1 /* 2 * mm/kmemleak.c 3 * 4 * Copyright (C) 2008 ARM Limited 5 * Written by Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 * 21 * For more information on the algorithm and kmemleak usage, please see 22 * Documentation/kmemleak.txt. 23 * 24 * Notes on locking 25 * ---------------- 26 * 27 * The following locks and mutexes are used by kmemleak: 28 * 29 * - kmemleak_lock (rwlock): protects the object_list modifications and 30 * accesses to the object_tree_root. The object_list is the main list 31 * holding the metadata (struct kmemleak_object) for the allocated memory 32 * blocks. The object_tree_root is a red black tree used to look-up 33 * metadata based on a pointer to the corresponding memory block. The 34 * kmemleak_object structures are added to the object_list and 35 * object_tree_root in the create_object() function called from the 36 * kmemleak_alloc() callback and removed in delete_object() called from the 37 * kmemleak_free() callback 38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to 39 * the metadata (e.g. count) are protected by this lock. Note that some 40 * members of this structure may be protected by other means (atomic or 41 * kmemleak_lock). This lock is also held when scanning the corresponding 42 * memory block to avoid the kernel freeing it via the kmemleak_free() 43 * callback. This is less heavyweight than holding a global lock like 44 * kmemleak_lock during scanning 45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 46 * unreferenced objects at a time. The gray_list contains the objects which 47 * are already referenced or marked as false positives and need to be 48 * scanned. This list is only modified during a scanning episode when the 49 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 50 * Note that the kmemleak_object.use_count is incremented when an object is 51 * added to the gray_list and therefore cannot be freed. This mutex also 52 * prevents multiple users of the "kmemleak" debugfs file together with 53 * modifications to the memory scanning parameters including the scan_thread 54 * pointer 55 * 56 * Locks and mutexes are acquired/nested in the following order: 57 * 58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 59 * 60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 61 * regions. 62 * 63 * The kmemleak_object structures have a use_count incremented or decremented 64 * using the get_object()/put_object() functions. When the use_count becomes 65 * 0, this count can no longer be incremented and put_object() schedules the 66 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 67 * function must be protected by rcu_read_lock() to avoid accessing a freed 68 * structure. 69 */ 70 71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 72 73 #include <linux/init.h> 74 #include <linux/kernel.h> 75 #include <linux/list.h> 76 #include <linux/sched.h> 77 #include <linux/jiffies.h> 78 #include <linux/delay.h> 79 #include <linux/export.h> 80 #include <linux/kthread.h> 81 #include <linux/rbtree.h> 82 #include <linux/fs.h> 83 #include <linux/debugfs.h> 84 #include <linux/seq_file.h> 85 #include <linux/cpumask.h> 86 #include <linux/spinlock.h> 87 #include <linux/mutex.h> 88 #include <linux/rcupdate.h> 89 #include <linux/stacktrace.h> 90 #include <linux/cache.h> 91 #include <linux/percpu.h> 92 #include <linux/hardirq.h> 93 #include <linux/mmzone.h> 94 #include <linux/slab.h> 95 #include <linux/thread_info.h> 96 #include <linux/err.h> 97 #include <linux/uaccess.h> 98 #include <linux/string.h> 99 #include <linux/nodemask.h> 100 #include <linux/mm.h> 101 #include <linux/workqueue.h> 102 #include <linux/crc32.h> 103 104 #include <asm/sections.h> 105 #include <asm/processor.h> 106 #include <linux/atomic.h> 107 108 #include <linux/kasan.h> 109 #include <linux/kmemcheck.h> 110 #include <linux/kmemleak.h> 111 #include <linux/memory_hotplug.h> 112 113 /* 114 * Kmemleak configuration and common defines. 115 */ 116 #define MAX_TRACE 16 /* stack trace length */ 117 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 118 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 119 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 120 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 121 122 #define BYTES_PER_POINTER sizeof(void *) 123 124 /* GFP bitmask for kmemleak internal allocations */ 125 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \ 126 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 127 __GFP_NOWARN) 128 129 /* scanning area inside a memory block */ 130 struct kmemleak_scan_area { 131 struct hlist_node node; 132 unsigned long start; 133 size_t size; 134 }; 135 136 #define KMEMLEAK_GREY 0 137 #define KMEMLEAK_BLACK -1 138 139 /* 140 * Structure holding the metadata for each allocated memory block. 141 * Modifications to such objects should be made while holding the 142 * object->lock. Insertions or deletions from object_list, gray_list or 143 * rb_node are already protected by the corresponding locks or mutex (see 144 * the notes on locking above). These objects are reference-counted 145 * (use_count) and freed using the RCU mechanism. 146 */ 147 struct kmemleak_object { 148 spinlock_t lock; 149 unsigned long flags; /* object status flags */ 150 struct list_head object_list; 151 struct list_head gray_list; 152 struct rb_node rb_node; 153 struct rcu_head rcu; /* object_list lockless traversal */ 154 /* object usage count; object freed when use_count == 0 */ 155 atomic_t use_count; 156 unsigned long pointer; 157 size_t size; 158 /* minimum number of a pointers found before it is considered leak */ 159 int min_count; 160 /* the total number of pointers found pointing to this object */ 161 int count; 162 /* checksum for detecting modified objects */ 163 u32 checksum; 164 /* memory ranges to be scanned inside an object (empty for all) */ 165 struct hlist_head area_list; 166 unsigned long trace[MAX_TRACE]; 167 unsigned int trace_len; 168 unsigned long jiffies; /* creation timestamp */ 169 pid_t pid; /* pid of the current task */ 170 char comm[TASK_COMM_LEN]; /* executable name */ 171 }; 172 173 /* flag representing the memory block allocation status */ 174 #define OBJECT_ALLOCATED (1 << 0) 175 /* flag set after the first reporting of an unreference object */ 176 #define OBJECT_REPORTED (1 << 1) 177 /* flag set to not scan the object */ 178 #define OBJECT_NO_SCAN (1 << 2) 179 180 /* number of bytes to print per line; must be 16 or 32 */ 181 #define HEX_ROW_SIZE 16 182 /* number of bytes to print at a time (1, 2, 4, 8) */ 183 #define HEX_GROUP_SIZE 1 184 /* include ASCII after the hex output */ 185 #define HEX_ASCII 1 186 /* max number of lines to be printed */ 187 #define HEX_MAX_LINES 2 188 189 /* the list of all allocated objects */ 190 static LIST_HEAD(object_list); 191 /* the list of gray-colored objects (see color_gray comment below) */ 192 static LIST_HEAD(gray_list); 193 /* search tree for object boundaries */ 194 static struct rb_root object_tree_root = RB_ROOT; 195 /* rw_lock protecting the access to object_list and object_tree_root */ 196 static DEFINE_RWLOCK(kmemleak_lock); 197 198 /* allocation caches for kmemleak internal data */ 199 static struct kmem_cache *object_cache; 200 static struct kmem_cache *scan_area_cache; 201 202 /* set if tracing memory operations is enabled */ 203 static int kmemleak_enabled; 204 /* same as above but only for the kmemleak_free() callback */ 205 static int kmemleak_free_enabled; 206 /* set in the late_initcall if there were no errors */ 207 static int kmemleak_initialized; 208 /* enables or disables early logging of the memory operations */ 209 static int kmemleak_early_log = 1; 210 /* set if a kmemleak warning was issued */ 211 static int kmemleak_warning; 212 /* set if a fatal kmemleak error has occurred */ 213 static int kmemleak_error; 214 215 /* minimum and maximum address that may be valid pointers */ 216 static unsigned long min_addr = ULONG_MAX; 217 static unsigned long max_addr; 218 219 static struct task_struct *scan_thread; 220 /* used to avoid reporting of recently allocated objects */ 221 static unsigned long jiffies_min_age; 222 static unsigned long jiffies_last_scan; 223 /* delay between automatic memory scannings */ 224 static signed long jiffies_scan_wait; 225 /* enables or disables the task stacks scanning */ 226 static int kmemleak_stack_scan = 1; 227 /* protects the memory scanning, parameters and debug/kmemleak file access */ 228 static DEFINE_MUTEX(scan_mutex); 229 /* setting kmemleak=on, will set this var, skipping the disable */ 230 static int kmemleak_skip_disable; 231 /* If there are leaks that can be reported */ 232 static bool kmemleak_found_leaks; 233 234 /* 235 * Early object allocation/freeing logging. Kmemleak is initialized after the 236 * kernel allocator. However, both the kernel allocator and kmemleak may 237 * allocate memory blocks which need to be tracked. Kmemleak defines an 238 * arbitrary buffer to hold the allocation/freeing information before it is 239 * fully initialized. 240 */ 241 242 /* kmemleak operation type for early logging */ 243 enum { 244 KMEMLEAK_ALLOC, 245 KMEMLEAK_ALLOC_PERCPU, 246 KMEMLEAK_FREE, 247 KMEMLEAK_FREE_PART, 248 KMEMLEAK_FREE_PERCPU, 249 KMEMLEAK_NOT_LEAK, 250 KMEMLEAK_IGNORE, 251 KMEMLEAK_SCAN_AREA, 252 KMEMLEAK_NO_SCAN 253 }; 254 255 /* 256 * Structure holding the information passed to kmemleak callbacks during the 257 * early logging. 258 */ 259 struct early_log { 260 int op_type; /* kmemleak operation type */ 261 const void *ptr; /* allocated/freed memory block */ 262 size_t size; /* memory block size */ 263 int min_count; /* minimum reference count */ 264 unsigned long trace[MAX_TRACE]; /* stack trace */ 265 unsigned int trace_len; /* stack trace length */ 266 }; 267 268 /* early logging buffer and current position */ 269 static struct early_log 270 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata; 271 static int crt_early_log __initdata; 272 273 static void kmemleak_disable(void); 274 275 /* 276 * Print a warning and dump the stack trace. 277 */ 278 #define kmemleak_warn(x...) do { \ 279 pr_warn(x); \ 280 dump_stack(); \ 281 kmemleak_warning = 1; \ 282 } while (0) 283 284 /* 285 * Macro invoked when a serious kmemleak condition occurred and cannot be 286 * recovered from. Kmemleak will be disabled and further allocation/freeing 287 * tracing no longer available. 288 */ 289 #define kmemleak_stop(x...) do { \ 290 kmemleak_warn(x); \ 291 kmemleak_disable(); \ 292 } while (0) 293 294 /* 295 * Printing of the objects hex dump to the seq file. The number of lines to be 296 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 297 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 298 * with the object->lock held. 299 */ 300 static void hex_dump_object(struct seq_file *seq, 301 struct kmemleak_object *object) 302 { 303 const u8 *ptr = (const u8 *)object->pointer; 304 size_t len; 305 306 /* limit the number of lines to HEX_MAX_LINES */ 307 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 308 309 seq_printf(seq, " hex dump (first %zu bytes):\n", len); 310 kasan_disable_current(); 311 seq_hex_dump(seq, " ", DUMP_PREFIX_NONE, HEX_ROW_SIZE, 312 HEX_GROUP_SIZE, ptr, len, HEX_ASCII); 313 kasan_enable_current(); 314 } 315 316 /* 317 * Object colors, encoded with count and min_count: 318 * - white - orphan object, not enough references to it (count < min_count) 319 * - gray - not orphan, not marked as false positive (min_count == 0) or 320 * sufficient references to it (count >= min_count) 321 * - black - ignore, it doesn't contain references (e.g. text section) 322 * (min_count == -1). No function defined for this color. 323 * Newly created objects don't have any color assigned (object->count == -1) 324 * before the next memory scan when they become white. 325 */ 326 static bool color_white(const struct kmemleak_object *object) 327 { 328 return object->count != KMEMLEAK_BLACK && 329 object->count < object->min_count; 330 } 331 332 static bool color_gray(const struct kmemleak_object *object) 333 { 334 return object->min_count != KMEMLEAK_BLACK && 335 object->count >= object->min_count; 336 } 337 338 /* 339 * Objects are considered unreferenced only if their color is white, they have 340 * not be deleted and have a minimum age to avoid false positives caused by 341 * pointers temporarily stored in CPU registers. 342 */ 343 static bool unreferenced_object(struct kmemleak_object *object) 344 { 345 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 346 time_before_eq(object->jiffies + jiffies_min_age, 347 jiffies_last_scan); 348 } 349 350 /* 351 * Printing of the unreferenced objects information to the seq file. The 352 * print_unreferenced function must be called with the object->lock held. 353 */ 354 static void print_unreferenced(struct seq_file *seq, 355 struct kmemleak_object *object) 356 { 357 int i; 358 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 359 360 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 361 object->pointer, object->size); 362 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 363 object->comm, object->pid, object->jiffies, 364 msecs_age / 1000, msecs_age % 1000); 365 hex_dump_object(seq, object); 366 seq_printf(seq, " backtrace:\n"); 367 368 for (i = 0; i < object->trace_len; i++) { 369 void *ptr = (void *)object->trace[i]; 370 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); 371 } 372 } 373 374 /* 375 * Print the kmemleak_object information. This function is used mainly for 376 * debugging special cases when kmemleak operations. It must be called with 377 * the object->lock held. 378 */ 379 static void dump_object_info(struct kmemleak_object *object) 380 { 381 struct stack_trace trace; 382 383 trace.nr_entries = object->trace_len; 384 trace.entries = object->trace; 385 386 pr_notice("Object 0x%08lx (size %zu):\n", 387 object->pointer, object->size); 388 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 389 object->comm, object->pid, object->jiffies); 390 pr_notice(" min_count = %d\n", object->min_count); 391 pr_notice(" count = %d\n", object->count); 392 pr_notice(" flags = 0x%lx\n", object->flags); 393 pr_notice(" checksum = %u\n", object->checksum); 394 pr_notice(" backtrace:\n"); 395 print_stack_trace(&trace, 4); 396 } 397 398 /* 399 * Look-up a memory block metadata (kmemleak_object) in the object search 400 * tree based on a pointer value. If alias is 0, only values pointing to the 401 * beginning of the memory block are allowed. The kmemleak_lock must be held 402 * when calling this function. 403 */ 404 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 405 { 406 struct rb_node *rb = object_tree_root.rb_node; 407 408 while (rb) { 409 struct kmemleak_object *object = 410 rb_entry(rb, struct kmemleak_object, rb_node); 411 if (ptr < object->pointer) 412 rb = object->rb_node.rb_left; 413 else if (object->pointer + object->size <= ptr) 414 rb = object->rb_node.rb_right; 415 else if (object->pointer == ptr || alias) 416 return object; 417 else { 418 kmemleak_warn("Found object by alias at 0x%08lx\n", 419 ptr); 420 dump_object_info(object); 421 break; 422 } 423 } 424 return NULL; 425 } 426 427 /* 428 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 429 * that once an object's use_count reached 0, the RCU freeing was already 430 * registered and the object should no longer be used. This function must be 431 * called under the protection of rcu_read_lock(). 432 */ 433 static int get_object(struct kmemleak_object *object) 434 { 435 return atomic_inc_not_zero(&object->use_count); 436 } 437 438 /* 439 * RCU callback to free a kmemleak_object. 440 */ 441 static void free_object_rcu(struct rcu_head *rcu) 442 { 443 struct hlist_node *tmp; 444 struct kmemleak_scan_area *area; 445 struct kmemleak_object *object = 446 container_of(rcu, struct kmemleak_object, rcu); 447 448 /* 449 * Once use_count is 0 (guaranteed by put_object), there is no other 450 * code accessing this object, hence no need for locking. 451 */ 452 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 453 hlist_del(&area->node); 454 kmem_cache_free(scan_area_cache, area); 455 } 456 kmem_cache_free(object_cache, object); 457 } 458 459 /* 460 * Decrement the object use_count. Once the count is 0, free the object using 461 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 462 * delete_object() path, the delayed RCU freeing ensures that there is no 463 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 464 * is also possible. 465 */ 466 static void put_object(struct kmemleak_object *object) 467 { 468 if (!atomic_dec_and_test(&object->use_count)) 469 return; 470 471 /* should only get here after delete_object was called */ 472 WARN_ON(object->flags & OBJECT_ALLOCATED); 473 474 call_rcu(&object->rcu, free_object_rcu); 475 } 476 477 /* 478 * Look up an object in the object search tree and increase its use_count. 479 */ 480 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 481 { 482 unsigned long flags; 483 struct kmemleak_object *object; 484 485 rcu_read_lock(); 486 read_lock_irqsave(&kmemleak_lock, flags); 487 object = lookup_object(ptr, alias); 488 read_unlock_irqrestore(&kmemleak_lock, flags); 489 490 /* check whether the object is still available */ 491 if (object && !get_object(object)) 492 object = NULL; 493 rcu_read_unlock(); 494 495 return object; 496 } 497 498 /* 499 * Look up an object in the object search tree and remove it from both 500 * object_tree_root and object_list. The returned object's use_count should be 501 * at least 1, as initially set by create_object(). 502 */ 503 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias) 504 { 505 unsigned long flags; 506 struct kmemleak_object *object; 507 508 write_lock_irqsave(&kmemleak_lock, flags); 509 object = lookup_object(ptr, alias); 510 if (object) { 511 rb_erase(&object->rb_node, &object_tree_root); 512 list_del_rcu(&object->object_list); 513 } 514 write_unlock_irqrestore(&kmemleak_lock, flags); 515 516 return object; 517 } 518 519 /* 520 * Save stack trace to the given array of MAX_TRACE size. 521 */ 522 static int __save_stack_trace(unsigned long *trace) 523 { 524 struct stack_trace stack_trace; 525 526 stack_trace.max_entries = MAX_TRACE; 527 stack_trace.nr_entries = 0; 528 stack_trace.entries = trace; 529 stack_trace.skip = 2; 530 save_stack_trace(&stack_trace); 531 532 return stack_trace.nr_entries; 533 } 534 535 /* 536 * Create the metadata (struct kmemleak_object) corresponding to an allocated 537 * memory block and add it to the object_list and object_tree_root. 538 */ 539 static struct kmemleak_object *create_object(unsigned long ptr, size_t size, 540 int min_count, gfp_t gfp) 541 { 542 unsigned long flags; 543 struct kmemleak_object *object, *parent; 544 struct rb_node **link, *rb_parent; 545 546 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 547 if (!object) { 548 pr_warn("Cannot allocate a kmemleak_object structure\n"); 549 kmemleak_disable(); 550 return NULL; 551 } 552 553 INIT_LIST_HEAD(&object->object_list); 554 INIT_LIST_HEAD(&object->gray_list); 555 INIT_HLIST_HEAD(&object->area_list); 556 spin_lock_init(&object->lock); 557 atomic_set(&object->use_count, 1); 558 object->flags = OBJECT_ALLOCATED; 559 object->pointer = ptr; 560 object->size = size; 561 object->min_count = min_count; 562 object->count = 0; /* white color initially */ 563 object->jiffies = jiffies; 564 object->checksum = 0; 565 566 /* task information */ 567 if (in_irq()) { 568 object->pid = 0; 569 strncpy(object->comm, "hardirq", sizeof(object->comm)); 570 } else if (in_softirq()) { 571 object->pid = 0; 572 strncpy(object->comm, "softirq", sizeof(object->comm)); 573 } else { 574 object->pid = current->pid; 575 /* 576 * There is a small chance of a race with set_task_comm(), 577 * however using get_task_comm() here may cause locking 578 * dependency issues with current->alloc_lock. In the worst 579 * case, the command line is not correct. 580 */ 581 strncpy(object->comm, current->comm, sizeof(object->comm)); 582 } 583 584 /* kernel backtrace */ 585 object->trace_len = __save_stack_trace(object->trace); 586 587 write_lock_irqsave(&kmemleak_lock, flags); 588 589 min_addr = min(min_addr, ptr); 590 max_addr = max(max_addr, ptr + size); 591 link = &object_tree_root.rb_node; 592 rb_parent = NULL; 593 while (*link) { 594 rb_parent = *link; 595 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 596 if (ptr + size <= parent->pointer) 597 link = &parent->rb_node.rb_left; 598 else if (parent->pointer + parent->size <= ptr) 599 link = &parent->rb_node.rb_right; 600 else { 601 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 602 ptr); 603 /* 604 * No need for parent->lock here since "parent" cannot 605 * be freed while the kmemleak_lock is held. 606 */ 607 dump_object_info(parent); 608 kmem_cache_free(object_cache, object); 609 object = NULL; 610 goto out; 611 } 612 } 613 rb_link_node(&object->rb_node, rb_parent, link); 614 rb_insert_color(&object->rb_node, &object_tree_root); 615 616 list_add_tail_rcu(&object->object_list, &object_list); 617 out: 618 write_unlock_irqrestore(&kmemleak_lock, flags); 619 return object; 620 } 621 622 /* 623 * Mark the object as not allocated and schedule RCU freeing via put_object(). 624 */ 625 static void __delete_object(struct kmemleak_object *object) 626 { 627 unsigned long flags; 628 629 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 630 WARN_ON(atomic_read(&object->use_count) < 1); 631 632 /* 633 * Locking here also ensures that the corresponding memory block 634 * cannot be freed when it is being scanned. 635 */ 636 spin_lock_irqsave(&object->lock, flags); 637 object->flags &= ~OBJECT_ALLOCATED; 638 spin_unlock_irqrestore(&object->lock, flags); 639 put_object(object); 640 } 641 642 /* 643 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 644 * delete it. 645 */ 646 static void delete_object_full(unsigned long ptr) 647 { 648 struct kmemleak_object *object; 649 650 object = find_and_remove_object(ptr, 0); 651 if (!object) { 652 #ifdef DEBUG 653 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 654 ptr); 655 #endif 656 return; 657 } 658 __delete_object(object); 659 } 660 661 /* 662 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 663 * delete it. If the memory block is partially freed, the function may create 664 * additional metadata for the remaining parts of the block. 665 */ 666 static void delete_object_part(unsigned long ptr, size_t size) 667 { 668 struct kmemleak_object *object; 669 unsigned long start, end; 670 671 object = find_and_remove_object(ptr, 1); 672 if (!object) { 673 #ifdef DEBUG 674 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 675 ptr, size); 676 #endif 677 return; 678 } 679 680 /* 681 * Create one or two objects that may result from the memory block 682 * split. Note that partial freeing is only done by free_bootmem() and 683 * this happens before kmemleak_init() is called. The path below is 684 * only executed during early log recording in kmemleak_init(), so 685 * GFP_KERNEL is enough. 686 */ 687 start = object->pointer; 688 end = object->pointer + object->size; 689 if (ptr > start) 690 create_object(start, ptr - start, object->min_count, 691 GFP_KERNEL); 692 if (ptr + size < end) 693 create_object(ptr + size, end - ptr - size, object->min_count, 694 GFP_KERNEL); 695 696 __delete_object(object); 697 } 698 699 static void __paint_it(struct kmemleak_object *object, int color) 700 { 701 object->min_count = color; 702 if (color == KMEMLEAK_BLACK) 703 object->flags |= OBJECT_NO_SCAN; 704 } 705 706 static void paint_it(struct kmemleak_object *object, int color) 707 { 708 unsigned long flags; 709 710 spin_lock_irqsave(&object->lock, flags); 711 __paint_it(object, color); 712 spin_unlock_irqrestore(&object->lock, flags); 713 } 714 715 static void paint_ptr(unsigned long ptr, int color) 716 { 717 struct kmemleak_object *object; 718 719 object = find_and_get_object(ptr, 0); 720 if (!object) { 721 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 722 ptr, 723 (color == KMEMLEAK_GREY) ? "Grey" : 724 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 725 return; 726 } 727 paint_it(object, color); 728 put_object(object); 729 } 730 731 /* 732 * Mark an object permanently as gray-colored so that it can no longer be 733 * reported as a leak. This is used in general to mark a false positive. 734 */ 735 static void make_gray_object(unsigned long ptr) 736 { 737 paint_ptr(ptr, KMEMLEAK_GREY); 738 } 739 740 /* 741 * Mark the object as black-colored so that it is ignored from scans and 742 * reporting. 743 */ 744 static void make_black_object(unsigned long ptr) 745 { 746 paint_ptr(ptr, KMEMLEAK_BLACK); 747 } 748 749 /* 750 * Add a scanning area to the object. If at least one such area is added, 751 * kmemleak will only scan these ranges rather than the whole memory block. 752 */ 753 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 754 { 755 unsigned long flags; 756 struct kmemleak_object *object; 757 struct kmemleak_scan_area *area; 758 759 object = find_and_get_object(ptr, 1); 760 if (!object) { 761 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 762 ptr); 763 return; 764 } 765 766 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 767 if (!area) { 768 pr_warn("Cannot allocate a scan area\n"); 769 goto out; 770 } 771 772 spin_lock_irqsave(&object->lock, flags); 773 if (size == SIZE_MAX) { 774 size = object->pointer + object->size - ptr; 775 } else if (ptr + size > object->pointer + object->size) { 776 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 777 dump_object_info(object); 778 kmem_cache_free(scan_area_cache, area); 779 goto out_unlock; 780 } 781 782 INIT_HLIST_NODE(&area->node); 783 area->start = ptr; 784 area->size = size; 785 786 hlist_add_head(&area->node, &object->area_list); 787 out_unlock: 788 spin_unlock_irqrestore(&object->lock, flags); 789 out: 790 put_object(object); 791 } 792 793 /* 794 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 795 * pointer. Such object will not be scanned by kmemleak but references to it 796 * are searched. 797 */ 798 static void object_no_scan(unsigned long ptr) 799 { 800 unsigned long flags; 801 struct kmemleak_object *object; 802 803 object = find_and_get_object(ptr, 0); 804 if (!object) { 805 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 806 return; 807 } 808 809 spin_lock_irqsave(&object->lock, flags); 810 object->flags |= OBJECT_NO_SCAN; 811 spin_unlock_irqrestore(&object->lock, flags); 812 put_object(object); 813 } 814 815 /* 816 * Log an early kmemleak_* call to the early_log buffer. These calls will be 817 * processed later once kmemleak is fully initialized. 818 */ 819 static void __init log_early(int op_type, const void *ptr, size_t size, 820 int min_count) 821 { 822 unsigned long flags; 823 struct early_log *log; 824 825 if (kmemleak_error) { 826 /* kmemleak stopped recording, just count the requests */ 827 crt_early_log++; 828 return; 829 } 830 831 if (crt_early_log >= ARRAY_SIZE(early_log)) { 832 crt_early_log++; 833 kmemleak_disable(); 834 return; 835 } 836 837 /* 838 * There is no need for locking since the kernel is still in UP mode 839 * at this stage. Disabling the IRQs is enough. 840 */ 841 local_irq_save(flags); 842 log = &early_log[crt_early_log]; 843 log->op_type = op_type; 844 log->ptr = ptr; 845 log->size = size; 846 log->min_count = min_count; 847 log->trace_len = __save_stack_trace(log->trace); 848 crt_early_log++; 849 local_irq_restore(flags); 850 } 851 852 /* 853 * Log an early allocated block and populate the stack trace. 854 */ 855 static void early_alloc(struct early_log *log) 856 { 857 struct kmemleak_object *object; 858 unsigned long flags; 859 int i; 860 861 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr)) 862 return; 863 864 /* 865 * RCU locking needed to ensure object is not freed via put_object(). 866 */ 867 rcu_read_lock(); 868 object = create_object((unsigned long)log->ptr, log->size, 869 log->min_count, GFP_ATOMIC); 870 if (!object) 871 goto out; 872 spin_lock_irqsave(&object->lock, flags); 873 for (i = 0; i < log->trace_len; i++) 874 object->trace[i] = log->trace[i]; 875 object->trace_len = log->trace_len; 876 spin_unlock_irqrestore(&object->lock, flags); 877 out: 878 rcu_read_unlock(); 879 } 880 881 /* 882 * Log an early allocated block and populate the stack trace. 883 */ 884 static void early_alloc_percpu(struct early_log *log) 885 { 886 unsigned int cpu; 887 const void __percpu *ptr = log->ptr; 888 889 for_each_possible_cpu(cpu) { 890 log->ptr = per_cpu_ptr(ptr, cpu); 891 early_alloc(log); 892 } 893 } 894 895 /** 896 * kmemleak_alloc - register a newly allocated object 897 * @ptr: pointer to beginning of the object 898 * @size: size of the object 899 * @min_count: minimum number of references to this object. If during memory 900 * scanning a number of references less than @min_count is found, 901 * the object is reported as a memory leak. If @min_count is 0, 902 * the object is never reported as a leak. If @min_count is -1, 903 * the object is ignored (not scanned and not reported as a leak) 904 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 905 * 906 * This function is called from the kernel allocators when a new object 907 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.). 908 */ 909 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 910 gfp_t gfp) 911 { 912 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 913 914 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 915 create_object((unsigned long)ptr, size, min_count, gfp); 916 else if (kmemleak_early_log) 917 log_early(KMEMLEAK_ALLOC, ptr, size, min_count); 918 } 919 EXPORT_SYMBOL_GPL(kmemleak_alloc); 920 921 /** 922 * kmemleak_alloc_percpu - register a newly allocated __percpu object 923 * @ptr: __percpu pointer to beginning of the object 924 * @size: size of the object 925 * @gfp: flags used for kmemleak internal memory allocations 926 * 927 * This function is called from the kernel percpu allocator when a new object 928 * (memory block) is allocated (alloc_percpu). 929 */ 930 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 931 gfp_t gfp) 932 { 933 unsigned int cpu; 934 935 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); 936 937 /* 938 * Percpu allocations are only scanned and not reported as leaks 939 * (min_count is set to 0). 940 */ 941 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 942 for_each_possible_cpu(cpu) 943 create_object((unsigned long)per_cpu_ptr(ptr, cpu), 944 size, 0, gfp); 945 else if (kmemleak_early_log) 946 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0); 947 } 948 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 949 950 /** 951 * kmemleak_free - unregister a previously registered object 952 * @ptr: pointer to beginning of the object 953 * 954 * This function is called from the kernel allocators when an object (memory 955 * block) is freed (kmem_cache_free, kfree, vfree etc.). 956 */ 957 void __ref kmemleak_free(const void *ptr) 958 { 959 pr_debug("%s(0x%p)\n", __func__, ptr); 960 961 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 962 delete_object_full((unsigned long)ptr); 963 else if (kmemleak_early_log) 964 log_early(KMEMLEAK_FREE, ptr, 0, 0); 965 } 966 EXPORT_SYMBOL_GPL(kmemleak_free); 967 968 /** 969 * kmemleak_free_part - partially unregister a previously registered object 970 * @ptr: pointer to the beginning or inside the object. This also 971 * represents the start of the range to be freed 972 * @size: size to be unregistered 973 * 974 * This function is called when only a part of a memory block is freed 975 * (usually from the bootmem allocator). 976 */ 977 void __ref kmemleak_free_part(const void *ptr, size_t size) 978 { 979 pr_debug("%s(0x%p)\n", __func__, ptr); 980 981 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 982 delete_object_part((unsigned long)ptr, size); 983 else if (kmemleak_early_log) 984 log_early(KMEMLEAK_FREE_PART, ptr, size, 0); 985 } 986 EXPORT_SYMBOL_GPL(kmemleak_free_part); 987 988 /** 989 * kmemleak_free_percpu - unregister a previously registered __percpu object 990 * @ptr: __percpu pointer to beginning of the object 991 * 992 * This function is called from the kernel percpu allocator when an object 993 * (memory block) is freed (free_percpu). 994 */ 995 void __ref kmemleak_free_percpu(const void __percpu *ptr) 996 { 997 unsigned int cpu; 998 999 pr_debug("%s(0x%p)\n", __func__, ptr); 1000 1001 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1002 for_each_possible_cpu(cpu) 1003 delete_object_full((unsigned long)per_cpu_ptr(ptr, 1004 cpu)); 1005 else if (kmemleak_early_log) 1006 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0); 1007 } 1008 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1009 1010 /** 1011 * kmemleak_update_trace - update object allocation stack trace 1012 * @ptr: pointer to beginning of the object 1013 * 1014 * Override the object allocation stack trace for cases where the actual 1015 * allocation place is not always useful. 1016 */ 1017 void __ref kmemleak_update_trace(const void *ptr) 1018 { 1019 struct kmemleak_object *object; 1020 unsigned long flags; 1021 1022 pr_debug("%s(0x%p)\n", __func__, ptr); 1023 1024 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1025 return; 1026 1027 object = find_and_get_object((unsigned long)ptr, 1); 1028 if (!object) { 1029 #ifdef DEBUG 1030 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1031 ptr); 1032 #endif 1033 return; 1034 } 1035 1036 spin_lock_irqsave(&object->lock, flags); 1037 object->trace_len = __save_stack_trace(object->trace); 1038 spin_unlock_irqrestore(&object->lock, flags); 1039 1040 put_object(object); 1041 } 1042 EXPORT_SYMBOL(kmemleak_update_trace); 1043 1044 /** 1045 * kmemleak_not_leak - mark an allocated object as false positive 1046 * @ptr: pointer to beginning of the object 1047 * 1048 * Calling this function on an object will cause the memory block to no longer 1049 * be reported as leak and always be scanned. 1050 */ 1051 void __ref kmemleak_not_leak(const void *ptr) 1052 { 1053 pr_debug("%s(0x%p)\n", __func__, ptr); 1054 1055 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1056 make_gray_object((unsigned long)ptr); 1057 else if (kmemleak_early_log) 1058 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0); 1059 } 1060 EXPORT_SYMBOL(kmemleak_not_leak); 1061 1062 /** 1063 * kmemleak_ignore - ignore an allocated object 1064 * @ptr: pointer to beginning of the object 1065 * 1066 * Calling this function on an object will cause the memory block to be 1067 * ignored (not scanned and not reported as a leak). This is usually done when 1068 * it is known that the corresponding block is not a leak and does not contain 1069 * any references to other allocated memory blocks. 1070 */ 1071 void __ref kmemleak_ignore(const void *ptr) 1072 { 1073 pr_debug("%s(0x%p)\n", __func__, ptr); 1074 1075 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1076 make_black_object((unsigned long)ptr); 1077 else if (kmemleak_early_log) 1078 log_early(KMEMLEAK_IGNORE, ptr, 0, 0); 1079 } 1080 EXPORT_SYMBOL(kmemleak_ignore); 1081 1082 /** 1083 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1084 * @ptr: pointer to beginning or inside the object. This also 1085 * represents the start of the scan area 1086 * @size: size of the scan area 1087 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1088 * 1089 * This function is used when it is known that only certain parts of an object 1090 * contain references to other objects. Kmemleak will only scan these areas 1091 * reducing the number false negatives. 1092 */ 1093 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1094 { 1095 pr_debug("%s(0x%p)\n", __func__, ptr); 1096 1097 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1098 add_scan_area((unsigned long)ptr, size, gfp); 1099 else if (kmemleak_early_log) 1100 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0); 1101 } 1102 EXPORT_SYMBOL(kmemleak_scan_area); 1103 1104 /** 1105 * kmemleak_no_scan - do not scan an allocated object 1106 * @ptr: pointer to beginning of the object 1107 * 1108 * This function notifies kmemleak not to scan the given memory block. Useful 1109 * in situations where it is known that the given object does not contain any 1110 * references to other objects. Kmemleak will not scan such objects reducing 1111 * the number of false negatives. 1112 */ 1113 void __ref kmemleak_no_scan(const void *ptr) 1114 { 1115 pr_debug("%s(0x%p)\n", __func__, ptr); 1116 1117 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1118 object_no_scan((unsigned long)ptr); 1119 else if (kmemleak_early_log) 1120 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0); 1121 } 1122 EXPORT_SYMBOL(kmemleak_no_scan); 1123 1124 /* 1125 * Update an object's checksum and return true if it was modified. 1126 */ 1127 static bool update_checksum(struct kmemleak_object *object) 1128 { 1129 u32 old_csum = object->checksum; 1130 1131 if (!kmemcheck_is_obj_initialized(object->pointer, object->size)) 1132 return false; 1133 1134 kasan_disable_current(); 1135 object->checksum = crc32(0, (void *)object->pointer, object->size); 1136 kasan_enable_current(); 1137 1138 return object->checksum != old_csum; 1139 } 1140 1141 /* 1142 * Memory scanning is a long process and it needs to be interruptable. This 1143 * function checks whether such interrupt condition occurred. 1144 */ 1145 static int scan_should_stop(void) 1146 { 1147 if (!kmemleak_enabled) 1148 return 1; 1149 1150 /* 1151 * This function may be called from either process or kthread context, 1152 * hence the need to check for both stop conditions. 1153 */ 1154 if (current->mm) 1155 return signal_pending(current); 1156 else 1157 return kthread_should_stop(); 1158 1159 return 0; 1160 } 1161 1162 /* 1163 * Scan a memory block (exclusive range) for valid pointers and add those 1164 * found to the gray list. 1165 */ 1166 static void scan_block(void *_start, void *_end, 1167 struct kmemleak_object *scanned) 1168 { 1169 unsigned long *ptr; 1170 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1171 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1172 unsigned long flags; 1173 1174 read_lock_irqsave(&kmemleak_lock, flags); 1175 for (ptr = start; ptr < end; ptr++) { 1176 struct kmemleak_object *object; 1177 unsigned long pointer; 1178 1179 if (scan_should_stop()) 1180 break; 1181 1182 /* don't scan uninitialized memory */ 1183 if (!kmemcheck_is_obj_initialized((unsigned long)ptr, 1184 BYTES_PER_POINTER)) 1185 continue; 1186 1187 kasan_disable_current(); 1188 pointer = *ptr; 1189 kasan_enable_current(); 1190 1191 if (pointer < min_addr || pointer >= max_addr) 1192 continue; 1193 1194 /* 1195 * No need for get_object() here since we hold kmemleak_lock. 1196 * object->use_count cannot be dropped to 0 while the object 1197 * is still present in object_tree_root and object_list 1198 * (with updates protected by kmemleak_lock). 1199 */ 1200 object = lookup_object(pointer, 1); 1201 if (!object) 1202 continue; 1203 if (object == scanned) 1204 /* self referenced, ignore */ 1205 continue; 1206 1207 /* 1208 * Avoid the lockdep recursive warning on object->lock being 1209 * previously acquired in scan_object(). These locks are 1210 * enclosed by scan_mutex. 1211 */ 1212 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1213 if (!color_white(object)) { 1214 /* non-orphan, ignored or new */ 1215 spin_unlock(&object->lock); 1216 continue; 1217 } 1218 1219 /* 1220 * Increase the object's reference count (number of pointers 1221 * to the memory block). If this count reaches the required 1222 * minimum, the object's color will become gray and it will be 1223 * added to the gray_list. 1224 */ 1225 object->count++; 1226 if (color_gray(object)) { 1227 /* put_object() called when removing from gray_list */ 1228 WARN_ON(!get_object(object)); 1229 list_add_tail(&object->gray_list, &gray_list); 1230 } 1231 spin_unlock(&object->lock); 1232 } 1233 read_unlock_irqrestore(&kmemleak_lock, flags); 1234 } 1235 1236 /* 1237 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1238 */ 1239 static void scan_large_block(void *start, void *end) 1240 { 1241 void *next; 1242 1243 while (start < end) { 1244 next = min(start + MAX_SCAN_SIZE, end); 1245 scan_block(start, next, NULL); 1246 start = next; 1247 cond_resched(); 1248 } 1249 } 1250 1251 /* 1252 * Scan a memory block corresponding to a kmemleak_object. A condition is 1253 * that object->use_count >= 1. 1254 */ 1255 static void scan_object(struct kmemleak_object *object) 1256 { 1257 struct kmemleak_scan_area *area; 1258 unsigned long flags; 1259 1260 /* 1261 * Once the object->lock is acquired, the corresponding memory block 1262 * cannot be freed (the same lock is acquired in delete_object). 1263 */ 1264 spin_lock_irqsave(&object->lock, flags); 1265 if (object->flags & OBJECT_NO_SCAN) 1266 goto out; 1267 if (!(object->flags & OBJECT_ALLOCATED)) 1268 /* already freed object */ 1269 goto out; 1270 if (hlist_empty(&object->area_list)) { 1271 void *start = (void *)object->pointer; 1272 void *end = (void *)(object->pointer + object->size); 1273 void *next; 1274 1275 do { 1276 next = min(start + MAX_SCAN_SIZE, end); 1277 scan_block(start, next, object); 1278 1279 start = next; 1280 if (start >= end) 1281 break; 1282 1283 spin_unlock_irqrestore(&object->lock, flags); 1284 cond_resched(); 1285 spin_lock_irqsave(&object->lock, flags); 1286 } while (object->flags & OBJECT_ALLOCATED); 1287 } else 1288 hlist_for_each_entry(area, &object->area_list, node) 1289 scan_block((void *)area->start, 1290 (void *)(area->start + area->size), 1291 object); 1292 out: 1293 spin_unlock_irqrestore(&object->lock, flags); 1294 } 1295 1296 /* 1297 * Scan the objects already referenced (gray objects). More objects will be 1298 * referenced and, if there are no memory leaks, all the objects are scanned. 1299 */ 1300 static void scan_gray_list(void) 1301 { 1302 struct kmemleak_object *object, *tmp; 1303 1304 /* 1305 * The list traversal is safe for both tail additions and removals 1306 * from inside the loop. The kmemleak objects cannot be freed from 1307 * outside the loop because their use_count was incremented. 1308 */ 1309 object = list_entry(gray_list.next, typeof(*object), gray_list); 1310 while (&object->gray_list != &gray_list) { 1311 cond_resched(); 1312 1313 /* may add new objects to the list */ 1314 if (!scan_should_stop()) 1315 scan_object(object); 1316 1317 tmp = list_entry(object->gray_list.next, typeof(*object), 1318 gray_list); 1319 1320 /* remove the object from the list and release it */ 1321 list_del(&object->gray_list); 1322 put_object(object); 1323 1324 object = tmp; 1325 } 1326 WARN_ON(!list_empty(&gray_list)); 1327 } 1328 1329 /* 1330 * Scan data sections and all the referenced memory blocks allocated via the 1331 * kernel's standard allocators. This function must be called with the 1332 * scan_mutex held. 1333 */ 1334 static void kmemleak_scan(void) 1335 { 1336 unsigned long flags; 1337 struct kmemleak_object *object; 1338 int i; 1339 int new_leaks = 0; 1340 1341 jiffies_last_scan = jiffies; 1342 1343 /* prepare the kmemleak_object's */ 1344 rcu_read_lock(); 1345 list_for_each_entry_rcu(object, &object_list, object_list) { 1346 spin_lock_irqsave(&object->lock, flags); 1347 #ifdef DEBUG 1348 /* 1349 * With a few exceptions there should be a maximum of 1350 * 1 reference to any object at this point. 1351 */ 1352 if (atomic_read(&object->use_count) > 1) { 1353 pr_debug("object->use_count = %d\n", 1354 atomic_read(&object->use_count)); 1355 dump_object_info(object); 1356 } 1357 #endif 1358 /* reset the reference count (whiten the object) */ 1359 object->count = 0; 1360 if (color_gray(object) && get_object(object)) 1361 list_add_tail(&object->gray_list, &gray_list); 1362 1363 spin_unlock_irqrestore(&object->lock, flags); 1364 } 1365 rcu_read_unlock(); 1366 1367 /* data/bss scanning */ 1368 scan_large_block(_sdata, _edata); 1369 scan_large_block(__bss_start, __bss_stop); 1370 1371 #ifdef CONFIG_SMP 1372 /* per-cpu sections scanning */ 1373 for_each_possible_cpu(i) 1374 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1375 __per_cpu_end + per_cpu_offset(i)); 1376 #endif 1377 1378 /* 1379 * Struct page scanning for each node. 1380 */ 1381 get_online_mems(); 1382 for_each_online_node(i) { 1383 unsigned long start_pfn = node_start_pfn(i); 1384 unsigned long end_pfn = node_end_pfn(i); 1385 unsigned long pfn; 1386 1387 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1388 struct page *page; 1389 1390 if (!pfn_valid(pfn)) 1391 continue; 1392 page = pfn_to_page(pfn); 1393 /* only scan if page is in use */ 1394 if (page_count(page) == 0) 1395 continue; 1396 scan_block(page, page + 1, NULL); 1397 } 1398 } 1399 put_online_mems(); 1400 1401 /* 1402 * Scanning the task stacks (may introduce false negatives). 1403 */ 1404 if (kmemleak_stack_scan) { 1405 struct task_struct *p, *g; 1406 1407 read_lock(&tasklist_lock); 1408 do_each_thread(g, p) { 1409 scan_block(task_stack_page(p), task_stack_page(p) + 1410 THREAD_SIZE, NULL); 1411 } while_each_thread(g, p); 1412 read_unlock(&tasklist_lock); 1413 } 1414 1415 /* 1416 * Scan the objects already referenced from the sections scanned 1417 * above. 1418 */ 1419 scan_gray_list(); 1420 1421 /* 1422 * Check for new or unreferenced objects modified since the previous 1423 * scan and color them gray until the next scan. 1424 */ 1425 rcu_read_lock(); 1426 list_for_each_entry_rcu(object, &object_list, object_list) { 1427 spin_lock_irqsave(&object->lock, flags); 1428 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1429 && update_checksum(object) && get_object(object)) { 1430 /* color it gray temporarily */ 1431 object->count = object->min_count; 1432 list_add_tail(&object->gray_list, &gray_list); 1433 } 1434 spin_unlock_irqrestore(&object->lock, flags); 1435 } 1436 rcu_read_unlock(); 1437 1438 /* 1439 * Re-scan the gray list for modified unreferenced objects. 1440 */ 1441 scan_gray_list(); 1442 1443 /* 1444 * If scanning was stopped do not report any new unreferenced objects. 1445 */ 1446 if (scan_should_stop()) 1447 return; 1448 1449 /* 1450 * Scanning result reporting. 1451 */ 1452 rcu_read_lock(); 1453 list_for_each_entry_rcu(object, &object_list, object_list) { 1454 spin_lock_irqsave(&object->lock, flags); 1455 if (unreferenced_object(object) && 1456 !(object->flags & OBJECT_REPORTED)) { 1457 object->flags |= OBJECT_REPORTED; 1458 new_leaks++; 1459 } 1460 spin_unlock_irqrestore(&object->lock, flags); 1461 } 1462 rcu_read_unlock(); 1463 1464 if (new_leaks) { 1465 kmemleak_found_leaks = true; 1466 1467 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1468 new_leaks); 1469 } 1470 1471 } 1472 1473 /* 1474 * Thread function performing automatic memory scanning. Unreferenced objects 1475 * at the end of a memory scan are reported but only the first time. 1476 */ 1477 static int kmemleak_scan_thread(void *arg) 1478 { 1479 static int first_run = 1; 1480 1481 pr_info("Automatic memory scanning thread started\n"); 1482 set_user_nice(current, 10); 1483 1484 /* 1485 * Wait before the first scan to allow the system to fully initialize. 1486 */ 1487 if (first_run) { 1488 first_run = 0; 1489 ssleep(SECS_FIRST_SCAN); 1490 } 1491 1492 while (!kthread_should_stop()) { 1493 signed long timeout = jiffies_scan_wait; 1494 1495 mutex_lock(&scan_mutex); 1496 kmemleak_scan(); 1497 mutex_unlock(&scan_mutex); 1498 1499 /* wait before the next scan */ 1500 while (timeout && !kthread_should_stop()) 1501 timeout = schedule_timeout_interruptible(timeout); 1502 } 1503 1504 pr_info("Automatic memory scanning thread ended\n"); 1505 1506 return 0; 1507 } 1508 1509 /* 1510 * Start the automatic memory scanning thread. This function must be called 1511 * with the scan_mutex held. 1512 */ 1513 static void start_scan_thread(void) 1514 { 1515 if (scan_thread) 1516 return; 1517 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1518 if (IS_ERR(scan_thread)) { 1519 pr_warn("Failed to create the scan thread\n"); 1520 scan_thread = NULL; 1521 } 1522 } 1523 1524 /* 1525 * Stop the automatic memory scanning thread. This function must be called 1526 * with the scan_mutex held. 1527 */ 1528 static void stop_scan_thread(void) 1529 { 1530 if (scan_thread) { 1531 kthread_stop(scan_thread); 1532 scan_thread = NULL; 1533 } 1534 } 1535 1536 /* 1537 * Iterate over the object_list and return the first valid object at or after 1538 * the required position with its use_count incremented. The function triggers 1539 * a memory scanning when the pos argument points to the first position. 1540 */ 1541 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1542 { 1543 struct kmemleak_object *object; 1544 loff_t n = *pos; 1545 int err; 1546 1547 err = mutex_lock_interruptible(&scan_mutex); 1548 if (err < 0) 1549 return ERR_PTR(err); 1550 1551 rcu_read_lock(); 1552 list_for_each_entry_rcu(object, &object_list, object_list) { 1553 if (n-- > 0) 1554 continue; 1555 if (get_object(object)) 1556 goto out; 1557 } 1558 object = NULL; 1559 out: 1560 return object; 1561 } 1562 1563 /* 1564 * Return the next object in the object_list. The function decrements the 1565 * use_count of the previous object and increases that of the next one. 1566 */ 1567 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1568 { 1569 struct kmemleak_object *prev_obj = v; 1570 struct kmemleak_object *next_obj = NULL; 1571 struct kmemleak_object *obj = prev_obj; 1572 1573 ++(*pos); 1574 1575 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1576 if (get_object(obj)) { 1577 next_obj = obj; 1578 break; 1579 } 1580 } 1581 1582 put_object(prev_obj); 1583 return next_obj; 1584 } 1585 1586 /* 1587 * Decrement the use_count of the last object required, if any. 1588 */ 1589 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1590 { 1591 if (!IS_ERR(v)) { 1592 /* 1593 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1594 * waiting was interrupted, so only release it if !IS_ERR. 1595 */ 1596 rcu_read_unlock(); 1597 mutex_unlock(&scan_mutex); 1598 if (v) 1599 put_object(v); 1600 } 1601 } 1602 1603 /* 1604 * Print the information for an unreferenced object to the seq file. 1605 */ 1606 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1607 { 1608 struct kmemleak_object *object = v; 1609 unsigned long flags; 1610 1611 spin_lock_irqsave(&object->lock, flags); 1612 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1613 print_unreferenced(seq, object); 1614 spin_unlock_irqrestore(&object->lock, flags); 1615 return 0; 1616 } 1617 1618 static const struct seq_operations kmemleak_seq_ops = { 1619 .start = kmemleak_seq_start, 1620 .next = kmemleak_seq_next, 1621 .stop = kmemleak_seq_stop, 1622 .show = kmemleak_seq_show, 1623 }; 1624 1625 static int kmemleak_open(struct inode *inode, struct file *file) 1626 { 1627 return seq_open(file, &kmemleak_seq_ops); 1628 } 1629 1630 static int dump_str_object_info(const char *str) 1631 { 1632 unsigned long flags; 1633 struct kmemleak_object *object; 1634 unsigned long addr; 1635 1636 if (kstrtoul(str, 0, &addr)) 1637 return -EINVAL; 1638 object = find_and_get_object(addr, 0); 1639 if (!object) { 1640 pr_info("Unknown object at 0x%08lx\n", addr); 1641 return -EINVAL; 1642 } 1643 1644 spin_lock_irqsave(&object->lock, flags); 1645 dump_object_info(object); 1646 spin_unlock_irqrestore(&object->lock, flags); 1647 1648 put_object(object); 1649 return 0; 1650 } 1651 1652 /* 1653 * We use grey instead of black to ensure we can do future scans on the same 1654 * objects. If we did not do future scans these black objects could 1655 * potentially contain references to newly allocated objects in the future and 1656 * we'd end up with false positives. 1657 */ 1658 static void kmemleak_clear(void) 1659 { 1660 struct kmemleak_object *object; 1661 unsigned long flags; 1662 1663 rcu_read_lock(); 1664 list_for_each_entry_rcu(object, &object_list, object_list) { 1665 spin_lock_irqsave(&object->lock, flags); 1666 if ((object->flags & OBJECT_REPORTED) && 1667 unreferenced_object(object)) 1668 __paint_it(object, KMEMLEAK_GREY); 1669 spin_unlock_irqrestore(&object->lock, flags); 1670 } 1671 rcu_read_unlock(); 1672 1673 kmemleak_found_leaks = false; 1674 } 1675 1676 static void __kmemleak_do_cleanup(void); 1677 1678 /* 1679 * File write operation to configure kmemleak at run-time. The following 1680 * commands can be written to the /sys/kernel/debug/kmemleak file: 1681 * off - disable kmemleak (irreversible) 1682 * stack=on - enable the task stacks scanning 1683 * stack=off - disable the tasks stacks scanning 1684 * scan=on - start the automatic memory scanning thread 1685 * scan=off - stop the automatic memory scanning thread 1686 * scan=... - set the automatic memory scanning period in seconds (0 to 1687 * disable it) 1688 * scan - trigger a memory scan 1689 * clear - mark all current reported unreferenced kmemleak objects as 1690 * grey to ignore printing them, or free all kmemleak objects 1691 * if kmemleak has been disabled. 1692 * dump=... - dump information about the object found at the given address 1693 */ 1694 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1695 size_t size, loff_t *ppos) 1696 { 1697 char buf[64]; 1698 int buf_size; 1699 int ret; 1700 1701 buf_size = min(size, (sizeof(buf) - 1)); 1702 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1703 return -EFAULT; 1704 buf[buf_size] = 0; 1705 1706 ret = mutex_lock_interruptible(&scan_mutex); 1707 if (ret < 0) 1708 return ret; 1709 1710 if (strncmp(buf, "clear", 5) == 0) { 1711 if (kmemleak_enabled) 1712 kmemleak_clear(); 1713 else 1714 __kmemleak_do_cleanup(); 1715 goto out; 1716 } 1717 1718 if (!kmemleak_enabled) { 1719 ret = -EBUSY; 1720 goto out; 1721 } 1722 1723 if (strncmp(buf, "off", 3) == 0) 1724 kmemleak_disable(); 1725 else if (strncmp(buf, "stack=on", 8) == 0) 1726 kmemleak_stack_scan = 1; 1727 else if (strncmp(buf, "stack=off", 9) == 0) 1728 kmemleak_stack_scan = 0; 1729 else if (strncmp(buf, "scan=on", 7) == 0) 1730 start_scan_thread(); 1731 else if (strncmp(buf, "scan=off", 8) == 0) 1732 stop_scan_thread(); 1733 else if (strncmp(buf, "scan=", 5) == 0) { 1734 unsigned long secs; 1735 1736 ret = kstrtoul(buf + 5, 0, &secs); 1737 if (ret < 0) 1738 goto out; 1739 stop_scan_thread(); 1740 if (secs) { 1741 jiffies_scan_wait = msecs_to_jiffies(secs * 1000); 1742 start_scan_thread(); 1743 } 1744 } else if (strncmp(buf, "scan", 4) == 0) 1745 kmemleak_scan(); 1746 else if (strncmp(buf, "dump=", 5) == 0) 1747 ret = dump_str_object_info(buf + 5); 1748 else 1749 ret = -EINVAL; 1750 1751 out: 1752 mutex_unlock(&scan_mutex); 1753 if (ret < 0) 1754 return ret; 1755 1756 /* ignore the rest of the buffer, only one command at a time */ 1757 *ppos += size; 1758 return size; 1759 } 1760 1761 static const struct file_operations kmemleak_fops = { 1762 .owner = THIS_MODULE, 1763 .open = kmemleak_open, 1764 .read = seq_read, 1765 .write = kmemleak_write, 1766 .llseek = seq_lseek, 1767 .release = seq_release, 1768 }; 1769 1770 static void __kmemleak_do_cleanup(void) 1771 { 1772 struct kmemleak_object *object; 1773 1774 rcu_read_lock(); 1775 list_for_each_entry_rcu(object, &object_list, object_list) 1776 delete_object_full(object->pointer); 1777 rcu_read_unlock(); 1778 } 1779 1780 /* 1781 * Stop the memory scanning thread and free the kmemleak internal objects if 1782 * no previous scan thread (otherwise, kmemleak may still have some useful 1783 * information on memory leaks). 1784 */ 1785 static void kmemleak_do_cleanup(struct work_struct *work) 1786 { 1787 stop_scan_thread(); 1788 1789 /* 1790 * Once the scan thread has stopped, it is safe to no longer track 1791 * object freeing. Ordering of the scan thread stopping and the memory 1792 * accesses below is guaranteed by the kthread_stop() function. 1793 */ 1794 kmemleak_free_enabled = 0; 1795 1796 if (!kmemleak_found_leaks) 1797 __kmemleak_do_cleanup(); 1798 else 1799 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 1800 } 1801 1802 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 1803 1804 /* 1805 * Disable kmemleak. No memory allocation/freeing will be traced once this 1806 * function is called. Disabling kmemleak is an irreversible operation. 1807 */ 1808 static void kmemleak_disable(void) 1809 { 1810 /* atomically check whether it was already invoked */ 1811 if (cmpxchg(&kmemleak_error, 0, 1)) 1812 return; 1813 1814 /* stop any memory operation tracing */ 1815 kmemleak_enabled = 0; 1816 1817 /* check whether it is too early for a kernel thread */ 1818 if (kmemleak_initialized) 1819 schedule_work(&cleanup_work); 1820 else 1821 kmemleak_free_enabled = 0; 1822 1823 pr_info("Kernel memory leak detector disabled\n"); 1824 } 1825 1826 /* 1827 * Allow boot-time kmemleak disabling (enabled by default). 1828 */ 1829 static int kmemleak_boot_config(char *str) 1830 { 1831 if (!str) 1832 return -EINVAL; 1833 if (strcmp(str, "off") == 0) 1834 kmemleak_disable(); 1835 else if (strcmp(str, "on") == 0) 1836 kmemleak_skip_disable = 1; 1837 else 1838 return -EINVAL; 1839 return 0; 1840 } 1841 early_param("kmemleak", kmemleak_boot_config); 1842 1843 static void __init print_log_trace(struct early_log *log) 1844 { 1845 struct stack_trace trace; 1846 1847 trace.nr_entries = log->trace_len; 1848 trace.entries = log->trace; 1849 1850 pr_notice("Early log backtrace:\n"); 1851 print_stack_trace(&trace, 2); 1852 } 1853 1854 /* 1855 * Kmemleak initialization. 1856 */ 1857 void __init kmemleak_init(void) 1858 { 1859 int i; 1860 unsigned long flags; 1861 1862 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 1863 if (!kmemleak_skip_disable) { 1864 kmemleak_early_log = 0; 1865 kmemleak_disable(); 1866 return; 1867 } 1868 #endif 1869 1870 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 1871 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 1872 1873 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 1874 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 1875 1876 if (crt_early_log > ARRAY_SIZE(early_log)) 1877 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", 1878 crt_early_log); 1879 1880 /* the kernel is still in UP mode, so disabling the IRQs is enough */ 1881 local_irq_save(flags); 1882 kmemleak_early_log = 0; 1883 if (kmemleak_error) { 1884 local_irq_restore(flags); 1885 return; 1886 } else { 1887 kmemleak_enabled = 1; 1888 kmemleak_free_enabled = 1; 1889 } 1890 local_irq_restore(flags); 1891 1892 /* 1893 * This is the point where tracking allocations is safe. Automatic 1894 * scanning is started during the late initcall. Add the early logged 1895 * callbacks to the kmemleak infrastructure. 1896 */ 1897 for (i = 0; i < crt_early_log; i++) { 1898 struct early_log *log = &early_log[i]; 1899 1900 switch (log->op_type) { 1901 case KMEMLEAK_ALLOC: 1902 early_alloc(log); 1903 break; 1904 case KMEMLEAK_ALLOC_PERCPU: 1905 early_alloc_percpu(log); 1906 break; 1907 case KMEMLEAK_FREE: 1908 kmemleak_free(log->ptr); 1909 break; 1910 case KMEMLEAK_FREE_PART: 1911 kmemleak_free_part(log->ptr, log->size); 1912 break; 1913 case KMEMLEAK_FREE_PERCPU: 1914 kmemleak_free_percpu(log->ptr); 1915 break; 1916 case KMEMLEAK_NOT_LEAK: 1917 kmemleak_not_leak(log->ptr); 1918 break; 1919 case KMEMLEAK_IGNORE: 1920 kmemleak_ignore(log->ptr); 1921 break; 1922 case KMEMLEAK_SCAN_AREA: 1923 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL); 1924 break; 1925 case KMEMLEAK_NO_SCAN: 1926 kmemleak_no_scan(log->ptr); 1927 break; 1928 default: 1929 kmemleak_warn("Unknown early log operation: %d\n", 1930 log->op_type); 1931 } 1932 1933 if (kmemleak_warning) { 1934 print_log_trace(log); 1935 kmemleak_warning = 0; 1936 } 1937 } 1938 } 1939 1940 /* 1941 * Late initialization function. 1942 */ 1943 static int __init kmemleak_late_init(void) 1944 { 1945 struct dentry *dentry; 1946 1947 kmemleak_initialized = 1; 1948 1949 if (kmemleak_error) { 1950 /* 1951 * Some error occurred and kmemleak was disabled. There is a 1952 * small chance that kmemleak_disable() was called immediately 1953 * after setting kmemleak_initialized and we may end up with 1954 * two clean-up threads but serialized by scan_mutex. 1955 */ 1956 schedule_work(&cleanup_work); 1957 return -ENOMEM; 1958 } 1959 1960 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL, 1961 &kmemleak_fops); 1962 if (!dentry) 1963 pr_warn("Failed to create the debugfs kmemleak file\n"); 1964 mutex_lock(&scan_mutex); 1965 start_scan_thread(); 1966 mutex_unlock(&scan_mutex); 1967 1968 pr_info("Kernel memory leak detector initialized\n"); 1969 1970 return 0; 1971 } 1972 late_initcall(kmemleak_late_init); 1973