xref: /openbmc/linux/mm/kmemleak.c (revision 4984dd069f2995f239f075199ee8c0d9f020bcd9)
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/dev-tools/kmemleak.rst.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a red black tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * Locks and mutexes are acquired/nested in the following order:
57  *
58  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59  *
60  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61  * regions.
62  *
63  * The kmemleak_object structures have a use_count incremented or decremented
64  * using the get_object()/put_object() functions. When the use_count becomes
65  * 0, this count can no longer be incremented and put_object() schedules the
66  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67  * function must be protected by rcu_read_lock() to avoid accessing a freed
68  * structure.
69  */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/init.h>
74 #include <linux/kernel.h>
75 #include <linux/list.h>
76 #include <linux/sched/signal.h>
77 #include <linux/sched/task.h>
78 #include <linux/sched/task_stack.h>
79 #include <linux/jiffies.h>
80 #include <linux/delay.h>
81 #include <linux/export.h>
82 #include <linux/kthread.h>
83 #include <linux/rbtree.h>
84 #include <linux/fs.h>
85 #include <linux/debugfs.h>
86 #include <linux/seq_file.h>
87 #include <linux/cpumask.h>
88 #include <linux/spinlock.h>
89 #include <linux/module.h>
90 #include <linux/mutex.h>
91 #include <linux/rcupdate.h>
92 #include <linux/stacktrace.h>
93 #include <linux/cache.h>
94 #include <linux/percpu.h>
95 #include <linux/memblock.h>
96 #include <linux/pfn.h>
97 #include <linux/mmzone.h>
98 #include <linux/slab.h>
99 #include <linux/thread_info.h>
100 #include <linux/err.h>
101 #include <linux/uaccess.h>
102 #include <linux/string.h>
103 #include <linux/nodemask.h>
104 #include <linux/mm.h>
105 #include <linux/workqueue.h>
106 #include <linux/crc32.h>
107 
108 #include <asm/sections.h>
109 #include <asm/processor.h>
110 #include <linux/atomic.h>
111 
112 #include <linux/kasan.h>
113 #include <linux/kmemleak.h>
114 #include <linux/memory_hotplug.h>
115 
116 /*
117  * Kmemleak configuration and common defines.
118  */
119 #define MAX_TRACE		16	/* stack trace length */
120 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
121 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
122 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
123 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
124 
125 #define BYTES_PER_POINTER	sizeof(void *)
126 
127 /* GFP bitmask for kmemleak internal allocations */
128 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
129 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
130 				 __GFP_NOWARN | __GFP_NOFAIL)
131 
132 /* scanning area inside a memory block */
133 struct kmemleak_scan_area {
134 	struct hlist_node node;
135 	unsigned long start;
136 	size_t size;
137 };
138 
139 #define KMEMLEAK_GREY	0
140 #define KMEMLEAK_BLACK	-1
141 
142 /*
143  * Structure holding the metadata for each allocated memory block.
144  * Modifications to such objects should be made while holding the
145  * object->lock. Insertions or deletions from object_list, gray_list or
146  * rb_node are already protected by the corresponding locks or mutex (see
147  * the notes on locking above). These objects are reference-counted
148  * (use_count) and freed using the RCU mechanism.
149  */
150 struct kmemleak_object {
151 	spinlock_t lock;
152 	unsigned int flags;		/* object status flags */
153 	struct list_head object_list;
154 	struct list_head gray_list;
155 	struct rb_node rb_node;
156 	struct rcu_head rcu;		/* object_list lockless traversal */
157 	/* object usage count; object freed when use_count == 0 */
158 	atomic_t use_count;
159 	unsigned long pointer;
160 	size_t size;
161 	/* pass surplus references to this pointer */
162 	unsigned long excess_ref;
163 	/* minimum number of a pointers found before it is considered leak */
164 	int min_count;
165 	/* the total number of pointers found pointing to this object */
166 	int count;
167 	/* checksum for detecting modified objects */
168 	u32 checksum;
169 	/* memory ranges to be scanned inside an object (empty for all) */
170 	struct hlist_head area_list;
171 	unsigned long trace[MAX_TRACE];
172 	unsigned int trace_len;
173 	unsigned long jiffies;		/* creation timestamp */
174 	pid_t pid;			/* pid of the current task */
175 	char comm[TASK_COMM_LEN];	/* executable name */
176 };
177 
178 /* flag representing the memory block allocation status */
179 #define OBJECT_ALLOCATED	(1 << 0)
180 /* flag set after the first reporting of an unreference object */
181 #define OBJECT_REPORTED		(1 << 1)
182 /* flag set to not scan the object */
183 #define OBJECT_NO_SCAN		(1 << 2)
184 
185 #define HEX_PREFIX		"    "
186 /* number of bytes to print per line; must be 16 or 32 */
187 #define HEX_ROW_SIZE		16
188 /* number of bytes to print at a time (1, 2, 4, 8) */
189 #define HEX_GROUP_SIZE		1
190 /* include ASCII after the hex output */
191 #define HEX_ASCII		1
192 /* max number of lines to be printed */
193 #define HEX_MAX_LINES		2
194 
195 /* the list of all allocated objects */
196 static LIST_HEAD(object_list);
197 /* the list of gray-colored objects (see color_gray comment below) */
198 static LIST_HEAD(gray_list);
199 /* search tree for object boundaries */
200 static struct rb_root object_tree_root = RB_ROOT;
201 /* rw_lock protecting the access to object_list and object_tree_root */
202 static DEFINE_RWLOCK(kmemleak_lock);
203 
204 /* allocation caches for kmemleak internal data */
205 static struct kmem_cache *object_cache;
206 static struct kmem_cache *scan_area_cache;
207 
208 /* set if tracing memory operations is enabled */
209 static int kmemleak_enabled;
210 /* same as above but only for the kmemleak_free() callback */
211 static int kmemleak_free_enabled;
212 /* set in the late_initcall if there were no errors */
213 static int kmemleak_initialized;
214 /* enables or disables early logging of the memory operations */
215 static int kmemleak_early_log = 1;
216 /* set if a kmemleak warning was issued */
217 static int kmemleak_warning;
218 /* set if a fatal kmemleak error has occurred */
219 static int kmemleak_error;
220 
221 /* minimum and maximum address that may be valid pointers */
222 static unsigned long min_addr = ULONG_MAX;
223 static unsigned long max_addr;
224 
225 static struct task_struct *scan_thread;
226 /* used to avoid reporting of recently allocated objects */
227 static unsigned long jiffies_min_age;
228 static unsigned long jiffies_last_scan;
229 /* delay between automatic memory scannings */
230 static signed long jiffies_scan_wait;
231 /* enables or disables the task stacks scanning */
232 static int kmemleak_stack_scan = 1;
233 /* protects the memory scanning, parameters and debug/kmemleak file access */
234 static DEFINE_MUTEX(scan_mutex);
235 /* setting kmemleak=on, will set this var, skipping the disable */
236 static int kmemleak_skip_disable;
237 /* If there are leaks that can be reported */
238 static bool kmemleak_found_leaks;
239 
240 static bool kmemleak_verbose;
241 module_param_named(verbose, kmemleak_verbose, bool, 0600);
242 
243 /*
244  * Early object allocation/freeing logging. Kmemleak is initialized after the
245  * kernel allocator. However, both the kernel allocator and kmemleak may
246  * allocate memory blocks which need to be tracked. Kmemleak defines an
247  * arbitrary buffer to hold the allocation/freeing information before it is
248  * fully initialized.
249  */
250 
251 /* kmemleak operation type for early logging */
252 enum {
253 	KMEMLEAK_ALLOC,
254 	KMEMLEAK_ALLOC_PERCPU,
255 	KMEMLEAK_FREE,
256 	KMEMLEAK_FREE_PART,
257 	KMEMLEAK_FREE_PERCPU,
258 	KMEMLEAK_NOT_LEAK,
259 	KMEMLEAK_IGNORE,
260 	KMEMLEAK_SCAN_AREA,
261 	KMEMLEAK_NO_SCAN,
262 	KMEMLEAK_SET_EXCESS_REF
263 };
264 
265 /*
266  * Structure holding the information passed to kmemleak callbacks during the
267  * early logging.
268  */
269 struct early_log {
270 	int op_type;			/* kmemleak operation type */
271 	int min_count;			/* minimum reference count */
272 	const void *ptr;		/* allocated/freed memory block */
273 	union {
274 		size_t size;		/* memory block size */
275 		unsigned long excess_ref; /* surplus reference passing */
276 	};
277 	unsigned long trace[MAX_TRACE];	/* stack trace */
278 	unsigned int trace_len;		/* stack trace length */
279 };
280 
281 /* early logging buffer and current position */
282 static struct early_log
283 	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
284 static int crt_early_log __initdata;
285 
286 static void kmemleak_disable(void);
287 
288 /*
289  * Print a warning and dump the stack trace.
290  */
291 #define kmemleak_warn(x...)	do {		\
292 	pr_warn(x);				\
293 	dump_stack();				\
294 	kmemleak_warning = 1;			\
295 } while (0)
296 
297 /*
298  * Macro invoked when a serious kmemleak condition occurred and cannot be
299  * recovered from. Kmemleak will be disabled and further allocation/freeing
300  * tracing no longer available.
301  */
302 #define kmemleak_stop(x...)	do {	\
303 	kmemleak_warn(x);		\
304 	kmemleak_disable();		\
305 } while (0)
306 
307 #define warn_or_seq_printf(seq, fmt, ...)	do {	\
308 	if (seq)					\
309 		seq_printf(seq, fmt, ##__VA_ARGS__);	\
310 	else						\
311 		pr_warn(fmt, ##__VA_ARGS__);		\
312 } while (0)
313 
314 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
315 				 int rowsize, int groupsize, const void *buf,
316 				 size_t len, bool ascii)
317 {
318 	if (seq)
319 		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
320 			     buf, len, ascii);
321 	else
322 		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
323 			       rowsize, groupsize, buf, len, ascii);
324 }
325 
326 /*
327  * Printing of the objects hex dump to the seq file. The number of lines to be
328  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
329  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
330  * with the object->lock held.
331  */
332 static void hex_dump_object(struct seq_file *seq,
333 			    struct kmemleak_object *object)
334 {
335 	const u8 *ptr = (const u8 *)object->pointer;
336 	size_t len;
337 
338 	/* limit the number of lines to HEX_MAX_LINES */
339 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
340 
341 	warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
342 	kasan_disable_current();
343 	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
344 			     HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
345 	kasan_enable_current();
346 }
347 
348 /*
349  * Object colors, encoded with count and min_count:
350  * - white - orphan object, not enough references to it (count < min_count)
351  * - gray  - not orphan, not marked as false positive (min_count == 0) or
352  *		sufficient references to it (count >= min_count)
353  * - black - ignore, it doesn't contain references (e.g. text section)
354  *		(min_count == -1). No function defined for this color.
355  * Newly created objects don't have any color assigned (object->count == -1)
356  * before the next memory scan when they become white.
357  */
358 static bool color_white(const struct kmemleak_object *object)
359 {
360 	return object->count != KMEMLEAK_BLACK &&
361 		object->count < object->min_count;
362 }
363 
364 static bool color_gray(const struct kmemleak_object *object)
365 {
366 	return object->min_count != KMEMLEAK_BLACK &&
367 		object->count >= object->min_count;
368 }
369 
370 /*
371  * Objects are considered unreferenced only if their color is white, they have
372  * not be deleted and have a minimum age to avoid false positives caused by
373  * pointers temporarily stored in CPU registers.
374  */
375 static bool unreferenced_object(struct kmemleak_object *object)
376 {
377 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
378 		time_before_eq(object->jiffies + jiffies_min_age,
379 			       jiffies_last_scan);
380 }
381 
382 /*
383  * Printing of the unreferenced objects information to the seq file. The
384  * print_unreferenced function must be called with the object->lock held.
385  */
386 static void print_unreferenced(struct seq_file *seq,
387 			       struct kmemleak_object *object)
388 {
389 	int i;
390 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
391 
392 	warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
393 		   object->pointer, object->size);
394 	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
395 		   object->comm, object->pid, object->jiffies,
396 		   msecs_age / 1000, msecs_age % 1000);
397 	hex_dump_object(seq, object);
398 	warn_or_seq_printf(seq, "  backtrace:\n");
399 
400 	for (i = 0; i < object->trace_len; i++) {
401 		void *ptr = (void *)object->trace[i];
402 		warn_or_seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
403 	}
404 }
405 
406 /*
407  * Print the kmemleak_object information. This function is used mainly for
408  * debugging special cases when kmemleak operations. It must be called with
409  * the object->lock held.
410  */
411 static void dump_object_info(struct kmemleak_object *object)
412 {
413 	pr_notice("Object 0x%08lx (size %zu):\n",
414 		  object->pointer, object->size);
415 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
416 		  object->comm, object->pid, object->jiffies);
417 	pr_notice("  min_count = %d\n", object->min_count);
418 	pr_notice("  count = %d\n", object->count);
419 	pr_notice("  flags = 0x%x\n", object->flags);
420 	pr_notice("  checksum = %u\n", object->checksum);
421 	pr_notice("  backtrace:\n");
422 	stack_trace_print(object->trace, object->trace_len, 4);
423 }
424 
425 /*
426  * Look-up a memory block metadata (kmemleak_object) in the object search
427  * tree based on a pointer value. If alias is 0, only values pointing to the
428  * beginning of the memory block are allowed. The kmemleak_lock must be held
429  * when calling this function.
430  */
431 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
432 {
433 	struct rb_node *rb = object_tree_root.rb_node;
434 
435 	while (rb) {
436 		struct kmemleak_object *object =
437 			rb_entry(rb, struct kmemleak_object, rb_node);
438 		if (ptr < object->pointer)
439 			rb = object->rb_node.rb_left;
440 		else if (object->pointer + object->size <= ptr)
441 			rb = object->rb_node.rb_right;
442 		else if (object->pointer == ptr || alias)
443 			return object;
444 		else {
445 			kmemleak_warn("Found object by alias at 0x%08lx\n",
446 				      ptr);
447 			dump_object_info(object);
448 			break;
449 		}
450 	}
451 	return NULL;
452 }
453 
454 /*
455  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
456  * that once an object's use_count reached 0, the RCU freeing was already
457  * registered and the object should no longer be used. This function must be
458  * called under the protection of rcu_read_lock().
459  */
460 static int get_object(struct kmemleak_object *object)
461 {
462 	return atomic_inc_not_zero(&object->use_count);
463 }
464 
465 /*
466  * RCU callback to free a kmemleak_object.
467  */
468 static void free_object_rcu(struct rcu_head *rcu)
469 {
470 	struct hlist_node *tmp;
471 	struct kmemleak_scan_area *area;
472 	struct kmemleak_object *object =
473 		container_of(rcu, struct kmemleak_object, rcu);
474 
475 	/*
476 	 * Once use_count is 0 (guaranteed by put_object), there is no other
477 	 * code accessing this object, hence no need for locking.
478 	 */
479 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
480 		hlist_del(&area->node);
481 		kmem_cache_free(scan_area_cache, area);
482 	}
483 	kmem_cache_free(object_cache, object);
484 }
485 
486 /*
487  * Decrement the object use_count. Once the count is 0, free the object using
488  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
489  * delete_object() path, the delayed RCU freeing ensures that there is no
490  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
491  * is also possible.
492  */
493 static void put_object(struct kmemleak_object *object)
494 {
495 	if (!atomic_dec_and_test(&object->use_count))
496 		return;
497 
498 	/* should only get here after delete_object was called */
499 	WARN_ON(object->flags & OBJECT_ALLOCATED);
500 
501 	call_rcu(&object->rcu, free_object_rcu);
502 }
503 
504 /*
505  * Look up an object in the object search tree and increase its use_count.
506  */
507 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
508 {
509 	unsigned long flags;
510 	struct kmemleak_object *object;
511 
512 	rcu_read_lock();
513 	read_lock_irqsave(&kmemleak_lock, flags);
514 	object = lookup_object(ptr, alias);
515 	read_unlock_irqrestore(&kmemleak_lock, flags);
516 
517 	/* check whether the object is still available */
518 	if (object && !get_object(object))
519 		object = NULL;
520 	rcu_read_unlock();
521 
522 	return object;
523 }
524 
525 /*
526  * Look up an object in the object search tree and remove it from both
527  * object_tree_root and object_list. The returned object's use_count should be
528  * at least 1, as initially set by create_object().
529  */
530 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
531 {
532 	unsigned long flags;
533 	struct kmemleak_object *object;
534 
535 	write_lock_irqsave(&kmemleak_lock, flags);
536 	object = lookup_object(ptr, alias);
537 	if (object) {
538 		rb_erase(&object->rb_node, &object_tree_root);
539 		list_del_rcu(&object->object_list);
540 	}
541 	write_unlock_irqrestore(&kmemleak_lock, flags);
542 
543 	return object;
544 }
545 
546 /*
547  * Save stack trace to the given array of MAX_TRACE size.
548  */
549 static int __save_stack_trace(unsigned long *trace)
550 {
551 	return stack_trace_save(trace, MAX_TRACE, 2);
552 }
553 
554 /*
555  * Create the metadata (struct kmemleak_object) corresponding to an allocated
556  * memory block and add it to the object_list and object_tree_root.
557  */
558 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
559 					     int min_count, gfp_t gfp)
560 {
561 	unsigned long flags;
562 	struct kmemleak_object *object, *parent;
563 	struct rb_node **link, *rb_parent;
564 	unsigned long untagged_ptr;
565 
566 	object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
567 	if (!object) {
568 		pr_warn("Cannot allocate a kmemleak_object structure\n");
569 		kmemleak_disable();
570 		return NULL;
571 	}
572 
573 	INIT_LIST_HEAD(&object->object_list);
574 	INIT_LIST_HEAD(&object->gray_list);
575 	INIT_HLIST_HEAD(&object->area_list);
576 	spin_lock_init(&object->lock);
577 	atomic_set(&object->use_count, 1);
578 	object->flags = OBJECT_ALLOCATED;
579 	object->pointer = ptr;
580 	object->size = size;
581 	object->excess_ref = 0;
582 	object->min_count = min_count;
583 	object->count = 0;			/* white color initially */
584 	object->jiffies = jiffies;
585 	object->checksum = 0;
586 
587 	/* task information */
588 	if (in_irq()) {
589 		object->pid = 0;
590 		strncpy(object->comm, "hardirq", sizeof(object->comm));
591 	} else if (in_softirq()) {
592 		object->pid = 0;
593 		strncpy(object->comm, "softirq", sizeof(object->comm));
594 	} else {
595 		object->pid = current->pid;
596 		/*
597 		 * There is a small chance of a race with set_task_comm(),
598 		 * however using get_task_comm() here may cause locking
599 		 * dependency issues with current->alloc_lock. In the worst
600 		 * case, the command line is not correct.
601 		 */
602 		strncpy(object->comm, current->comm, sizeof(object->comm));
603 	}
604 
605 	/* kernel backtrace */
606 	object->trace_len = __save_stack_trace(object->trace);
607 
608 	write_lock_irqsave(&kmemleak_lock, flags);
609 
610 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
611 	min_addr = min(min_addr, untagged_ptr);
612 	max_addr = max(max_addr, untagged_ptr + size);
613 	link = &object_tree_root.rb_node;
614 	rb_parent = NULL;
615 	while (*link) {
616 		rb_parent = *link;
617 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
618 		if (ptr + size <= parent->pointer)
619 			link = &parent->rb_node.rb_left;
620 		else if (parent->pointer + parent->size <= ptr)
621 			link = &parent->rb_node.rb_right;
622 		else {
623 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
624 				      ptr);
625 			/*
626 			 * No need for parent->lock here since "parent" cannot
627 			 * be freed while the kmemleak_lock is held.
628 			 */
629 			dump_object_info(parent);
630 			kmem_cache_free(object_cache, object);
631 			object = NULL;
632 			goto out;
633 		}
634 	}
635 	rb_link_node(&object->rb_node, rb_parent, link);
636 	rb_insert_color(&object->rb_node, &object_tree_root);
637 
638 	list_add_tail_rcu(&object->object_list, &object_list);
639 out:
640 	write_unlock_irqrestore(&kmemleak_lock, flags);
641 	return object;
642 }
643 
644 /*
645  * Mark the object as not allocated and schedule RCU freeing via put_object().
646  */
647 static void __delete_object(struct kmemleak_object *object)
648 {
649 	unsigned long flags;
650 
651 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
652 	WARN_ON(atomic_read(&object->use_count) < 1);
653 
654 	/*
655 	 * Locking here also ensures that the corresponding memory block
656 	 * cannot be freed when it is being scanned.
657 	 */
658 	spin_lock_irqsave(&object->lock, flags);
659 	object->flags &= ~OBJECT_ALLOCATED;
660 	spin_unlock_irqrestore(&object->lock, flags);
661 	put_object(object);
662 }
663 
664 /*
665  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
666  * delete it.
667  */
668 static void delete_object_full(unsigned long ptr)
669 {
670 	struct kmemleak_object *object;
671 
672 	object = find_and_remove_object(ptr, 0);
673 	if (!object) {
674 #ifdef DEBUG
675 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
676 			      ptr);
677 #endif
678 		return;
679 	}
680 	__delete_object(object);
681 }
682 
683 /*
684  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
685  * delete it. If the memory block is partially freed, the function may create
686  * additional metadata for the remaining parts of the block.
687  */
688 static void delete_object_part(unsigned long ptr, size_t size)
689 {
690 	struct kmemleak_object *object;
691 	unsigned long start, end;
692 
693 	object = find_and_remove_object(ptr, 1);
694 	if (!object) {
695 #ifdef DEBUG
696 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
697 			      ptr, size);
698 #endif
699 		return;
700 	}
701 
702 	/*
703 	 * Create one or two objects that may result from the memory block
704 	 * split. Note that partial freeing is only done by free_bootmem() and
705 	 * this happens before kmemleak_init() is called. The path below is
706 	 * only executed during early log recording in kmemleak_init(), so
707 	 * GFP_KERNEL is enough.
708 	 */
709 	start = object->pointer;
710 	end = object->pointer + object->size;
711 	if (ptr > start)
712 		create_object(start, ptr - start, object->min_count,
713 			      GFP_KERNEL);
714 	if (ptr + size < end)
715 		create_object(ptr + size, end - ptr - size, object->min_count,
716 			      GFP_KERNEL);
717 
718 	__delete_object(object);
719 }
720 
721 static void __paint_it(struct kmemleak_object *object, int color)
722 {
723 	object->min_count = color;
724 	if (color == KMEMLEAK_BLACK)
725 		object->flags |= OBJECT_NO_SCAN;
726 }
727 
728 static void paint_it(struct kmemleak_object *object, int color)
729 {
730 	unsigned long flags;
731 
732 	spin_lock_irqsave(&object->lock, flags);
733 	__paint_it(object, color);
734 	spin_unlock_irqrestore(&object->lock, flags);
735 }
736 
737 static void paint_ptr(unsigned long ptr, int color)
738 {
739 	struct kmemleak_object *object;
740 
741 	object = find_and_get_object(ptr, 0);
742 	if (!object) {
743 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
744 			      ptr,
745 			      (color == KMEMLEAK_GREY) ? "Grey" :
746 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
747 		return;
748 	}
749 	paint_it(object, color);
750 	put_object(object);
751 }
752 
753 /*
754  * Mark an object permanently as gray-colored so that it can no longer be
755  * reported as a leak. This is used in general to mark a false positive.
756  */
757 static void make_gray_object(unsigned long ptr)
758 {
759 	paint_ptr(ptr, KMEMLEAK_GREY);
760 }
761 
762 /*
763  * Mark the object as black-colored so that it is ignored from scans and
764  * reporting.
765  */
766 static void make_black_object(unsigned long ptr)
767 {
768 	paint_ptr(ptr, KMEMLEAK_BLACK);
769 }
770 
771 /*
772  * Add a scanning area to the object. If at least one such area is added,
773  * kmemleak will only scan these ranges rather than the whole memory block.
774  */
775 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
776 {
777 	unsigned long flags;
778 	struct kmemleak_object *object;
779 	struct kmemleak_scan_area *area;
780 
781 	object = find_and_get_object(ptr, 1);
782 	if (!object) {
783 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
784 			      ptr);
785 		return;
786 	}
787 
788 	area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
789 	if (!area) {
790 		pr_warn("Cannot allocate a scan area\n");
791 		goto out;
792 	}
793 
794 	spin_lock_irqsave(&object->lock, flags);
795 	if (size == SIZE_MAX) {
796 		size = object->pointer + object->size - ptr;
797 	} else if (ptr + size > object->pointer + object->size) {
798 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
799 		dump_object_info(object);
800 		kmem_cache_free(scan_area_cache, area);
801 		goto out_unlock;
802 	}
803 
804 	INIT_HLIST_NODE(&area->node);
805 	area->start = ptr;
806 	area->size = size;
807 
808 	hlist_add_head(&area->node, &object->area_list);
809 out_unlock:
810 	spin_unlock_irqrestore(&object->lock, flags);
811 out:
812 	put_object(object);
813 }
814 
815 /*
816  * Any surplus references (object already gray) to 'ptr' are passed to
817  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
818  * vm_struct may be used as an alternative reference to the vmalloc'ed object
819  * (see free_thread_stack()).
820  */
821 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
822 {
823 	unsigned long flags;
824 	struct kmemleak_object *object;
825 
826 	object = find_and_get_object(ptr, 0);
827 	if (!object) {
828 		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
829 			      ptr);
830 		return;
831 	}
832 
833 	spin_lock_irqsave(&object->lock, flags);
834 	object->excess_ref = excess_ref;
835 	spin_unlock_irqrestore(&object->lock, flags);
836 	put_object(object);
837 }
838 
839 /*
840  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
841  * pointer. Such object will not be scanned by kmemleak but references to it
842  * are searched.
843  */
844 static void object_no_scan(unsigned long ptr)
845 {
846 	unsigned long flags;
847 	struct kmemleak_object *object;
848 
849 	object = find_and_get_object(ptr, 0);
850 	if (!object) {
851 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
852 		return;
853 	}
854 
855 	spin_lock_irqsave(&object->lock, flags);
856 	object->flags |= OBJECT_NO_SCAN;
857 	spin_unlock_irqrestore(&object->lock, flags);
858 	put_object(object);
859 }
860 
861 /*
862  * Log an early kmemleak_* call to the early_log buffer. These calls will be
863  * processed later once kmemleak is fully initialized.
864  */
865 static void __init log_early(int op_type, const void *ptr, size_t size,
866 			     int min_count)
867 {
868 	unsigned long flags;
869 	struct early_log *log;
870 
871 	if (kmemleak_error) {
872 		/* kmemleak stopped recording, just count the requests */
873 		crt_early_log++;
874 		return;
875 	}
876 
877 	if (crt_early_log >= ARRAY_SIZE(early_log)) {
878 		crt_early_log++;
879 		kmemleak_disable();
880 		return;
881 	}
882 
883 	/*
884 	 * There is no need for locking since the kernel is still in UP mode
885 	 * at this stage. Disabling the IRQs is enough.
886 	 */
887 	local_irq_save(flags);
888 	log = &early_log[crt_early_log];
889 	log->op_type = op_type;
890 	log->ptr = ptr;
891 	log->size = size;
892 	log->min_count = min_count;
893 	log->trace_len = __save_stack_trace(log->trace);
894 	crt_early_log++;
895 	local_irq_restore(flags);
896 }
897 
898 /*
899  * Log an early allocated block and populate the stack trace.
900  */
901 static void early_alloc(struct early_log *log)
902 {
903 	struct kmemleak_object *object;
904 	unsigned long flags;
905 	int i;
906 
907 	if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
908 		return;
909 
910 	/*
911 	 * RCU locking needed to ensure object is not freed via put_object().
912 	 */
913 	rcu_read_lock();
914 	object = create_object((unsigned long)log->ptr, log->size,
915 			       log->min_count, GFP_ATOMIC);
916 	if (!object)
917 		goto out;
918 	spin_lock_irqsave(&object->lock, flags);
919 	for (i = 0; i < log->trace_len; i++)
920 		object->trace[i] = log->trace[i];
921 	object->trace_len = log->trace_len;
922 	spin_unlock_irqrestore(&object->lock, flags);
923 out:
924 	rcu_read_unlock();
925 }
926 
927 /*
928  * Log an early allocated block and populate the stack trace.
929  */
930 static void early_alloc_percpu(struct early_log *log)
931 {
932 	unsigned int cpu;
933 	const void __percpu *ptr = log->ptr;
934 
935 	for_each_possible_cpu(cpu) {
936 		log->ptr = per_cpu_ptr(ptr, cpu);
937 		early_alloc(log);
938 	}
939 }
940 
941 /**
942  * kmemleak_alloc - register a newly allocated object
943  * @ptr:	pointer to beginning of the object
944  * @size:	size of the object
945  * @min_count:	minimum number of references to this object. If during memory
946  *		scanning a number of references less than @min_count is found,
947  *		the object is reported as a memory leak. If @min_count is 0,
948  *		the object is never reported as a leak. If @min_count is -1,
949  *		the object is ignored (not scanned and not reported as a leak)
950  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
951  *
952  * This function is called from the kernel allocators when a new object
953  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
954  */
955 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
956 			  gfp_t gfp)
957 {
958 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
959 
960 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
961 		create_object((unsigned long)ptr, size, min_count, gfp);
962 	else if (kmemleak_early_log)
963 		log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
964 }
965 EXPORT_SYMBOL_GPL(kmemleak_alloc);
966 
967 /**
968  * kmemleak_alloc_percpu - register a newly allocated __percpu object
969  * @ptr:	__percpu pointer to beginning of the object
970  * @size:	size of the object
971  * @gfp:	flags used for kmemleak internal memory allocations
972  *
973  * This function is called from the kernel percpu allocator when a new object
974  * (memory block) is allocated (alloc_percpu).
975  */
976 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
977 				 gfp_t gfp)
978 {
979 	unsigned int cpu;
980 
981 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
982 
983 	/*
984 	 * Percpu allocations are only scanned and not reported as leaks
985 	 * (min_count is set to 0).
986 	 */
987 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
988 		for_each_possible_cpu(cpu)
989 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
990 				      size, 0, gfp);
991 	else if (kmemleak_early_log)
992 		log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
993 }
994 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
995 
996 /**
997  * kmemleak_vmalloc - register a newly vmalloc'ed object
998  * @area:	pointer to vm_struct
999  * @size:	size of the object
1000  * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
1001  *
1002  * This function is called from the vmalloc() kernel allocator when a new
1003  * object (memory block) is allocated.
1004  */
1005 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1006 {
1007 	pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1008 
1009 	/*
1010 	 * A min_count = 2 is needed because vm_struct contains a reference to
1011 	 * the virtual address of the vmalloc'ed block.
1012 	 */
1013 	if (kmemleak_enabled) {
1014 		create_object((unsigned long)area->addr, size, 2, gfp);
1015 		object_set_excess_ref((unsigned long)area,
1016 				      (unsigned long)area->addr);
1017 	} else if (kmemleak_early_log) {
1018 		log_early(KMEMLEAK_ALLOC, area->addr, size, 2);
1019 		/* reusing early_log.size for storing area->addr */
1020 		log_early(KMEMLEAK_SET_EXCESS_REF,
1021 			  area, (unsigned long)area->addr, 0);
1022 	}
1023 }
1024 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1025 
1026 /**
1027  * kmemleak_free - unregister a previously registered object
1028  * @ptr:	pointer to beginning of the object
1029  *
1030  * This function is called from the kernel allocators when an object (memory
1031  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1032  */
1033 void __ref kmemleak_free(const void *ptr)
1034 {
1035 	pr_debug("%s(0x%p)\n", __func__, ptr);
1036 
1037 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1038 		delete_object_full((unsigned long)ptr);
1039 	else if (kmemleak_early_log)
1040 		log_early(KMEMLEAK_FREE, ptr, 0, 0);
1041 }
1042 EXPORT_SYMBOL_GPL(kmemleak_free);
1043 
1044 /**
1045  * kmemleak_free_part - partially unregister a previously registered object
1046  * @ptr:	pointer to the beginning or inside the object. This also
1047  *		represents the start of the range to be freed
1048  * @size:	size to be unregistered
1049  *
1050  * This function is called when only a part of a memory block is freed
1051  * (usually from the bootmem allocator).
1052  */
1053 void __ref kmemleak_free_part(const void *ptr, size_t size)
1054 {
1055 	pr_debug("%s(0x%p)\n", __func__, ptr);
1056 
1057 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1058 		delete_object_part((unsigned long)ptr, size);
1059 	else if (kmemleak_early_log)
1060 		log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
1061 }
1062 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1063 
1064 /**
1065  * kmemleak_free_percpu - unregister a previously registered __percpu object
1066  * @ptr:	__percpu pointer to beginning of the object
1067  *
1068  * This function is called from the kernel percpu allocator when an object
1069  * (memory block) is freed (free_percpu).
1070  */
1071 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1072 {
1073 	unsigned int cpu;
1074 
1075 	pr_debug("%s(0x%p)\n", __func__, ptr);
1076 
1077 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1078 		for_each_possible_cpu(cpu)
1079 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
1080 								      cpu));
1081 	else if (kmemleak_early_log)
1082 		log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1083 }
1084 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1085 
1086 /**
1087  * kmemleak_update_trace - update object allocation stack trace
1088  * @ptr:	pointer to beginning of the object
1089  *
1090  * Override the object allocation stack trace for cases where the actual
1091  * allocation place is not always useful.
1092  */
1093 void __ref kmemleak_update_trace(const void *ptr)
1094 {
1095 	struct kmemleak_object *object;
1096 	unsigned long flags;
1097 
1098 	pr_debug("%s(0x%p)\n", __func__, ptr);
1099 
1100 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1101 		return;
1102 
1103 	object = find_and_get_object((unsigned long)ptr, 1);
1104 	if (!object) {
1105 #ifdef DEBUG
1106 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1107 			      ptr);
1108 #endif
1109 		return;
1110 	}
1111 
1112 	spin_lock_irqsave(&object->lock, flags);
1113 	object->trace_len = __save_stack_trace(object->trace);
1114 	spin_unlock_irqrestore(&object->lock, flags);
1115 
1116 	put_object(object);
1117 }
1118 EXPORT_SYMBOL(kmemleak_update_trace);
1119 
1120 /**
1121  * kmemleak_not_leak - mark an allocated object as false positive
1122  * @ptr:	pointer to beginning of the object
1123  *
1124  * Calling this function on an object will cause the memory block to no longer
1125  * be reported as leak and always be scanned.
1126  */
1127 void __ref kmemleak_not_leak(const void *ptr)
1128 {
1129 	pr_debug("%s(0x%p)\n", __func__, ptr);
1130 
1131 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1132 		make_gray_object((unsigned long)ptr);
1133 	else if (kmemleak_early_log)
1134 		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1135 }
1136 EXPORT_SYMBOL(kmemleak_not_leak);
1137 
1138 /**
1139  * kmemleak_ignore - ignore an allocated object
1140  * @ptr:	pointer to beginning of the object
1141  *
1142  * Calling this function on an object will cause the memory block to be
1143  * ignored (not scanned and not reported as a leak). This is usually done when
1144  * it is known that the corresponding block is not a leak and does not contain
1145  * any references to other allocated memory blocks.
1146  */
1147 void __ref kmemleak_ignore(const void *ptr)
1148 {
1149 	pr_debug("%s(0x%p)\n", __func__, ptr);
1150 
1151 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1152 		make_black_object((unsigned long)ptr);
1153 	else if (kmemleak_early_log)
1154 		log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1155 }
1156 EXPORT_SYMBOL(kmemleak_ignore);
1157 
1158 /**
1159  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1160  * @ptr:	pointer to beginning or inside the object. This also
1161  *		represents the start of the scan area
1162  * @size:	size of the scan area
1163  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1164  *
1165  * This function is used when it is known that only certain parts of an object
1166  * contain references to other objects. Kmemleak will only scan these areas
1167  * reducing the number false negatives.
1168  */
1169 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1170 {
1171 	pr_debug("%s(0x%p)\n", __func__, ptr);
1172 
1173 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1174 		add_scan_area((unsigned long)ptr, size, gfp);
1175 	else if (kmemleak_early_log)
1176 		log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1177 }
1178 EXPORT_SYMBOL(kmemleak_scan_area);
1179 
1180 /**
1181  * kmemleak_no_scan - do not scan an allocated object
1182  * @ptr:	pointer to beginning of the object
1183  *
1184  * This function notifies kmemleak not to scan the given memory block. Useful
1185  * in situations where it is known that the given object does not contain any
1186  * references to other objects. Kmemleak will not scan such objects reducing
1187  * the number of false negatives.
1188  */
1189 void __ref kmemleak_no_scan(const void *ptr)
1190 {
1191 	pr_debug("%s(0x%p)\n", __func__, ptr);
1192 
1193 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1194 		object_no_scan((unsigned long)ptr);
1195 	else if (kmemleak_early_log)
1196 		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1197 }
1198 EXPORT_SYMBOL(kmemleak_no_scan);
1199 
1200 /**
1201  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1202  *			 address argument
1203  * @phys:	physical address of the object
1204  * @size:	size of the object
1205  * @min_count:	minimum number of references to this object.
1206  *              See kmemleak_alloc()
1207  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1208  */
1209 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1210 			       gfp_t gfp)
1211 {
1212 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1213 		kmemleak_alloc(__va(phys), size, min_count, gfp);
1214 }
1215 EXPORT_SYMBOL(kmemleak_alloc_phys);
1216 
1217 /**
1218  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1219  *			     physical address argument
1220  * @phys:	physical address if the beginning or inside an object. This
1221  *		also represents the start of the range to be freed
1222  * @size:	size to be unregistered
1223  */
1224 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1225 {
1226 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1227 		kmemleak_free_part(__va(phys), size);
1228 }
1229 EXPORT_SYMBOL(kmemleak_free_part_phys);
1230 
1231 /**
1232  * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1233  *			    address argument
1234  * @phys:	physical address of the object
1235  */
1236 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1237 {
1238 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1239 		kmemleak_not_leak(__va(phys));
1240 }
1241 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1242 
1243 /**
1244  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1245  *			  address argument
1246  * @phys:	physical address of the object
1247  */
1248 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1249 {
1250 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1251 		kmemleak_ignore(__va(phys));
1252 }
1253 EXPORT_SYMBOL(kmemleak_ignore_phys);
1254 
1255 /*
1256  * Update an object's checksum and return true if it was modified.
1257  */
1258 static bool update_checksum(struct kmemleak_object *object)
1259 {
1260 	u32 old_csum = object->checksum;
1261 
1262 	kasan_disable_current();
1263 	object->checksum = crc32(0, (void *)object->pointer, object->size);
1264 	kasan_enable_current();
1265 
1266 	return object->checksum != old_csum;
1267 }
1268 
1269 /*
1270  * Update an object's references. object->lock must be held by the caller.
1271  */
1272 static void update_refs(struct kmemleak_object *object)
1273 {
1274 	if (!color_white(object)) {
1275 		/* non-orphan, ignored or new */
1276 		return;
1277 	}
1278 
1279 	/*
1280 	 * Increase the object's reference count (number of pointers to the
1281 	 * memory block). If this count reaches the required minimum, the
1282 	 * object's color will become gray and it will be added to the
1283 	 * gray_list.
1284 	 */
1285 	object->count++;
1286 	if (color_gray(object)) {
1287 		/* put_object() called when removing from gray_list */
1288 		WARN_ON(!get_object(object));
1289 		list_add_tail(&object->gray_list, &gray_list);
1290 	}
1291 }
1292 
1293 /*
1294  * Memory scanning is a long process and it needs to be interruptable. This
1295  * function checks whether such interrupt condition occurred.
1296  */
1297 static int scan_should_stop(void)
1298 {
1299 	if (!kmemleak_enabled)
1300 		return 1;
1301 
1302 	/*
1303 	 * This function may be called from either process or kthread context,
1304 	 * hence the need to check for both stop conditions.
1305 	 */
1306 	if (current->mm)
1307 		return signal_pending(current);
1308 	else
1309 		return kthread_should_stop();
1310 
1311 	return 0;
1312 }
1313 
1314 /*
1315  * Scan a memory block (exclusive range) for valid pointers and add those
1316  * found to the gray list.
1317  */
1318 static void scan_block(void *_start, void *_end,
1319 		       struct kmemleak_object *scanned)
1320 {
1321 	unsigned long *ptr;
1322 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1323 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1324 	unsigned long flags;
1325 	unsigned long untagged_ptr;
1326 
1327 	read_lock_irqsave(&kmemleak_lock, flags);
1328 	for (ptr = start; ptr < end; ptr++) {
1329 		struct kmemleak_object *object;
1330 		unsigned long pointer;
1331 		unsigned long excess_ref;
1332 
1333 		if (scan_should_stop())
1334 			break;
1335 
1336 		kasan_disable_current();
1337 		pointer = *ptr;
1338 		kasan_enable_current();
1339 
1340 		untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1341 		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1342 			continue;
1343 
1344 		/*
1345 		 * No need for get_object() here since we hold kmemleak_lock.
1346 		 * object->use_count cannot be dropped to 0 while the object
1347 		 * is still present in object_tree_root and object_list
1348 		 * (with updates protected by kmemleak_lock).
1349 		 */
1350 		object = lookup_object(pointer, 1);
1351 		if (!object)
1352 			continue;
1353 		if (object == scanned)
1354 			/* self referenced, ignore */
1355 			continue;
1356 
1357 		/*
1358 		 * Avoid the lockdep recursive warning on object->lock being
1359 		 * previously acquired in scan_object(). These locks are
1360 		 * enclosed by scan_mutex.
1361 		 */
1362 		spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1363 		/* only pass surplus references (object already gray) */
1364 		if (color_gray(object)) {
1365 			excess_ref = object->excess_ref;
1366 			/* no need for update_refs() if object already gray */
1367 		} else {
1368 			excess_ref = 0;
1369 			update_refs(object);
1370 		}
1371 		spin_unlock(&object->lock);
1372 
1373 		if (excess_ref) {
1374 			object = lookup_object(excess_ref, 0);
1375 			if (!object)
1376 				continue;
1377 			if (object == scanned)
1378 				/* circular reference, ignore */
1379 				continue;
1380 			spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1381 			update_refs(object);
1382 			spin_unlock(&object->lock);
1383 		}
1384 	}
1385 	read_unlock_irqrestore(&kmemleak_lock, flags);
1386 }
1387 
1388 /*
1389  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1390  */
1391 #ifdef CONFIG_SMP
1392 static void scan_large_block(void *start, void *end)
1393 {
1394 	void *next;
1395 
1396 	while (start < end) {
1397 		next = min(start + MAX_SCAN_SIZE, end);
1398 		scan_block(start, next, NULL);
1399 		start = next;
1400 		cond_resched();
1401 	}
1402 }
1403 #endif
1404 
1405 /*
1406  * Scan a memory block corresponding to a kmemleak_object. A condition is
1407  * that object->use_count >= 1.
1408  */
1409 static void scan_object(struct kmemleak_object *object)
1410 {
1411 	struct kmemleak_scan_area *area;
1412 	unsigned long flags;
1413 
1414 	/*
1415 	 * Once the object->lock is acquired, the corresponding memory block
1416 	 * cannot be freed (the same lock is acquired in delete_object).
1417 	 */
1418 	spin_lock_irqsave(&object->lock, flags);
1419 	if (object->flags & OBJECT_NO_SCAN)
1420 		goto out;
1421 	if (!(object->flags & OBJECT_ALLOCATED))
1422 		/* already freed object */
1423 		goto out;
1424 	if (hlist_empty(&object->area_list)) {
1425 		void *start = (void *)object->pointer;
1426 		void *end = (void *)(object->pointer + object->size);
1427 		void *next;
1428 
1429 		do {
1430 			next = min(start + MAX_SCAN_SIZE, end);
1431 			scan_block(start, next, object);
1432 
1433 			start = next;
1434 			if (start >= end)
1435 				break;
1436 
1437 			spin_unlock_irqrestore(&object->lock, flags);
1438 			cond_resched();
1439 			spin_lock_irqsave(&object->lock, flags);
1440 		} while (object->flags & OBJECT_ALLOCATED);
1441 	} else
1442 		hlist_for_each_entry(area, &object->area_list, node)
1443 			scan_block((void *)area->start,
1444 				   (void *)(area->start + area->size),
1445 				   object);
1446 out:
1447 	spin_unlock_irqrestore(&object->lock, flags);
1448 }
1449 
1450 /*
1451  * Scan the objects already referenced (gray objects). More objects will be
1452  * referenced and, if there are no memory leaks, all the objects are scanned.
1453  */
1454 static void scan_gray_list(void)
1455 {
1456 	struct kmemleak_object *object, *tmp;
1457 
1458 	/*
1459 	 * The list traversal is safe for both tail additions and removals
1460 	 * from inside the loop. The kmemleak objects cannot be freed from
1461 	 * outside the loop because their use_count was incremented.
1462 	 */
1463 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1464 	while (&object->gray_list != &gray_list) {
1465 		cond_resched();
1466 
1467 		/* may add new objects to the list */
1468 		if (!scan_should_stop())
1469 			scan_object(object);
1470 
1471 		tmp = list_entry(object->gray_list.next, typeof(*object),
1472 				 gray_list);
1473 
1474 		/* remove the object from the list and release it */
1475 		list_del(&object->gray_list);
1476 		put_object(object);
1477 
1478 		object = tmp;
1479 	}
1480 	WARN_ON(!list_empty(&gray_list));
1481 }
1482 
1483 /*
1484  * Scan data sections and all the referenced memory blocks allocated via the
1485  * kernel's standard allocators. This function must be called with the
1486  * scan_mutex held.
1487  */
1488 static void kmemleak_scan(void)
1489 {
1490 	unsigned long flags;
1491 	struct kmemleak_object *object;
1492 	int i;
1493 	int new_leaks = 0;
1494 
1495 	jiffies_last_scan = jiffies;
1496 
1497 	/* prepare the kmemleak_object's */
1498 	rcu_read_lock();
1499 	list_for_each_entry_rcu(object, &object_list, object_list) {
1500 		spin_lock_irqsave(&object->lock, flags);
1501 #ifdef DEBUG
1502 		/*
1503 		 * With a few exceptions there should be a maximum of
1504 		 * 1 reference to any object at this point.
1505 		 */
1506 		if (atomic_read(&object->use_count) > 1) {
1507 			pr_debug("object->use_count = %d\n",
1508 				 atomic_read(&object->use_count));
1509 			dump_object_info(object);
1510 		}
1511 #endif
1512 		/* reset the reference count (whiten the object) */
1513 		object->count = 0;
1514 		if (color_gray(object) && get_object(object))
1515 			list_add_tail(&object->gray_list, &gray_list);
1516 
1517 		spin_unlock_irqrestore(&object->lock, flags);
1518 	}
1519 	rcu_read_unlock();
1520 
1521 #ifdef CONFIG_SMP
1522 	/* per-cpu sections scanning */
1523 	for_each_possible_cpu(i)
1524 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1525 				 __per_cpu_end + per_cpu_offset(i));
1526 #endif
1527 
1528 	/*
1529 	 * Struct page scanning for each node.
1530 	 */
1531 	get_online_mems();
1532 	for_each_online_node(i) {
1533 		unsigned long start_pfn = node_start_pfn(i);
1534 		unsigned long end_pfn = node_end_pfn(i);
1535 		unsigned long pfn;
1536 
1537 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1538 			struct page *page = pfn_to_online_page(pfn);
1539 
1540 			if (!page)
1541 				continue;
1542 
1543 			/* only scan pages belonging to this node */
1544 			if (page_to_nid(page) != i)
1545 				continue;
1546 			/* only scan if page is in use */
1547 			if (page_count(page) == 0)
1548 				continue;
1549 			scan_block(page, page + 1, NULL);
1550 			if (!(pfn & 63))
1551 				cond_resched();
1552 		}
1553 	}
1554 	put_online_mems();
1555 
1556 	/*
1557 	 * Scanning the task stacks (may introduce false negatives).
1558 	 */
1559 	if (kmemleak_stack_scan) {
1560 		struct task_struct *p, *g;
1561 
1562 		read_lock(&tasklist_lock);
1563 		do_each_thread(g, p) {
1564 			void *stack = try_get_task_stack(p);
1565 			if (stack) {
1566 				scan_block(stack, stack + THREAD_SIZE, NULL);
1567 				put_task_stack(p);
1568 			}
1569 		} while_each_thread(g, p);
1570 		read_unlock(&tasklist_lock);
1571 	}
1572 
1573 	/*
1574 	 * Scan the objects already referenced from the sections scanned
1575 	 * above.
1576 	 */
1577 	scan_gray_list();
1578 
1579 	/*
1580 	 * Check for new or unreferenced objects modified since the previous
1581 	 * scan and color them gray until the next scan.
1582 	 */
1583 	rcu_read_lock();
1584 	list_for_each_entry_rcu(object, &object_list, object_list) {
1585 		spin_lock_irqsave(&object->lock, flags);
1586 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1587 		    && update_checksum(object) && get_object(object)) {
1588 			/* color it gray temporarily */
1589 			object->count = object->min_count;
1590 			list_add_tail(&object->gray_list, &gray_list);
1591 		}
1592 		spin_unlock_irqrestore(&object->lock, flags);
1593 	}
1594 	rcu_read_unlock();
1595 
1596 	/*
1597 	 * Re-scan the gray list for modified unreferenced objects.
1598 	 */
1599 	scan_gray_list();
1600 
1601 	/*
1602 	 * If scanning was stopped do not report any new unreferenced objects.
1603 	 */
1604 	if (scan_should_stop())
1605 		return;
1606 
1607 	/*
1608 	 * Scanning result reporting.
1609 	 */
1610 	rcu_read_lock();
1611 	list_for_each_entry_rcu(object, &object_list, object_list) {
1612 		spin_lock_irqsave(&object->lock, flags);
1613 		if (unreferenced_object(object) &&
1614 		    !(object->flags & OBJECT_REPORTED)) {
1615 			object->flags |= OBJECT_REPORTED;
1616 
1617 			if (kmemleak_verbose)
1618 				print_unreferenced(NULL, object);
1619 
1620 			new_leaks++;
1621 		}
1622 		spin_unlock_irqrestore(&object->lock, flags);
1623 	}
1624 	rcu_read_unlock();
1625 
1626 	if (new_leaks) {
1627 		kmemleak_found_leaks = true;
1628 
1629 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1630 			new_leaks);
1631 	}
1632 
1633 }
1634 
1635 /*
1636  * Thread function performing automatic memory scanning. Unreferenced objects
1637  * at the end of a memory scan are reported but only the first time.
1638  */
1639 static int kmemleak_scan_thread(void *arg)
1640 {
1641 	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1642 
1643 	pr_info("Automatic memory scanning thread started\n");
1644 	set_user_nice(current, 10);
1645 
1646 	/*
1647 	 * Wait before the first scan to allow the system to fully initialize.
1648 	 */
1649 	if (first_run) {
1650 		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1651 		first_run = 0;
1652 		while (timeout && !kthread_should_stop())
1653 			timeout = schedule_timeout_interruptible(timeout);
1654 	}
1655 
1656 	while (!kthread_should_stop()) {
1657 		signed long timeout = jiffies_scan_wait;
1658 
1659 		mutex_lock(&scan_mutex);
1660 		kmemleak_scan();
1661 		mutex_unlock(&scan_mutex);
1662 
1663 		/* wait before the next scan */
1664 		while (timeout && !kthread_should_stop())
1665 			timeout = schedule_timeout_interruptible(timeout);
1666 	}
1667 
1668 	pr_info("Automatic memory scanning thread ended\n");
1669 
1670 	return 0;
1671 }
1672 
1673 /*
1674  * Start the automatic memory scanning thread. This function must be called
1675  * with the scan_mutex held.
1676  */
1677 static void start_scan_thread(void)
1678 {
1679 	if (scan_thread)
1680 		return;
1681 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1682 	if (IS_ERR(scan_thread)) {
1683 		pr_warn("Failed to create the scan thread\n");
1684 		scan_thread = NULL;
1685 	}
1686 }
1687 
1688 /*
1689  * Stop the automatic memory scanning thread.
1690  */
1691 static void stop_scan_thread(void)
1692 {
1693 	if (scan_thread) {
1694 		kthread_stop(scan_thread);
1695 		scan_thread = NULL;
1696 	}
1697 }
1698 
1699 /*
1700  * Iterate over the object_list and return the first valid object at or after
1701  * the required position with its use_count incremented. The function triggers
1702  * a memory scanning when the pos argument points to the first position.
1703  */
1704 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1705 {
1706 	struct kmemleak_object *object;
1707 	loff_t n = *pos;
1708 	int err;
1709 
1710 	err = mutex_lock_interruptible(&scan_mutex);
1711 	if (err < 0)
1712 		return ERR_PTR(err);
1713 
1714 	rcu_read_lock();
1715 	list_for_each_entry_rcu(object, &object_list, object_list) {
1716 		if (n-- > 0)
1717 			continue;
1718 		if (get_object(object))
1719 			goto out;
1720 	}
1721 	object = NULL;
1722 out:
1723 	return object;
1724 }
1725 
1726 /*
1727  * Return the next object in the object_list. The function decrements the
1728  * use_count of the previous object and increases that of the next one.
1729  */
1730 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1731 {
1732 	struct kmemleak_object *prev_obj = v;
1733 	struct kmemleak_object *next_obj = NULL;
1734 	struct kmemleak_object *obj = prev_obj;
1735 
1736 	++(*pos);
1737 
1738 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1739 		if (get_object(obj)) {
1740 			next_obj = obj;
1741 			break;
1742 		}
1743 	}
1744 
1745 	put_object(prev_obj);
1746 	return next_obj;
1747 }
1748 
1749 /*
1750  * Decrement the use_count of the last object required, if any.
1751  */
1752 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1753 {
1754 	if (!IS_ERR(v)) {
1755 		/*
1756 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1757 		 * waiting was interrupted, so only release it if !IS_ERR.
1758 		 */
1759 		rcu_read_unlock();
1760 		mutex_unlock(&scan_mutex);
1761 		if (v)
1762 			put_object(v);
1763 	}
1764 }
1765 
1766 /*
1767  * Print the information for an unreferenced object to the seq file.
1768  */
1769 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1770 {
1771 	struct kmemleak_object *object = v;
1772 	unsigned long flags;
1773 
1774 	spin_lock_irqsave(&object->lock, flags);
1775 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1776 		print_unreferenced(seq, object);
1777 	spin_unlock_irqrestore(&object->lock, flags);
1778 	return 0;
1779 }
1780 
1781 static const struct seq_operations kmemleak_seq_ops = {
1782 	.start = kmemleak_seq_start,
1783 	.next  = kmemleak_seq_next,
1784 	.stop  = kmemleak_seq_stop,
1785 	.show  = kmemleak_seq_show,
1786 };
1787 
1788 static int kmemleak_open(struct inode *inode, struct file *file)
1789 {
1790 	return seq_open(file, &kmemleak_seq_ops);
1791 }
1792 
1793 static int dump_str_object_info(const char *str)
1794 {
1795 	unsigned long flags;
1796 	struct kmemleak_object *object;
1797 	unsigned long addr;
1798 
1799 	if (kstrtoul(str, 0, &addr))
1800 		return -EINVAL;
1801 	object = find_and_get_object(addr, 0);
1802 	if (!object) {
1803 		pr_info("Unknown object at 0x%08lx\n", addr);
1804 		return -EINVAL;
1805 	}
1806 
1807 	spin_lock_irqsave(&object->lock, flags);
1808 	dump_object_info(object);
1809 	spin_unlock_irqrestore(&object->lock, flags);
1810 
1811 	put_object(object);
1812 	return 0;
1813 }
1814 
1815 /*
1816  * We use grey instead of black to ensure we can do future scans on the same
1817  * objects. If we did not do future scans these black objects could
1818  * potentially contain references to newly allocated objects in the future and
1819  * we'd end up with false positives.
1820  */
1821 static void kmemleak_clear(void)
1822 {
1823 	struct kmemleak_object *object;
1824 	unsigned long flags;
1825 
1826 	rcu_read_lock();
1827 	list_for_each_entry_rcu(object, &object_list, object_list) {
1828 		spin_lock_irqsave(&object->lock, flags);
1829 		if ((object->flags & OBJECT_REPORTED) &&
1830 		    unreferenced_object(object))
1831 			__paint_it(object, KMEMLEAK_GREY);
1832 		spin_unlock_irqrestore(&object->lock, flags);
1833 	}
1834 	rcu_read_unlock();
1835 
1836 	kmemleak_found_leaks = false;
1837 }
1838 
1839 static void __kmemleak_do_cleanup(void);
1840 
1841 /*
1842  * File write operation to configure kmemleak at run-time. The following
1843  * commands can be written to the /sys/kernel/debug/kmemleak file:
1844  *   off	- disable kmemleak (irreversible)
1845  *   stack=on	- enable the task stacks scanning
1846  *   stack=off	- disable the tasks stacks scanning
1847  *   scan=on	- start the automatic memory scanning thread
1848  *   scan=off	- stop the automatic memory scanning thread
1849  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1850  *		  disable it)
1851  *   scan	- trigger a memory scan
1852  *   clear	- mark all current reported unreferenced kmemleak objects as
1853  *		  grey to ignore printing them, or free all kmemleak objects
1854  *		  if kmemleak has been disabled.
1855  *   dump=...	- dump information about the object found at the given address
1856  */
1857 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1858 			      size_t size, loff_t *ppos)
1859 {
1860 	char buf[64];
1861 	int buf_size;
1862 	int ret;
1863 
1864 	buf_size = min(size, (sizeof(buf) - 1));
1865 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1866 		return -EFAULT;
1867 	buf[buf_size] = 0;
1868 
1869 	ret = mutex_lock_interruptible(&scan_mutex);
1870 	if (ret < 0)
1871 		return ret;
1872 
1873 	if (strncmp(buf, "clear", 5) == 0) {
1874 		if (kmemleak_enabled)
1875 			kmemleak_clear();
1876 		else
1877 			__kmemleak_do_cleanup();
1878 		goto out;
1879 	}
1880 
1881 	if (!kmemleak_enabled) {
1882 		ret = -EBUSY;
1883 		goto out;
1884 	}
1885 
1886 	if (strncmp(buf, "off", 3) == 0)
1887 		kmemleak_disable();
1888 	else if (strncmp(buf, "stack=on", 8) == 0)
1889 		kmemleak_stack_scan = 1;
1890 	else if (strncmp(buf, "stack=off", 9) == 0)
1891 		kmemleak_stack_scan = 0;
1892 	else if (strncmp(buf, "scan=on", 7) == 0)
1893 		start_scan_thread();
1894 	else if (strncmp(buf, "scan=off", 8) == 0)
1895 		stop_scan_thread();
1896 	else if (strncmp(buf, "scan=", 5) == 0) {
1897 		unsigned long secs;
1898 
1899 		ret = kstrtoul(buf + 5, 0, &secs);
1900 		if (ret < 0)
1901 			goto out;
1902 		stop_scan_thread();
1903 		if (secs) {
1904 			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1905 			start_scan_thread();
1906 		}
1907 	} else if (strncmp(buf, "scan", 4) == 0)
1908 		kmemleak_scan();
1909 	else if (strncmp(buf, "dump=", 5) == 0)
1910 		ret = dump_str_object_info(buf + 5);
1911 	else
1912 		ret = -EINVAL;
1913 
1914 out:
1915 	mutex_unlock(&scan_mutex);
1916 	if (ret < 0)
1917 		return ret;
1918 
1919 	/* ignore the rest of the buffer, only one command at a time */
1920 	*ppos += size;
1921 	return size;
1922 }
1923 
1924 static const struct file_operations kmemleak_fops = {
1925 	.owner		= THIS_MODULE,
1926 	.open		= kmemleak_open,
1927 	.read		= seq_read,
1928 	.write		= kmemleak_write,
1929 	.llseek		= seq_lseek,
1930 	.release	= seq_release,
1931 };
1932 
1933 static void __kmemleak_do_cleanup(void)
1934 {
1935 	struct kmemleak_object *object;
1936 
1937 	rcu_read_lock();
1938 	list_for_each_entry_rcu(object, &object_list, object_list)
1939 		delete_object_full(object->pointer);
1940 	rcu_read_unlock();
1941 }
1942 
1943 /*
1944  * Stop the memory scanning thread and free the kmemleak internal objects if
1945  * no previous scan thread (otherwise, kmemleak may still have some useful
1946  * information on memory leaks).
1947  */
1948 static void kmemleak_do_cleanup(struct work_struct *work)
1949 {
1950 	stop_scan_thread();
1951 
1952 	mutex_lock(&scan_mutex);
1953 	/*
1954 	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1955 	 * longer track object freeing. Ordering of the scan thread stopping and
1956 	 * the memory accesses below is guaranteed by the kthread_stop()
1957 	 * function.
1958 	 */
1959 	kmemleak_free_enabled = 0;
1960 	mutex_unlock(&scan_mutex);
1961 
1962 	if (!kmemleak_found_leaks)
1963 		__kmemleak_do_cleanup();
1964 	else
1965 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1966 }
1967 
1968 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1969 
1970 /*
1971  * Disable kmemleak. No memory allocation/freeing will be traced once this
1972  * function is called. Disabling kmemleak is an irreversible operation.
1973  */
1974 static void kmemleak_disable(void)
1975 {
1976 	/* atomically check whether it was already invoked */
1977 	if (cmpxchg(&kmemleak_error, 0, 1))
1978 		return;
1979 
1980 	/* stop any memory operation tracing */
1981 	kmemleak_enabled = 0;
1982 
1983 	/* check whether it is too early for a kernel thread */
1984 	if (kmemleak_initialized)
1985 		schedule_work(&cleanup_work);
1986 	else
1987 		kmemleak_free_enabled = 0;
1988 
1989 	pr_info("Kernel memory leak detector disabled\n");
1990 }
1991 
1992 /*
1993  * Allow boot-time kmemleak disabling (enabled by default).
1994  */
1995 static int __init kmemleak_boot_config(char *str)
1996 {
1997 	if (!str)
1998 		return -EINVAL;
1999 	if (strcmp(str, "off") == 0)
2000 		kmemleak_disable();
2001 	else if (strcmp(str, "on") == 0)
2002 		kmemleak_skip_disable = 1;
2003 	else
2004 		return -EINVAL;
2005 	return 0;
2006 }
2007 early_param("kmemleak", kmemleak_boot_config);
2008 
2009 static void __init print_log_trace(struct early_log *log)
2010 {
2011 	pr_notice("Early log backtrace:\n");
2012 	stack_trace_print(log->trace, log->trace_len, 2);
2013 }
2014 
2015 /*
2016  * Kmemleak initialization.
2017  */
2018 void __init kmemleak_init(void)
2019 {
2020 	int i;
2021 	unsigned long flags;
2022 
2023 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2024 	if (!kmemleak_skip_disable) {
2025 		kmemleak_early_log = 0;
2026 		kmemleak_disable();
2027 		return;
2028 	}
2029 #endif
2030 
2031 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2032 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2033 
2034 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2035 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2036 
2037 	if (crt_early_log > ARRAY_SIZE(early_log))
2038 		pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
2039 			crt_early_log);
2040 
2041 	/* the kernel is still in UP mode, so disabling the IRQs is enough */
2042 	local_irq_save(flags);
2043 	kmemleak_early_log = 0;
2044 	if (kmemleak_error) {
2045 		local_irq_restore(flags);
2046 		return;
2047 	} else {
2048 		kmemleak_enabled = 1;
2049 		kmemleak_free_enabled = 1;
2050 	}
2051 	local_irq_restore(flags);
2052 
2053 	/* register the data/bss sections */
2054 	create_object((unsigned long)_sdata, _edata - _sdata,
2055 		      KMEMLEAK_GREY, GFP_ATOMIC);
2056 	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2057 		      KMEMLEAK_GREY, GFP_ATOMIC);
2058 	/* only register .data..ro_after_init if not within .data */
2059 	if (__start_ro_after_init < _sdata || __end_ro_after_init > _edata)
2060 		create_object((unsigned long)__start_ro_after_init,
2061 			      __end_ro_after_init - __start_ro_after_init,
2062 			      KMEMLEAK_GREY, GFP_ATOMIC);
2063 
2064 	/*
2065 	 * This is the point where tracking allocations is safe. Automatic
2066 	 * scanning is started during the late initcall. Add the early logged
2067 	 * callbacks to the kmemleak infrastructure.
2068 	 */
2069 	for (i = 0; i < crt_early_log; i++) {
2070 		struct early_log *log = &early_log[i];
2071 
2072 		switch (log->op_type) {
2073 		case KMEMLEAK_ALLOC:
2074 			early_alloc(log);
2075 			break;
2076 		case KMEMLEAK_ALLOC_PERCPU:
2077 			early_alloc_percpu(log);
2078 			break;
2079 		case KMEMLEAK_FREE:
2080 			kmemleak_free(log->ptr);
2081 			break;
2082 		case KMEMLEAK_FREE_PART:
2083 			kmemleak_free_part(log->ptr, log->size);
2084 			break;
2085 		case KMEMLEAK_FREE_PERCPU:
2086 			kmemleak_free_percpu(log->ptr);
2087 			break;
2088 		case KMEMLEAK_NOT_LEAK:
2089 			kmemleak_not_leak(log->ptr);
2090 			break;
2091 		case KMEMLEAK_IGNORE:
2092 			kmemleak_ignore(log->ptr);
2093 			break;
2094 		case KMEMLEAK_SCAN_AREA:
2095 			kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
2096 			break;
2097 		case KMEMLEAK_NO_SCAN:
2098 			kmemleak_no_scan(log->ptr);
2099 			break;
2100 		case KMEMLEAK_SET_EXCESS_REF:
2101 			object_set_excess_ref((unsigned long)log->ptr,
2102 					      log->excess_ref);
2103 			break;
2104 		default:
2105 			kmemleak_warn("Unknown early log operation: %d\n",
2106 				      log->op_type);
2107 		}
2108 
2109 		if (kmemleak_warning) {
2110 			print_log_trace(log);
2111 			kmemleak_warning = 0;
2112 		}
2113 	}
2114 }
2115 
2116 /*
2117  * Late initialization function.
2118  */
2119 static int __init kmemleak_late_init(void)
2120 {
2121 	struct dentry *dentry;
2122 
2123 	kmemleak_initialized = 1;
2124 
2125 	dentry = debugfs_create_file("kmemleak", 0644, NULL, NULL,
2126 				     &kmemleak_fops);
2127 	if (!dentry)
2128 		pr_warn("Failed to create the debugfs kmemleak file\n");
2129 
2130 	if (kmemleak_error) {
2131 		/*
2132 		 * Some error occurred and kmemleak was disabled. There is a
2133 		 * small chance that kmemleak_disable() was called immediately
2134 		 * after setting kmemleak_initialized and we may end up with
2135 		 * two clean-up threads but serialized by scan_mutex.
2136 		 */
2137 		schedule_work(&cleanup_work);
2138 		return -ENOMEM;
2139 	}
2140 
2141 	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2142 		mutex_lock(&scan_mutex);
2143 		start_scan_thread();
2144 		mutex_unlock(&scan_mutex);
2145 	}
2146 
2147 	pr_info("Kernel memory leak detector initialized\n");
2148 
2149 	return 0;
2150 }
2151 late_initcall(kmemleak_late_init);
2152