = find_and_get_object((unsigned long)ptr, 1); 1032 if (!object) { 1033 #ifdef DEBUG 1034 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1035 ptr); 1036 #endif 1037 return; 1038 } 1039 1040 spin_lock_irqsave(&object->lock, flags); 1041 object->trace_len = __save_stack_trace(object->trace); 1042 spin_unlock_irqrestore(&object->lock, flags); 1043 1044 put_object(object); 1045 } 1046 EXPORT_SYMBOL(kmemleak_update_trace); 1047 1048 /** 1049 * kmemleak_not_leak - mark an allocated object as false positive 1050 * @ptr: pointer to beginning of the object 1051 * 1052 * Calling this function on an object will cause the memory block to no longer 1053 * be reported as leak and always be scanned. 1054 */ 1055 void __ref kmemleak_not_leak(const void *ptr) 1056 { 1057 pr_debug("%s(0x%p)\n", __func__, ptr); 1058 1059 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1060 make_gray_object((unsigned long)ptr); 1061 else if (kmemleak_early_log) 1062 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0); 1063 } 1064 EXPORT_SYMBOL(kmemleak_not_leak); 1065 1066 /** 1067 * kmemleak_ignore - ignore an allocated object 1068 * @ptr: pointer to beginning of the object 1069 * 1070 * Calling this function on an object will cause the memory block to be 1071 * ignored (not scanned and not reported as a leak). This is usually done when 1072 * it is known that the corresponding block is not a leak and does not contain 1073 * any references to other allocated memory blocks. 1074 */ 1075 void __ref kmemleak_ignore(const void *ptr) 1076 { 1077 pr_debug("%s(0x%p)\n", __func__, ptr); 1078 1079 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1080 make_black_object((unsigned long)ptr); 1081 else if (kmemleak_early_log) 1082 log_early(KMEMLEAK_IGNORE, ptr, 0, 0); 1083 } 1084 EXPORT_SYMBOL(kmemleak_ignore); 1085 1086 /** 1087 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1088 * @ptr: pointer to beginning or inside the object. This also 1089 * represents the start of the scan area 1090 * @size: size of the scan area 1091 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1092 * 1093 * This function is used when it is known that only certain parts of an object 1094 * contain references to other objects. Kmemleak will only scan these areas 1095 * reducing the number false negatives. 1096 */ 1097 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1098 { 1099 pr_debug("%s(0x%p)\n", __func__, ptr); 1100 1101 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1102 add_scan_area((unsigned long)ptr, size, gfp); 1103 else if (kmemleak_early_log) 1104 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0); 1105 } 1106 EXPORT_SYMBOL(kmemleak_scan_area); 1107 1108 /** 1109 * kmemleak_no_scan - do not scan an allocated object 1110 * @ptr: pointer to beginning of the object 1111 * 1112 * This function notifies kmemleak not to scan the given memory block. Useful 1113 * in situations where it is known that the given object does not contain any 1114 * references to other objects. Kmemleak will not scan such objects reducing 1115 * the number of false negatives. 1116 */ 1117 void __ref kmemleak_no_scan(const void *ptr) 1118 { 1119 pr_debug("%s(0x%p)\n", __func__, ptr); 1120 1121 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1122 object_no_scan((unsigned long)ptr); 1123 else if (kmemleak_early_log) 1124 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0); 1125 } 1126 EXPORT_SYMBOL(kmemleak_no_scan); 1127 1128 /** 1129 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1130 * address argument 1131 */ 1132 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count, 1133 gfp_t gfp) 1134 { 1135 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1136 kmemleak_alloc(__va(phys), size, min_count, gfp); 1137 } 1138 EXPORT_SYMBOL(kmemleak_alloc_phys); 1139 1140 /** 1141 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1142 * physical address argument 1143 */ 1144 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1145 { 1146 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1147 kmemleak_free_part(__va(phys), size); 1148 } 1149 EXPORT_SYMBOL(kmemleak_free_part_phys); 1150 1151 /** 1152 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical 1153 * address argument 1154 */ 1155 void __ref kmemleak_not_leak_phys(phys_addr_t phys) 1156 { 1157 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1158 kmemleak_not_leak(__va(phys)); 1159 } 1160 EXPORT_SYMBOL(kmemleak_not_leak_phys); 1161 1162 /** 1163 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1164 * address argument 1165 */ 1166 void __ref kmemleak_ignore_phys(phys_addr_t phys) 1167 { 1168 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1169 kmemleak_ignore(__va(phys)); 1170 } 1171 EXPORT_SYMBOL(kmemleak_ignore_phys); 1172 1173 /* 1174 * Update an object's checksum and return true if it was modified. 1175 */ 1176 static bool update_checksum(struct kmemleak_object *object) 1177 { 1178 u32 old_csum = object->checksum; 1179 1180 if (!kmemcheck_is_obj_initialized(object->pointer, object->size)) 1181 return false; 1182 1183 kasan_disable_current(); 1184 object->checksum = crc32(0, (void *)object->pointer, object->size); 1185 kasan_enable_current(); 1186 1187 return object->checksum != old_csum; 1188 } 1189 1190 /* 1191 * Memory scanning is a long process and it needs to be interruptable. This 1192 * function checks whether such interrupt condition occurred. 1193 */ 1194 static int scan_should_stop(void) 1195 { 1196 if (!kmemleak_enabled) 1197 return 1; 1198 1199 /* 1200 * This function may be called from either process or kthread context, 1201 * hence the need to check for both stop conditions. 1202 */ 1203 if (current->mm) 1204 return signal_pending(current); 1205 else 1206 return kthread_should_stop(); 1207 1208 return 0; 1209 } 1210 1211 /* 1212 * Scan a memory block (exclusive range) for valid pointers and add those 1213 * found to the gray list. 1214 */ 1215 static void scan_block(void *_start, void *_end, 1216 struct kmemleak_object *scanned) 1217 { 1218 unsigned long *ptr; 1219 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1220 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1221 unsigned long flags; 1222 1223 read_lock_irqsave(&kmemleak_lock, flags); 1224 for (ptr = start; ptr < end; ptr++) { 1225 struct kmemleak_object *object; 1226 unsigned long pointer; 1227 1228 if (scan_should_stop()) 1229 break; 1230 1231 /* don't scan uninitialized memory */ 1232 if (!kmemcheck_is_obj_initialized((unsigned long)ptr, 1233 BYTES_PER_POINTER)) 1234 continue; 1235 1236 kasan_disable_current(); 1237 pointer = *ptr; 1238 kasan_enable_current(); 1239 1240 if (pointer < min_addr || pointer >= max_addr) 1241 continue; 1242 1243 /* 1244 * No need for get_object() here since we hold kmemleak_lock. 1245 * object->use_count cannot be dropped to 0 while the object 1246 * is still present in object_tree_root and object_list 1247 * (with updates protected by kmemleak_lock). 1248 */ 1249 object = lookup_object(pointer, 1); 1250 if (!object) 1251 continue; 1252 if (object == scanned) 1253 /* self referenced, ignore */ 1254 continue; 1255 1256 /* 1257 * Avoid the lockdep recursive warning on object->lock being 1258 * previously acquired in scan_object(). These locks are 1259 * enclosed by scan_mutex. 1260 */ 1261 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1262 if (!color_white(object)) { 1263 /* non-orphan, ignored or new */ 1264 spin_unlock(&object->lock); 1265 continue; 1266 } 1267 1268 /* 1269 * Increase the object's reference count (number of pointers 1270 * to the memory block). If this count reaches the required 1271 * minimum, the object's color will become gray and it will be 1272 * added to the gray_list. 1273 */ 1274 object->count++; 1275 if (color_gray(object)) { 1276 /* put_object() called when removing from gray_list */ 1277 WARN_ON(!get_object(object)); 1278 list_add_tail(&object->gray_list, &gray_list); 1279 } 1280 spin_unlock(&object->lock); 1281 } 1282 read_unlock_irqrestore(&kmemleak_lock, flags); 1283 } 1284 1285 /* 1286 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1287 */ 1288 static void scan_large_block(void *start, void *end) 1289 { 1290 void *next; 1291 1292 while (start < end) { 1293 next = min(start + MAX_SCAN_SIZE, end); 1294 scan_block(start, next, NULL); 1295 start = next; 1296 cond_resched(); 1297 } 1298 } 1299 1300 /* 1301 * Scan a memory block corresponding to a kmemleak_object. A condition is 1302 * that object->use_count >= 1. 1303 */ 1304 static void scan_object(struct kmemleak_object *object) 1305 { 1306 struct kmemleak_scan_area *area; 1307 unsigned long flags; 1308 1309 /* 1310 * Once the object->lock is acquired, the corresponding memory block 1311 * cannot be freed (the same lock is acquired in delete_object). 1312 */ 1313 spin_lock_irqsave(&object->lock, flags); 1314 if (object->flags & OBJECT_NO_SCAN) 1315 goto out; 1316 if (!(object->flags & OBJECT_ALLOCATED)) 1317 /* already freed object */ 1318 goto out; 1319 if (hlist_empty(&object->area_list)) { 1320 void *start = (void *)object->pointer; 1321 void *end = (void *)(object->pointer + object->size); 1322 void *next; 1323 1324 do { 1325 next = min(start + MAX_SCAN_SIZE, end); 1326 scan_block(start, next, object); 1327 1328 start = next; 1329 if (start >= end) 1330 break; 1331 1332 spin_unlock_irqrestore(&object->lock, flags); 1333 cond_resched(); 1334 spin_lock_irqsave(&object->lock, flags); 1335 } while (object->flags & OBJECT_ALLOCATED); 1336 } else 1337 hlist_for_each_entry(area, &object->area_list, node) 1338 scan_block((void *)area->start, 1339 (void *)(area->start + area->size), 1340 object); 1341 out: 1342 spin_unlock_irqrestore(&object->lock, flags); 1343 } 1344 1345 /* 1346 * Scan the objects already referenced (gray objects). More objects will be 1347 * referenced and, if there are no memory leaks, all the objects are scanned. 1348 */ 1349 static void scan_gray_list(void) 1350 { 1351 struct kmemleak_object *object, *tmp; 1352 1353 /* 1354 * The list traversal is safe for both tail additions and removals 1355 * from inside the loop. The kmemleak objects cannot be freed from 1356 * outside the loop because their use_count was incremented. 1357 */ 1358 object = list_entry(gray_list.next, typeof(*object), gray_list); 1359 while (&object->gray_list != &gray_list) { 1360 cond_resched(); 1361 1362 /* may add new objects to the list */ 1363 if (!scan_should_stop()) 1364 scan_object(object); 1365 1366 tmp = list_entry(object->gray_list.next, typeof(*object), 1367 gray_list); 1368 1369 /* remove the object from the list and release it */ 1370 list_del(&object->gray_list); 1371 put_object(object); 1372 1373 object = tmp; 1374 } 1375 WARN_ON(!list_empty(&gray_list)); 1376 } 1377 1378 /* 1379 * Scan data sections and all the referenced memory blocks allocated via the 1380 * kernel's standard allocators. This function must be called with the 1381 * scan_mutex held. 1382 */ 1383 static void kmemleak_scan(void) 1384 { 1385 unsigned long flags; 1386 struct kmemleak_object *object; 1387 int i; 1388 int new_leaks = 0; 1389 1390 jiffies_last_scan = jiffies; 1391 1392 /* prepare the kmemleak_object's */ 1393 rcu_read_lock(); 1394 list_for_each_entry_rcu(object, &object_list, object_list) { 1395 spin_lock_irqsave(&object->lock, flags); 1396 #ifdef DEBUG 1397 /* 1398 * With a few exceptions there should be a maximum of 1399 * 1 reference to any object at this point. 1400 */ 1401 if (atomic_read(&object->use_count) > 1) { 1402 pr_debug("object->use_count = %d\n", 1403 atomic_read(&object->use_count)); 1404 dump_object_info(object); 1405 } 1406 #endif 1407 /* reset the reference count (whiten the object) */ 1408 object->count = 0; 1409 if (color_gray(object) && get_object(object)) 1410 list_add_tail(&object->gray_list, &gray_list); 1411 1412 spin_unlock_irqrestore(&object->lock, flags); 1413 } 1414 rcu_read_unlock(); 1415 1416 /* data/bss scanning */ 1417 scan_large_block(_sdata, _edata); 1418 scan_large_block(__bss_start, __bss_stop); 1419 scan_large_block(__start_data_ro_after_init, __end_data_ro_after_init); 1420 1421 #ifdef CONFIG_SMP 1422 /* per-cpu sections scanning */ 1423 for_each_possible_cpu(i) 1424 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1425 __per_cpu_end + per_cpu_offset(i)); 1426 #endif 1427 1428 /* 1429 * Struct page scanning for each node. 1430 */ 1431 get_online_mems(); 1432 for_each_online_node(i) { 1433 unsigned long start_pfn = node_start_pfn(i); 1434 unsigned long end_pfn = node_end_pfn(i); 1435 unsigned long pfn; 1436 1437 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1438 struct page *page; 1439 1440 if (!pfn_valid(pfn)) 1441 continue; 1442 page = pfn_to_page(pfn); 1443 /* only scan if page is in use */ 1444 if (page_count(page) == 0) 1445 continue; 1446 scan_block(page, page + 1, NULL); 1447 } 1448 } 1449 put_online_mems(); 1450 1451 /* 1452 * Scanning the task stacks (may introduce false negatives). 1453 */ 1454 if (kmemleak_stack_scan) { 1455 struct task_struct *p, *g; 1456 1457 read_lock(&tasklist_lock); 1458 do_each_thread(g, p) { 1459 void *stack = try_get_task_stack(p); 1460 if (stack) { 1461 scan_block(stack, stack + THREAD_SIZE, NULL); 1462 put_task_stack(p); 1463 } 1464 } while_each_thread(g, p); 1465 read_unlock(&tasklist_lock); 1466 } 1467 1468 /* 1469 * Scan the objects already referenced from the sections scanned 1470 * above. 1471 */ 1472 scan_gray_list(); 1473 1474 /* 1475 * Check for new or unreferenced objects modified since the previous 1476 * scan and color them gray until the next scan. 1477 */ 1478 rcu_read_lock(); 1479 list_for_each_entry_rcu(object, &object_list, object_list) { 1480 spin_lock_irqsave(&object->lock, flags); 1481 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1482 && update_checksum(object) && get_object(object)) { 1483 /* color it gray temporarily */ 1484 object->count = object->min_count; 1485 list_add_tail(&object->gray_list, &gray_list); 1486 } 1487 spin_unlock_irqrestore(&object->lock, flags); 1488 } 1489 rcu_read_unlock(); 1490 1491 /* 1492 * Re-scan the gray list for modified unreferenced objects. 1493 */ 1494 scan_gray_list(); 1495 1496 /* 1497 * If scanning was stopped do not report any new unreferenced objects. 1498 */ 1499 if (scan_should_stop()) 1500 return; 1501 1502 /* 1503 * Scanning result reporting. 1504 */ 1505 rcu_read_lock(); 1506 list_for_each_entry_rcu(object, &object_list, object_list) { 1507 spin_lock_irqsave(&object->lock, flags); 1508 if (unreferenced_object(object) && 1509 !(object->flags & OBJECT_REPORTED)) { 1510 object->flags |= OBJECT_REPORTED; 1511 new_leaks++; 1512 } 1513 spin_unlock_irqrestore(&object->lock, flags); 1514 } 1515 rcu_read_unlock(); 1516 1517 if (new_leaks) { 1518 kmemleak_found_leaks = true; 1519 1520 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1521 new_leaks); 1522 } 1523 1524 } 1525 1526 /* 1527 * Thread function performing automatic memory scanning. Unreferenced objects 1528 * at the end of a memory scan are reported but only the first time. 1529 */ 1530 static int kmemleak_scan_thread(void *arg) 1531 { 1532 static int first_run = 1; 1533 1534 pr_info("Automatic memory scanning thread started\n"); 1535 set_user_nice(current, 10); 1536 1537 /* 1538 * Wait before the first scan to allow the system to fully initialize. 1539 */ 1540 if (first_run) { 1541 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); 1542 first_run = 0; 1543 while (timeout && !kthread_should_stop()) 1544 timeout = schedule_timeout_interruptible(timeout); 1545 } 1546 1547 while (!kthread_should_stop()) { 1548 signed long timeout = jiffies_scan_wait; 1549 1550 mutex_lock(&scan_mutex); 1551 kmemleak_scan(); 1552 mutex_unlock(&scan_mutex); 1553 1554 /* wait before the next scan */ 1555 while (timeout && !kthread_should_stop()) 1556 timeout = schedule_timeout_interruptible(timeout); 1557 } 1558 1559 pr_info("Automatic memory scanning thread ended\n"); 1560 1561 return 0; 1562 } 1563 1564 /* 1565 * Start the automatic memory scanning thread. This function must be called 1566 * with the scan_mutex held. 1567 */ 1568 static void start_scan_thread(void) 1569 { 1570 if (scan_thread) 1571 return; 1572 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1573 if (IS_ERR(scan_thread)) { 1574 pr_warn("Failed to create the scan thread\n"); 1575 scan_thread = NULL; 1576 } 1577 } 1578 1579 /* 1580 * Stop the automatic memory scanning thread. This function must be called 1581 * with the scan_mutex held. 1582 */ 1583 static void stop_scan_thread(void) 1584 { 1585 if (scan_thread) { 1586 kthread_stop(scan_thread); 1587 scan_thread = NULL; 1588 } 1589 } 1590 1591 /* 1592 * Iterate over the object_list and return the first valid object at or after 1593 * the required position with its use_count incremented. The function triggers 1594 * a memory scanning when the pos argument points to the first position. 1595 */ 1596 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1597 { 1598 struct kmemleak_object *object; 1599 loff_t n = *pos; 1600 int err; 1601 1602 err = mutex_lock_interruptible(&scan_mutex); 1603 if (err < 0) 1604 return ERR_PTR(err); 1605 1606 rcu_read_lock(); 1607 list_for_each_entry_rcu(object, &object_list, object_list) { 1608 if (n-- > 0) 1609 continue; 1610 if (get_object(object)) 1611 goto out; 1612 } 1613 object = NULL; 1614 out: 1615 return object; 1616 } 1617 1618 /* 1619 * Return the next object in the object_list. The function decrements the 1620 * use_count of the previous object and increases that of the next one. 1621 */ 1622 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1623 { 1624 struct kmemleak_object *prev_obj = v; 1625 struct kmemleak_object *next_obj = NULL; 1626 struct kmemleak_object *obj = prev_obj; 1627 1628 ++(*pos); 1629 1630 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1631 if (get_object(obj)) { 1632 next_obj = obj; 1633 break; 1634 } 1635 } 1636 1637 put_object(prev_obj); 1638 return next_obj; 1639 } 1640 1641 /* 1642 * Decrement the use_count of the last object required, if any. 1643 */ 1644 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1645 { 1646 if (!IS_ERR(v)) { 1647 /* 1648 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1649 * waiting was interrupted, so only release it if !IS_ERR. 1650 */ 1651 rcu_read_unlock(); 1652 mutex_unlock(&scan_mutex); 1653 if (v) 1654 put_object(v); 1655 } 1656 } 1657 1658 /* 1659 * Print the information for an unreferenced object to the seq file. 1660 */ 1661 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1662 { 1663 struct kmemleak_object *object = v; 1664 unsigned long flags; 1665 1666 spin_lock_irqsave(&object->lock, flags); 1667 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1668 print_unreferenced(seq, object); 1669 spin_unlock_irqrestore(&object->lock, flags); 1670 return 0; 1671 } 1672 1673 static const struct seq_operations kmemleak_seq_ops = { 1674 .start = kmemleak_seq_start, 1675 .next = kmemleak_seq_next, 1676 .stop = kmemleak_seq_stop, 1677 .show = kmemleak_seq_show, 1678 }; 1679 1680 static int kmemleak_open(struct inode *inode, struct file *file) 1681 { 1682 return seq_open(file, &kmemleak_seq_ops); 1683 } 1684 1685 static int dump_str_object_info(const char *str) 1686 { 1687 unsigned long flags; 1688 struct kmemleak_object *object; 1689 unsigned long addr; 1690 1691 if (kstrtoul(str, 0, &addr)) 1692 return -EINVAL; 1693 object = find_and_get_object(addr, 0); 1694 if (!object) { 1695 pr_info("Unknown object at 0x%08lx\n", addr); 1696 return -EINVAL; 1697 } 1698 1699 spin_lock_irqsave(&object->lock, flags); 1700 dump_object_info(object); 1701 spin_unlock_irqrestore(&object->lock, flags); 1702 1703 put_object(object); 1704 return 0; 1705 } 1706 1707 /* 1708 * We use grey instead of black to ensure we can do future scans on the same 1709 * objects. If we did not do future scans these black objects could 1710 * potentially contain references to newly allocated objects in the future and 1711 * we'd end up with false positives. 1712 */ 1713 static void kmemleak_clear(void) 1714 { 1715 struct kmemleak_object *object; 1716 unsigned long flags; 1717 1718 rcu_read_lock(); 1719 list_for_each_entry_rcu(object, &object_list, object_list) { 1720 spin_lock_irqsave(&object->lock, flags); 1721 if ((object->flags & OBJECT_REPORTED) && 1722 unreferenced_object(object)) 1723 __paint_it(object, KMEMLEAK_GREY); 1724 spin_unlock_irqrestore(&object->lock, flags); 1725 } 1726 rcu_read_unlock(); 1727 1728 kmemleak_found_leaks = false; 1729 } 1730 1731 static void __kmemleak_do_cleanup(void); 1732 1733 /* 1734 * File write operation to configure kmemleak at run-time. The following 1735 * commands can be written to the /sys/kernel/debug/kmemleak file: 1736 * off - disable kmemleak (irreversible) 1737 * stack=on - enable the task stacks scanning 1738 * stack=off - disable the tasks stacks scanning 1739 * scan=on - start the automatic memory scanning thread 1740 * scan=off - stop the automatic memory scanning thread 1741 * scan=... - set the automatic memory scanning period in seconds (0 to 1742 * disable it) 1743 * scan - trigger a memory scan 1744 * clear - mark all current reported unreferenced kmemleak objects as 1745 * grey to ignore printing them, or free all kmemleak objects 1746 * if kmemleak has been disabled. 1747 * dump=... - dump information about the object found at the given address 1748 */ 1749 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1750 size_t size, loff_t *ppos) 1751 { 1752 char buf[64]; 1753 int buf_size; 1754 int ret; 1755 1756 buf_size = min(size, (sizeof(buf) - 1)); 1757 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1758 return -EFAULT; 1759 buf[buf_size] = 0; 1760 1761 ret = mutex_lock_interruptible(&scan_mutex); 1762 if (ret < 0) 1763 return ret; 1764 1765 if (strncmp(buf, "clear", 5) == 0) { 1766 if (kmemleak_enabled) 1767 kmemleak_clear(); 1768 else 1769 __kmemleak_do_cleanup(); 1770 goto out; 1771 } 1772 1773 if (!kmemleak_enabled) { 1774 ret = -EBUSY; 1775 goto out; 1776 } 1777 1778 if (strncmp(buf, "off", 3) == 0) 1779 kmemleak_disable(); 1780 else if (strncmp(buf, "stack=on", 8) == 0) 1781 kmemleak_stack_scan = 1; 1782 else if (strncmp(buf, "stack=off", 9) == 0) 1783 kmemleak_stack_scan = 0; 1784 else if (strncmp(buf, "scan=on", 7) == 0) 1785 start_scan_thread(); 1786 else if (strncmp(buf, "scan=off", 8) == 0) 1787 stop_scan_thread(); 1788 else if (strncmp(buf, "scan=", 5) == 0) { 1789 unsigned long secs; 1790 1791 ret = kstrtoul(buf + 5, 0, &secs); 1792 if (ret < 0) 1793 goto out; 1794 stop_scan_thread(); 1795 if (secs) { 1796 jiffies_scan_wait = msecs_to_jiffies(secs * 1000); 1797 start_scan_thread(); 1798 } 1799 } else if (strncmp(buf, "scan", 4) == 0) 1800 kmemleak_scan(); 1801 else if (strncmp(buf, "dump=", 5) == 0) 1802 ret = dump_str_object_info(buf + 5); 1803 else 1804 ret = -EINVAL; 1805 1806 out: 1807 mutex_unlock(&scan_mutex); 1808 if (ret < 0) 1809 return ret; 1810 1811 /* ignore the rest of the buffer, only one command at a time */ 1812 *ppos += size; 1813 return size; 1814 } 1815 1816 static const struct file_operations kmemleak_fops = { 1817 .owner = THIS_MODULE, 1818 .open = kmemleak_open, 1819 .read = seq_read, 1820 .write = kmemleak_write, 1821 .llseek = seq_lseek, 1822 .release = seq_release, 1823 }; 1824 1825 static void __kmemleak_do_cleanup(void) 1826 { 1827 struct kmemleak_object *object; 1828 1829 rcu_read_lock(); 1830 list_for_each_entry_rcu(object, &object_list, object_list) 1831 delete_object_full(object->pointer); 1832 rcu_read_unlock(); 1833 } 1834 1835 /* 1836 * Stop the memory scanning thread and free the kmemleak internal objects if 1837 * no previous scan thread (otherwise, kmemleak may still have some useful 1838 * information on memory leaks). 1839 */ 1840 static void kmemleak_do_cleanup(struct work_struct *work) 1841 { 1842 stop_scan_thread(); 1843 1844 /* 1845 * Once the scan thread has stopped, it is safe to no longer track 1846 * object freeing. Ordering of the scan thread stopping and the memory 1847 * accesses below is guaranteed by the kthread_stop() function. 1848 */ 1849 kmemleak_free_enabled = 0; 1850 1851 if (!kmemleak_found_leaks) 1852 __kmemleak_do_cleanup(); 1853 else 1854 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 1855 } 1856 1857 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 1858 1859 /* 1860 * Disable kmemleak. No memory allocation/freeing will be traced once this 1861 * function is called. Disabling kmemleak is an irreversible operation. 1862 */ 1863 static void kmemleak_disable(void) 1864 { 1865 /* atomically check whether it was already invoked */ 1866 if (cmpxchg(&kmemleak_error, 0, 1)) 1867 return; 1868 1869 /* stop any memory operation tracing */ 1870 kmemleak_enabled = 0; 1871 1872 /* check whether it is too early for a kernel thread */ 1873 if (kmemleak_initialized) 1874 schedule_work(&cleanup_work); 1875 else 1876 kmemleak_free_enabled = 0; 1877 1878 pr_info("Kernel memory leak detector disabled\n"); 1879 } 1880 1881 /* 1882 * Allow boot-time kmemleak disabling (enabled by default). 1883 */ 1884 static int kmemleak_boot_config(char *str) 1885 { 1886 if (!str) 1887 return -EINVAL; 1888 if (strcmp(str, "off") == 0) 1889 kmemleak_disable(); 1890 else if (strcmp(str, "on") == 0) 1891 kmemleak_skip_disable = 1; 1892 else 1893 return -EINVAL; 1894 return 0; 1895 } 1896 early_param("kmemleak", kmemleak_boot_config); 1897 1898 static void __init print_log_trace(struct early_log *log) 1899 { 1900 struct stack_trace trace; 1901 1902 trace.nr_entries = log->trace_len; 1903 trace.entries = log->trace; 1904 1905 pr_notice("Early log backtrace:\n"); 1906 print_stack_trace(&trace, 2); 1907 } 1908 1909 /* 1910 * Kmemleak initialization. 1911 */ 1912 void __init kmemleak_init(void) 1913 { 1914 int i; 1915 unsigned long flags; 1916 1917 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 1918 if (!kmemleak_skip_disable) { 1919 kmemleak_early_log = 0; 1920 kmemleak_disable(); 1921 return; 1922 } 1923 #endif 1924 1925 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 1926 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 1927 1928 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 1929 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 1930 1931 if (crt_early_log > ARRAY_SIZE(early_log)) 1932 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", 1933 crt_early_log); 1934 1935 /* the kernel is still in UP mode, so disabling the IRQs is enough */ 1936 local_irq_save(flags); 1937 kmemleak_early_log = 0; 1938 if (kmemleak_error) { 1939 local_irq_restore(flags); 1940 return; 1941 } else { 1942 kmemleak_enabled = 1; 1943 kmemleak_free_enabled = 1; 1944 } 1945 local_irq_restore(flags); 1946 1947 /* 1948 * This is the point where tracking allocations is safe. Automatic 1949 * scanning is started during the late initcall. Add the early logged 1950 * callbacks to the kmemleak infrastructure. 1951 */ 1952 for (i = 0; i < crt_early_log; i++) { 1953 struct early_log *log = &early_log[i]; 1954 1955 switch (log->op_type) { 1956 case KMEMLEAK_ALLOC: 1957 early_alloc(log); 1958 break; 1959 case KMEMLEAK_ALLOC_PERCPU: 1960 early_alloc_percpu(log); 1961 break; 1962 case KMEMLEAK_FREE: 1963 kmemleak_free(log->ptr); 1964 break; 1965 case KMEMLEAK_FREE_PART: 1966 kmemleak_free_part(log->ptr, log->size); 1967 break; 1968 case KMEMLEAK_FREE_PERCPU: 1969 kmemleak_free_percpu(log->ptr); 1970 break; 1971 case KMEMLEAK_NOT_LEAK: 1972 kmemleak_not_leak(log->ptr); 1973 break; 1974 case KMEMLEAK_IGNORE: 1975 kmemleak_ignore(log->ptr); 1976 break; 1977 case KMEMLEAK_SCAN_AREA: 1978 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL); 1979 break; 1980 case KMEMLEAK_NO_SCAN: 1981 kmemleak_no_scan(log->ptr); 1982 break; 1983 default: 1984 kmemleak_warn("Unknown early log operation: %d\n", 1985 log->op_type); 1986 } 1987 1988 if (kmemleak_warning) { 1989 print_log_trace(log); 1990 kmemleak_warning = 0; 1991 } 1992 } 1993 } 1994 1995 /* 1996 * Late initialization function. 1997 */ 1998 static int __init kmemleak_late_init(void) 1999 { 2000 struct dentry *dentry; 2001 2002 kmemleak_initialized = 1; 2003 2004 if (kmemleak_error) { 2005 /* 2006 * Some error occurred and kmemleak was disabled. There is a 2007 * small chance that kmemleak_disable() was called immediately 2008 * after setting kmemleak_initialized and we may end up with 2009 * two clean-up threads but serialized by scan_mutex. 2010 */ 2011 schedule_work(&cleanup_work); 2012 return -ENOMEM; 2013 } 2014 2015 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL, 2016 &kmemleak_fops); 2017 if (!dentry) 2018 pr_warn("Failed to create the debugfs kmemleak file\n"); 2019 mutex_lock(&scan_mutex); 2020 start_scan_thread(); 2021 mutex_unlock(&scan_mutex); 2022 2023 pr_info("Kernel memory leak detector initialized\n"); 2024 2025 return 0; 2026 } 2027 late_initcall(kmemleak_late_init); 2028